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a b s t r a c t 

Salient object detection is not only important but also challenging tasks in the study of computer vi- 

sion. In this paper, different from existing approaches, we propose a novel regularization model for the 

salient object detection, which integrates a weighted group sparsity with the convex Schatten-1 or the 

non-convex Schatten-2/3 and Schatten-1/2 norm, respectively. A weighted group sparsity induced norm 

developed in this paper is shown to be able to make the foreground being consistent within the same 

image patches by effectively absorbing the image geometrical structure as well as the feature similarity. 

The Schatten quasi-norm is successfully used to capture the lower rank of background via factorization 

technique, and an alternative non-convex formulation for nuclear norm is studied. The corresponding al- 

ternative direction method of multiplier (ADMM) with derived solutions are discussed in detail, and the 

convergence of algorithm is validated. Extensive experiments on the six widely used datasets show that 

the proposed approach has capacity in outperforming most of state-of-the-art models in current litera- 

ture. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

It is instinctive that human vision system can effectively cap-

ure important information from visual scenes. Inspired by this bi-

logical capability, salient object detection, which aims to localize

nd segment the most conspicuous foreground objects from back-

round, has received considerable attention in cognitive psychol-

gy, neurobiology and computer vision. Simultaneously, this fea-

ure has been widely used in image cropping [1] , adaptive image

isplay on mobile devices [2] , extracting dominant colors on the

bject of interest for web image filter [3] , video surveillance [4] ,

otion segmentation [5,6] , and among others. 

In general, most of existing researches on the problem of salient

bject detection [7] falls into two main categories: bottom-up and

op-down, which respectively focuses either on independent goals

ithout prior knowledge or on specific goals with prior knowl-

dge. The bottom-up models [8–14] are stimulus-driven, which are

hown to be effective in predicting human fixations and highlight-

ng the informative regions of images. The top-down models [15–

6] are task-driven, which are suitable in using image contexts and
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pecific visual priors. However, both top-down and bottom-up ap-

roaches have the limited ability in dealing with complex scenes.

or example, the bottom-up approach is only to be able to detect

ertain part of target objects and may not be able to distinguish

he background from the salient object in complex scenes effec-

ively. Due to the high diversity of various object type in complex

cenes, top-down models usually are not suitable for scalability

nd generalization. 

Therefore, approaches which combine bottom-up cues with

op-down priors become more practical. In literature, the most

epresentative work was by Candès, in which he introduced the

ow rank matrix recovery theory into the study of salient ob-

ect detection (denoted as LRMR) problems [27,28] . Motivated by

RMR method, Shen et al. [29] proposed a unified approach based

n low rank matrix recovery (ULR), which effectively incorpo-

ated traditional low-level feature with high-level guidance. Lang

t al. [30] introduced a multi-task sparsity pursuit method (MSP)

ased on low-rank representation (LRR) [31] which seamlessly in-

egrates multiple features with top-down priors to produce jointly

he saliency map with a single inference step. Zou et al. [32] pre-

ented a fully unsupervised model that exploited bottom-up seg-

entation as a guidance cue of the matrix recovery (SLR). Peng

t al. gave a structured matrix decomposition approach with a

ree-structured sparsity-inducing regularization and a Laplacian
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Image ULR SLR SMD Ours GT

Fig. 1. Examples of our method performs close to the ground true. 
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regularization (SMD) [33] . As an extension of the SMD model,

Sun et al. [34] elaborated the matrix decomposition model based

on diversity which mainly considered the half regularization for

background. The shared characteristic of these methods is to use

low rank to characterize the background. Technically, it is a com-

mon consensus that the background should be a highly redundant

part of information which has visually consistent representation in

computer vision. Hence, according to linear algebra theory, this po-

tential redundant part should lie in some much lower dimensional

subspace, which can be efficiently characterized by a low rank fea-

ture matrix. 

It is well known that aforementioned low rank approaches can

be formulated as a rank minimization problem, which not only is

non-convex but also can be an NP-hard problem. To make such a

problem be tractable, a standard approach is to replace the rank

function by its lower convex envelop, i.e. the nuclear norm [27–

31,33] . However, such an approach may over-penalize the large sin-

gular values due to the gap between the rank function and its con-

vex envelop, and result in deviating from the original solution, as

discussed in [35–37] . More specifically, convex relaxation by using

nuclear norm for salient object detection suffers from the follow-

ing limitations: 

1. Since the nuclear norm is a linear sum of singular values,

minimizing the nuclear norm may lead to ignoring the inter-

correlation between elements in foreground objects due to

the lack of distinction of singular values, and thus the gen-

erated saliency object is scattered and incomplete, as shown

in Fig. 1 (ULR). 

2. When the background is complex or cluttered (for instance

when it has similar appearance with the salient object), it is

likely to be confused by the foreground target due to insuf-

ficient accuracy caused by the gap, as shown in Fig. 1 (ULR

and SLR). 

3. When the object possesses different representations, the

conspicuous values with the same object could appear to be

inconsistent, again due to insufficient accuracy caused by the

gap, as shown in Fig. 1 (ULR, SLR and SMD). 

In addition, the existing algorithms for current low-rank based

models have to be solved iteratively and involve singular value de-

composition (SVD) of a large scale matrix in each iteration, which

generally requires high computation costs [38,39] . This also could
ead to a limitation for handling large scale data that often occurs

n the study of computer vision. 

In order to address these problems, a novel Schatten- q quasi-

orm induced matrix decomposition model (SQNMD) in this paper

s proposed. First, motivated by the bilinear factorization with two

actor matrix norm regularizers used in low-level vision process-

ng [38,39] , a tractable low-rank regularizer is used to characterize

he background part. In fact, this regularization is the non-convex

chatten- q norm for 0 < q < 1 that can take advantage of the heavy-

ailed distribution of singular values in matrices. Compared with

he nuclear norm, it is better in capturing the rank structure and

rovides more adequate low rank approximation, as shown in our

xperiments later on. In other words, this regularization is more

uitable to describe the background in a corresponding subspace

ssociated with lower rank properties. Thus the adoption of non-

onvex Schatten- q norm usually leads to a cleaner background

han convex setting, illustrated in our experiments. Second, by tak-

ng into account image geometrical structure and feature similarity

etween image patches, we use a weighted group sparsity norm to

haracterize the foreground object. This setting allows our process

o share the consistency within the same image patches. More-

ver, in order to distinguish thoroughly between saliency target

nd background, we continue to adopt the Laplacian term sim-

lar to [33] , and it plays a complementary role when there is

 similar appearance between the salient objects and the back-

round, which can guarantee the object completeness as much as

ossible. By integrating aforementioned techniques together, our

roposed model can separate the salient objects from complex

cenes much more effectively, com pared with current available

pproaches. 

In particular, we pay attention to two specific cases of q , 1/2

nd 2/3 in this paper, which are in essence bi-nuclear quasi-norm

nd Frobenius/nuclear hybrid norm respectively. In our each in-

ividual algorithm, we only need to perform SVDs on two much

maller factor matrices as contrary to the larger ones used in

xisting low rank methods. Therefore, the proposed model is also

ell suitable for big data processing. To the best of our knowledge,

his is the first study which pursues Schatten quasi-norm solvers

n salient object detection (the latest and the most representative

tudies based on Schatten quasi-norm are mainly to consider

he low-level vision problems, e.g., see [38,40–45] ). In addition,

e evaluate the SQNMD method on six well-known benchmark

atasets that involve various complex scenarios, and compare our
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ethod with 12 state-of-the-art methods. Through some standard

valuation index, our proposed SQNMD method in this paper

enerates more competitive results than current existing methods,

s shown in our experiment section. 

The remainder of this paper is organized as follows:

ection 2 provides some related works about salient object

etection problems. Section 3 provides the development of our

roposed SQNMD model. Section 4 develops the corresponding

ptimization algorithm and computational complexity. Algorithm

nalysis is given in Section 5 . The experiment results are shown in

ection 6 . Finally, the conclusion is given in Section 7 . 

. Related works 

During recent years, we have witnessed the significant advances

n the study of salient object detection. In this section, we mainly

iscuss the most influential models which are closely related to

ow rank approximation. 

LRMR [28] aims to recover a low-rank matrix L (i.e. the back-

round without salient object) and a sparse matrix S (i.e. the fore-

round with salient object) from the given feature matrix of an

nput image F = L + S as follows: 

in 

L,S 
rank (L ) + λ�(S) s.t. F = L + S (1)

here �( S ) is a sparsity regulation function and λ is positive

rade-off parameters. Unfortunately, solving (1) is intractable and

ay be NP-hard in many cases. Thus, this motivates us to seek the

orresponding relaxed approximation models. 

LRR [31] assumes that there exists strong correlation among

ackground patches, which leads to consider a low-rank coefficient

atrix multiplied by the feature matrix to represent the back-

round and utilize the sum of l 2 norm of the columns of matrix

s the sparse regularization. That is, 

in 

Z 0 , E 0 
‖ 

Z 0 ‖ ∗ + λ‖ 

E 0 ‖ 21 s.t.X = X Z 0 + E 0 

here XZ 0 denotes the background, which can be reconstructed

y itself, Z 0 denotes th reconstrucion coefficients, E 0 denotes the

alient objects, ‖·‖ ∗ is the nuclear norm, i.e. the sum of the sin-

ular values which is a convex approximation to the rank func-

ion; ‖ ·‖ 21 can make columns of E to be sparse. However, the LRR

an only model a certain type of visual features, which can not

e directly used for multifeature cases. To combine together mul-

iple features, MSP [30] introduce the multi-task extension of LRR

y incorporating multi-feature collaborative enhancement and top-

own priors. Thus, MSP model can be formulated as the following

orm: 

min 

 1 , ··· , Z K 
 1 , ··· , E K 

K ∑ 

i =1 

‖ 

Z i ‖ ∗ + λ‖ 

E ‖ 21 s.t. X i = X i Z 1 + E i i = 1 , . . . , K (2)

ut the sparse matrix E may not be accurate in MSP model, since

t ignores the spatial relations and the feature affinities, that may

ause inaccurate salient object detection. 

To overcome this shortage, the ULR [29] model resorts to fea-

ure transformation and sparse representation, which integrates

he low-level features and high-level semantic priors. Thus, the

LR can be written as: 

in 

L,S 
|| L | | ∗ + λ|| S| | 1 s.t. F = L + S (3)

owever, this model usually produces non-uniformly highlighted

alient object, because the spatial relations and feature similarities

f patches are lacking. To address this problem, the SLR [32] ex-

loits the bottom-up segmentation prior H c from the connectiv-

ty between regions and borders as guidance clue of detection (i.e.

dds the condition F = A H c in (3)), which can yield a small weight
o the regions approximating image borders (which leads to the

pproximated object being more accurate). Although the SLR ob-

ains more effectively salient objects than the ULR, some impor-

ant cases are ignored, such as when the background is clustered,

r when the background has similar appearance with the salient

bject. So, the SMD [33] is proposed to further address the prob-

em. 

Comparing with the SLR model, the SMD method utilizes struc-

ured sparsity regularized term ‖ ·‖ 
2 , ∞ 

instead of ‖·‖ 1 to capture

he potential structure of image and forces patches from the same

bject to have similar saliency values. Simultaneously, a Laplacian

egularization under the assumption of the local invariance is also

onsidered, which can preserves the local structure of the image

eature and enlarge the difference between the background and

alient object. However, in the SMD model, the background infor-

ation is still characterized by the nuclear norm. As we mentioned

efore, the nuclear norm may lead to the over-penalization for

arge singular vues, that makes solution deviate from the original

ackground. Thus different from current literature, in this paper,

he non-convex Schatten- q quasi-norms for 0 < q < 1 is considered

or the salient object detection problem in order to achieve a bet-

er approximation to the rank function of background. Moreover,

e focuses on Schatten-1/2 and 2/3, which appear to be suitable

onstraint on the background so that it can be compressed ade-

uately. 

Here what must be specifically stated is that 1/2-norm for back-

round appeared in matrix decomposition model based on di-

ersity [34] (DIMD). However, DIMD has to be solved iteratively,

nd involves singular value decomposition (SVD) in each itera-

ion, which means that the corresponding algorithm has high per-

teration complexity. The proposed Schatten- q quasi-norm induced

atrix decomposition (SQNMD) utilizes two tractable bilinear fac-

or matrix norms (i.e. bi-nuclear quasi-norm and Frobenius/nuclear

ybrid norm) for background, which only requires SVDs on two

uch smaller factor matrices as contrary to the larger ones used

n DIMD [34] (one can refer to computational complexity analysis

f Section 5 , such as Remarks 1 –3 ). Thus, the new SQNMD model

s more general, tractable and scalable, which subsumes the DIMD

ethod as a special case to some extent. The new SQNMD model

ot only inherits the main advantages of the DIMD method, i.e. it

ecomposes a given matrix into structured parts with diversity, but

t is also armed with the new ability to remedy the gap between

he rank function and its convex envelop. The experimental results

 Section 6 ) shows clearly that the resulting saliency maps of new

ethod are more visually favorable. 

. Schatten-q quasi-norm induced decomposition model for 

alient object detection 

.1. Problem formulation 

Inspired by Peng et al. [33] , a given nature image I is over-

egmented into N non-overlapping patches P = { P 1 , P 2 , . . . P N } . For

ach patch P i , i -th D-dimensional low-level feature vector can be

enoted as f i ∈ R 

D . Consequently, a feature matrix of I is formed,

hich can be written as F = [ f 1 , f 2 , . . . , f N ] ∈ R 

D ×N . The problem

f salient object detection is to find an efficient model to decom-

ose the feature matrix F into a low-rank part L (background) and

 sparse part S (salient object), respectively. 

In order to address the salient object detection problem, we for-

ulate this problem into the following more general form: 

in 

L,S 
f ( L ) + αg ( S ) + βh ( L, S ) s.t. F = L + S (4)

here f ( L ) is a low-rank constraint for background L, g ( S ) is a

parse regularized term, h ( L, S ) is an interactive regularization term
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Table 1 

The norms of low-rank: ‖ X ‖ S q (q ∈ [ 0 , 2 ] ) . 

q ‖ X ‖ S q 
0 ‖ X ‖ S 0 = ‖ σ‖ l 0 Rank 

(0, 1) ‖ X ‖ S q = 

(∑ 

σ q 

k 

) 1 
q Schatten-q norm 

1 ‖ X ‖ ∗ = 

∑ 

σk Nuclear norm 

2 ‖ X ‖ F = 

√ ∑ 

σ 2 
k 

Frobenius norm 
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between L and S , and α, β are positive trandeoff parameters used

in the optimization. 

3.2. Schatten-q quasi-norm term for background 

The extended Schatten-q quasi-norm of a matrix X ∈ R 

m ×n is

defined as: 

|| X | | Sq = 

( 

min { m,n } ∑ 

i =1 

σ q 
i 
(X ) 

) 1 /q 

(5)

where σ i ( X ) is the i − th singular value of X. For q ∈ [0, 2], the reg-

ularized term ‖ X ‖ S q can be summarized in Table 1 . 

Since the non-salient background in a image is similar, it thus

always lies in low dimensional subspace. Therefore, there is the

consensus that one only need to minimize the rank of this sub-

space for background. In order to approximate more effectively

the rank function, we consider the second choice in Table 1 , i.e.

Shatten- q quasi-norm with 0 < q < 1. Throughout this paper, with-

out loss (of) generality, we mainly focus on two specific values

of q , 1/2 and 2/3 for the purpose of implementations. Accord-

ing to the theory of unified surrogate for Schatten-p norm [38] ,

Schatten-1/2 and 2/3 are essentially bi-nuclear quasi-norm and

Frobenius/Nuclear hybrid norm, whose characterizations are given

below: 

Theorem 1 (Frobenius/Nuclear and Bi-Nuclear Norm Surro-

gate [38] ) . Given matrices U ∈ R 

m ×d , V ∈ R 

n ×d , and X ∈ R 

m ×n with

rank (X ) = r ≤ d, the flowing hold: 

|| X || 2 / 3 
S 2 / 3 

= min 

U,V : X= U V T 
2 

3 

|| U| | ∗ + 

1 

3 

|| V || 2 F 

|| X || 1 / 2 
S 1 / 2 

= min 

U,V : X= U V T 
1 

2 

|| U| | ∗ + 

1 

2 

|| V | | ∗ (6)

where ‖·‖ ∗ is nuclear norm and ‖·‖ F is Frobenius norm. 

In addition, we will also consider q = 1 . Although it is nuclear

norm and convex (i.e. it reduces to SMD [33] ), we propose an al-

ternative non-convex bilinear spectral penalty for the nuclear norm

described in Theorem 2 . 

Theorem 2 [42] . Given matrices U ∈ R 

m ×d , V ∈ R 

n ×d , and X ∈ R 

m ×n

with rank (X ) = r ≤ d, the flowing holds: 

|| X | | ∗ = min 

U,V ,X= U V T 
|| U|| 2 F 

2 

+ 

|| V || 2 F 

2 

. (7)

Due to the requirement of factorization of matrix norm during

the approach, regardless of whether the value of p is 1, 1/2, or 2/3,

we develop an approach in which it is only required to perform

SVDs on two much smaller factor matrices for solving minimiza-

tion as contrary to the larger ones used in SMD. This is particu-

larly useful for many big datasets. To the best of our knowledge,

the use of non-convex Schatten quasi-norm solvers for the salient

object detection has not been seen yet, and the latest and most

representative works based on Schatten quasi-norm are all consid-

ered for the low-level vision problems, such as matrix completion

and image inpainting [38,40–45] . 
.3. Weighted group sparsity regularization for salient region and 

aplacian constraint 

It is well-known that a valid segmentation result has to bear

ome of the potential information of the image. Inspired by Peng

t al. [33] , Liu and Ye [46] , Jia et al. [47] , we continue to impose a

eighted group sparsity induced norm to the salient part S , which

an be written in the following form: 

 ( S ) = 

n ∑ 

j=1 

v j || S G j | | p , (8)

here G j is the j -th node of graph cut, v j > 0 is a prior weight for

he node G j , S G j is a sub-matrix of S , S G j ∈ 

D ×| G j | (| ·| is the car-

inality of a set), n is the number of nodes, ‖·‖ p is the l p -norm,

hich is used to characterize relationships among the correspond-

ng patches within the same group. In general, the p value is set

o be 1 ≤ p ≤∞ . In order to produce more precise and structurally

onsistent results, we focus on p = ∞ which can take the advan-

age of the spatial contiguity and feature similarity among image

atches. In fact, l ∞ 

norm is the maximum saliency value of patches

ithin the group that determines if the group belongs to saliency

r not. More specifically, (8) is a weight group sparsity norm over

 graph, where 

 j = 1 − max 
({

πk : k ∈ G j 

})
. (9)

i in (9) indicates the likelihood that patch P i belongs to a salient

bject based on high-level information [29] . This weight group

parsity norm, on one hand, can forces the patches within a same

roup to have similar salient values, and on the other hand, it

an emphasize patches from different groups to have differentiable

epresentations, as shown in Fig. 2 . 

In addition, to enlarge the distance between salient object and

ackground in image patch, we also append the Laplacian regular-

zation Tr ( SQ F S 
T ) [33,48] based on the local invariance assumption

or salient object S ( Tr ( ·) is the trace of matrix). Here the entry of

 Laplacian matrix Q F can be given as the following form: 

( Q F ) i, j = 

{ 

−w i j , if i � = j ∑ 

j � = i 
w i, j , otherwise . (10)

 i, j is the entry of an affinity matrix which represents the feature

imilarity of patches ( P i , P j ), i.e. 

 i, j = 

⎧ ⎨ 

⎩ 

exp 

(
−‖ 

f i − f j ‖ 

2 

2 δ2 

)
if 

(
P i , P j 

)
∈ V 

0 otherwise . 

(11)

here V denotes the set of adjacent patch. 

In summary, the problem (4) can be specifically constructed as

which is simply referred to as SQNMD model in short notation) 

in 

L,S 
|| L || q 

S q 
+ α

n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(S Q F S 
T ) s.t. F = L + S (12)

According to the Theorems listed in the part 3.2 , the model

12) can be rewritten as the following three forms: 
• q = 1 , 

min 

U,V,S,H 

1 

2 

(|| U|| 2 F + || V || 2 F ) + α
n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) 

s.t. F = UV 

T + S, S = H. (13)

• q = 2 / 3 , 

min 

U,V,S,M,H 

1 

3 

(2 || M|| ∗ + || V || 2 F ) + α
n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) 
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Image G4 G3 G2 G1

Fig. 2. Results from weighted group sparse acting. 
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deduce that O 6 mnd + 2 d + m d + n d � O m n for m, n � d . 
s.t. F = UV 

T + S, M = U, S = H. (14) 

• q = 1 / 2 , 

min 

U,V,S,M,N,H 

1 

2 

(|| M|| ∗ + || N|| ∗) + α
n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) 

s.t. F = UV 

T + S, M = U, N = V, S = H. (15) 

t is easy to see that the model in q = 1 is equivalent to SMD [33] .

or q = 1 / 2 , the proposed model degenerates as DIMD [34] . But

he difference is that the model (13) is based on an alternative

on-convex formulation. On the other hand, the ablation study of

ach regularization term, not shown here, also demonstrates the

ffectiveness from our proposed approach. 

. Optimization 

Motivated by the alternating direction method of multipliers

ADMM) [49,50] , we provide those related optimization algorithms

or the aforementioned problems. 

.1. Solving (13) 

The augmented Lagrangian function for problem (13) is given

y 

L 1 (U, V, S, H, Y 1 , Y 2 , μ) = 

1 

2 

(|| U|| 2 F + || V || 2 F ) + α
n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) + 

〈
Y 1 , F − U V 

T − S 
〉
+ 〈 Y 2 , S − H 〉 

+ 

μ

2 

(|| F − U V 

T − S|| 2 F + || S − H|| 2 F ) (16) 

here Y 1 , Y 2 are the Lagrange multipliers, and μ> 0 is a penalty

arameter. The solution of (16) is equivalent to minimizing the

ugment Lagrange function L 1 . The complete algorithm is shown

n Algorithm 2 . Next, the detailed updating processes of variables

re shown in the following subsections. 

pdating U . First, fixing V, S and H and seeking U to minimize the

unction L 1 . Thus, we consider the following optimization prob-

em: 

 

∗ = arg min 

U 

1 

2 

|| U || 2 F + 

μ

2 

∥∥∥F − U V 

T − S + 

Y 1 
μ

∥∥∥2 

F 

. (17)

Obviously, (17) is a least squares problem, thus the optimal so-

ution is given by 

 

∗ = (μF V + Y 1 V − μSV )(I + μV 

T V ) −1 . (18)

pdating V . Fixing U, S and H, V can be obtained by solving the

ollowing problem: 

 

∗ = arg min 

V 

1 

2 

|| V || 2 F + 

μ

2 

∥∥∥F − U V 

T − S + 

Y 1 
μ

∥∥∥2 

F 

. (19)
imilarly, we have 

 

∗ = (μF T U + Y T 1 U − μS T U )(I + μU 

T U ) −1 . (20)

pdating S . To update S , we arrive at the problem below: 

 

∗ = arg min 

S 

α

2 μ

n ∑ 

j=1 

|| S G j | | ∞ 

+ 

1 

2 

∥∥∥∥∥S −
F − U V 

T + H + 

Y 1 −Y 2 
μ

2 

∥∥∥∥∥
2 

F 

. 

(21) 

o solving (21) , we simplify this problem as: 

 

∗ = min 

S 
γ

n ∑ 

j=1 

v j 
∥∥S G j 

∥∥
∞ 

+ 

1 

2 

‖ 

S − A ‖ 

2 
F . (22) 

Similar to the approach given in [51] , we provide an optimiza-

ion algorithm based on the hierarchical proximal operator, which

s summarized in Algorithm 1 . 

lgorithm 1 Solving S by hierarchical proximal operator. 

nput: F and γ
1: Set S = A 

2: for i = d to 1 do 

3: for j = 1 to n do 

4: S k +1 
G j 

= 

⎧ ⎨ 

⎩ 

∥∥∥S G j 

∥∥∥
1 
−γ v j ∥∥∥S G j 

∥∥∥ S G j i f 

∥∥∥S G j 

∥∥∥ > γ v j 

0 , else 

5: end for 

6: end for 

utput: S k 

pdating H . Finally, fixing U, V , and S , updating H is obtained by

olving the following problem: 

 

∗ = arg min 

H 

βT r(H Q F H 

T ) + 

μ

2 

∥∥∥S − H + 

Y 2 
μ

∥∥∥2 

F 

. (23)

hen we have 

 

∗ = (μS + Y 2 )(2 βQ 

T 
F + μI) −1 . (24)

In summary, the algorithm of (16) based on ADMM can be out-

ined as Algorithm 2 . And we also give the per-iteration complexity

nalysis for Algorithm 2 , that is Remark 1 . 

emark 1. It is well known that the computation complexity of

hin SVD for an m × n matrix with m � n is O ( mn 2 ). The cost of

omputing the inverse for d × d matrix is O ( d 3 ), and the expense

f multiplication for m × d matrix and d × n matrix is O ( mdn ). In

LR [29] , DIMD [34] and SMD [33] , the cost is dominated by

he computation of the thin SVD of an m × n matrix with m � n ,

nd is O ( mn 2 ) respectively. But for Algorithm 2 , the dominant

ost of each iteration for updating U ∈ R 

m ×d and V ∈ R 

n ×d using

qs. (18) and (20) is O 

(
6 mnd + 2 d 3 + m d 2 + n d 2 

)
. Therefore, we(

3 2 2 
) (

2 
)
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Algorithm 2 Problem (16) solved by ADMM. 

Input: F , d, α, β and μ0 ,S 0 = H 0 = Y 0 
1 

= Y 0 
2 

= 0 , μmax = 10 10 , ρ = 

1 . 1 and k = 0 

1: while not converged do 

2: update U k +1 by (18) 

3: update V k +1 by (20) 

4: update S k +1 by (22) 

5: update H k +1 by (24) 

6: update Y k +1 
1 

by Y 1 ← Y 1 + μ
(
F − U V T − S 

)
7: update Y k +1 

2 
by Y 2 ← Y 2 + μ(S − H) 

8: update μk +1 by μ ← min (ρμ, μmax ) 

9: update k by k ← k + 1 

10: end while 

Output: U, V and S 
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4.2. The procedure for solving (14) 

The augmented Lagrangian function for problem (14) is repre-

sented as 

L 2 / 3 (U, V, S, M, H, Y 1 , Y 2 , Y 3 , μ) = 

1 

3 
(2 || M|| ∗ + || V || 2 F ) + α

n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) + 

〈
Y 1 , F − U V T − S 

〉
+ 〈 Y 2 , M − U 〉 + 〈 Y 3 , S − H 〉 

+ 

μ

2 
(|| F − U V T − S|| 2 F + || M − U|| 2 F + || S − H|| 2 F ) , (25)

where Y 1 , Y 2 , Y 3 are the Lagrange multipliers, and μ> 0 is a

penalty parameter. The detailed updating processes of variables are

shown as follows. 

• Updating U : First of all, fixing V, S, M , and H , updating U is

obtained by solving the following problem: 

U 

∗ = arg min 

U 

μ

2 

(∥∥∥F − U V 

T − S + 

Y 1 
μ

∥∥∥2 

F 

+ 

∥∥∥M − U + 

Y 2 
μ

∥∥∥2 

F 

)
. 

(26)

Thus, we have 

U 

∗ = 

(
M + 

Y 2 
μ

+ F V + 

Y 1 
μ

V − SV 

)
(I + V 

T V ) −1 . (27)

• Updating V : Secondly, fixing U, S, M , and H , updating V is ob-

tained by 

V 

∗ = arg min 

V 

1 

3 

|| V || 2 F + 

μ

2 

∥∥∥F − U V 

T − S + 

Y 1 
μ

∥∥∥2 

F 

. (28)

Then we have 

V 

∗ = 

(
μF T U − μS T U + Y T 1 U 

)(2 

3 

I + μU 

T U 

)−1 

. (29)

• Updating S : Third, fixing U, V, M , and H , updating S can be rep-

resented as 

S ∗ = arg min 

S 

α

2 μ

d ∑ 

i =1 

n i ∑ 

j=1 

|| S G i 
j 
| | ∞ 

+ 

1 

2 

∥∥∥∥∥S −
F − U V 

T + H + 

Y 1 −Y 3 
μ

2 

∥∥∥∥∥
2 

F 

.

(30)

Therefore, (30) can be solved according to Algorithm 1 . 
• Updating M : Fourth, fixing U, V, S , and H, M is obtained by 

M 

∗ = arg min 

M 

2 

3 μ
|| M | | ∗ + 

1 

2 

∥∥∥U − Y 2 
μ

− M 

∥∥∥2 

F 

. (31)

Without loss of generality, the Eq. (31) can be simplified as 

min τ‖ 

B ‖ 

+ 

1 ‖ 

C − B ‖ 

2 
. (32)
B 
∗ 2 

F  
Thus, the problem (32) is a regularized least squares prob-

em associated with the nuclear norm, of which closed-form so-

ution can be represented by the singular value thresholding (SVT)

52] (refers Theorem 3 ). 

heorem 3 (SVT [52] ) . Let the singular value decomposition of C can

e written as C = U�V T , then the optimal solution for B is given by 

 = D τ ( C ) = U S τ ( �) V 

T , (33)

here D ε is the singular value thresholding operator and D ε is the

oft thresholding operator, which is defined as 

 ε ( x ) = sign ( x ) max ( | x | − ε, 0 ) = 

{ 

x − ε x > ε 
x + ε x < −ε 
0 else 

. (34)

• Updating H : Finally, fixing U, V, S and M , updating H is set by

H 

∗ = arg min 

H 

βT r(H Q F H 

T ) + 

μ

2 

∥∥∥S − H + 

Y 2 
μ

∥∥∥2 

F 

. (35)

Then we have 

H 

∗ = (μS + Y 3 )(2 βQ 

T 
F + μI) −1 . (36)

Therefore, when q = 

2 
3 , we obtain the optimization procedure

as given by Algorithm 3 . Similarly, the complexity analysis can

be summarized as Remark 2 . 

lgorithm 3 Problem (25) solved by ADMM. 

nput: F , d, α, β and μ0 , M 0 = Y 0 
2 

= 0 , S 0 = H 0 = Y 0 
1 

= Y 0 
3 

=
0 , μmax = 10 10 , ρ = 1 . 1 and k = 0 

1: while not converged do 

2: update U k +1 by (27) 

3: update V k +1 by (29) 

4: update S k +1 by (30) 

5: update M k +1 by (32) 

6: update H k +1 by (36) 

7: update Y k +1 
1 

by Y 1 ← Y 1 + μ
(
F − U V T − S 

)
8: update Y k +1 

2 
by Y 2 ← Y 2 + μ( M − U ) 

9: update Y k +1 
3 

by Y 3 ← Y 3 + μ( S − H ) 
10: update μk +1 by μ ← min (ρμ, μmax ) 

11: update k by k ← k + 1 

12: end while 

utput: U, V and S 

emark 2. In Algorithm 3 , the per-iteration complexity of

pdating U ∈ R 

m ×d , V ∈ R 

n ×d and M ∈ R 

m ×d using Eqs. (27) ,

29) and (32) is O 

(
6 mnd + 2 d 3 + 2 m d 2 + n d 2 

)
. Thus, one has

 

(
6 mnd + 2 d 3 + 2 m d 2 + n d 2 

)
� O 

(
m n 2 

)
for m, n � d , where

 ( mn 2 ) is respectively the cost of ULR [29] , DIMD [34] and SMD

33] . 

.3. The procedure for solving (15) 

Similar to the discussion of subsection B, the augmented La-

rangian function for problem (15) is 

L 1 / 2 (U, V, S, M, N, H, Y 1 , Y 2 , Y 3 , Y 4 , μ) = 

1 

2 
(|| M|| ∗ + || N|| ∗) 

+ α
n ∑ 

j=1 

v j || S G j | | ∞ 

+ βT r(H Q F H 

T ) + 

〈
Y 1 , F − U V T − S 

〉
+ 〈 Y 2 , M − U 〉 + 〈 Y 3 , N − V 〉 + 〈 Y 4 , S − H 〉 
+ 

μ
(|| F − U V T − S|| 2 F + || M − U|| 2 F + || N − V || 2 F + || S − H|| 2 F ) (37)
2 
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Algorithm 4 Problem (37) solved by ADMM. 

Input: F , d, α, β and μ0 ,M 0 = Y 0 
2 

= 0 , N 0 = Y 0 
3 

= 0 , S 0 = H 0 = Y 0 
1 

= 

Y 0 
4 

= 0 , μmax = 10 10 , ρ = 1 . 1 and k = 0 

1: while not converged do 

2: update U k +1 by (38) 

3: update V k +1 by (39) 

4: update S k +1 by (40) 

5: update M k +1 by (41) 

6: update N k +1 by (42) 

7: update H k +1 by (43) 

8: Y k +1 
1 

by Y 1 ← Y 1 + μ
(
F − U V T − S 

)
9: Y k +1 

2 
by Y 2 ← Y 2 + μ( M − U ) 

10: Y k +1 
3 

by Y 3 ← Y 3 + μ( N − V ) 

11: Y k +1 
4 

by Y 4 ← Y 4 + μ( S − H ) 
12: μk +1 by μ ← min (ρμ, μmax ) 

13: k by k ← k + 1 

14: end while 

Output: U, V and S 
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here Y 1 , Y 2 , Y 3 , Y 4 are the Lagrange multipliers, and μ> 0 is a

enalty parameter. Thus, we here also provide an efficient ADMM

lgorithm for (37) (i.e. Algorithm 4 ). Since the update scheme of U,

, S, M, N and H are very similar to that of Algorithm 3 , we only

eed to solve the following convex optimization problems for each

tep in the alternating iteration. 

1. Updating U : 

U 

∗ = 

(
F V + 

Y 1 
μ

V + M + 

Y 2 
μ

− SV 

)
(V 

T V + I) −1 , (38)

2. Updating V : 

V 

∗ = 

(
N + 

Y 3 
μ

+ F T U + 

Y T 1 

μ
U − S T U 

)
(I + U 

T U) −1 , (39)

3. Updating S : 

S ∗ = arg min 

S 

α

2 μ

n ∑ 

j=1 

|| S G j | | ∞ 

+ 

1 

2 

∥∥∥∥∥S −
F − U V 

T + H + 

Y 1 −Y 4 
μ

2 

∥∥∥∥∥
2 

F 

, 

(40) 

4. Updating M : 

M 

∗ = arg min 

M 

1 

2 μ
|| M | | ∗ + 

1 

2 

∥∥∥(
U − Y 2 

μ

)
− M 

∥∥∥2 

F 

, (41)

5. Updating N : 

N 

∗ = arg min 

N 

1 

2 μ
|| N | | ∗ + 

1 

2 

∥∥∥V − Y 3 
μ

− N 

∥∥∥2 

F 

, (42)

6. Updating H : 

H 

∗ = arg min 

H 

βT r(H Q F H 

T ) + 

μ

2 

∥∥∥S − H + 

Y 2 
μ

∥∥∥2 

F 

. (43)

emark 3. In Algorithm 4 , the dominant complexity of updat-

ng U ∈ R 

m ×d , V ∈ R 

n ×d , M ∈ R 

m ×d and N ∈ R 

n ×d using Eqs. (38) ,

39) , (41) and (42) is O 

(
6 mnd + 2 d 3 + 2 m d 2 + 2 n d 2 

)
. There-

ore, O 

(
6 mnd + 2 d 3 + 2 m d 2 + 2 n d 2 

)
� O 

(
m n 2 

)
f or m, n � d , where

 ( mn 2 ) is respectively the cost of ULR [29] , DIMD [34] and SMD

33] . 

. Convergence analysis 

According to the above Algorithms, each sub-problem has a

losed-form solution in the proposed SQNMD model and the ob-

ective value is always decreasing with respect to the primal
ariables optimized in each sub-problem. Now we provide the

onvergence property for the most complex Algorithm 4 under

ild conditions, and the similar results can be shared with the

lgorithms 2 and 3 . 

heorem 4. Let { U k }, { V k }, { S k }, { M k }, { N k }, { H k } be a sequence gen-

rated by Algorithm 4 . Suppose that the sequence { Y k 
i 
} (1 � i � 4) are

ounded, and μk is non-decreasing and 
∑ ∞ 

k =0 
μk +1 

μ2 
k 

< ∞ , then the se-

uences { U k }, { V k }, { S k }, { M k }, { N k }, { H k } are all bounded. 

roof. Let X k � ( U k , V k , S k , M k , N k , M k ) and Y k � ( Y k 
1 
, Y k 

2 
, Y k 

3 
, Y k 

4 
) . By

he iterative scheme of Algorithm 4 , we have that 

in 

X 
L 1 / 2 

(
X, Y k , μk 

)
= L 1 / 2 

(
X k +1 , Y 

k , μk 

)
. (44) 

hus, it yields 

L 1 / 2 

(
X k +1 , Y 

k , μk 

)
≤ L 1 / 2 

(
X k , Y 

k , μk 

)
= L 1 / 2 

(
X k , Y 

k −1 , μk −1 

)
+ 

μk + μk −1 

2 ( μk −1 ) 
2 

4 ∑ 

i =1 

∥∥Y k i − Y k −1 
i 

∥∥2 

F 
. (45) 

ue to μk +1 = ρμk −1 , ρ > 1 and 

∑ ∞ 

k =0 
μk 

μ2 
k +1 

< ∞ , and μk is non-

ecreasing, one can obtain the following result: 

μk + μk −1 

2 ( μk −1 ) 
2 

� 

2 μk 

2 ( μk −1 ) 
2 

= 

μk 

( μk −1 ) 
2 

→ 0 , (46)

hich implies that L 1 / 2 (( X k +1 , Y 
k , μk )) is bounded. 

Therefore, the problem (37) can be rewritten as 

1 

2 

( ‖ 

M k ‖ ∗ + ‖ 

N k ‖ ∗) + α
n ∑ 

j=1 

v j 
∥∥S k G j 

∥∥
∞ 

+ βT r(H Q F H 

T ) 

= L 1 / 2 

(
X k , Y 

k −1 , μk −1 

)
− 3 

2 μk −1 

4 ∑ 

i =1 

(∥∥Y k i 

∥∥2 

F 
−

∥∥Y k −1 
i 

∥∥2 

F 

)
, (47) 

hich indicates that { M k }, { N k } and { S k } are bounded. 

Simultaneously, since U k = M k −
Y k 

2 
−Y k −1 

2 
μk −1 

, we can deduce that

 U k } is bounded. Similarly, { V k } and and { H k } are also bounded. �

heorem 5. Let { U k }, { V k }, { S k }, { M k }, { N k }, { H k } be a sequence gen-

rated by Algorithm 4 . Suppose that the sequence { Y k 
i 
} (1 � i � 4) are

ounded, and μk is non-decreasing and 
∑ ∞ 

k =0 
μk +1 

μ2 
k 

< ∞ , then { U k },

 V k }, { S k }, { M k }, { N k }, { H k } are all Cauchy sequences. 

roof. Since 

 k +1 − U k +1 = 

Y k +1 
2 

− Y k 2 

μk 

, (48) 

y using Theorem 4 , we have 

∞ ∑ 

k =0 

‖ 

M k + 1 − U k +1 ‖ F = 

∞ ∑ 

k =0 

1 

μk 

∥∥Y k +1 
2 − Y k 2 

∥∥
F 

≤
∞ ∑ 

k =0 

μk +1 

μ2 
k 

∥∥Y k +1 
2 − Y k 2 

∥∥
F 

< ∞ , (49) 

hich yields 

lim 

 →∞ 

‖ 

M k +1 − U k +1 ‖ F = 0 . (50) 

n the other hand, Lagrange parameter Y k 
1 

can be rewritten as the

ollowing form: 

 

k 
1 = Y k −1 

1 + μk −1 

(
F − U k V 

T 
k − S k 

)
⇒ F − S k = U k V 

T 
k + 

Y k 1 − Y k −1 
1 

μk −1 

. 

(51) 
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And the minimization of sub-problem (38) can be converted to

seek the corresponding first order optimal condition regarding to

U , that is, (
F − U k +1 V 

T 
k 

− S k + 

Y k 1 

μk 

)
V k + 

(
M k − U k +1 + 

Y k 2 

μk 

)
= 0 . (52)

Therefore, Eq. (52) can be rewritten as the following form: 

( U k − U k +1 ) 
(
V 

T 
k 

V k + I 
)

+ Z = 0 . (53)

where Z = ( 
Y k −1 

1 
−Y k 

1 
μk −1 

− Y k 
1 

μk 
) V k + 

Y k −1 
2 

−Y k 
2 

μk −1 
− Y k 

2 
μk 

, the above Eq. (54) can

be simplified as 

 k − U k +1 = Z 
(
V 

T 
k V k + I 

)−1 
. (54)

Accordingly, one has the following inequalities 

∞ ∑ 

k =0 

‖ 

U k +1 − U k ‖ F � 

∞ ∑ 

k =0 

( ∥∥Y k −1 
1 

− Y k 1 

∥∥
F 
‖ 

V k ‖ F 

μk −1 

+ 

∥∥Y k 1 

∥∥
F 
‖ 

V k ‖ F 

μk 

+ 

∥∥Y k −1 
2 

− Y k 2 

∥∥
F 

μk −1 

+ 

∥∥Y k 2 

∥∥
F 

μk 

) ∥∥∥(
V 

T 
k V k + I 

)−1 
∥∥∥

F 

≤
∞ ∑ 

k =0 

( ∥∥Y k −1 
1 

− Y k 1 

∥∥
F 
‖ 

V k ‖ F 

μk −1 

+ 

∥∥Y k 1 

∥∥
F 
‖ 

V k ‖ F 

μk −1 

+ 

∥∥Y k −1 
2 

− Y k 2 

∥∥
F 

μk −1 

+ 

∥∥Y k 2 

∥∥
F 

μk −1 

) ∥∥∥(
V 

T 
k V k + I 

)−1 
∥∥∥

F 
. (55)

Set θ = max { ( ‖ Y k −1 
1 

− Y k 
1 
‖ 

F 
‖ V k ‖ F + Z 1 ) Z 2 } ∞ 

k =1 
, where Z 1 = ‖ Y k 

1 
‖ 

F 

‖ V k ‖ F + ‖ Y k −1 
2 

− Y k 
2 
‖ 

F 
‖ Y k 

2 
‖ 

F 
and Z 2 � ‖ ( V T 

k 
V k + I ) 

−1 ‖ F , we get 

∞ ∑ 

k =0 

‖ 

U k − U k +1 ‖ F � 

∞ ∑ 

k =0 

1 

μk 

θ � 

∞ ∑ 

k =0 

μk +1 

μ2 
k 

θ < ∞ , (56)

which shows that { U k } is a Cauchy sequence. 

Similar proofs lead to that { V k }, { S k }, { M k }, { N k }, { H k } are all

Cauchy sequences. �

In fact, the proof of the Theorem 5 shows that under

mild conditions, any limit point of the sequences generated by

Algorithm 4 is a critical point of (37) due to the point whose sub-

differential contains 0 only. 

6. Experiments 

6.1. Datasets,salient object detection algorithms and parameter 

settings 

We use six standard benchmark datasets to represent vari-

ous typical scenarios, i.e. ECSSD [16] , MSRA10K [19] , THUR15K [53] ,

DUT-OMRON [25] , iCoSeg [54] and PASCAL-S [55] . ECSSD dataset

contains total 10 0 0 images with various structurally complex ob-

jects, and MSRA10K dataset includes 10,0 0 0 images with single

object. THUR15K and DUT-OMRON datasets involve a large scale

single object with relative complex background, while iCoSeg and

PASCAL-S datasets are related to multiple objects and different

complex backgrounds. 

The proposed method is compared with twelve recent state-

of-the-art solutions, including four LR based methods which are

DIMD [34] , SMD [33] , ULR [29] and SLR [32] , respectively and eight

recently developed prominent methods which are GS [15] , HS [16] ,

PCA [17] , TD [11] , DRFI [23] , RBD [26] , MR [25] and MC [56] , re-

spectively. It should be noted that these eight methods are not re-

lated to bilinear factorization we discussed. The main reason why

we compare with these methods is to further demonstrate the

generality of new model and the effectiveness of new algorithm.
ere we use initials to represent each individual method for the

urpose of easy description throughout this section. 

We consider a four-layer depth for group sparsity and

et the bandwidth δ2 = 0 . 05 , and the parameter d = 25 , α =
 . 3 , 0 . 04 , 0 . 06 , β = 0 . 925 , 0 . 6 , 0 . 1125 for q = 1 , 2 3 , 

1 
2 respectively. To

et a fair comparison with other competing methods, we fix the

arameters of our model for all conducted experiments. 

.2. Evaluation metrics 

For the evaluation of experimental performances, we introduce

everal common metrics including the F −measure curve, the area

nder the ROC curve (AUC) [57] , overlapping ratio (OR), and the

ean absolute error (MAE), respectively. 

It is well-known that precision is defined as the ratio of salient

ixels correctly assigned, while recall is the percentage of correctly

etected salient pixels to those all true salient pixels. Simultane-

usly, the F −measure curve is based on the weighted harmonic

ean of precision (P) and recall (R), which is given by 

 β = 

(
1 + β2 

) P · R 

β2 P + R 

, (57)

here β2 is set to be 0.3 similar to [9] . Whenever either the PR

urve or the F – measure curve is applicable, they rely on the vari-

tion of the saliency threshold that determines the attribution of

alient objects. In addition, the receiver operating characteristic

ROC) curve is generated from true positive rates as well as false

ositive rates obtained by calculating the PR curve. The overlap-

ing ratio (OR) is defined as the ratio between the segmented ob-

ect mask S ′ and the ground truth, i.e., 

R = 

| S ′ ∩ G | 
| S ′ ∪ G | , (58)

he mean absolute error (MAE) [10] characterizes the mean abso-

ute difference between the saliency map S and the ground true G

y the following: 

AE = mean ( | S − G | ) . (59)

For the weighted F-measure(WF) metric, we adopt definition

ntroduced in [58] . 

.3. Comparision with the state-of-the-arts approaches 

We first compare our models with ULR [29] , SLR [32] , DIMD

34] and SMD [33] . Tables 2 and 3 show evaluation metric results

ased on six datasets. Note that the proposed models always can

chieve the best performances on ECSSD, PASCAL-S and iCoSeg. For

HUR15K, the proposed models obtain the best results in terms of

F, OR, AUC, and the second best in MAE. On MSRA10K, the pro-

osed models give the best in OR and AUC, and the second best in

F and MAE. Finally, for DUT-OMRON, the proposed models indi-

ate the second best results in terms of WF, OR and AUC. Thus,

hese metrics demonstrate that the proposed models (SQNMD)

ave potentiality in performing significantly better than the other

R-based methods. 

Tables 4 and 5 report the comparison of new model and the

ther non-low-rank methods (i.e. PCA [17] , GS [15] , HS [16] , MC

56] , MR [25] , DSR [24] , RBD [26] , DRFI [23] ) in evaluation met-

ics. Obviously, the proposed model gives the best performance

n ECSSD dataset. For PASCAL-S, iCoSeg and MSRA10K, the new

ethod provides the same results, which are the best in terms

f WF, OR and MAE, the second best in AUC. On THUR15K, the

roposed model presents the best in WF, the second best in OR

nd the third best in AUC. For DUT-OMRON, the proposed method

nly obtains the second best in OR and the third best in WF. But

ots of good evaluation indexes confirm that the proposed model
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Table 2 

Comparison with the Other Low-rank methods and performance boost with different baselines on Datasets. 

Dataset ECSSD THUR15K PASCAL-S 

Metric WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ 
ULR [29] 0.351 0.347 0.755 0.312 0.259 0.325 0.801 0.249 0.351 0.295 0.718 0.320 

SLR [32] 0.442 0.474 0.764 0.252 0.387 0.433 0.823 0.167 0.398 0.390 0.711 0.275 

DIMD [34] 0.534 0.548 0.819 0.181 0.430 0.458 0.829 0.166 0.500 0.451 0.738 0.245 

SMD [33] 0.517 0.523 0.775 0.227 0.434 0.466 0.823 0.159 0.486 0.446 0.730 0.246 

Ours q = 1 0.542 0.563 0.813 0.174 0.436 0.466 0.824 0.160 0.494 0.447 0.733 0.245 

Ours q = 2 / 3 0.542 0.562 0.813 0.173 0.435 0.463 0.825 0.163 0.500 0.449 0.734 0.244 

Ours q = 1 / 2 0.540 0.554 0.820 0.179 0.432 0.459 0.831 0.167 0.503 0.453 0.740 0.245 

The ↑ indicates the larger value achieved, the better performance is, while ↓ indicates the smaller, the better. 

Table 3 

Comparison with the Other Low-rank methods and performance boost with different baselines on Datasets. 

Dataset iCoSeg MSRA10K DUT-OMRON 

Metric WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ 
ULR [29] 0.379 0.443 0.814 0.222 0.425 0.524 0.831 0.141 0.254 0.318 0.805 0.260 

SLR [32] 0.473 0.505 0.805 0.179 0.601 0.691 0.840 0.224 0.392 0.429 0.822 0.161 

DIMD [34] 0.603 0.594 0.827 0.141 0.761 0.733 0.836 0.087 0.398 0.415 0.807 0.183 

SMD [33] 0.611 0.598 0.822 0.138 0.704 0.741 0.847 0.104 0.424 0.441 0.809 0.166 

Ours q = 1 0.613 0.597 0.824 0.138 0.701 0.741 0.848 0.105 0.422 0.440 0.812 0.170 

Ours q = 2 / 3 0.626 0.608 0.829 0.133 0.705 0.744 0.848 0.103 0.423 0.440 0.812 0.171 

Ours q = 1 / 2 0.612 0.600 0.833 0.139 0.695 0.734 0.852 0.109 0.405 0.424 0.815 0.183 

The ↑ indicates the larger value achieved, the better performance is, while ↓ indicates the smaller, the better. 

Table 4 

Comparison with Non-Low-rank method and performance boost with different baselines on Datasets. 

Dataset ECSSD THUR15K PASCAL-S 

Metric WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ 
PCA [17] 0.358 0.371 0.759 0.291 0.298 0.362 0.822 0.198 0.353 0.352 0.719 0.296 

GS [15] 0.436 0.435 0.758 0.255 0.370 0.387 0.814 0.176 0.456 0.418 0.734 0.262 

HS [16] 0.449 0.432 0.766 0.269 0.365 0.402 0.801 0.218 0.451 0.349 0.733 0.286 

MC [56] 0.441 0.495 0.779 0.251 0.349 0.444 0.834 0.184 0.423 0.412 0.740 0.272 

MR [25] 0.480 0.491 0.761 0.235 0.378 0.426 0.796 0.178 0.446 0.431 0.722 0.265 

DSR [24] 0.489 0.480 0.754 0.227 0.423 0.426 0.803 0.142 0.439 0.409 0.712 0.258 

RBD [26] 0.490 0.494 0.752 0.225 0.421 0.431 0.804 0.150 0.474 0.442 0.725 0.247 

DRFI [23] 0.517 0.527 0.780 0.217 0.432 0.481 0.856 0.147 0.449 0.432 0.749 0.258 

Ours 0.542 0.562 0.813 0.173 0.435 0.463 0.825 0.163 0.500 0.449 0.734 0.244 

The ↑ indicates the larger value achieved, the better performance is, while ↓ indicates the smaller, the better. The best three results 

are highlighted with italic , bold and bold italic fonts, respectively, Ours q = 2 / 3 . 

Table 5 

Comparison with Non-Low-rank method and performance boost with different baselines on Datasets. 

Dataset iCoSeg MSRA10K DUT-OMRON 

Metric WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ WF ↑ OR ↑ AUC ↑ MAE ↓ 
PCA [17] 0.407 0.427 0.798 0.201 0.473 0.576 0.839 0.185 0.287 0.341 0.827 0.207 

GS [15] 0.519 0.520 0.819 0.167 0.606 0.664 0.839 0.139 0.363 0.372 0.814 0.173 

HS [16] 0.536 0.537 0.812 0.176 0.604 0.656 0.833 0.149 0.350 0.397 0.801 0.227 

MC [56] 0.461 0.543 0.807 0.179 0.576 0.694 0.843 0.145 0.347 0.425 0.820 0.186 

MR [25] 0.554 0.573 0.795 0.162 0.642 0.693 0.824 0.125 0.381 0.420 0.779 0.187 

DSR [24] 0.548 0.514 0.801 0.153 0.656 0.654 0.825 0.121 0.419 0.408 0.803 0.139 

RBD [26] 0.599 0.588 0.827 0.138 0.685 0.716 0.834 0.108 0.427 0.432 0.814 0.144 

DRFI [23] 0.592 0.582 0.839 0.139 0.666 0.723 0.857 0.114 0.424 0.444 0.839 0.138 

Ours 0.626 0.608 0.829 0.133 0.705 0.744 0.848 0.103 0.423 0.440 0.812 0.171 

The ↑ indicates the larger value achieved, the better performance is, while ↓ indicates the smaller, the better. The best three results 

are highlighted with italic , bold and bold italic fonts, respectively, Ours q = 2 / 3 . 
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SQNMD) is even more competitive than most of the non-low-rank

ethods. 

Fig. 3 shows the F-measure curve comparison of the proposed

odel and ten competitive methods on six datasets. Note that

he proposed model has significantly better performance than the

ther methods for ECSSD, iCoSeg, MSRA10k and PASCAL-S. For
HUR15K, the new method, SMD [33] and DRFI [23] yield equal

hares whose results are better than ones of the other methods.

or DUT-OMRON, it is clear that our method can outperform the

ther methods except DRFI [23] . In fact, DRFI is a semi-supervised

ethod with deep learning. Thus, inspired by this, we will con-

ider combination of bilinear factorization norm and learning task.
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Fig. 3. Quantitative comparison on six datasets in terms of F-measure curve. 

Fig. 4. Visual comparison of saliency maps, in which the results from our method appear to be very close to the ground truth (IMG and GT are short for image and ground 

truth). 

 

 

 

 

c  

m  

a  

n

Finally, Fig. 4 gives some quantitative visual comparisons based

on the twelve state-of-the-art models. It is easy to find that the

maps from our model not only possess the consistent salient val-

ues of pixels within the same salient objects, but also assign suc-
essfully all the salient objects with consistent values. However,

ap images from the other methods are more or less incomplete

nd inconsistent. Thus, these results illustrate clearly the effective-

ess of our proposed algorithms. 
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. Conclusion and future work 

In this paper, a Schatten-q quasi-norm induced matrix decom-

osition model for conducting the salient object detection is pre-

ented. In the proposed method, the non-convex Schatten-1/2 or

chatten-2/3 norm is applied to formulate the background, that

rovides cleaner solution. A weighted group sparsity induced norm

s imposed on foreground to share consistent within the same im-

ge patches. Meanwhile, an alternative non-convex formulation is

roposed for nuclear norm (i.e. q = 1). Efficient numerical algo-

ithms with closed-form solutions are established to solve the pro-

osed model under the optimization framework, whose conver-

ence and complexity are also discussed. Experiments on the six

ompetitive datasets show that the proposed model (SQNMD) can

utperform most of the state-of-the-art models. 

An interesting direction of future work is how to extract high-

evel semantic information of salient object using tensor analysis.

n addition, the adaptive selection of trade-off parameters is wor-

hy of a further study for the purpose of more efficient implemen-

ation. 
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