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ABSTRACT
Low rank and sparsity decomposition have shown potential for
salient object detection. In existing methods, nuclear norm is used
to approximate rank minimization and 1l norm is selected as
sparse regularization. Two deficiencies, however, still exist for
nuclear norm and 1l norm. First, both always over-penalize large
singular values or large entries of vectors and result in a biased
solution. Second, the existing algorithms very slow for large-scale
applications. To address these problems, we propose a novel
weighted matrix decomposition model with two regularizations:
(1) Schatten-2/3 quasi-norm that captures the lower rank of
background by matrix factorization technique, and (2) The 2/3l -
norm that is capable of producing consistent salient object within
the same image patches by effectively absorbing both image ge-
ometrical structure and feature similarity. In addition, we equip
the weighting matrix with a high-level background prior map
based on the color, location and boundary connectivity, which can
indicate the probability that each image region belongs to the
background. The proposed model can be solved by perform SVDs
on two much smaller factor matrices. Experiments on three
broadly used datasets by detailed comparisons show that our
proposed approach has potential in salient object detection.

CCS Concepts
• Computing methodologies ➝ Artificial intelligence ➝
Computer vision ➝ Computer vision problems ➝ Object
detection;

Keywords
Salient object detection; Non-convex weighted matrix
decomposition; Low rank and sparsity decomposition;

It is well known that images are one of the main carriers for
information transmission. The computer shows ability in detecting
and segmenting out important regions of the input image that
conforms to the human visual mechanism. This task is called the
saliency detection in computer vision, which has been a popular
research topic in the past ten years.
In practical approaches, it is worth noting that the deep learning
based methods has been a booming research topic for salient
object detection in recent years. For example, Liu et al. gave a
novel pixel-wise contextual attention network [9]. Hou and Cheng
et al. proposed deeply supervised network with short connections
[6]. Zhang found progressive attention guided recurrent network
with multi-level contextual information [20, 5]. But in this paper,
we are interested in another researching branch for saliency
detection, i.e. the traditional methods, which aim to build different
regularization metrics for salient object and background of an
image.
In literature, the most pioneering work was the robust PCA based
on low rank matrix recovery (LRMR) [3, 2, 4, 19], in which low
rank always is used to formulate the background of an image that
lies in a low-dimensional subspace, while sparsity corresponds to
the salient object. Since this problem is NP-hard in most cases,
many relaxation models and algorithms have been derived. For
instance, Shen et al. proposed a unified approach based on low
rank matrix recovery (ULR) with low-level feature obtained by
high-level guidance [16]. Zou et al. [22] presented an unsupervis-
ed model that incorporated bottom-up segmentation (SLR). Peng
et al. gave a structured matrix decomposition approach with a
tree-structured sparsity regularization (SMD) [13]. Tang et al.
proposed a weighted low rank matrix recovery (WLRR) [18].
In these models, the nuclear norm is used to approximate low rank
for background information. However, the nuclear norm may lead
to the over-penalization for large singular values, which makes
solution deviate from the original background. For salient object,

1l norm is the most common choice for sparsity. But the 1l norms
still over-penalizes large entries of vectors and results in a biased
solution [15]. In addition, it is a common assumption for these
models that the background should has high contrast with salient
object. However, in practice, background has the similar
appearance with salient object.
To address these problems, we propose the non-convex surrogates
for rank minimization and 0l norm respectively which can give a
closer approximation. In this paper, we consider only Schatten-2/3
norm and 2/3l -norm for background and foreground object
respectively, since an analytic solution can be derived by using
the roots of quartic polynomial in minimization. And a number of
experimental results show that Schatten-1/2 norm and 1/ 2l -norm
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can give similar results to that of Schatten-2/3 norm and 1/ 2l -norm,
thus we ignore the 1/2 case due to layout limitation.
In order to completely achieve the separation of salient objects
and the background, we propose to adopt the weighting matrix
with a high-level background prior map based on the color,
location and boundary connectivity, which can indicate the
probability that each image area belongs to the background. A
flowchart of the proposed model can be illustrated in Figure 1.
Particularly, the new model can be seen the extension of WLRR
[18] based on non-convex surrogates.

1. PROPOSEDMODEL
1.1 Problem Formulation
A given nature image I is over-segmented into N nonoverlap-
ping patches 1 2{P ,P , ,P }n P . For each patch iP i-th D-
dimensional low-level feature vector can be denoted as d

if R .
Consequently, a feature matrix of D is formed, which can be
written as 1 2[ , , , ] .d n

nD f f f R   The problem of salient object
detection is to find an efficient model to decompose the feature
matrix D into a low-rank part L (background) and a sparse part
S (salient object), respectively [13, 18].
To overcome the issues for low-rank and sparsity as introduced in
Section 1, we propose a novel weighted bilinear factor matrix
norms model for saliency detection as follows:

2/3 2/3

2/3 2/3

,
min ,  s.t .  W D W + .

s lL S
L S L S   (1)

where  3/22/3
2/3

= kS
L  (  k L denotes the k-th largest singular

value of L ) is Schatten-2/3 quasi-norm,  3/22/3
2/3

= ijl
S s is

2/3l -norm, W is the weighting matrix and the symbol 
repre-sents outer product of matrix.

1.2 Schatten-2/3 Quasi-Norm Term For Back-
ground
In this section, we first give the Frobenius/nuclear hybrid norm
penalty, which has the following equivalence relation with
Schatten-2/3 quasi-norm as shown in Definition 1.
Definition 1. [15] For any matrix m nX R  of rank at most

,r d we decompose it into two factor matrices m dU R  and
n dV R  such that .TX UV Then the Frobenius/nuclear hybrid

norm penalty of X is defined as
2 3/ 2

*, ,

1 2min ( ) .
3 3TF N FU V X UV

X U V
 

 

where F
 is Frobenius norm of factorization matrix U and

*


is nuclear norm of factorization matrix V , which avoid the SVD
computation on the full matrix X . In fact, the Frobenius/nuclear
hybrid norm is a Schatten-2/3 quasi norm, i.e.

2/3
.S F NX X




And it is noticed that this is different from the weighted nuclear
norm, since the solving for the latter is still based on the SVD
computation on the full matrix X in spite of the different weight.
Compared with nuclear norm (which is in essence the ql - norm-
on singular values), the Schatten-2/3 norm is better in capturing
the rank function structure. And since norm is factorized, it is only
required to perform SVDs on two much smaller factor matrices
( m dU R  , n dV R  ) for solving minimization as contrary to the
larger ones m nX R  used in the other low-rank based methods.
This is particularly useful for many big datasets.

1.3 Weighting Matrix Formulation For Back-
ground

The exact depiction of the background is related to color, location
and boundary information. It is the common assumption that
regions locating near image center are salient in saliency detection.
But objects away from the center have a great possibility of being
background [8]. On the other hand, the warm color is more
conspicuous from the perspective of human visual perception.
Thus, color prior is a good background guidance [16]. In addition,
it is intuitive that the boundary of image has a great possibility of
being part of background [21] and salient objects are almost
impossible to relate to boundary. Therefore, inspired by the works
in [8, 18, 16, 21], we formulate the weighting matrix integrating
color, location and boundary into background.
Location: For each super-pixel iP , we define the Euclidean dista-
nce function  ,id p c , where ip denotes the average position, c
represents the distance from image center. Then we generate a pri-
or based on the distance via a Gaussian distribution. Thus, Salien-
cy location prior of Pi can be represented as

    2
1exp , /iLP i d p c   (2)

Color: In this section, we continue to adopt the corresponding
color prior for each super-pixel iP as discussed in [16, 18], which
denoted as  CP i .
Boundary: According to the length of intersection between a
super-pixel iP and image boundary super-pixels B , we can
quantify the possibility of iP connected to the image boundary.
Thus, the boundary connectivity prior of objects is defined as

   
 

exp
P i B

BP i
N i

 
   

 
(3)

where  denotes the length of intersection, B is the set of
boundary super-pixels, and  N i represents the super-pixel
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Figure 1. The flowchart illustrations of the proposed
model with a weighting background prior, where low
rank is characterized by the non-convex Schatten-2/3
quasi-norm and sparsity is approximated by 2/3l -norm.
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number of  P i .
Here we fuse the above three priors as a high-level salient prior
map as  obj i :

       .obj i LP i CP i BP i   (4)
Then, we recruit  obj i into the Gauss distribution as an appropri-
ate weight mode, which is

    2 2
2exp / .W i obj i   (5)

When the image region belongs to the foreground probability
sufficiently small, it will approximate the function property of 1
through (5), which indicates the probability of belonging to the
background. Conversely, when the image area belongs to the
foreground, it will have a smaller value in the background prior.
Finally, we transfer  W i to a weighting matrix W as shown in
[18]. Obviously, the new weighting matrix is different from one in
[18] because of the different location, color, boundary definition
and differences in the method of extracting weight matrix.

1.4 Non-convex 2/3l Norms For Salient Region
It is well known that a hyper-Laplacian distribution   k xp x e



 ,
 0.5 0.8  can be used to characterize the heavy-tailed
distribution of sparse outlines and singular values of all channels
in low-level vision [15]. Stimulated by this, we propose to employ
the non-convex 2/3l -norm for representing the sparsity of salient
object. This norm can not only fully take advantage of the spatial
contiguity and feature similarity among image patches, but also
find an analytic solution by seeking the roots of a quartic
polynomial. Therefore, this regularization has more accurate and
consistent representation for salient object.

2. SOLVER OF PROPOSED SALIENCY
DETECTION MODEL AND COMPLEXITY
ANALYSIS
Motivated by the alternating direction method of multipliers
(ADMM) [17], we provide the optimization algorithm for the new
model (1). Firstly, replacing 2/3S by the results of Definition 1,
the model (1) can be rewritten as:

2 2/3

* 2/3, , ,

1min ( 2 )
3

s.t .   ,   .

F lU V L S

T

U V S

L UV W D W L S

 

   
(6)

Then, we need to introduce the auxiliary variable V


, the problem
(6) translates into the following form:

2 2/3

2/3*, , , ,

1lim ( 2 )
3

s.t .   ,   ,    .

F lU V L S V

T

U V S

L UV W D W L S V V

 
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



 

(7)

The augmented Lagrangian function for (7) can be given as follo-
ws:

   
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 




 

 

L

(8)

where 1Y , 2Y , 3Y are the introduced Lagrange multipliers,  ,   
is the inner product of the matrix and  is penalty coefficient.

2.1 Updating 1kU  and 1kV 

To update 1kU  and 1kV  , we consider the following optimization
problems:

22 1
2

1min ,
3 2

k Tk
k k kF FU

U Y UV L     (9)

2 21 1
1 2 1min .k k T

k k k k k FFV
Y V V Y U V L  

    


(10)

Since (9) and (10) are least squares problems, the optimal solutei-
ons can be represented as:

1 1
1 2

2( Y ) ( ) ,
3

k T
k k k k k k k kU L V I V V   
    (11)

    11 1
1 1 2 1 1 1

Tk k T
k k k k k k k kV V Y L Y U I U U 

 
       

 (12)

2.2 Updating 1kV 



To solve 1kV 


, we fix the other variables and solve the following

optimization problem:

  2
1

1 1*

2 1min
3 2 k

k
kV F

k

V V V Y





    
 


 

(13)

The minimization (13) is a regularized least squares problem
associated with the nuclear norm, of which closed-form solution
can be represented by the singular value thresholding (SVT) [2]
(refers Theorem 1).
Theorem 1 (SVT [2]). Let the singular value decomposition of C
can be written as TC U V  , then the optimal solution for B is
given by

  ,TB C U V E ED S (14)

where ED is the singular value thresholding operator and ED
which is defined as

   
.

0       
x x

otherwise
 

 


E

E E
S (15)

2.3 Updating 1kL 

Fixing other variable, 1kL  can be updated by the following
problem:

2 21 1
2 1 +1 3min .k T k

k k k k kF FL
Y U V L Y W L S W D  

       (16)

Thus, the solution of problem (16) is given as
1 1

2 1 1 3

                        .

k T k
k k k k

k

L L W W Y U V Y W
W D W W S
  

    

 

  
  

(17)



2.4 Updating 1kS 

Fixing other variables, updating of 1kS  can be summarized as the
following sub-problem.

2/3

2 2/31arg min
2 F lS

k

S G S


  (18)

where 1
1 3

k
k kG W D W L Y 
    .Therefore, the problem (18)

can be solved by Theorem 2.
Theorem 2. [15] For any matrix m nS R  , solution of the follow-
ing minimization

2/3

2 2/3min
F lS

S C S  (19)

is  *S CT .
where the 2/3-thresholding operator  CT is
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Finally, the Lagrange multipliers  , 1,2,3iY i and penalty
parameter  can be represented as follows:

 k+1
1 1 1 1= + ,k

k k kY Y V V  


(21)

 k+1
2 2 1 1 1= + ,k T

k k k kY Y U V L    (22)

 k+1
3 3 1 1= + ,k

k k kY Y S W L W D     (23)

1 maxmin( , )k k    . (24)

2.5 Complexity analysis
The per-iteration cost of existing low-rank based methods, such as
WLRR [18], SMD [13], ULR [16] and SLR [22], are dominated
by the computation of the thin SVD for an m n matrix with

m n , and is 2( )O mn . The cost of computing the inverse for
d d matrix is 3( )O d , and the expense of multiplication for
m d matrix and d n matrix is ( )O mdn . But for the proposed
model (1), the dominant cost of each iteration for updating

m dU R  , n dV R  and n dV R 


using Eq.11, Eq.12 and Eq.14
is 3 2 2(6 2 + )O mnd d md nd  . Therefore, we deduce that

3 2 2 2(6 2 + ) ( )O mnd d md nd O mn   for ,m n d .

3. EXPERIMENT
We use three standard benchmark datasets such as iCoSeg[7],
PASCAL-S[11] and SED2[1] to represent different scenarios. The
iCoSeg dataset includes images with multiple objects, various size
and location, while the PASCAL-S dataset involves total 850
images with various objects and complex backgrounds. The SED2
dataset is used to evaluate performance on images containing two
salient objects.
In order to assess experimental results, we adopt seven common
evaluation metrics used in salient object detection. For example,
Receiver Operating Characteristic (ROC) [13], Precision and
Recall (PR) [13], F-measure curve[13, 10] Weighted F-measure
(WF)[12], Overlap Ratio (OR)[10], Area Under Curve (AUC) and
Mean Absolute Error (MAE)[14].
Table 1 reports the comparison of new model and the other low
rank approaches, such as SLR[22], WLRR[18], SMD[13] and
ULR [16]. On iCoSeg[7], our model gives the best metric results
in terms of WF, OR and MAE and the second best in AUC. On
PASCAL-S[11], OR, MAE and AUC from our model are
obviously the best, and the WF is the second best. For SED2[1],
the new model also represents more potential results in WF, OR
and MAE.

Figure 2. Performance of the proposed method compared with 4 state-of-the-art methods on the three datasets: iCoSeg
[7], PASCAL-S[11] and SED2[1].



Table 1. Comparison results with low-rank models and perfo-
rmance boost with different baselines on Datasets. The best
two results are highlighted with red, blue fonts, respectively.
iCoSeg
[7]

evaluate our
model

SLR
[22]

WLRR
[18]

SMD
[13]

ULR
[16]

WF↑ 0.618 0.473 0.602 0.611 0.379

OR↑ 0.608 0.505 0.578 0.598 0.443

AUC↑ 0.842 0.805 0.843 0.822 0.814

MAE↓ 0.137 0.179 0.147 0.137 0.222

PASCAL
-S[11]

WF↑ 0.514 0.398 0.535 0.485 0.320

OR↑ 0.458 0.390 0.434 0.444 0.351

AUC↑ 0.747 0.711 0.746 0.730 0.718

MAE↓ 0.245 0.275 0.254 0.246 0.295

SED2[1] WF↑ 0.642 0.565 0.632 0.636 0.385

OR↑ 0.597 0.560 0.575 0.588 0.428

AUC↑ 0.793 0.804 0.800 0.776 0.799

MAE↓ 0.146 0.169 0.157 0.142 0.238

Figure 2 shows the PR and ROC curves comparisons respectively
on three datasets. Note that the proposed model has significantly
better performance than the other low-rank methods. And Figure 3
give some quantitative visual results based on the four state-of-
the-art models. It is easy to find that our model is able to detect
complete and consistent salient objects from complex background.

4. CONCLUSION
In this paper, a new weighted model by using Schatten-2/3 norm
and 2/3l norm for conducting the salient object detection is
presented, aiming at the improvement of both accuracy and
efficiency of the problem. Compared with low-rank based
methods, the non-convex Schatten-2/3 norm can capture the low-
rank structure of the background details. The non-convex 2/3l
norm has ability in characterizing the sparsity of salient object,
and can share the consistency within the same image patches. The
corresponding optimization process is only required to handle two
small size matrices by an appropriate matrix factorization, which
simplifies the approach. Experiments on the iCoSeg PASCAL-S
and SED2 datasets show that the proposed model has potential
in saliency detection.
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Figure 3. Visual comparison of saliency maps of some state-of-the-art methods on different dataset.
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