Yao Zhang - Scientific Machine Learning, SciML


Scientific Machine Learning (SciML) is a rapidly emerging discipline within the data science community, aimed at addressing domain-specific data challenges and deriving insights from scientific datasets through innovative methodologies. By integrating tools from both machine learning and scientific computing, SciML develops scalable, domain-aware, robust, reliable, and interpretable approaches for data analysis and learning. These advancements are poised to fuel the next wave of data-driven scientific breakthroughs, particularly in the physical and engineering sciences. Like scientific computing, SciML is inherently multidisciplinary, drawing upon expertise in applied and computational mathematics, computer science, and the physical sciences to tackle complex problems.

Machine Learning

  1. 01    02    03    04    05    06    07    08    09    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    Materials

Deep Learning

  1. 01    02    03    04    05    06    07    08    09    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    27    28     Materials

Reinforcement Learning

  1. Lecture: 01    02    03    04    05    06    07    08    09    10    11    12    13    14    15    Tutorial: 01    02    03    04    05    06    07    08    09    10    11    12    13    Materials

Artificial Intelligence in the Sciences and Engineering

\(\quad\) It covers deep learning, partial differential equations in science, physics-informed neural networks, operator learning, diffusion models, differentiable physics, hybrid workflows, neural differential equations, JAX, symbolic regression, and machine learning in chemistry and biology.

  1. 01    02    03    04    05    06    07    08    09    10    11    12    13    14    15    16    17    18    19    20    21    22    23    24    25    26    Materials

Nonconvex Optimization for Deep Learning

  1. Lecture: 01A    01B    02A    02B    03A    03B    04A    04B    05A    05B    06A    06B    07A    07B    08A    08B    09A    09B    10A    10B    11A    11B    12    13

  2. Tutorial: 02    04    05    06    07    08    09    10    11    12     Materials

Graphical Models and Causal Inference

  1. 01    02    03    04    05    06    07    08    09    10    11    12    13    14    15    16    17    18    Materials

Numerical Analyis Meets Maching Learning

\(\quad \) A highly recommended reading is the Handbook of Numerical Analysis, Volume 25: Numerical Analysis Meets Machine Learning. Its content is as follows:
\(\quad \) 01    02    03    04    05    06    07    08    09    10    11