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Survival Analysis

Survival analysis, or more generally, time-to-event analysis, refers to a set of
methods for analyzing the length of time until the occurrence of a well-defined end point
of interest.

(a) (b)

Figure 1: Survival Function1

1Wikipedia. Survival Function. url: https://en.wikipedia.org/wiki/Survival_function.
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Part I

Statistical Framework
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Problem Setting

Assume there are n training points, denoted as (X1,Y1,∆1), . . . , (Xn,Yn,∆n), where
each training point i ∈ [1, n] is represented by:

Xi ∈ X is the raw input (e.g., a fixed-length feature vector, an image, a text
document, etc.),

Yi ∈ [0,∞) is the observed time (either the true survival time or the censoring time),

∆i ∈ {0, 1} is the event indicator:

If ∆i = 1, the event occurred, and Yi is the true survival time.

If ∆i = 0, the event did not occur, and Yi is the censoring time (the last observed time).

The goal is to model the relationship between the raw input X and the survival or
censoring time.
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Statistical Framework

The notation for the observed data can be simplified as follows:

Yi = min(Ti ,Ci), (1)

and the event indicator is:
∆i = 1{Ti ≤ Ci}, (2)

where 1{·} is the indicator function, equal to 1 if its argument is true and 0 otherwise.

Thus, for any generic raw input X with true survival time T and true censoring time C, we have
the following observations:

Y = min(T ,C), (3)

and the event indicator:
∆ = 1{T ≤ C}. (4)

The statistical framework described above is known as right-censored data, where for censored
data (when ∆i = 0), the true survival time Ti is greater than the observed censoring time Ci .
This framework assumes independent censoring, meaning that the survival and
censoring times are conditionally independent given the raw input X .
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Part II

Survival Analysis in Continuous Time
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Key Assumptions A

For a test raw input x ∈ X ⊆ Rd , we assume that the survival time T conditioned on
X = x is a continuous random variable with probability density function (PDF) f(t |x) and
cumulative distribution function (CDF) F(t |x) =

∫ t
0 f(u|x) du; either of these functions

fully characterizes the distribution PT |X(·|x).
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Survival Function A

The conditional survival function is given by

S(t | x) :=P(survive beyond time t | raw input is x)

=P(T > t | X = x)

=1 − P(T ≤ t | X = x)

=1 − F(t |x),

(5)

where t ≥ 0 and x ∈ X.

In this talk, we refer to the conditional survival function S(·|x) simply as the survival
function since our notation already indicates that we are conditioning on x.

Predicting S(·|x) means estimating an entire function (i.e., a curve)—not just a single
number (survival time)—for test raw input x.
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Properties of the Survival Function A

1 S(·|x) = 1 − F(·|x) monotonically decreases from 1 to 0 since any CDF
monotonically increases from 0 to 1.

2 Estimating the function S(·|x) is equivalent to estimating the CDF F(·|x), which
means that we aim to estimate the conditional survival time distribution PT |X(·|x).

Different time-to-event prediction models make different assumptions on S(·|x) and
often predict transformed variants of S(·|x) rather than predicting S(·|x) directly.
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Hazard Function A

The hazard function is given as below:

h(t | x) := −
d
dt

logS(t |x)

= −
d
dt S(t |x)

S(t |x)
= −

d
dt [1 − F(t |x)]

S(t |x)
=

f(t |x)
S(t |x)

,

(6)

where, f(·|x) is the PDF of distribution PT |X(·|x). The hazard function is only nonnegative
and could have arbitrarily large positive values.

If h(·|x) is known, S(·|x) can be recovered as follows:

h(t |x) = −
d
dt

logS(t |x) ⇔

∫ t

0
h(u|x) du = − logS(t |x)

⇔ S(t |x) = exp

(
−

∫ t

0
h(u|x) du

)
.

(7)
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Cumulative Hazard Function A

The cumulative hazard function is defined as:

H(t | x) :=
∫ t

0
h(u|x) du. (8)

From equation (7), we observe that S(t |x) = exp(−H(t |x)). Therefore, if we know
H(t |x), we can recover S(t |x). Furthermore, from equation (8), we see that
h(t |x) = d

dt H(t |x). Hence, if we know H(t |x), we can also recover h(t |x).

It is important to note that while S(t |x) and H(t |x) are monotonic functions, h(t |x)
is not necessarily monotonic.
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Key Relationships A

The following equations show how the PDF f(·|x), the CDF F(·|x), the survival function
S(·|x), the hazard function h(·|x), and the cumulative hazard function H(·|x) are related:

KRA1 : f(t |x) =
d
dt

F(t |x) =
d
dt
(1 − S(t |x)) = h(t |x)S(t |x),

KRA2 : F(t |x) =
∫ t

0
f(u|x) du = 1 − S(t |x),

KRA3 : S(t |x) = 1 − F(t |x) =
∫ ∞

t
f(u|x) du = e−H(t |x) = e−

∫ t
0 h(u|x) du,

KRA4 : h(t |x) =
d
dt

H(t |x) = −
d
dt

logS(t |x) =
f(t |x)
S(t |x)

,

KRA5 : H(t |x) = − logS(t |x) =
∫ t

0
h(u|x) du.

(9)
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Likelihood A Construction Under Censoring

Given that g(Yi ; ϕ) represents the density and G(Yi ; ϕ) is the survivor function of the censoring
process, and assuming that Ti ⊥ Ci , we can derive the likelihood as follows:

L =
n∏

i=1

P(Ti ∈ [Yi ,Yi +∆t1) ,Ci > Yi)
∆i · P(Ti > Yi ,Ci ∈ [Yi ,Yi +∆t2))

1−∆i

=
n∏

i=1

[f (Yi ; θ)∆t1G (Yi ; ϕ)]
∆i [S (Yi ; θ) g (Yi ; ϕ)∆t2]

1−∆i

=
n∏

i=1

[f (Yi ; θ)]
∆i [S (Yi ; θ)]

1−∆i [∆t1G (Yi ; ϕ)]
∆i [g (Yi ; ϕ)∆t2]

1−∆i .

(10)

Finally, the likelihood function can be expressed as:

L ∝
n∏

i=1

[f (Yi ; θ)]
∆i [S (Yi ; θ)]

1−∆i . (11)

Thus, we obtain the flexible form of the likelihood function:

L :=
n∏

i=1

[
f(Yi |Xi)

∆i S(Yi |Xi)
1−∆i

]
. (12)
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Likelihood A, Cont.

Using the given relations from Key Relationships (9), one can rewrite equation (12) as

L =
n∏

i=1

[
f(Yi |Xi)

∆i S(Yi |Xi)
1−∆i

]
KRA1
=

n∏
i=1

[
h(Yi |Xi)

∆i S(Yi |Xi)
]

KRA3
=

n∏
i=1

[
h(Yi |Xi)

∆i exp

(
−

∫ Yi

0
h(u|Xi)du

)]
.

(13)
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Likelihood A, Cont.

By substituting h(t |x) = h(t |x; θ), we obtain:

L(θ) =
n∏

i=1

[
h(Yi |Xi ; θ)

∆i exp

(
−

∫ Yi

0
h(u|Xi ; θ) du

)]
. (14)

Taking the logarithm of the likelihood function, we get the log-likelihood:

log L(θ) = log

 n∏
i=1

[
h(Yi |Xi ; θ)

∆i exp

(
−

∫ Yi

0
h(u|Xi ; θ) du

)]
=

n∑
i=1

[
∆i log h(Yi |Xi ; θ) −

∫ Yi

0
h(u|Xi ; θ) du

]
.

(15)

The negative log-likelihood (NLL), which we often use as the loss function, is defined as:

LHazard - NLL(θ) := −
1
n
log L(θ)

= −
1
n

n∑
i=1

[
∆i log h(Yi |Xi ; θ) −

∫ Yi

0
h(u|Xi ; θ) du

]
.

(16)
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Proportional Hazard Models (PHMs)

Proportional hazards models (PHMs) assume that the hazard function can be factored
as follows:

h(t |x) = h0(t ; θ)ef(x;θ) for t ≥ 0, x ∈ X , (17)

where h0(·; θ) : [0,∞)→ [0,∞) and f(·; θ) : X → R are functions with parameter vector
θ. Specifically:

1 Exponential PHM: h(t |x; θ) := eβ
⊤x+ψ for t ≥ 0, x ∈ X . In this case, we have

h0(t ; θ) = eψ and f(x; θ) = β⊤x, (18)

where θ = (β, ψ) ∈ Rd × R.

2 Weibull PHM: h(t |x; θ) := teϕ − e(β⊤x)eϕ+ψ+ϕ for t ≥ 0, x ∈ X . In this case, we
have

h0(t ; θ) = teϕ−1eψ+ϕ and f(x; θ) = (β⊤x)eϕ, (19)

where θ = (β, ψ, ϕ) ∈ Rd × R × R.
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Exponential PHM

Substituting h(t |x; θ) = eβ
⊤x+ψ into equation (16) results in:

LHazard - NLL(β, ψ) = −
1
n

n∑
i=1

[
∆i(β

⊤Xi + ψ) −

∫ Yi

0
eβ
⊤Xi+ψdu

]

= −
1
n

n∑
i=1

[
∆i(β

⊤Xi + ψ) − Yieβ
⊤Xi+ψ

]
.

(20)
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Weibull PHM

Substituting h(t |x; θ) := teϕ − e(β⊤x)eϕ+ψ+ϕ into equation (16) yields the following
expression:

LHazard - NLL(β, ψ, φ)

= −
1
n

n∑
i=1

{
∆i log

(
Yieφ−1e(β⊤Xi)eφ+ψ+φ

)
− Yieφe(β⊤Xi)eφ+ψ

}
= −

1
n

n∑
i=1

{
∆i

[
(eφ − 1) logYi + (β⊤Xi)eφ + ψ+ φ

]
− Yieφe(β⊤Xi)eφ+ψ

}
.

(21)
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Cox PHM

In his discussion of Cox’s (1972) paper on proportional hazards regression2, Breslow
(1972) provided the maximum likelihood estimator for the cumulative baseline hazard
function3. The article by Lin (2007)4 outlines the historical context of the Cox model.

The hazard function of the Cox PHM is defined as:

h(t |x; θ) := h0(t ; θ)ef(x;θ), (22)

where h0(t ; θ) is a piecewise constant function, given by:

h0(t ; θ) :=
{
λl

0
if τ(l−1) < t ⩽ τ(l), l ∈ [L ],

if t > τ(L),
(23)

where λ = (λ1, λ2, . . . , λL) ∈ [0,∞), and the times τ(1), τ(2), . . . , τ(L) are the unique times
of death. Additionally, τ(0) := 0.

2D. Cox. “Regression Models and Life-Tables(with Discussion)”. In: Journal of the Royal Statistical Society. Series B 34(2) (1972), pp. 187–220.
3N. Breslow. “Discussion of the Paper by D. R. Cox”. In: Journal of the Royal Statistical Society (B) 34 (1972), pp. 216–217.
4D. Lin. “On the Breslow Estimator”. In: Lifetime Data Analysis 13 (2007), pp. 471–480.
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Cox PHM, Cont.

By substituting equation (22) into equation (16), the following expression is obtained (for more
details, refer to the Breslow estimator derivation video5):

log L(θ, λ) =
n∑

i=1

[
∆i log h(Yi |Xi ; θ) −

∫ Yi

0
h(u|Xi ; θ) du

]

=
n∑

i=1

[
∆i log

(
h0(Yi ; θ)ef(Xi ;θ)

)
−

∫ Yi

0
h0(u; θ)ef(Xi ;θ) du

]

=
L∑

m=1

D[m] log λ(m) +
n∑

i=1

∆i f(Xi ; θ) −
L∑

m=1

(τ(m) − τ(m−1))λm

n∑
j=1

I
{
Yj ≥ m

}
ef(Xj ;θ).

(24)

Next, setting d log L(θ)
dλ(l)

∣∣∣∣
λ(l)=λ̃(l)

= 0, results in the following expression:

λ̃(l) =
D[l]

(τl − τl−1)
n∑

j=1
I
{
Yj ≥ ℓ

}
ef(Xj ;θ)

. (25)

5D. Refaeli. Survival Analysis – Cox PH – Breslow Estimator.
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Cox PHM, Cont.

We substitute equation (25) into (24), resulting in:

log L(θ) =
L∑

m=1

D[m] log
D[l]

(τ(m) − τ(m−1))
n∑

j=1
I
{
Yj ⩾ m

}
ef(Xj ;θ)

+
n∑

i=1

∆i f(Xi ; θ) −
L∑

m=1

D[m]

=
n∑

i=1

∆i

f(Xi ; θ) −
n∑

i=1

log

 n∑
j=1

I
{
Yj ⩾ Yi

}
ef(Xj ;θ)


 + constant.

(26)

Finally, we obtain:

LHazard - NLL(θ) = −
1
n

n∑
i=1

∆i

f(Xi ; θ) −
n∑

i=1

log

 n∑
j=1

I
{
Yj ⩾ Yi

}
ef(Xj ;θ)


 . (27)
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Part III

Survival Analysis in Discrete Time
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Key Assumptions B

Suppose time is discretized into a user-defined grid of L time points
τ(1), τ(2), . . . , τ(L) ∈ [0,∞), such that τ(1) < τ(2) < · · · < τ(L). Assume that all training
values Yi have been discretized to take values from τ(1), τ(2), . . . , τ(L)

The CDF and PMF of the distribution P(T | X = x) are defined as follows:

The PMF: f [l | x] := P(T = τ(l) | X = x), for l ∈ [L ],

The CDF: F [l | x] := P(T ≤ τ(l) | X = x) =
l∑

m=1
f [m | x].

The PMF f [· | x] satisfies:

f [l | x] ≥ 0 for all l ∈ [L ],
L∑

l=1
f [l | x] = 1.

The relationship between the CDF and PMF is: f [l | x] = F [l | x] − F [l − 1 | x], with
F [0 | x] := 0.
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Survival Function B

For x ∈ X , the discrete-time survival function at time index l ∈ [L ] is defined as:

S[l | x] := P(T > τ(ℓ) | X = x) = 1 − F [l | x] = 1 −
l∑

m=1

f [m | x]. (28)

Additionally, the PMF f [l | x] can be expressed via equation (28) as:

f [l | x] = F [l | x] − F [l − 1 | x]

= (1 − S[l | x]) − (1 − S[l − 1 | x])

= S[l − 1 | x] − S[l | x] for l ∈ [L ],

(29)

where S[0 | x] := 1.
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Hazard Function B

The discrete-time hazard function h[l | x] is defined as:

h[l | x] :=P(T = τ(l) | X = x,T ⩾ τ(l))

=
P(T = τ(l),T ⩾ τ(l) | X = x)

P(T > τ(l−1) | X = x)

=
P(T = τ(l) | X = x)

P(T ⩾ τ(l) | X = x)
=

P(T = τ(l) | X = x)

P(T > τ(l−1) | X = x)

=
f [l | x]

S[l − 1 | x]
=

S[l | x] − S[l − 1 | x]
S[l − 1 | x]

(30)

It is important to note that while the continuous-time version h(t | x) can be nonnegative
and may exceed 1, in discrete time, h[l | x] is a probability and thus cannot exceed 1.
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Hazard Function B, Cont.

It is evident from equation (30) that:

h[l | x] =
S[l | x] − S[l − 1 | x]

S[l − 1 | x]
⇔ S[l | x] = S[l − 1 | x] (1 − h[l | x]) . (31)

In general, the survival function S[l | x] can be expressed as:

S[l | x] =
l∏

m=1

(1 − h[m | x]) , l ∈ [L ], (32)

Equation (32) illustrates how the hazard function h[· | x] can be used to estimate the
survival function S[· | x].
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Cumulative Hazard Function B

The discrete-time cumulative hazard function is defined as:

H[l | x] :=
l∑

m=1

h[m | x], (33)

The following relation holds based on equation (20):

h[l | x] = H[l | x] − H[l − 1 | x], (34)

where H[0 | x] := 0.

It is important to note that in continuous time, the relationship − logS[l | x] = H[l | x]
holds. However, in discrete time, the corresponding expression is:

− logS[l | x] = H[l | x] +
l∑

m=1

∞∑
p=2

(h[m | x])p

p
, l ∈ [L ]. (35)
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Key Relationships B

The following equations show how the PMF f(·|x), the CDF F(·|x), the survival function S(·|x),
the hazard function h(·|x), and the cumulative hazard function H(·|x) are related:

KRB1 : f [l | x] = F [l | x] − F [l − 1 | x] = S[l − 1 | x] − S[l | x] = h[l | x]S[l − 1 | x]

KRB2 : F [l | x] =
l∑

m=1

f [m | x] = 1 − S[l | x]

KRB3 : S[l | x] = 1 − F [l | x] =
L∑

m=l+1

f [m | x] =
l∏

m=1

(1 − h[m | x])

KRB4 : h[l | x] = H[l | x] − H[l − 1 | x] =
S[l − 1 | x] − S[ℓ | x]

S[l − 1 | x]
=

f [l | x]
S[l − 1 | x]

KRB5 : H[l | x] =
ℓ∑

m=1

S[m − 1 | x] − S[m | x]
S[m − 1 | x]

=
l∑

m=1

h[m | x]

(36)

where F [0 | x] = 0, S[0 | x] = 1, H[0 | x] = 0.
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Likelihood B

The likelihood function is expressed as:

L :=
n∏

i=1

[f [κ(Yi) | Xi]]
∆i [S[κ(Yi) | Xi]]

1−∆i , (37)

where κ(Yi) represents the specific time index corresponding to the observed time Yi ,
with Yi discretized to one of the values in τ(1), τ(2), . . . , τ(L). The function f [κ(Yi) | Xi]
denotes the probability mass of the event occurring at the time κ(Yi), conditional on the
covariates Xi , while S[κ(Yi) | Xi] represents the survival function at the corresponding
time index, conditional on Xi . The indicator ∆i takes the value 1 if the event is occurred
(∆i = 1) or 0 if the event is censored (∆i = 0) for subject i.
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Likelihood B, Cont.

Using the given relations from Key Relationships (36), one can rewrite equation (37) as:

L =
n∏

i=1

[f [κ(Yi) | Xi]]
∆i [S[κ(Yi) | Xi]]

1−∆i

KRB1
=

n∏
i=1

[
(h[κ(Yi) | Xi]S[κ(Yi) − 1 | Xi])

∆i S[κ(Yi) | Xi]
1−∆i

]
KRB3
=

n∏
i=1

h[κ(Yi) | Xi]

κ(Yi)−1∏
m=1

(1 − h[m | Xi])


∆i κ(Yi)∏

m=1

(1 − h[m | Xi])


1−∆i


=

n∏
i=1

h[κ(Yi) | Xi]
∆i (1 − h[κ(Yi) | Xi])

1−∆i

κ(Yi)∏
m=1

(1 − h[m | Xi])




(38)
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Likelihood B, Cont.

Taking the logarithm of both sides of equation (38), the log-likelihood function is given by:

log L =

n∑
i=1

[∆i log(h[κ(Yi) | Xi]) + (1 −∆i) log(1 − h[κ(Yi) | Xi])] +

κ(Yi)−1∑
m=1

log(1 − h[m | Xi])
(39)

To maximize equation (39), which can be equivalently stated as minimizing the negative
log-likelihood, the expression becomes:

LHazard−NLL(ξ)

= −
1
n

n∑
i=1

∆i log(h[κ(Yi)|Xi ; ξ]) + (1 −∆i) log(1 − h[κ(Yi)|Xi ; ξ]) +

κ(Yi)−1∑
m=1

log(1 − h[m|Xi ; ξ])

.
(40)
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Reduced Version of DeepHit

Note: Below is a Reduced Version of DeepHit (RVD) model6. The RVD model defines the PMF
f [· | x] using a neural network f(·; ξ) : X → [0, 1]L with parameter ξ, such that:

f [1 | x]
f [2 | x]

...
f [L | x]

 =

f1(x; ξ)
f2(x; ξ)

...
fL (x; ξ)

 =: f(x; ξ) (41)

We use the transformed form of (37), that is,

L(θ) =
n∏

i=1

[f [κ(Yi) | Xi]]
∆i S[κ(Yi) | Xi]

1−∆i

KR23
=

n∏
i=1

[f [κ(Yi) | Xi]]
∆i

L∑
m=κ(Yi)+1

f [m | Xi]
1−∆i

=
n∏

i=1

[
fκ(Yi)(Xi ; ξ)

]∆i
L∑

m=κ(Yi)+1

fm(Xi ; ξ)
1−∆i

(42)

6C. Lee et. al. “DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks”. In: Thirty-Second AAAI Conference on Artificial Intelligence
32(1) (2018), pp. 2314–2321.
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RVD, Cont.

In practice, to maximize L(ξ), a user-specified neural network optimizer can be used to
minimize the negative log-likelihood averaged over the training data:

LPMF−NLL(ξ) := −
1
n
log L(ξ)

= −
1
n
log

n∏
i=1

[
fκ(Yi)(Xi; ξ)

]∆i
L∑

m=κ(Yi)+1

fm(Xi; ξ)
1−∆i

= −
1
n

n∑
i=1

∆i log
(
fκ(Yi)(Xi; ξ)

)
+ (1 −∆i) log

 L∑
m=κ(Yi)+1

fm(Xi; ξ)




(43)
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Nnet-survival

Note: Below is a Revised Version of Nnet-survival (RVNS) model7.

The hazard function h[·|x] in RVNS model is specified by g(·; ξ) : X → RL with
parameter variable ξ. In particular, g(x; ξ) is defined as:

g(x; ξ) :=


g1(x; ξ)
g2(x; ξ)

...

gL(x; ξ)

 . (44)

Then, the RVNS model defines h[ℓ|x] as:

h[ℓ|x; ξ] :=
1

1 + exp(−gℓ(x; ξ))
, ℓ ∈ [L ], x ∈ X , (45)

where equation (45) ensures that h[ℓ|x; ξ] ∈ [0, 1] for every ℓ ∈ [L ].

7M. Gensheimer et. al. “A Scalable Discrete-Time Survival Model for Neural Networks”. In: PeerJ 7 (2019), e6257.
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RVNS, Cont.

By substituting equation (45) into equation (40), the result is:

LRVNS - NLL(ξ) = −
1
n

∆i log

 1
1 + exp(−gκ(Yi )

(Xi ; ξ))

 + (1 −∆i ) log

 1
1 + exp(gκ(Yi )

(Xi ; ξ))

 + κ(Yi )−1∑
m=1

log

(
1

1 + exp(gm(Xi ; ξ))

)
=

1
n

∆i log
(
1 + exp(−gκ(Yi )

(Xi ; ξ))
)
+ (1 −∆i ) log

(
1 + exp(gκ(Yi )

(Xi ; ξ))
)
+

κ(Yi )−1∑
m=1

log (1 + exp(gm(Xi ; ξ)))

 .
(46)
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Summary

In this talk, the following equations are particularly useful:

1 Key Relationships A (9) and B (36)

2 The original likelihood functions (12) and (37)

3 The negative log-likelihoods (16) and (40)
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The End

Discussion

Any comments or questions?

We may not always find an answer, and since we’re not very familiar with (deep) survival analysis, we will need to dedicate more time to this topic.
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