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Abstract

In this paper, we propose a physics-informed neural network extrapolation method that leverages machine learning
techniques to reconstruct coronal magnetic fields. We enhance the classical neural network structure by introducing
the concept of a quasi-output layer to address the challenge of preserving physical constraints during the neural
network extrapolation process. Furthermore, we employ second-order optimization methods for training the neural
network, which are more efficient compared to the first-order optimization methods commonly used in classical
machine learning. Our approach is evaluated on the widely recognized semi-analytical model proposed by Low
and Lou. The results demonstrate that the deep learning method achieves high accuracy in reconstructing the semi-
analytical model across multiple evaluation metrics. In addition, we validate the effectiveness of our method on the
observed magnetogram of active region.
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1. Introduction

The force-free field model, as discussed by Neukirch (2005),
Schrijver et al. (2006), Wiegelmann (2008), and Wiegelmann
& Sakurai (2021), is a crucial theoretical framework for
studying the magnetic field of the solar corona. This model is
essential for understanding solar burst events in the corona,
such as coronal mass ejections, filament eruptions, and flares.
Magnetic field extrapolation using the force-free field involves
reconstructing the coronal magnetic field by using the photo-
spheric magnetic field as a boundary condition and solving
the partial differential equations (PDEs) associated with the
force-free field model.

The force-free model satisfies the following equations:

( ) ( ) ´ ´ = WB B 0, in , 1

where ( ) ( )= =B B x y z B B B, , , ,x y z is the field, and Ω is the
open space above the Sun.

( ) ⋅ = WB 0, in , 2

and

( )= ¶WB B , on , 30

where ∂Ω is the boundary of Ω.
Equation (1) describes that the Lorentz force is zero, and it

also implies that

( )a ´ = WB B, in , 4

where ( )a a= x y z, , , i.e., α is a function of spatial location
( )x y z, , . This equation describes various types of magnetic

fields: the potential field (PF) when α= 0, the linear force-free
field (LFFF) when α is constant, and the nonlinear force-free
field (NLFFF) when α is variable.
Combining Equations (2), (3), and (4), we obtain that

( )a ´ = W  ⋅ = W = ¶WB B B B Bin , 0 in , on . 50

The force-free model is succinctly and accurately formulated
by Equation (5). The PF and LFFF models can be solved
analytically using the Green’s function method or the Fourier
method, as discussed by Wiegelmann & Sakurai (2021).
However, it remains unclear whether a solution to the NLFFF
model exists or is unique (Priest 2014). Despite this
uncertainty, various numerical methods have been proposed
to solve the NLFFF model. Generally, most existing numerical
methods for the NLFFF model fall into six main categories: the
vertical integration method (Nakagawa 1974; Amari et al.
1997), the magnetohydrodynamics (MHD) evolutionary
method (Mikić & McClymont 1994; Jiang et al. 2013), the
Grad–Rubin method (Grad & Rubin 1958; Régnier et al. 2002),
the optimization method (Wheatland et al. 2000; Wiegelmann
et al. 2006), the boundary element method (Yan &
Sakurai 2000; Yan & Li 2006), and the magneto-frictional
method (Yang et al. 1986; Guo et al. 2016). The numerical
algorithms mentioned above are grid-based methods due to
them all involving numerical differentiation or integration. In
this paper, we propose a grid-free method based on deep
learning using automatic differentiation (Baydin et al. 2018).
In recent years, deep learning has experienced rapid

development and has become closely intertwined with
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scientific computing. The combination of machine learning and
scientific computing has provided new insights and methodol-
ogies for tackling complex scientific and engineering problems.
This integration has propelled advancements in scientific
research and has offered powerful tools and theoretical
foundations for data-driven scientific simulations, predictions,
and optimizations.

The remainder of this paper is organized as follows:
Section 2 provides the development of our proposed force-
free neural network model. Section 3 develops the corresp-
onding optimization algorithm. The test and results are shown
in Section 4. Finally, the conclusion is given in Section 5.

2. Force-free Neural Network Model

The force-free model can be written as the following:

( )

( ) ( ) ( )
( ) ( )

| ( ) ( )

´ ´ = Î W
 ⋅ = Î W

= Î ¶W¶W
¢ ¢ ¢ ¢ ¢ ¢

6

B B
B

B B

x y z x y z x y z
x y z x y z

x y z x y z

0Differential Equation 1: , , , , , , , ,
Differential Equation 2: , , 0, , , ,

Boundary Condition: , , , , , .

The solution to Equation (6) can be approximated using a
neural network, leveraging the universal approximation
theorem (Cybenko 1989; Hornik 1991; Zhou 2020). Let

( )B x y z, ,NN represent the solution obtained from the neural
network. This solution satisfies the following mathematical
model

( ) ( ) ( )
( ) ( )

( ) ( )
( )

   


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   
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=

¢ ¢ ¢ ¢ ¢ ¢B B B

B B

B B

x y z x y z x y z

x y z x y z

x y z x y z
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where λ0, λ1, and λ2 are arbitrary positive real numbers. This
model is known as the physics-informed neural network
(PINN) model (Raissi et al. 2019). The term physics-informed
in this context signifies being force-free in our research. Hence,
we aptly label this neural network as the force-free neural
network.

In practice, the determination of ( )B x y z, ,NN involves
minimizing the cost function ( )pf . The cost function is
defined as follows

( ) ( ) ( )

( )

( ) ( )

( ) ( )
( )

 

   

 
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å
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where ( )¢ ¢ ¢ Î ¶Wx y z, ,i i i and ( ) Î Wx y z, ,j j j represent randomly
sampled training sets. The sample size on ∂Ω is denoted by m,

while the sample size in Ω is denoted by n. By adjusting the
parameter p and iteratively updating p in the neural network,
we can minimize the cost function to obtain the desired
magnetic field ( )B x y z, , .

Remark 1. It is obvious that if ( )pf in Equation (8) is reduced
to zero, then this implies Equations (1), (2), and (3) or (6) hold
immediately.

Remark 2. Keep in mind that the learnable parameter p is a
vector collecting all weights and biases of the force-free neural
network.

To address this optimization problem, which minimizes
( )pf in Equation (8) to 0, we propose a deep learning approach

using a multilayer perceptron (MLP). The architecture of the
MLP, displayed in Figure 1, consists of (L+ 2) fully connected
layers, each with N units. The activation function we used is the
hyperbolic tangent sigmoid (tanh) elementwise function,
defined as ( ) = -

+

-

-xtanh e e

e e

x x

x x , where x is a real number. Both
the input and output layers are fully connected layers with a
size of 3. The architecture can be formalized as follows:

1. The first layer:

[ ] ( [ ] )( ) ( ) ( ) ( ) ( ) = + bu u y W x y z, , tanh , , ,N
T T

1
1

2
1 1 1 1

where ( ) ( )Î Î´ bW ,N N1 3 1  .
2. The hidden layers:

[ ] ( [ ] )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = +- - - bu u u W u u u, , tanh , , ,i i
N
i T i i i

N
i T i

1 2 1
1

2
1 1

where ( ) ( )Î Î´ bW ,i N N i N  , 2� i� L.
3. The quasi-output layer:

[ ] ( [ ] )( ) ( ) ( ) ( ) ( )= +¢ ¢ ¢ + +bB B B W u u u, , , , ,x y z
T L L L

N
L T L1

1 2
1

where ( ) ( )Î Î+ ´ +bW ,L N L1 3 1 3  .
4. The final-output layer:

[ ] [ ] [ ]

( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ¢ ¢ ¢ +B B B
w

w
w

B B B b b b, ,
0 0

0 0
0 0

, , , ,

9

x y z
T

x y z
T T

11

22

33

1 2 3

where Îw b,ii i  for 1� i� 3.

It is crucial to include a quasi-output layer in the architecture
of the force-free neural network. Without this layer, the loss
function ( )pf may not converge to zero during the training
process. Moreover, in some cases, it can even diverge and
become significantly larger than zero, as depicted in Figure 2.
It should be noted that for a set of PDEs with a unique

solution, different boundary conditions will yield different
solutions. A PINN minimizes the residuals of the equations and
boundary data by adjusting its learnable parameters. When
these residuals are sufficiently small, the PINN is considered to
provide a nonlinear representation of the PDEs’ solutions that
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satisfies the boundary conditions. Jarolim et al. (2023)
implements specific treatment of the data residual term as
follows

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭

= - - =
B B B

L
B B B B

Lmax abs , 0
1

,B B
0New

0 0

error

0

2

0
20 0

where the term Berror represents the error map and B0= 2500 G.
Mathematically, this operation reduces the optimization
difficulty of the neural network. However, this data residual
is artificially reduced by a factor of 6250,000. Numerically,
after introducing Berror, which relaxes the deviation of the
boundary data, the difference between the output of the PINN

Figure 1. The architecture for our force-free neural network, where ( )=B B x y z, ,NN , ( )=¶W
¢ ¢ ¢B B x y z, ,NN , ( )= ¢ ¢ ¢B B x y z, ,0 , ( ) Î Wx y z, , , ( )¢ ¢ ¢ Î ¶Wx y z, , . The

output is the solution of (6) with respect to any input ( ) ÈÎ W ¶Wx y z, , .

Figure 2. Training loss vs. iterations of the force-free neural network in an example. Without the quasi-output layer, it cannot converge to near zero, while with the
quasi-output layer it can.
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and the observations at the boundary will affect the accuracy of
the numerical solution of the PDEs.

We do not use normalization or denormalization operations;
instead, we propose the concept of a quasi-output layer. This
approach is chosen partly to facilitate the training of the neural
network and partly to avoid amplifying or diminishing the
residuals of the equations and boundary data terms. This
method helps ensure that the numerical solutions of the PDEs,
which satisfy the boundary conditions, are found without
disrupting the physical laws inherent in the data.

3. Optimization

To minimize the cost function ( )pf , we adopt an iterative
scheme using the update rule:

( )a= ++p p d , 10k k k k1

where pk represents the parameter vector at iteration k, αk is the
step size, and dk is the search direction. The goal is to find p
such that ( ) ( )+p pf fk k 1 , approaching a value close to 0 as k
approaches infinity.

Motivated by the alternating variable method, we first fix dk

and seek αk. Then, after fixing αk, we update dk. Next, we will
discuss the detailed updating process for αk in Section 3.1, and
the updating process for dk in Section 3.2.

3.1. Update αk

In this step, we construct a cubic function j(α) defined as

( ) ( )j a a= +p df ,k k

which interpolates ( ) ( ) ( ) ( )j j j j¢ a a0 , 0 , ,0 1 (taking suitable
a0, a1> 0). Then we determine αk as

( )a j a=
a

argmin .k

This approach allows us to determine the optimal step size αk

for each iteration, enhancing the convergence of the optim-
ization process.

3.2. Update dk

In this step, we consider the dimension of ( ) pf , which is
( ) Îpf 110,706 when L= 10 and N= 100. This dimension is

too large to store or compute directly in the numerical
algorithm.

To address this issue, we use a limited memory quasi-
Newton method called the limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) algorithm (Liu & Nocedal 1989).
Jarolim et al. employ a first-order optimization algorithm.
According to Watt et al. (2020), second-order methods, like
L-BFGS, typically require fewer iterations to converge to an
optimal solution compared to first-order methods. Moreover,
Nocedal & Wright, in the book Numerical Optimization,
highlight that first-order optimization algorithms, such as the
ADAM optimizer used by Jarolim et al., can perform poorly

without proper input data normalization. In contrast, quasi-
Newton methods, like the one we use, are less sensitive to this
issue. Jarolim et al. apply normalization and denormalization
steps outside the neural network when using a vanilla PINN,
whereas we do not use such operations.
In this method, we update dk as

( )= - d pC f ,k k k

where Ck is updated based on the previous iterations using a
recursive formula. Specifically, for 1� k�m:

( )
 

= +- - - - - -C E C E g h h k m, 1 ,k k k k
T

k k k
T

1 1 1 1 1 1  
and for k>m:

( ) ( )
( ) ( )

( )

 
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

=

+

+ + >

- - - -

- - - + - - - + -

- - -

C E E C E E

g E E h h E E

g h h k m,

,
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k m k
T

k m
T

k m k m
T

k m k

k k k
T

1
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1
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1 1 1

where Ek is a matrix, gk is a scalar, and Ck
0 is a matrix. That is,

= - = = - -

- -
E I g i h g

i h
C

h i

i i
I,

1
, .k k k k

T
k

k
T

k
k

k
T

k

k
T
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0 1 1

1 1

C0 is settled by the finite differences at p0 (Nocedal &
Wright 2006). The vectors hk and ik are defined as

 = - = -+ +h p p i f f, .k k k k k k1 1

The L-BFGS algorithm allows us to update dk efficiently and
effectively in high-dimensional problems, improving the
convergence of the optimization process.

4. Test Cases

Low & Lou (1990) provided a set of separable and semi-
analytical solutions for Equations (1) and (2) with two
parameters (nLL and mLL) in spherical coordinate systems.
They then introduced two additional parameters (l and Φ) to
obtain the realistic-looking magnetic fields in Cartesian
coordinate systems. In this paper, we choose two specific
parameter configurations, which are identical to those used in
Schrijver et al. (2006) and Valori et al. (2007):

1. Case 1: = = = F = pn m l1, 1, 0.3,LL LL 4
,

2. Case 2: = = = F = pn m l3, 1, 0.3,LL LL
4

5
.

to evaluate our method.
Our method is tested by striving to reconstruct Case 1

and Case 2 in the 643 pixel box defined by [ ]- ´1, 1
[ ] [ ]- ´1, 1 0, 2 .

For Case 1, the NLFFF on all six boundaries of the box is
provided. We use a 7-layer MLP with (L= 5) and a width
N= 128. The parameters λ0= 1, λ1= 1 and λ2= 0.95 are set,
and m0= 10. The parameter vector p is initialized using
Kaiming initialization (He et al. 2015). We randomly select
23,816 points from the boundary ∂Ω and 360,000 points from
the interior Ω to train the MLP.
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For Case 2, only the NLFFF on the bottom boundary of the
box is given. In this case, we set L= 7, N= 156, λ0= 1.25,
λ1= 1, λ2= 1 and m0= 50. The parameter vector p is
initialized in the same way as in Case 1. We randomly select
4096 points from the bottom boundary of the box and 360,000
points from the interior Ω to train the MLP. To enforce lateral
and top boundary conditions, we choose a PF on these
boundaries and select 20,482 points from them.

After training the force-free neural network MLP, we obtain
the optimized parameter vector

( )=*p pfargmin .
p

For the evaluation of the reference NLFFF, we introduce
several common metrics as outlined by Schrijver et al. (2006).
These metrics include the correlation based on vector inner
product (Cvec), the correlation based on the Cauchy–Schwarz
inequality (Ccs), the normalized vector error (En), the mean
vector error (Em), the total magnetic energy normalized to the
reference field ( ), and the ratio between the magnetic energy
of the reconstructed and PFs (P).

The Cvec is defined as

( )   
º

å ⋅

å å

=

= =

B B

B B
C ,i

M
i i

i
M

i i
M

i

vec
1

Ref Rec

1
Ref

2
2

1
Rec

2
2

1
2

where BRef is the reference field , and BRec is the reconstruction
of the BRef (similarly hereinafter). It is clear that if the reference
field is exactly reconstructable, then Cvec= 1.

The Ccs is a measure of the angular differences between the
reference and the reconstructed fields which are defined as

   åº
⋅

=

B B
B B

C
M

1
,

i

M
i i

i i
cs

1

Ref Rec

Ref
2

Rec
2

where M is the number of the selected vectors in the whole
space.

In the two metrics mentioned above, the larger value
achieved implies better performance.

The En is defined as

 
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º
å -

å
=

=

B B

B
E .i

M
i i

i
M

i
n

1
Ref Rec

2

1
Ref

2
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Unlike the first two metrics En and Em, the smaller value
achieved implies the better performance. Therefore, ¢ =En

- E1 n and ¢ = -E E1m m are usually adopted as the metric.

The  is defined as


 
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º
å
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 shows how well the reconstructable energy is contained in
the reference field. The closer the value comes to 1, the better
the performance is.
The P is defined as


 
 

º
å

å
=

=

B

B
.i

M
i

i
M

i
P

1
Rec

2
2

1
P

2
2

where Bi
P is the PF. The larger the value achieved, the more

free energy there is.
We compare our force-free neural network model with Low

& Lou (1990), Wiegelmann (2004), optimization method
implemented by McTiernan; Valori et al. (2005), Wheatland
(2004), Régnier et al. (2002), LFFF and PF. Tables 1 and 2
show evaluation metric results based on the test cases with
64× 64× 64 uniform grids. Note that our proposed model
consistently achieves the best performance.
It is well known that magnetic field lines are a visual tool

used to represent the magnetic field. A magnetic field line is
defined such that the tangent at any point is in the direction
of the field B (Priest 2014). Figures 3 and 4 illustrate the

Table 1
Comparison with the Other Methods and Performance Boost with Different

Metrics on Case 1

Model Cvec Ccs ¢En ¢Em  P

Low 1 1 1 1 1 1.29
Ours 1.00 1.00 0.98 0.98 0.99 1.28
Wiegelmann 1.00 1.00 0.98 0.98 1.02 1.31
McTiernan 1.00 0.99 0.92 0.87 1.00 1.30
Valori 0.99 0.68 0.71 0.33 0.98 1.21
Wheatland 0.98 0.83 0.64 0.42 0.90 1.17
Regnier 0.93 0.49 0.41 0.09 0.80 1.04
LFFF 0.88 0.90 0.50 0.42 0.77 1.00
PF 0.85 0.82 0.45 0.35 0.77 1

Table 2
Comparison with the Other Methods and Performance Boost with Different

Metrics on Case 2

Model Cvec Ccs ¢En ¢Em  P

Low 1 1 1 1 1 1.10
Ours 1.00 0.43 0.79 0.01 0.99 1.09
Wiegelmann 1.00 0.57 0.86 −0.25 1.04 1.14
McTiernan 1.00 0.51 0.84 −0.38 1.04 1.14
Valori 0.99 0.55 0.75 −0.15 1.02 1.12
Wheatland 0.99 0.58 0.69 0.13 0.96 1.05
Regnier 0.94 0.28 0.49 −1.7 0.74 0.82
LFFF 0.93 0.08 −0.80 −37 1.04 1.15
PF 0.92 0.35 0.47 −0.63 0.91 1
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visualization of the three-dimensional vector magnetic field
with magnetic field lines. These magnetic field lines all start at
z= 0 and have initial x, y positions ranging from −1 to 1 with
increments of 0.125.

Figures 3(a) and 4(a) illustrate the field lines of the exact
solution and the corresponding field lines resulting from our
reconstruction procedure in Figures 3(b) and 4(b). The
reconstructed solution and the reference solution agree in most
of the space Ω ∪ ∂Ω.

It is of utmost importance to maintain the integrity of the
lateral and top boundary conditions. Neglecting these condi-
tions would significantly impair the performance of field
reconstruction, as clearly demonstrated in Figures 4(a) and 5.

Furthermore, it is important to highlight that the force-free
neural network method distinguishes itself from other
approaches, including the upward integration method, MHD
relaxation method, optimization approach, and boundary
element method, as discussed in a comprehensive review
article Wiegelmann & Sakurai (2021). Unlike these methods,
which typically employ fixed boundary conditions throughout
the computation, our approach emphasizes learning the
magnetic field distribution along the entire boundary using

partial boundary data. During the training process, the
boundary data continually adapt until they become consistent
with the sampled data on the boundary, ensuring accuracy and
coherence.

Figure 3. The magnetic field lines all start at z = 0 and have starting x, y positions ranging from −1 to 1 and increments by 0.125 for Case 1.

Figure 4. The magnetic field lines all start at z = 0 and have starting x, y positions ranging from −1 to 1 and increments by 0.125 for Case 2.

Figure 5. In Case 2, without the lateral and top boundary conditions, the
magnetic field lines originate from z = 0 and have initial x, y positions ranging
from −1 to 1 with increments of 0.125.
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Therefore, the reference magnetograms and the recon-
structed magnetograms are depicted in the left two columns of
Figures 6 and 7, while the differences between the reference
and reconstructed magnetograms are displayed in the right
column of the same figures. A uniform grid is generated with

( )= - + -x y i, 1 1i i
2

63
(1� i� 64) in the z= 0 plane. The

reconstructed contour plot abides by the reference contour plot
in the great majority of the bottom boundary layer.

The above results demonstrate that our method successfully
reconstructs the NLFFFs and achieves good agreement with the
reference fields in most of the space Ω ∪ ∂Ω. In addition, we

calculated the divergence-free and force-free factors from the
lower boundary layer to different heights using the following
formulas

| | ( )
 

 
   å å ⋅  ´ ´
 ´= =

B
B

B B

B BI I

1
,

1
, 11

i

I
i

i i

I
i i

i i1 2 1

2

2 2

where I is the number of magnetic field samples from the
photosphere to different heights. It should be noted that when

 
   å
 ´ ´
 ´=

B B

B BI

1
0.5,

i

I
i i

i i1

2

2 2


Figure 6. The reference and reconstructed magnetograms, as well as the differences between them, are shown for Case 1.
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the average angle between the current density and the magnetic
field is less than 30° or greater than 150°. We calculate
divergence-free and force-free factors at different heights using
Equation (11) for Cases 1 and 2. The above two factors are
shown in Figure 8, indicating a general decline with increasing
altitude, except for the divergence-free factor in Case 2.
Moreover, Case 1 outperforms Case 2 significantly, primarily
because all six boundaries of the box are provided for Case 1,
whereas only the bottom boundary is specified for Case 2.
These findings align with the physical principles of the force-

free field, thereby affirming the effectiveness and reliability of
our method.
Finally, we provide a test case of the observational active region

(AR). The magnetic field region to be calculated, W̄, is defined as
¯ [ ( ) ( )] [ ( ) ( )] [ ( )]W = - ´ - ´x x y y zmax , max max , max 0, maxi i j j k .

To ensure ¯ [ ] [ ] [ ]W Í - ´ - ´1, 1 1, 1 0, 2 , we define =x x

l0
0
,

=y y

l0
0
, =z z

l0
0
, with ⎡

⎣
⎤
⎦

 = ¶
¶

¶
¶

¶
¶

, ,
x y z

T

0
0 0 0

, where =l0

( ( ) ( ) ( ))x y zmax max , max , maxi j k . Therefore, for observational

Figure 7. The reference and reconstructed magnetograms, as well as the differences between them, are shown for Case 2.
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data of the AR, the loss function ( )pf of the force-free neural
network can be equivalently expressed as

( ) ( ) ( )

( )

( ) ( )

( ) ( )

 



 

   

å

å

å

l

l

l

= -

+  ⋅

+
 ´ ´

 ´ ⋅

=

¢ ¢ ¢ ¢ ¢ ¢

=

=

p B p B

B p

B p B p

B p B p

f
m

x y z x y z

n l
x y z

n

x y z x y z

x y z x y z

1
, , ; , ,

1 1
, , ;

1 , , ; , , ;

, , ; , , ;
,

i

m
NN

j

n
NN

j

n NN NN

NN NN

0
1

0 0 0 0 0 0 2
2

1
1 0

0 0 0 0 2
2

2
1

0 0 0 0 0 0 0 2
2

0 0 0 0 2
2

0 0 0 2
2

i i i i i i

j j j

j j j j j j

j j j j j j

where λ0, λ1, and λ2 are the weight coefficients in the neural
network’s loss function.

For NOAA AR 11158 on 2011 February 14, the photo-
spheric magnetic field measurements are used as the boundary
condition for the bottom surface, while the extrapolation results
of the PF model are used as boundary conditions for the other
five surfaces. We employ a neural network with 9 layers
(L= 7), each containing 200 neurons. The model’s hyperpara-
meters are set as λ0= 1, λ1= 1, and λ2= 3, with m set to 100.
We uniformly select 46,683 (247× 189) points on the bottom
boundary ∂Ω and randomly select 360,000 points within the
space Ω for training the neural network. In addition, 23,499
points are sampled on the other five surfaces as part of the
boundary conditions.

Figure 9(b) displays the projection of the local magnetic field
lines of our proposed method on the xoy plane. It is very
consistent with the observation in Figure 9(a) in terms of the
layout of the magnetic field, the distribution and contours of the
magnetic field lines, and the positions of the magnetic loop’s
footpoints. Figure 9(a) shows the 193Å imaging of NOAA AR
11158 from the Atmospheric Imaging Assembly (AIA) Active

Region Patches data set (Dissauer et al. 2023), covering a larger
area than the corresponding SHARPs (Bobra et al. 2014).
Figure 9(c) features the projection result from the NLFFF
extrapolation data set from Kusano et al. (2021), using the
MHD relaxation method, while Figure 9(d) presents the
projection result from the PF model extrapolation method.
They both fail to match the observations in Figure 9(a) closely
in terms of magnetic field configuration and contours of
magnetic field lines.
In addition, the divergence-free and force-free factors from

the photosphere to various heights are computed using
Equation (11) for the extrapolation result obtained by our
method. These factors are plotted in Figure 10 as a curve that
decreases with increasing height. This trend aligns with the
physical principles governing the coronal magnetic field,
demonstrating the effectiveness and reliability of our method.
It is worth noting that the implementation of these cases is

conducted using MATLAB R2022a on a laptop with an Intel
Core i7 2.30 GHz processor and 32 GB of RAM.

5. Conclusion

This paper presents a deep learning approach, the force-free
neural network, for exploring the force-free magnetic field. The
numerical algorithm is established to solve the proposed model
under the optimization framework. The test cases show that the
proposed model can outperform most state-of-the-art models.
An interesting direction for future work is to explore

methods for accelerating the training of the MLP used in the
force-free neural network. In addition, further study on the
adaptive selection of trade-off parameters could improve the
efficiency of the implementation.

Figure 8. Divergence-free and force-free factors at different heights for Cases 1 and 2.
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In practical applications, it is often the case that only the
bottom boundary condition (photosphere layer of the Sun) is
available, while lateral and top boundary conditions are
unavailable in the NLFFF problem described by Equation (6).
In future research, we will investigate approaches to handle the

incomplete boundary condition problem under certain physical
assumptions.
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