
Gravitational-wave Astrophysics
Summer term 2024

Due July 3, 2024 at 10am via email to TA, or on paper during lecture

PROBLEM SET 6

6.1. Neutron star structure [8 pts.]

The TOV equations describe a spherically-symmetric ideal fluid in general-relativistic hydrostatic equilibrium. In
this exercise we solve the TOV equations to compute the interior structure of neutron stars. We then try to constrain
the equation of state of neutron star matter using the GW170817 binary neutron-star observation by LIGO and Virgo.

We can formulate the TOV equations as two coupled ODEs for the pressure p(r) and interior mass m(r):

dp

dr
= −

(ρ+ p)
(
m+ 4πr3p

)
r (r − 2m)

, (1)

dm

dr
= 4πr2ρ. (2)

To solve the TOV equations we have to specify an equation of state (EOS) that relates pressure p and density ρ.
Furthermore, to integrate Eqs. (1) and (2) starting at r = 0, we need initial conditions. We set m(r = 0) = 0 and
choose a central density ρ(r = 0) = ρcentral.

(a) First, we choose a simple polytropic EOS that approximates the more sophisticated models for neutron stars

fairly well around nuclear density ρnuclear ≈ 2.3× 1017 kg
m3 :

p(ρ0) = 3× 1032
(

ρ0
ρnuclear

)3
N

m2
(3)

Note that the EOS is given in terms of rest-mass-density ρ0. However, the TOV Equations (1) and (2) require
the total energy density ρ. The two are related by

ρ = Cρ0 +
p

Γ− 1
(4)

where Γ = 3 is the exponent in Eq. (3) and here C = 1. The difference between ρ and ρ0 is the internal energy
density, in essence, the energy added to the material through the compression up to the current pressure p (and
indeed, Eq. (4) can be derived from the first law of thermodynamics).

Run the Python notebook neutron-star-structure.ipynb, which is supplied with the problemset, to integrate
the TOV equations for this EOS. For a given central density ρcentral we obtain a profile p(r), m(r) and ρ(r) for
the neutron star (Fig. 1 in the notebook). Briefly describe how we find the neutron-star radius R and its mass
M , and how they relate to p(r) and m(r).

(b) Next, we compute neutron star profiles for a range of central densities. Discuss the results presented in Fig. 2
and 3 in the notebook. Hint: configurations where dM

dρcentral
< 0 are unstable, i.e. the neutron star would collapse

to a black hole.
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(c) The extreme matter conditions in the cores of neutron stars are laboratories for nuclear physics. Theoretical
models of nuclear interactions make predictions for the EOS of the neutron star matter that we can test with
(multimessenger) astrophysical observations. We can approximate many of these EOS models as a series of
polytropes

pi(ρ0) = Kiρ
Γi
0 (5)

where each is valid in a particular density interval (see diagram below). Following [Read et al (2018)]1 we begin
with the adiabatic index Γ0 = 1.33 at sub-nuclear densities that occur in the neutron star crust (taken from
[Douchin, Haensel (2001)]2). We then parametrize three layers of the neutron star core that are divided at
densities ρ0,1 = 1014.7 g

cm3 and ρ0,2 = 1015 g
cm3 . These two densities are indicated as the grey vertical lines in the

figure below. Furthermore, as indicated in the figure, let p1 be the pressure at density ρ0,1 and let the adiabatic
indices of the three parts be Γ1, Γ2 and Γ3.

Derive the constants of proportionality K0, K1, K2 and K3 in terms of these parameters from continuity of p.
Derive also the coefficients C1, C2 and C3 from continuity of the total energy density ρ, and from C0 = 1.

(d) The polytropes dictionary in the Python notebook lists a few polytropic approximations to EOS models by
specifying their p1 and Γi parameters. They are plotted in Fig. 4 in the notebook, along with the simple
polytrope Eq. (3). Compute the mass-radius relations for these EOS models (Fig. 5 and 6 in the notebook).

Given that neutron stars with ∼ 2M⊙ were already observed (e.g. the millisecond pulsars PSR J0348+0432
and PSR J1614-2230 ), what can you conclude for the realism of the EOS model GS1?

(e) Add a few more equations of state from Table III in [Read et al (2018)] to the polytropes dictionary in the
notebook and compute their mass-radius relations (Fig. 5 and 6 in the notebook). Fig. 7 also includes results
inferred from the first binary neutron-star merger observation GW170817 by LIGO and Virgo (taken from Fig.
3 (left panel) of [LVC (2018)]3). Which EOS models that you tried are compatible with the observations and
which are not?

Bonus: Consult [Read et al (2018)] and its references to find out details about your favourite EOS model and
summarize.

1 Read et al (2018), Constraints on a phenomenologically parameterized neutron-star equation of state, https://arxiv.org/abs/0812.2163
2 Douchin and Haensel (2001), A unified equation of state of dense matter and neutron star structure, https://arxiv.org/abs/astro-ph/
0111092

3 LIGO and Virgo collaborations (2018), GW170817: Measurements of Neutron Star Radii and Equation of State, https://dcc.ligo.
org/LIGO-P1800115/public

https://arxiv.org/abs/0812.2163
https://arxiv.org/abs/astro-ph/0111092
https://arxiv.org/abs/astro-ph/0111092
https://dcc.ligo.org/LIGO-P1800115/public
https://dcc.ligo.org/LIGO-P1800115/public
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6.2. Gravitational waves from pulsars [8 pts.]

Neutron stars possess a rigid crust that is 10 billion times stronger than steel and can support a ”mountain” of
up to a few cm height. If a neutron star with such a non-axisymmetric perturbation rotates, it will emit gravitational
radiation. The GW emission will in turn slow down the rotation of the neutron star. This exercise explores this
process.

We recall some mechanics of rotating bodies: The rotational dynamics of a rigid body are determined by its inertia
tensor that, in Cartesian coordinates, is

Jij =

∫
d3xρ(x)

(
r2δij − xixj

)
. (6)

Jij has three principal axes which co-rotate with the body. In the (rotating) coordinate system aligned with the
principal axes, the inertia tensor is diagonal

J̄ij = diag(J1, J2, J3). (7)

J1, J2 and J3 are the body’s principal moments of inertia.
We will consider a neutron star rotating with angular frequency Ω around its principal axis e3. We further assume

that the neutron star has a deformation such that J1 ̸= J2 (for example, a ”mountain” on the equator).

(a) Express the inertia tensor (7) in inertial (nonrotating) coordinates such that the z-axis is aligned with the
principal axis of rotation e3. Hint: construct the rotation matrix Rz(Ωt) of a rotation around the z-axis by the
angle Ωt. Then compute

J = Rz(Ωt)
T · diag(J1, J2, J3) ·Rz(Ωt). (8)

The resulting J = Jij is time-dependent and would agree with the result of Eq. (6), had we evaluated the
integral for the actual rotating mass-distribution of the neutron star.

(b) Show that the trace-free part of the inertia tensor Jij is equal to the negative of the trace-free part of the
quadrupole moment Iij (which we also called the reduced quadrupole moment Iij in class). Using this equality,
and your result from part (a), show that the power radiated in gravitational waves by the rotating neutron star
is

LGW =
32

5
(J3ϵ)

2
Ω6 with the ellipticity ϵ ≡ J1 − J2

J3
. (9)

Hint: recall from the lecture that

LGW = −dE

dt
=

1

5
⟨
...
I ij

...
I ij⟩. (10)

(c) Consider a neutron star that is approximated as a uniform density sphere with mass 1.4M⊙ and radiusR = 10km,
so that J3 ∼ 2

5MR2 ∼ 1045g cm2. Assume it has a rotational period of P = 33ms, like the Crab pulsar PSR

B0531+21. Its rotational energy is E = 1
2J3Ω

2. Find the spin-down rate Ω̇ caused by energy radiated away in

gravitational waves. Show that for a fiducial ellipticity of ϵ = 10−7 the rate of change in frequency is small and
thus the GWs are approximately monochromatic over an observation time of a few years. Hint: don’t forget to
reinstate factors of GN and c.

(d) The observed spin-down rate of the Crab pulsar is Ṗ = 4.2 × 10−13 s
s . Assuming that the spin-down is solely

caused by GW emission, what would the ellipticity of the Crab pulsar need to be to explain this value?

(e) In several pulsars the spin-down rate has been measured with pulsar-timing observations and is generally quan-

tified by a braking index n defined by Ω̇ ∝ Ωn. For the Crab pulsar n ≈ 2.5, while for the Vela pulsar n ≈ 1.5.
For pure electromagnetic dipole radiation we would find n = 3. Read off the braking index for GW-dominated
spin-down from your results in (c). Is GW emission the dominant mechanism for the spin-down of the Crab
pulsar?
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6.3. Gravitational waves from merging supermassive black holes [4 pts.]

(Hartle, Ch. 23, Problem 19): Suppose for simplicity that (1) every galaxy contains a 109M⊙ black hole, (2) that
every galaxy merges once in its lifetime, and (3) that when they do, the black holes in their cores coalesce. Consider
a detector built to detect the gravitational waves from such events. Even though they do not really apply, use the
results of linearized gravity to:

(a) Estimate the frequency range in which the detector would have to operate.

(b) Estimate the strain sensitivity that would be necessary to see mergers out to the edge of the visible universe.

(c) Estimate the duration of such events in usual time units.

(d) Estimate the rate at which such events would be detected.
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