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SUPPLEMENTARY MATERIAL OF ”NEURAL ODES FOR MAGNETIC HOLOGRAPHIC QCD PHASE
DIAGRAM”

This supplementary material provides a detailed discussions we have made in the main text. We give the equations
of motion for the hairy black holes and show all thermodynamic quantities. We then introduce the calculation method
and neural ODEs.

Equations of motion and thermodynamics

By varying the action, the field equations can be obtained:

∇µ∇µϕ− ∂ϕZ

4
FµνF

µν − ∂ϕẐ
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The bulk black hole solutions are

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2 + g(r)dz2) ,

ϕ = ϕ(r), A = A(r)dt, Â =
B

2
(xdy − ydx) ,

(S2)

where r is the holographic radial coordinate with the AdS boundary located at r → ∞. The blackening function f(r)
is vanishing at the event horizon r = rh at which the temperature and entropy density are given by

T =
1

4π
f ′(rh)e

−η(rh)/2, s =
2π

κ2
N

r3h . (S3)

Note that the magnetic field in the z-direction breaks isotropy.

Substituting the ansatz (S2) into (S1) gives six equations:
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eη(r)rẐ(ϕ)A′(r)2 = 0 ,

g′′(r)− g′(r)2

2g(r)
+ g′(r)

(
2

r
+

η′(r)

2

)
+ g(r)

(
3η′(r)

r
+ ϕ′(r)2

)
= 0 ,

(S4)

where five of them are independent.

The form of V (ϕ) and Z(ϕ) is taken from [S1].

V (ϕ) = −12 cosh[c1ϕ] + (6c21 −
3

2
)ϕ2 + c2ϕ

6 ,

Z(ϕ) =
1

1 + c3
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c3

1 + c3
e−c5ϕ .

(S5)
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Expansion at the UV boundary r → ∞ yields
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where we have taken the normalization of the spacetime coordinates at the boundary such that η(r → ∞) = 0 and
g(r → ∞) = 1. Expansion at the event horizon r = rh gives

f =fh(r − rh) + · · · ,
η =ηh + η1(r − rh) + · · · ,
A =Ah(r − rh) + · · · ,
ϕ =ϕh + ϕ1(r − rh) + · · · ,
g =gh + g1(r − rh) + · · · .

(S7)

After substituting (S7) into the EoMs (S4), one finds five independent coefficients (rh, Ah, ηh, ϕh, gh).
The relationship between the free energy density Ω and the on-shell action S is:

−ΩV = T (S + S∂)on−shell , (S8)

where V is the spatial volume of the boundary system. The boundary term is given by

S∂ =
1

2κ2
N

∫
r→∞
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Here, hµν is the induced metric at the UV boundary with Kµν the extrinsic curvature defined by the outward pointing
normal vector to the boundary.

The boundary energy-momentum tensor reads
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Substituting the UV expansion on the boundary gives:
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. (S13)
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Note that in the thermodynamic limit V → ∞, Ω = −pz. From the EoMs (S4), we can get a radially conserved
charge:

Q = e
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which connects data from the horizon to the UV boundary. Evaluating it at both the horizon and the boundary yields

Q = Ts = ϵ− Ω− µBnB = ϵtotal − Ω− µBnB −BM , (S15)

where ϵtotal = ϵ+ ϵfield is the total energy including the external field ϵfield = BM with M the magnetization. This
is the expected thermodynamic relation. More precisely, M can be computed by the partial derivative of the free
energy with respect to B.

M = −
(
∂Ω

∂B

)
T,µB

= −
∫ ∞

rh

B
√
e−η(r)g(r)Ẑ[ϕ(r)]

r
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r→∞

B
√

e−η(r)f(r)g(r) ln[r]Ẑ[0]

r
. (S16)

It can be checked straightforwardly that the first law of thermodynamics

dΩ = −sdT − nBdµB −MdB , (S17)

is satisfied. One can then obtain the magnetic susceptibility χB =
(
∂M
∂B

)
T,µB

.

Following [S1], we choose c1 = 0.7100, c2 = 0.0037, c3 = 1.935, c4 = 0.085, c5 = 30 of (S5). Moreover, we take
κ2
N = 2π(1.68), ϕs = 1085MeV and b = −0.27341.

Calculation method and neural ODEs

Neural networks and neural ODEs have been intensively utilized in holographic QCD literature (e.g. [S2–S5]). In
particular, neural networks have been effectively integrated into ODE frameworks in [S3, S4]. In our approach, we
introduce a novel neural ODE architecture to numerically solve the magnetic coupling Ẑ[ϕ(z)], constrained by lattice
QCD data with high precision. We model Ẑ using a feedforward neural network with three hidden layers, each
structured as x = σ(weight × x′ + bias), where the activation function is σ = tanh. Here, x and x′ represent the
output and input of each layer, respectively, and H = {weight, bias} is the parameter set. The layer structure is
[input(1)-(16)-(64)-(16)-output(1)]. Details for reproducibility are provided below.

Fig. S1 illustrates our computational approach. To address the inverse problem of mapping lattice QCD data to
a holographic model, we initialize a trial function Ẑ(ϕ), used to solve the bulk EoMs (S4) with asymptotic AdS
boundary conditions and regular horizon conditions. The solution yields boundary field theory observables, which are
then compared to lattice QCD data to iteratively refine Ẑ(ϕ). Due to scaling symmetries, there are three independent
IR data points: Ah, ϕh, and BF , corresponding to the field values at the event horizon and a pre-scaled magnetic field.
These map to the UV quantities—temperature T , chemical potential µB , and physical magnetic field BT—where BT

is the transformed field after scaling. By modeling Ẑ(ϕ) through a neural network, we solve the EOMs and obtain
thermodynamic quantities such as T , µB , BT , M , s, χB , and ∆pz.

Since the lattice data [S6] covers only a small region at zero chemical potential, the values of T , µB , and BT

computed with an arbitrary set of Ah, ϕh, and BF cannot adequately cover this region. Therefore, as shown in
Fig. S1, it is necessary to adjust Ah, ϕh, and BF to obtain a set that effectively covers the relevant lattice QCD
region. The values of the remaining thermodynamic quantities M , S, χB , and ∆pz depend on the choice of the trial
function Ẑ(ϕ). To optimize Ẑ(ϕ), we define a loss function L = L(M, s, χB ,∆pz). We can obtain the optimal Ẑ(ϕ)
by iteratively applying gradient descent (Adam: α =0.0002, β1=0.9, β2=0.999) to minimize the loss function [S7].
Since our model’s high precision requirements, we have to employ a neural network ODE model [S8] to solve for Ẑ(ϕ)
throughout the entire process. This model effectively transforms the conventional neural network into a continuous
form, facilitating differential equations’ rapid and accurate solutions.

For later convenience, one can rephrase the EoMs (S4) as the following form:

dΘ

dz
= Ξ(z,Θ, Θ̇(z), Ẑ(Φ), Ẑ ′(Φ), BF ), Θ(z) =


Φ(z)
F (z)
η(z)
A(z)
g(z)

 , (S18)
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Begin

Ẑ(ϕ)

Ah, ϕh, BF

EoMs

∂L
∂ξ T, µB , BT

M, s, χB ,∆pz

If: T, µB , BT

True False

If: M, s, χB ,∆pz

False

True

Adjustment

End

FIG. S1. Illustration of the Algorithm process: Given a trial functional Ẑ(ϕ) and a set of (Ah, ϕh, BF ). Solving the EoMs (S4)
to obtain the thermodynamic quantities (T, µB , BT ,M, S, χB , pz). Verify whether these (T, µB , BT ) cover the range of lattice
QCD data. If not, adjust (Ah, ϕh, BF ). If they do, compare this set with the corresponding lattice data for (M,S, χB ,∆pz). If

consistent, terminate the process. If not, adjust Ẑ(ϕ) and repeat the process. Adjustments to Ẑ(ϕ) are made through gradient

descent, where L represents the loss function and ξ are the network parameters used to mimic Ẑ(ϕ). ∂L
∂ξ

indicates the direction

of descent for the loss function. When the loss function reaches its minimum, it signifies the optimal solution for Ẑ(ϕ).

where Θ̇(z) is to take the derivative with respect to the argument and z = 1/r, zΦ(z) = ϕ( 1r ), F (z) = z2f( 1r ), A(z) =

At(
1
r ), Ẑ

′(Φ) is the derivative with respect to Φ. One can refer to the precise definitions of these functions of (S4).
Ξ is a five-component vector. Θ contains scalar field ϕ, metric components f , g, η, and Maxwell field At. These
equations of motion (S18) can be rewritten as a discrete difference equation:

Θi+1 = Θi + Ξ(zi,Θi, Θ̇i(z), Ẑ(Φi), Ẑ
′(Φi), BF )dz , (S19)

where we discretize the holographic direction z with a step size dz. The index i corresponds to the i-th layer. The
equation gives the recursive relationship between the i-th layer and the i + 1-th layer. Θi corresponds to the field
value at the i-th layer. Here, i = 1 represents the event horizon, and i = N corresponds to the UV boundary. As
shown in Fig. S2, the difference equation can be naturally understood as a 6×N network without activation function.
Here, we select four thermodynamically independent data sets S that contain quantities S = {M, s, χB ,∆pz} for

an accurate comparison between the holographic model and Lattice QCD data, performing a global fitting. The key
problem is to minimize the loss function by optimizing the functional Ẑ(ϕ). To determine the optimizing direction
of Ẑ(ϕ), one needs back propagation of the neural network to extract the data associated with ∂L

∂ξ . ξ ∈ H is any

parameters in Ẑ neural networks. And, we choose loss function L = L(M, s, χB ,∆pz) as mean-square error (MSE).
Here, we apply a similar definition of the loss function offered by [S9]. The precise form of loss function L is

L =
∑
I∈S

PI(ILQCD − IHQCD)
2 , (S20)

where ILQCD, IHQCD correspond to the thermal dynamical quantities S of lattice QCD data and are predicted by
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Horizon

A1 F1 g1 η1 Φ1
Ẑ1

A2 F2 g2 η2 Φ2
Ẑ2

...... i

AN FN gN ηN ΦN
ẐN

Boundary

Φm

x11 x12 x...

x21 x22 x...

x31 x32 x...

Ẑm

FIG. S2. Discrete network representation of the recursive relationship between layers in solving (S18). Initial conditions are
set at the event horizon (i = 1), and layers extend to the UV boundary (i = N). Each layer i corresponds to field values

Θi. The network discretizes the holographic direction z into steps dz. Ẑ(Φ) is modeled by a feed-forward network with three
hidden layers. {x11, x12, . . . } is outputs of the hidden layer. The colored arrows (e.g. green, blue, red) indicate different layers

sharing the same functional form of Ẑ(Φ). The arrow is the forward propagation direction, and the arrow opposite is the back
propagation direction.

holographic QCD, respectively. The PI is the inverse of the uncertainty, the maximum difference between the LQCD
data and its central value.

We must input ∂L
∂ξ and ξ into Adam to minimize the loss function. The key issue is to collect ∂L

∂ξ . For the i-th layer,
we have the following chain rule:

∂L

∂ξi
=

∂L

∂Θi+1

∂Θi+1

∂ξi
. (S21)

Here, ξi is the ξ of the i-th layer, Θi is the Θ of the i-th layer. One has to note ξi = ξj , i ̸= j that means ξi in each
layer are the same, but ∂L

∂ξi
̸= ∂L

∂ξj
. From (S19), at each layer it can be expressed by

∂L

∂ξi
=

∂L

∂Θi+1

∂Ξ(zi,Θi, Ẑ(Φi), Ẑ
′(Φi), BF )

∂ξi
dz . (S22)

Finally, for the whole network, the key ingredient ∂L
∂ξi

is the sum of all partial derivatives:

dL

dξ
=

∫
∂L

∂Θ

∂Ξ

∂ξ
dz =

∫
∂L

∂Θ
(
∂Ξ

∂Ẑ

∂Ẑ

∂ξ
+

∂Ξ

∂Ẑ ′

∂Ẑ ′

∂ξ
)dz .

To obtain the first factor of the integrant in (S23), we can make use of the following chain rule for the two neighborhood
layers:

∂L

∂Θi
=

∂L

∂Θi+1

∂Θi+1

∂Θi
, (S23)

where ∂L
∂Θi

represents the derivative of each component in Θ at the i-th layer, with the component index omitted for

clarity. Here, ∂Θi+1

∂Θi
is a 5× 5 matrix. From (S19), we obtain:

∂L

∂Θi
=

∂L

∂Θi+1

∂Θi+1

∂Θi
=

∂L

∂Θi+1
(1 +

∂Ξ(zi,Θi, Θ̇i(z), Ẑ(Φi), Ẑ
′(Φi), BF )

∂Θi
dz) . (S24)



6

For convenience, let yi denote
∂L
∂Θi

, and y denote ∂L
∂Θ . Then, the above equation can be written as:

yi = yi+1

(
1 +

∂Ξ(zi,Θi, Θ̇i, Ẑ(Φi), Ẑ
′(Φi), BF )

∂Θi
dz

)
, (S25)

which corresponds to the following differential form:

y′(z) = −y(z)
∂Ξ(z,Θ, Θ̇(z), Ẑ(Φ), Ẑ ′(Φ), BF )

∂Θ
. (S26)

To simplify our notations, we note that this set of equations involves five unknown functions as shown in (S18), and
∂Ξ
∂Θ is a 5× 5 matrix.

FIG. S3. Continuous representation of our numerical simulation. The top panel depicts the forward propagation, integrating
from the infrared (IR, left) to the ultraviolet (UV, right), and comparing with lattice data to compute the loss function. This

continuous approach corresponds to Fig. 6. During forward propagation, the function Ẑ acts as a numerical component within
the equations of motion (EOM). The bottom panel (excluding the dashed section) illustrates back propagation in the continuous
limit. By deriving backward integral equations from the forward ones, we calculate the derivative of the loss function L with
respect to the parameters ξ, subsequently updating the parameters in the Ẑ(ϕ) neural network (dashed section). Specifically,
∂Ẑ
∂ξ

and ∂Ẑ′

∂ξ
are obtained through the internal back propagation of Ẑ across the entire integration domain.

We elaborate on the forward and back propagation for the discrete case and derive the continuous form used
in practical computations. In the actual calculation, as shown in Fig. S3, we first perform a forward propagation
integral to obtain the loss function, and then the derivative of the loss function with respect to the parameters can
be propagated through the back differential equation, which used for optimizing the trial function Ẑ(Φ) via gradient
descent to minimize the loss function L. The forward and back propagation of the Ẑ neural network are respectively
regarded as numerical functions participating in the forward and back differential equations.

Finally, we combine all the elements in (S23) and input them into the Adam optimizer to achieve the functional
Ẑ(ϕ), which is a crucial point of this work. We manage to obtain the numerical data for Ẑ(ϕ) as shown in Fig. S4. It
can be good approximated using the following analytical form:

Ẑ(ϕ) = a0e
−a1(ϕ−a2)

2

+ a3e
−a4(ϕ−a5)

2−a6(ϕ−a7)
4

+ a8sech[−a9(ϕ− a10)
2] + a11e

−a12(ϕ−a13)
6

+ a14 ,
(S27)
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FIG. S4. The magnetic coupling Ẑ(ϕ) as a function of ϕ. The black solid curve is the one obtained from our neural ODEs
architecture. The red dotted curve denotes the one using the analytical function of (S27).

where the parameters are given by

a0 =
49677

100000
, a1 =

8583

25000
, a2 =

202953

100000
,

a3 =
15371

50000
, a4 =

6297

50000
, a5 =

39131

20000
,

a6 =
411

50000
, a7 =

413981

100000
, a8 =

97

4000
,

a9 =
34873

100000
, a10 =

29503

50000
, a11 = − 287

50000
,

a12 =
24319

12500
, a13 =

2637

2500
, a14 = − 691

50000
.

(S28)
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FIG. S5. The renormalized trace anomaly ∆I (left), the renormalized energy density ∆ϵ = ϵ|B − ϵ|B=0(middle) and the trace
anomaly I(right). Our holographic computations (solid curves) are compared with the latest lattice QCD results from [S6].
The Nt corresponds to three lattice spacings, and B denotes the magnetic field strength. The shaded areas correspond to
lattice continuum estimates.

To illustrate the efficacy of the algorithm, we present a comparison of four thermodynamically independent quan-
tities, S = {M, s, χB ,∆pz}, between the holographic predictions and the lattice QCD simulations, as shown in Fig.1
of the main text. Additionally, we confirm that the corresponding trace anomaly I, the renormalized longitudinal
pressure ∆pz, and the renormalized anomaly ∆I predicted by the holographic model align with the lattice QCD
data [S6], as depicted in Fig. S5. This work represents the first quantitative realization of state-of-the-art lattice QCD
data [S6] within a holographic model.
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