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Salient object detection is not only important but also challenging tasks in the study of computer vi-
sion. In this paper, different from existing approaches, we propose a novel regularization model for the
salient object detection, which integrates a weighted group sparsity with the convex Schatten-1 or the
non-convex Schatten-2/3 and Schatten-1/2 norm, respectively. A weighted group sparsity induced norm
developed in this paper is shown to be able to make the foreground being consistent within the same
image patches by effectively absorbing the image geometrical structure as well as the feature similarity.
The Schatten quasi-norm is successfully used to capture the lower rank of background via factorization
technique, and an alternative non-convex formulation for nuclear norm is studied. The corresponding al-
ternative direction method of multiplier (ADMM) with derived solutions are discussed in detail, and the
convergence of algorithm is validated. Extensive experiments on the six widely used datasets show that
the proposed approach has capacity in outperforming most of state-of-the-art models in current litera-

ture.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

It is instinctive that human vision system can effectively cap-
ture important information from visual scenes. Inspired by this bi-
ological capability, salient object detection, which aims to localize
and segment the most conspicuous foreground objects from back-
ground, has received considerable attention in cognitive psychol-
ogy, neurobiology and computer vision. Simultaneously, this fea-
ture has been widely used in image cropping [1], adaptive image
display on mobile devices [2], extracting dominant colors on the
object of interest for web image filter [3], video surveillance [4],
motion segmentation [5,6], and among others.

In general, most of existing researches on the problem of salient
object detection [7] falls into two main categories: bottom-up and
top-down, which respectively focuses either on independent goals
without prior knowledge or on specific goals with prior knowl-
edge. The bottom-up models [8-14] are stimulus-driven, which are
shown to be effective in predicting human fixations and highlight-
ing the informative regions of images. The top-down models [15-
26| are task-driven, which are suitable in using image contexts and
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specific visual priors. However, both top-down and bottom-up ap-
proaches have the limited ability in dealing with complex scenes.
For example, the bottom-up approach is only to be able to detect
certain part of target objects and may not be able to distinguish
the background from the salient object in complex scenes effec-
tively. Due to the high diversity of various object type in complex
scenes, top-down models usually are not suitable for scalability
and generalization.

Therefore, approaches which combine bottom-up cues with
top-down priors become more practical. In literature, the most
representative work was by Candés, in which he introduced the
low rank matrix recovery theory into the study of salient ob-
ject detection (denoted as LRMR) problems [27,28]. Motivated by
LRMR method, Shen et al. [29] proposed a unified approach based
on low rank matrix recovery (ULR), which effectively incorpo-
rated traditional low-level feature with high-level guidance. Lang
et al. [30] introduced a multi-task sparsity pursuit method (MSP)
based on low-rank representation (LRR) [31] which seamlessly in-
tegrates multiple features with top-down priors to produce jointly
the saliency map with a single inference step. Zou et al. [32] pre-
sented a fully unsupervised model that exploited bottom-up seg-
mentation as a guidance cue of the matrix recovery (SLR). Peng
et al. gave a structured matrix decomposition approach with a
tree-structured sparsity-inducing regularization and a Laplacian
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Fig. 1. Examples of our method performs close to the ground true.

regularization (SMD) [33]. As an extension of the SMD model,
Sun et al. [34] elaborated the matrix decomposition model based
on diversity which mainly considered the half regularization for
background. The shared characteristic of these methods is to use
low rank to characterize the background. Technically, it is a com-
mon consensus that the background should be a highly redundant
part of information which has visually consistent representation in
computer vision. Hence, according to linear algebra theory, this po-
tential redundant part should lie in some much lower dimensional
subspace, which can be efficiently characterized by a low rank fea-
ture matrix.

It is well known that aforementioned low rank approaches can
be formulated as a rank minimization problem, which not only is
non-convex but also can be an NP-hard problem. To make such a
problem be tractable, a standard approach is to replace the rank
function by its lower convex envelop, i.e. the nuclear norm [27-
31,33]. However, such an approach may over-penalize the large sin-
gular values due to the gap between the rank function and its con-
vex envelop, and result in deviating from the original solution, as
discussed in [35-37]. More specifically, convex relaxation by using
nuclear norm for salient object detection suffers from the follow-
ing limitations:

1. Since the nuclear norm is a linear sum of singular values,
minimizing the nuclear norm may lead to ignoring the inter-
correlation between elements in foreground objects due to
the lack of distinction of singular values, and thus the gen-
erated saliency object is scattered and incomplete, as shown
in Fig. 1 (ULR).

2. When the background is complex or cluttered (for instance
when it has similar appearance with the salient object), it is
likely to be confused by the foreground target due to insuf-
ficient accuracy caused by the gap, as shown in Fig. 1 (ULR
and SLR).

3. When the object possesses different representations, the
conspicuous values with the same object could appear to be
inconsistent, again due to insufficient accuracy caused by the
gap, as shown in Fig. 1 (ULR, SLR and SMD).

In addition, the existing algorithms for current low-rank based
models have to be solved iteratively and involve singular value de-
composition (SVD) of a large scale matrix in each iteration, which
generally requires high computation costs [38,39]. This also could

lead to a limitation for handling large scale data that often occurs
in the study of computer vision.

In order to address these problems, a novel Schatten-q quasi-
norm induced matrix decomposition model (SQNMD) in this paper
is proposed. First, motivated by the bilinear factorization with two
factor matrix norm regularizers used in low-level vision process-
ing [38,39], a tractable low-rank regularizer is used to characterize
the background part. In fact, this regularization is the non-convex
Schatten-q norm for 0 < g <1 that can take advantage of the heavy-
tailed distribution of singular values in matrices. Compared with
the nuclear norm, it is better in capturing the rank structure and
provides more adequate low rank approximation, as shown in our
experiments later on. In other words, this regularization is more
suitable to describe the background in a corresponding subspace
associated with lower rank properties. Thus the adoption of non-
convex Schatten-qg norm usually leads to a cleaner background
than convex setting, illustrated in our experiments. Second, by tak-
ing into account image geometrical structure and feature similarity
between image patches, we use a weighted group sparsity norm to
characterize the foreground object. This setting allows our process
to share the consistency within the same image patches. More-
over, in order to distinguish thoroughly between saliency target
and background, we continue to adopt the Laplacian term sim-
ilar to [33], and it plays a complementary role when there is
a similar appearance between the salient objects and the back-
ground, which can guarantee the object completeness as much as
possible. By integrating aforementioned techniques together, our
proposed model can separate the salient objects from complex
scenes much more effectively, compared with current available
approaches.

In particular, we pay attention to two specific cases of g, 1/2
and 2/3 in this paper, which are in essence bi-nuclear quasi-norm
and Frobenius/nuclear hybrid norm respectively. In our each in-
dividual algorithm, we only need to perform SVDs on two much
smaller factor matrices as contrary to the larger ones used in
existing low rank methods. Therefore, the proposed model is also
well suitable for big data processing. To the best of our knowledge,
this is the first study which pursues Schatten quasi-norm solvers
in salient object detection (the latest and the most representative
studies based on Schatten quasi-norm are mainly to consider
the low-level vision problems, e.g., see [38,40-45]). In addition,
we evaluate the SQNMD method on six well-known benchmark
datasets that involve various complex scenarios, and compare our
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method with 12 state-of-the-art methods. Through some standard
evaluation index, our proposed SQNMD method in this paper
generates more competitive results than current existing methods,
as shown in our experiment section.

The remainder of this paper is organized as follows:
Section 2 provides some related works about salient object
detection problems. Section 3 provides the development of our
proposed SQNMD model. Section 4 develops the corresponding
optimization algorithm and computational complexity. Algorithm
analysis is given in Section 5. The experiment results are shown in
Section 6. Finally, the conclusion is given in Section 7.

2. Related works

During recent years, we have witnessed the significant advances
in the study of salient object detection. In this section, we mainly
discuss the most influential models which are closely related to
low rank approximation.

LRMR [28] aims to recover a low-rank matrix L (i.e. the back-
ground without salient object) and a sparse matrix S (i.e. the fore-
ground with salient object) from the given feature matrix of an
input image F = L + S as follows:

ran'sn rank(L) + AD(S) st. F=L+S (1)

where ®(S) is a sparsity regulation function and A is positive
trade-off parameters. Unfortunately, solving (1) is intractable and
may be NP-hard in many cases. Thus, this motivates us to seek the
corresponding relaxed approximation models.

LRR [31] assumes that there exists strong correlation among
background patches, which leads to consider a low-rank coefficient
matrix multiplied by the feature matrix to represent the back-
ground and utilize the sum of I, norm of the columns of matrix
as the sparse regularization. That is,

min ||Zo||* + )\'”EOHZI s.t.X =XZy+ Eg
Zo.Eo

where XZ, denotes the background, which can be reconstructed
by itself, Z, denotes th reconstrucion coefficients, E, denotes the
salient objects, ||-||« is the nuclear norm, i.e. the sum of the sin-
gular values which is a convex approximation to the rank func-
tion; ||-||,; can make columns of E to be sparse. However, the LRR
can only model a certain type of visual features, which can not
be directly used for multifeature cases. To combine together mul-
tiple features, MSP [30] introduce the multi-task extension of LRR
by incorporating multi-feature collaborative enhancement and top-
down priors. Thus, MSP model can be formulated as the following
form:
K

zlm.i.‘},(Z Zill, + AElly StXi=XZi+E i=1,...,K (2)
Ey. E =1
But the sparse matrix E may not be accurate in MSP model, since
it ignores the spatial relations and the feature affinities, that may
cause inaccurate salient object detection.

To overcome this shortage, the ULR [29] model resorts to fea-
ture transformation and sparse representation, which integrates
the low-level features and high-level semantic priors. Thus, the
ULR can be written as:

rrLliSn||L||*+)»||S||1 st. F=L+S (3)

However, this model usually produces non-uniformly highlighted
salient object, because the spatial relations and feature similarities
of patches are lacking. To address this problem, the SLR [32] ex-
ploits the bottom-up segmentation prior H. from the connectiv-
ity between regions and borders as guidance clue of detection (i.e.
adds the condition F = AH. in (3)), which can yield a small weight

to the regions approximating image borders (which leads to the
approximated object being more accurate). Although the SLR ob-
tains more effectively salient objects than the ULR, some impor-
tant cases are ignored, such as when the background is clustered,
or when the background has similar appearance with the salient
object. So, the SMD [33] is proposed to further address the prob-
lem.

Comparing with the SLR model, the SMD method utilizes struc-
tured sparsity regularized term ||~||200 instead of ||-||; to capture

the potential structure of image and forces patches from the same
object to have similar saliency values. Simultaneously, a Laplacian
regularization under the assumption of the local invariance is also
considered, which can preserves the local structure of the image
feature and enlarge the difference between the background and
salient object. However, in the SMD model, the background infor-
mation is still characterized by the nuclear norm. As we mentioned
before, the nuclear norm may lead to the over-penalization for
large singular vues, that makes solution deviate from the original
background. Thus different from current literature, in this paper,
the non-convex Schatten-q quasi-norms for 0 <q <1 is considered
for the salient object detection problem in order to achieve a bet-
ter approximation to the rank function of background. Moreover,
we focuses on Schatten-1/2 and 2/3, which appear to be suitable
constraint on the background so that it can be compressed ade-
quately.

Here what must be specifically stated is that 1/2-norm for back-
ground appeared in matrix decomposition model based on di-
versity [34]| (DIMD). However, DIMD has to be solved iteratively,
and involves singular value decomposition (SVD) in each itera-
tion, which means that the corresponding algorithm has high per-
iteration complexity. The proposed Schatten-q quasi-norm induced
matrix decomposition (SQNMD) utilizes two tractable bilinear fac-
tor matrix norms (i.e. bi-nuclear quasi-norm and Frobenius/nuclear
hybrid norm) for background, which only requires SVDs on two
much smaller factor matrices as contrary to the larger ones used
in DIMD [34] (one can refer to computational complexity analysis
of Section 5, such as Remarks 1-3). Thus, the new SQNMD model
is more general, tractable and scalable, which subsumes the DIMD
method as a special case to some extent. The new SQNMD model
not only inherits the main advantages of the DIMD method, i.e. it
decomposes a given matrix into structured parts with diversity, but
it is also armed with the new ability to remedy the gap between
the rank function and its convex envelop. The experimental results
(Section 6) shows clearly that the resulting saliency maps of new
method are more visually favorable.

3. Schatten-q quasi-norm induced decomposition model for
salient object detection

3.1. Problem formulation

Inspired by Peng et al. [33], a given nature image I is over-
segmented into N non-overlapping patches P = {P;, P,, ... Py}. For
each patch P, i-th D-dimensional low-level feature vector can be
denoted as f; e RP. Consequently, a feature matrix of I is formed,
which can be written as F = [fi, f2, ..., fy] € RP*N, The problem
of salient object detection is to find an efficient model to decom-
pose the feature matrix F into a low-rank part L (background) and
a sparse part S (salient object), respectively.

In order to address the salient object detection problem, we for-
mulate this problem into the following more general form:

nLiiSn fL) +agS) +pPh(L,S) st. F=L+S (4)

where f(L) is a low-rank constraint for background L, g(S) is a
sparse regularized term, h(L, S) is an interactive regularization term
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Table 1
The norms of low-rank: HXqu (q €[0,2]).
q 1X1ls,
0 IXlls, = llo Il ) Rank
(0, 1) [Xlls,=(Xa{)* Schatten-q norm
1 IX1l, = > ok Nuclear norm
2 Xl = /> 0f Frobenius norm

between L and S, and «, B are positive trandeoff parameters used
in the optimization.

3.2. Schatten-q quasi-norm term for background

The extended Schatten-q quasi-norm of a matrix X e R™" is
defined as:

min{m,n} /4

> of0 (5)

i=1

[1X]lsq =

where o ;(X) is the i — th singular value of X. For q <0, 2], the reg-
ularized term ||X||sq can be summarized in Table 1.

Since the non-salient background in a image is similar, it thus
always lies in low dimensional subspace. Therefore, there is the
consensus that one only need to minimize the rank of this sub-
space for background. In order to approximate more effectively
the rank function, we consider the second choice in Table 1, i.e.
Shatten-g quasi-norm with 0 < g < 1. Throughout this paper, with-
out loss (of) generality, we mainly focus on two specific values
of g, 1/2 and 2/3 for the purpose of implementations. Accord-
ing to the theory of unified surrogate for Schatten-p norm [38],
Schatten-1/2 and 2/3 are essentially bi-nuclear quasi-norm and
Frobenius/Nuclear hybrid norm, whose characterizations are given
below:

Theorem 1 (Frobenius/Nuclear and Bi-Nuclear Norm Surro-
gate [38]). Given matrices U € R™4 V e R™4 and X € R™" with
rank(X) =r < d, the flowing hold:

2 1
IXIE2 = min  S|Ull. + 5 IIVIE

1 1
IXIls/> =, min SIUIL+ 5 1VIL (6)

where ||-||« is nuclear norm and ||-|| is Frobenius norm.

In addition, we will also consider q = 1. Although it is nuclear
norm and convex (i.e. it reduces to SMD [33]), we propose an al-
ternative non-convex bilinear spectral penalty for the nuclear norm
described in Theorem 2.

Theorem 2 [42]. Given matrices U € R™*4 V ¢ R"™4 and X € R™*"

with rank(X) =r < d, the flowing holds:
[WUIIE | VIR

T2 2

[IX]]. = min (7)
UV X=UV

Due to the requirement of factorization of matrix norm during
the approach, regardless of whether the value of p is 1, 1/2, or 2/3,
we develop an approach in which it is only required to perform
SVDs on two much smaller factor matrices for solving minimiza-
tion as contrary to the larger ones used in SMD. This is particu-
larly useful for many big datasets. To the best of our knowledge,
the use of non-convex Schatten quasi-norm solvers for the salient
object detection has not been seen yet, and the latest and most
representative works based on Schatten quasi-norm are all consid-
ered for the low-level vision problems, such as matrix completion
and image inpainting [38,40-45].

3.3. Weighted group sparsity regularization for salient region and
Laplacian constraint

It is well-known that a valid segmentation result has to bear
some of the potential information of the image. Inspired by Peng
et al. [33], Liu and Ye [46], Jia et al. [47], we continue to impose a
weighted group sparsity induced norm to the salient part S, which
can be written in the following form:

A(S) = Y vjllS, I, (8)
j=1

where G; is the j-th node of graph cut, v;> 0 is a prior weight for
the node G;j, Scj is a sub-matrix of S, S(;j e D6l (] is the car-
dinality of a set), n is the number of nodes, ||-||p is the I,-norm,
which is used to characterize relationships among the correspond-
ing patches within the same group. In general, the p value is set
to be 1 <p<oo. In order to produce more precise and structurally
consistent results, we focus on p = co which can take the advan-
tage of the spatial contiguity and feature similarity among image
patches. In fact, I, norm is the maximum saliency value of patches
within the group that determines if the group belongs to saliency
or not. More specifically, (8) is a weight group sparsity norm over
a graph, where

vj=1-max ({m : keG}). (9)

mr; in (9) indicates the likelihood that patch P; belongs to a salient
object based on high-level information [29]. This weight group
sparsity norm, on one hand, can forces the patches within a same
group to have similar salient values, and on the other hand, it
can emphasize patches from different groups to have differentiable
representations, as shown in Fig. 2.

In addition, to enlarge the distance between salient object and
background in image patch, we also append the Laplacian regular-
ization Tr(SQ;ST) [33,48] based on the local invariance assumption
for salient object S (Tr(-) is the trace of matrix). Here the entry of
a Laplacian matrix Qg can be given as the following form:
ifi#]

—Wij,
otherwise. (10)

Do Wij,

J#

Q)=

w; j is the entry of an affinity matrix which represents the feature
similarity of patches (P;, P;), i.e.

2
exp (—”f’zsf;”> if (P,Pj) eV (an

0 otherwise.

W,'_j =

where V denotes the set of adjacent patch.
In summary, the problem (4) can be specifically constructed as
(which is simply referred to as SQNMD model in short notation)

n
. T
r12’15n||L||§’q+oc]§1 VjllSq, oo + BTT(SQeS") st. F=L+S (12)

According to the Theorems listed in the part 3.2, the model
(12) can be rewritten as the following three forms:
(= 1’

1 .
min = (|[U[[ +IVI[}) + ) vjlSc, e + BTr(HQeHT)
UVSH2 o
st. F=UVT +S, S=H. (13)
. q:2/3,

: 1 2 . T
o i 3 ML+ VI 03 55 1+ BT (HOSHT
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Fig. 2. Results from weighted group sparse acting.

st. F=UVT4+S, M=U, S=H. (14)
e q=1/2,
1 - r
U,V{QAIAI}N,HE(IIMII*JrIINII*)+oe];vj||5cjllw+ﬂTr(HQpH )

st. F=UVT4+S, M=U, N=V, S=H. (15)

It is easy to see that the model in g = 1 is equivalent to SMD [33].
For g =1/2, the proposed model degenerates as DIMD [34]. But
the difference is that the model (13) is based on an alternative
non-convex formulation. On the other hand, the ablation study of
each regularization term, not shown here, also demonstrates the
effectiveness from our proposed approach.

4. Optimization

Motivated by the alternating direction method of multipliers
(ADMM) [49,50], we provide those related optimization algorithms
for the aforementioned problems.

4.1. Solving (13)

The augmented Lagrangian function for problem (13) is given
by

.l n
L1(U, V.S H,Y1. Yo, ) = §(||U||12r+ IVIIE) +a) vjl1S6 |
i=1

+BTr(HQeH™) + (Y1, F —UVT - S) + (Y5, S — H)
+ S AIF—uvT =S|+ lIs — HIIP) (16)

where Y;, Y, are the Lagrange multipliers, and >0 is a penalty
parameter. The solution of (16) is equivalent to minimizing the
augment Lagrange function £;. The complete algorithm is shown
in Algorithm 2. Next, the detailed updating processes of variables
are shown in the following subsections.

Updating U. First, fixing V, S and H and seeking U to minimize the
function £;. Thus, we consider the following optimization prob-
lem:

2

U*=argmin%|lU|lf~+%HF—UVT—M—ﬁ (17)
U

F
Obviously, (17) is a least squares problem, thus the optimal so-
lution is given by

U = (WFV + Y1V — uSV)YT + uVvTv)-1. (18)

Updating V. Fixing U, S and H, V can be obtained by solving the
following problem:

2
V*=argmin%||V||§+%HF—UVT—S%-& (19)
v

MHllg

Similarly, we have
V* = (uFTU +YlTU —uSTUY (I + puTu) 1. (20)

Updating S. To update S, we arrive at the problem below:

2
n T Yi-Y,
S _argsmmﬂZIIScjllooﬂ-i S— 5
j=1 F
(21)
To solving (21), we simplify this problem as:
n
. 1
s =min y> s |+ 31— AlR @2
j=1

Similar to the approach given in [51], we provide an optimiza-
tion algorithm based on the hierarchical proximal operator, which
is summarized in Algorithm 1.

Algorithm 1 Solving S by hierarchical proximal operator.
Input: F and y
1: Set S=A
2. fori=dto1 do
3: forj=1ton do
o,
J 11 1 .
WSG]_ lfHSGj H > '}/U]
J
0

. k+1 _
4 St =

, else
5:  end for

6: end for

Output: S¥

Updating H. Finally, fixing U, V, and S, updating H is obtained by
solving the following problem:

Y |12

H* = argmin BTr(HQ:HT) + %”S—H+ 2 (23)
H

F
then we have

H* = (uS+Y2) 2BQF + uh)~ 1. (24)

In summary, the algorithm of (16) based on ADMM can be out-
lined as Algorithm 2. And we also give the per-iteration complexity
analysis for Algorithm 2, that is Remark 1.

Remark 1. It is well known that the computation complexity of
thin SVD for an m x n matrix with m>n is O(mn?). The cost of
computing the inverse for d x d matrix is O(d3), and the expense
of multiplication for m x d matrix and d x n matrix is O(mdn). In
ULR [29], DIMD [34] and SMD |[33], the cost is dominated by
the computation of the thin SVD of an m x n matrix with m>n,
and is O(mn2) respectively. But for Algorithm 2, the dominant
cost of each iteration for updating U € R™<4 and V € R™¢ using
Eqs. (18) and (20) is O(6mnd + 2d> + md? + nd?). Therefore, we

deduce that O(6mnd +2d% + md? + ndz) < O(mnz) for m, n>>d.
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Algorithm 2 Problem (16) solved by ADMM.
Input: F.d, oo, and f19.So=Ho =Y =Y)
1.1and k=0
1: while not converged do
update Uy, ¢ by (18)
update V1 by (20)
update S, ; by (22)
update Hy 1 by (24)
update Y} by Yy < Yy + u(F —UVT —5)
update Yf*1 by Y < Y5 + u(S - H)
update iy 1 by @ < min(pu, max)
9: update k by k < k+1
10: end while
Output: U,V and S

=0, hmax = 10]0, p =

PN QU AN

4.2. The procedure for solving (14)

The augmented Lagrangian function for problem (14) is repre-
sented as

.l n

3 QUMIL + VI + e} vj1Sg, oo
j=1

(Ys,S — H)

£2/3(U, V, S, M, H, Y], Yz, Y3, [.L) =

+BTr(HQeH") + (Y1, F —UVT = S)+ (Y, M- U) +

+ S AIF —UVT =S|+ [IM = U| 2 + IS - HID). (25)
where Yi, Y5, Y5 are the Lagrange multipliers, and w>0 is a
penalty parameter. The detailed updating processes of variables are
shown as follows.

o Updating U: First of all, fixing V, S, M, and H, updating U is
obtained by solving the following problem:

U* = argmin & HF—UVT—S+Y‘ HM us 2|’
v 2 w Kilg
(26)
Thus, we have
U = <M+%+FV+%V—SV>(I+VTV)‘1. 27)

o Updating V: Secondly, fixing U, S, M, and H, updating V is ob-
tained by

Y 2

V*=argmin1|IV|I§—|—ﬁHF—UvT—S—i——1 (28)
v 3 2 F
Then we have
-1
V* = (WFTU — uSTU + YfU)(%I + ,uUTU> . (29)

o Updating S: Third, fixing U, V, M, and H, updating S can be rep-
resented as
_F-UVI+H 4 870
2

5 —argmm—zznsonoc s

1111

F
(30)
Therefore, (30) can be solved according to Algorithm 1.
o Updating M: Fourth, fixing U, V, S, and H, M is obtained by

2
Uf—fM

.2
M* = argmin — ||M||, + 31
gmin o [IM] (31)

| .
Without loss of generality, the Eq. (31) can be simplified as

. 1
min 7[BIl, + 5 IC - B (32)

Thus, the problem (32) is a regularized least squares prob-
lem associated with the nuclear norm, of which closed-form so-
lution can be represented by the singular value thresholding (SVT)
[52] (refers Theorem 3).

Theorem 3 (SVT [52]). Let the singular value decomposition of C can
be written as C = UZVT, then the optimal solution for B is given by

B=D;(C) =US(Z)VT, (33)

where D¢ is the singular value thresholding operator and D, is the
soft thresholding operator, which is defined as

X—& X>¢
Se(x) =sign(x)max (x| —€,0) ={x+¢e x<-—¢. (34)
0 else

o Updating H: Finally, fixing U, V, S and M, updating H is set by

Y, |I?

= argmmﬂTr(HQpHT) + 2 Hs e (35)

F

Then we have

= (US+Y3)(2BQf + uh~". (36)

Therefore, when q = % we obtain the optimization procedure
as given by Algorithm 3. Similarly, the complexity analysis can
be summarized as Remark 2.

Algorithm 3 Problem (25) solved by ADMM.

Input: F.d o, and o My=Y?=0,
0, tmax =10'°, p=1.1and k=0
1: while not converged do
update Uy, ; by (27)
update Vj,, 1 by (29)
update S, 1 by (30)
update M by (32)
update Hy_ 1 by (36)
update Y1 by Yy < Yy + u(F —UVT -5)
update Yf*1 by Y, < Y5 + (M —U)
update YS! by Y3 < Y3 + (S — H)
update juy;q by o < min(op, fimax)
11:  update k by k < k+1
12: end while
Output: U,V and S

So=Ho=Y?=Y0 =

© % N 22U R W

=
<

Remark 2. In Algorithm 3, the per-iteration complexity of
updating U e R™4 V eR™ and MeR™¢ using Eqs. (27),
(29) and (32) is O(6mnd + 2d® + 2md? + nd?). Thus, one has
0(6mnd + 2d3 + 2md? + nd?) <« O(mn?) for m, n>d, where
O(mn?) is respectively the cost of ULR [29], DIMD [34] and SMD
[33].

4.3. The procedure for solving (15)

Similar to the discussion of subsection B, the augmented La-
grangian function for problem (15) is

1
L1pU,V,5M,N,H,Y1,Y2,Y3, Yy, ) = §(||M||* +[INI].)

n
+aY 01186, |l + BTr(HQEHT) + (V1. F —UVT —5)
j=1
+ (V2 M=U) +

+ L aIF-uv

(Y, N = V) + (Yg, S — H)
—SIE+IM-UI+[IN-VIZ+[IS-HI}?) (37)
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Algorithm 4 Problem (37) solved by ADMM.
Input: F.d. o, B and po.Mo=Y)=0,Ng=Y?=0,Sg=Hy=Y =
Y) =0, ttmax =10, p = 1.1 and k=0
1: while not converged do
2:  update Uy by (38)
3 update Vj,; by (39)
4:  update Sy, by (40)
5:  update M, ¢ by (41)
6:
7
8
9

update Ny by (42)
update Hy_ 1 by (43)
Y by Yy < Yy + u(F—UVT —5)
CYM by Y < Y+ u(M-U)
10: YE by Vs < Y3+ u(N-V)
1 YU by Yy < Y+ u(S—H)
120 fpgr by @« min(op, fhmax)
13: kbyk<«k+1
14: end while
Output: U,V and S

where Yy, Yy, Y3, Y4 are the Lagrange multipliers, and p >0 is a
penalty parameter. Thus, we here also provide an efficient ADMM
algorithm for (37) (i.e. Algorithm 4). Since the update scheme of U,
V, S, M, N and H are very similar to that of Algorithm 3, we only
need to solve the following convex optimization problems for each
step in the alternating iteration.

1. Updating U :

vt = (P Dy w2 syt (38)
m m
2. Updating V :
YT
Ve = (N+E+FTU+'&U—5TU)(1+UTU)1s (39)

3. Updating S :

n T Yi-Y,
) o 1] F-uvi4H4n
S :argsmmﬁZHSGme—I—j S— 5 ,
Jj=1 F
(40)
4. Updating M :
. 1 2
M _argA;mnﬂ||M||*+2H<Uf—)71\/1 R (41)
5. Updating N :
2
N* —argmm ||N|| +2HV7—7N , (42)
F
6. Updating H :
= argmmﬂTr(HQpHT) e HS H+ "Z (43)
F

Remark 3. In Algorithm 4, the dominant complexity of updat-
ing UeR™d vV eR™ MeR™d and N e R™¢ using Eqs. (38),
(39), (41) and (42) is O(6mnd+2d>+2md? + 2nd?). There-
fore, O(6mnd + 2d® + 2md? + 2nd?) « 0(mn?) for m, n>>d, where
O(mn?) is respectively the cost of ULR [29], DIMD [34] and SMD
[33].

5. Convergence analysis
According to the above Algorithms, each sub-problem has a

closed-form solution in the proposed SQNMD model and the ob-
jective value is always decreasing with respect to the primal

variables optimized in each sub-problem. Now we provide the
convergence property for the most complex Algorithm 4 under
mild conditions, and the similar results can be shared with the
Algorithms 2 and 3.

Theorem 4. Let {Uy}, {Vi.}, {Sk}, {M,}, {Ni}, {H,} be a sequence gen-
erated by Algorithm 4. Suppose that the sequence {Yi"} (1<i<4)are

bounded, and 1, is non-decreasing and Y_i2, % < oo, then the se-
k

quences (U}, {Vi}, {Sk}, (M}, {N,}, {Hy} are all bounded.

Proof. Let X, 2(Uy, Vi, Sk, My, Ni, My) and YK 2 (YK Yk Yk vk). By
the iterative scheme of Algorithm 4, we have that

mxin L1)2 (X, Yk, Mk) = L1 (Xkﬂ, YK, ,uk). (44)
Thus, it yields
Lapp(Xeer, YE i) < L1 (X Y5, i)

k+Mklz” k YleF (45)

= L12(Xe, Y¥!
( 2(ue-1)” 4

, qu)

,Uv k

Due to fy,1 = pir_1. 0 >1 and Y12, < oo, and p is non-

decreasing, one can obtain the following result:

2
/“Lk+l'l/k721 < Mk s = Mk 2_>0 (46)
2(pk-1) 2(Mie-1)” (Hk-1)

which implies that £q,5 ((Xi41. Yk, 11,)) is bounded.
Therefore, the problem (37) can be rewritten as

1 n
5 (IMll, + INell) + e > Jvi[SE, ||+ BTr(HQeHT)
j=1

= Lip (st yk!

30 )
s 2 (I = 106 7)- )

which indicates that {M,}, {N,} and {S,} are bounded.

yk Yk
Simultaneously, since U, = M — Mk21 , we can deduce that

{U} is bounded. Similarly, {V,} and and {H,} are also bounded. O

s,uk—l) -

Theorem 5. Let {Uy}, {Vi}, {Sk}, {My}, {Ni}, {H,} be a sequence gen-
erated by Algorithm 4. Suppose that the sequence {Y"} (1<i<4)are

bounded, and i, is non-decreasing and Y ;2 “ﬁl < oo, then {U.},
k
{Vid, (S}, M}, {N}, {H,} are all Cauchy sequences.

Proof. Since
k+1 k
yrt — Y,

Mk+1 - UI<+1 = ZT’ (48)

by using Theorem 4, we have

o0 o0 1
DolM 1 =Ugalle =D — |5 =¥,

k=0 ko M
o Mkt [y k
=2 S e =Y <o (49)
k=0 k
which yields
k“j; [Mi1 = Upga llp = 0. (50)

On the other hand, Lagrange parameter Y]" can be rewritten as the
following form:

Y=Y+ e (F-UV = S) = F =S =0V +
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And the minimization of sub-problem (38) can be converted to
seek the corresponding first order optimal condition regarding to
U, that is,

(F—Uk+1 _ S+ 4 )vk+(1\/1,<—uk+1+ ):0. (52)
Therefore, Eq. (52) can be rewritten as the following form:
U = U) (Y Vie+ 1) +Z=0. (53)
vk Yk vk vk
where Z = ( 1Mk - )Vk —+ - M—Zk the above Eq. (54) can
be simplified as
-1

U= U = Z(VVie+1) (54)
Accordingly, one has the following inequalities

> = (T = YE Vil Y]V

U —U < 1 11F F n 11lF F
X 0hsr = Uil < 3 ( e L

v, | 2|>F>H sy
Mi-1 F

<Z e P\ P e L P L 1
M1 M1 Mk

HF)H Vk+1

Set 0 = max{(|YF" = YK IIVillp +21)Z2}52,. where Zy = ||V},

(55)

IViellp + Y51 = YX|[ [IYX||; and Z; £ ||(V,<TV:<+1)71 llF, we get

- — 1 o M1

YU =Uellp <D —0 <Y =510 < oo, (56)
k=0 izo Mk k=0 "k

which shows that {U,} is a Cauchy sequence.
Similar proofs lead to that {V,}, {Sx}, {Mi}, {N¢}, {H,} are all
Cauchy sequences. O

In fact, the proof of the Theorem 5 shows that under
mild conditions, any limit point of the sequences generated by
Algorithm 4 is a critical point of (37) due to the point whose sub-
differential contains O only.

6. Experiments

6.1. Datasets,salient object detection algorithms and parameter
settings

We use six standard benchmark datasets to represent vari-
ous typical scenarios, i.e. ECSSD[16], MSRA10K [19], THUR15K [53],
DUT-OMRON [25], iCoSeg [54] and PASCAL-S [55]. ECSSD dataset
contains total 1000 images with various structurally complex ob-
jects, and MSRA10K dataset includes 10,000 images with single
object. THUR15K and DUT-OMRON datasets involve a large scale
single object with relative complex background, while iCoSeg and
PASCAL-S datasets are related to multiple objects and different
complex backgrounds.

The proposed method is compared with twelve recent state-
of-the-art solutions, including four LR based methods which are
DIMD [34], SMD [33], ULR [29] and SLR [32], respectively and eight
recently developed prominent methods which are GS [15], HS [16],
PCA [17], TD [11], DRFI [23], RBD [26], MR [25] and MC [56], re-
spectively. It should be noted that these eight methods are not re-
lated to bilinear factorization we discussed. The main reason why
we compare with these methods is to further demonstrate the
generality of new model and the effectiveness of new algorithm.

Here we use initials to represent each individual method for the
purpose of easy description throughout this section.

We consider a four-layer depth for group sparsity and
set the bandwidth 82 =0.05, and the parameter d=25 o=
0.3,0.04,0.06, 8 =0.925,0.6,0.1125 for g = 1, 2 5 2 respectively. To
get a fair comparison with other competing methods, we fix the
parameters of our model for all conducted experiments.

6.2. Evaluation metrics

For the evaluation of experimental performances, we introduce
several common metrics including the F—measure curve, the area
under the ROC curve (AUC) [57], overlapping ratio (OR), and the
mean absolute error (MAE), respectively.

It is well-known that precision is defined as the ratio of salient
pixels correctly assigned, while recall is the percentage of correctly
detected salient pixels to those all true salient pixels. Simultane-
ously, the F—measure curve is based on the weighted harmonic
mean of precision (P) and recall (R), which is given by

P-R
Fﬂ:( +'B)ﬂzp+R (57)

where B2 is set to be 0.3 similar to [9]. Whenever either the PR
curve or the F- measure curve is applicable, they rely on the vari-
ation of the saliency threshold that determines the attribution of
salient objects. In addition, the receiver operating characteristic
(ROC) curve is generated from true positive rates as well as false
positive rates obtained by calculating the PR curve. The overlap-
ping ratio (OR) is defined as the ratio between the segmented ob-
ject mask S” and the ground truth, i.e.,

IS NG|
|S"UGl’
The mean absolute error (MAE) [10] characterizes the mean abso-

lute difference between the saliency map S and the ground true G
by the following:

MAE = mean(|S — G|). (59)

OR = (58)

For the weighted F-measure(WF) metric, we adopt definition
introduced in [58].

6.3. Comparision with the state-of-the-arts approaches

We first compare our models with ULR [29], SLR [32], DIMD
[34] and SMD [33]. Tables 2 and 3 show evaluation metric results
based on six datasets. Note that the proposed models always can
achieve the best performances on ECSSD, PASCAL-S and iCoSeg. For
THUR15K, the proposed models obtain the best results in terms of
WEF, OR, AUC, and the second best in MAE. On MSRA10K, the pro-
posed models give the best in OR and AUC, and the second best in
WF and MAE. Finally, for DUT-OMRON, the proposed models indi-
cate the second best results in terms of WF, OR and AUC. Thus,
these metrics demonstrate that the proposed models (SQNMD)
have potentiality in performing significantly better than the other
LR-based methods.

Tables 4 and 5 report the comparison of new model and the
other non-low-rank methods (i.e. PCA [17], GS [15], HS [16], MC
[56], MR [25], DSR [24], RBD [26], DRFI [23]) in evaluation met-
rics. Obviously, the proposed model gives the best performance
on ECSSD dataset. For PASCAL-S, iCoSeg and MSRA10K, the new
method provides the same results, which are the best in terms
of WF, OR and MAE, the second best in AUC. On THUR15K, the
proposed model presents the best in WF, the second best in OR
and the third best in AUC. For DUT-OMRON, the proposed method
only obtains the second best in OR and the third best in WF. But
lots of good evaluation indexes confirm that the proposed model
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Table 2
Comparison with the Other Low-rank methods and performance boost with different baselines on Datasets.
Dataset ECSSD THUR15K PASCAL-S
Metric WF+ OR4t AUCY MAE|, WFf ORt AUCY MAE] WF{ OR{1 AUCYT MAE|
ULR [29] 0351 0347 0.755 0.312 0.259 0325 0.801 0.249 0.351 0295 0.718 0.320
SLR [32] 0.442 0474 0.764 0.252 0.387 0433  0.823 0.167 0.398 0390 0.711 0.275
DIMD [34] 0.534 0.548 0.819 0.181 0.430 0458 0.829 0.166 0.500  0.451 0.738 0.245
SMD [33] 0517 0523  0.775 0.227 0434 0466 0.823 0.159 0486  0.446  0.730 0.246
Ours g =1 0.542 0563 0813 0.174 0436 0466 0.824 0.160 0494 0.447 0.733 0.245
Oursq=2/3 0542 0.562 0.813 0.173 0435 0463  0.825 0.163 0.500 0.449 0.734 0.244
Ours g=1/2 0540 0.554 0.820 0.179 0.432 0459 0.831 0.167 0.503 0.453 0.740 0.245
The 1 indicates the larger value achieved, the better performance is, while | indicates the smaller, the better.
Table 3
Comparison with the Other Low-rank methods and performance boost with different baselines on Datasets.
Dataset iCoSeg MSRA10K DUT-OMRON
Metric WF 4+ OR?% AUCt MAE| WF4t OR?® AUCt MAE] WF4t OR?® AUC + MAE |
ULR [29] 0379 0443 0.814 0.222 0.425 0524 0.831 0.141 0.254 0.318  0.805 0.260
SLR [32] 0473  0.505 0.805 0.179 0.601 0.691 0.840 0.224 0.392 0429 0.822 0.161
DIMD [34] 0.603 0.594 0.827 0.141 0.761 0.733  0.836 0.087 0.398 0.415 0.807 0.183
SMD [33] 0.611 0598  0.822 0.138 0.704  0.741 0.847 0.104 0424 0441 0.809 0.166
Ours g=1 0.613  0.597 0.824 0.138 0.701 0.741 0.848 0.105 0422  0.440 0.812 0.170
Oursq=2/3 0.626 0.608 0.829 0.133 0.705 0.744 0.848 0.103 0423  0.440 0.812 0.171
Oursg=1/2 0.612 0.600 0.833 0.139 0.695 0734  0.852 0.109 0405 0424 0.815 0.183
The 1 indicates the larger value achieved, the better performance is, while | indicates the smaller, the better.
Table 4
Comparison with Non-Low-rank method and performance boost with different baselines on Datasets.
Dataset ECSSD THUR15K PASCAL-S
Metric WF 4+ OR?® AUCt MAE] WFt OR?% AUCY MAE| WFt OR?% AUC © MAE |
PCA [17] 0.358  0.371 0.759 0.291 0.298 0362  0.822 0.198 0353 0352 0.719 0.296
GS [15] 0436 0435 0.758 0.255 0370 0387 0.814 0.176 0456 0418 0.734 0.262
HS [16] 0449 0432 0.766 0.269 0365 0.402 0.801 0.218 0451 0349 0.733 0.286
MC [56] 0441 0495 0.779 0.251 0349 0444 0.834 0.184 0423 0412  0.740 0.272
MR [25] 0.480  0.491 0.761 0.235 0378 0426 0.796 0.178 0446  0.431 0.722 0.265
DSR [24] 0.489 0480 0.754 0.227 0423 0426 0.803 0.142 0439 0409 0.712 0.258
RBD [26] 0.490 0494 0.752 0.225 0421  0.431 0.804 0.150 0474 0442 0.725 0.247
DRFI [23] 0517 0.527 0.780 0.217 0432 0481 0.856 0.147 0449 0432 0.749 0.258
Ours 0.542 0562 0813 0.173 0435 0463 0.825 0.163 0500 0449 0.734 0.244

The 4 indicates the larger value achieved, the better performance is, while | indicates the smaller, the better. The best three results
are highlighted with italic, bold and bold italic fonts, respectively, Ours q = 2/3.

Table 5

Comparison with Non-Low-rank method and performance boost with different baselines on Datasets.
Dataset iCoSeg MSRA10K DUT-OMRON
Metric WF 4+ OR?® AUCt MAE] WF4t OR?® AUCY MAE] WF4t OR?® AUC 1+ MAE |
PCA [17] 0.407 0427  0.798 0.201 0.473 0576  0.839 0.185 0.287  0.341  0.827 0.207
GS [15] 0519 0520 0.819 0.167 0.606 0.664 0.839 0.139 0363 0372 0.814 0.173
HS [16] 0.536  0.537  0.812 0.176 0.604 0.656  0.833 0.149 0350 0.397 0.801 0.227
MC [56] 0461 0.543  0.807 0.179 0.576  0.694 0.843 0.145 0.347 0425 0.820 0.186
MR [25] 0.554 0573  0.795 0.162 0.642 0.693 0.824 0.125 0.381 0.420  0.779 0.187
DSR [24] 0.548 0514  0.801 0.153 0.656  0.654  0.825 0.121 0.419 0408  0.803 0.139
RBD [26] 0.599 0.588 0.827 0.138 0.685 0.716 0.834 0.108 0427 0432 0.814 0.144
DRFI [23]  0.592 0.582  0.839 0.139 0.666 0.723  0.857 0.114 0424 0444 0.839 0.138
Ours 0.626  0.608  0.829 0.133 0.705 0.744  0.848 0.103 0423 0440 0.812 0.171

The 4 indicates the larger value achieved, the better performance is, while | indicates the smaller, the better. The best three results
are highlighted with italic, bold and bold italic fonts, respectively, Ours q = 2/3.

(SQNMD) is even more competitive than most of the non-low-rank
methods.

Fig. 3 shows the F-measure curve comparison of the proposed
model and ten competitive methods on six datasets. Note that
the proposed model has significantly better performance than the
other methods for ECSSD, iCoSeg, MSRA10k and PASCAL-S. For

THUR15K, the new method, SMD [33] and DRFI [23] yield equal
shares whose results are better than ones of the other methods.
For DUT-OMRON, it is clear that our method can outperform the
other methods except DRFI [23]. In fact, DRFI is a semi-supervised
method with deep learning. Thus, inspired by this, we will con-
sider combination of bilinear factorization norm and learning task.
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F-measure Curve
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(a) ECSSD (b) THURI15K (C) PASCAL-S
F-measure Curve F-measure Curve F-measure Curve
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Fig. 3. Quantitative comparison on six datasets in terms of F-measure curve.
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Fig. 4. Visual comparison of saliency maps, in which the results from our method appear to be very close to the ground truth (IMG and GT are short for image and ground

truth).

Finally, Fig. 4 gives some quantitative visual comparisons based
on the twelve state-of-the-art models. It is easy to find that the
maps from our model not only possess the consistent salient val-
ues of pixels within the same salient objects, but also assign suc-

N Y (Y Y Y I
BEREOEERGLCOBRO0N
-l -

e efs]y e e folefofe] ]

MR DSR RBD DRFI SMD DIMD Ours

cessfully all the salient objects with consistent values. However,
map images from the other methods are more or less incomplete
and inconsistent. Thus, these results illustrate clearly the effective-
ness of our proposed algorithms.
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7. Conclusion and future work

In this paper, a Schatten-q quasi-norm induced matrix decom-
position model for conducting the salient object detection is pre-
sented. In the proposed method, the non-convex Schatten-1/2 or
Schatten-2/3 norm is applied to formulate the background, that
provides cleaner solution. A weighted group sparsity induced norm
is imposed on foreground to share consistent within the same im-
age patches. Meanwhile, an alternative non-convex formulation is
proposed for nuclear norm (i.e. ¢ = 1). Efficient numerical algo-
rithms with closed-form solutions are established to solve the pro-
posed model under the optimization framework, whose conver-
gence and complexity are also discussed. Experiments on the six
competitive datasets show that the proposed model (SQNMD) can
outperform most of the state-of-the-art models.

An interesting direction of future work is how to extract high-
level semantic information of salient object using tensor analysis.
In addition, the adaptive selection of trade-off parameters is wor-
thy of a further study for the purpose of more efficient implemen-
tation.
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