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We present a novel quantitative holographic QCD model incorporating neural ordinary differen-
tial equations (ODEs) to map the QCD phase diagram, including magnetic fields, baryon chemical
potential, and temperature. This approach directly fits parameters to lattice QCD data, achiev-
ing strong agreement and revealing previously unexplored features, such as dual critical endpoints
(CEPs) with non-mean-field critical exponents. Our framework provides new insights into the effects
of magnetic fields on QCD, extending our understanding of strongly coupled systems and paving
the way for experimental validation.

Introduction—Quantum Chromodynamics (QCD),
the theory describing strong interactions, governs the
behavior of quarks and gluons under extreme condi-
tions and is central to understanding phenomena in high-
energy physics, astrophysics, and cosmology. Studying
the QCD phase diagram is essential for exploring the
transition between the deconfined quark-gluon plasma
and hadronic matter. This transition is particularly rel-
evant to non-central heavy-ion collisions, neutron stars,
and conditions in the early universe [1–3]. Significant
efforts has been made to understand the equations of
sate of QCD matter in the non-perturbative regime. It
is now believed that, in the presence of magnetic field
(B = 0), QCD undergoes a smooth thermal crossover at
low baryon chemical potential µB by changing the tem-
perature T , while there becomes a first-order transition
at large µB . To search the critical endpoint (CEP) is a
core objective for Heavy ion collisions. Moreover, mag-
netic fields play a crucial role in non-central heavy-ion
collisions, where intense fields are generated, and mag-
netars, where the field strengths reach astronomical lev-
els [4]. These fields significantly influence QCD matter,
affecting the critical temperature of phase transitions,
thereby establishing B as an essential factor in QCD
studies.

However, exploring the complete QCD phase diagram
at finite µB and B is challenging, particularly in the
abovementioned environments. Lattice QCD calcula-
tions face the notorious sign problem at finite µB [2].
Moreover, simulating high-field configurations demands
substantial computational resources [4]. Given these
challenges and the lack of direct experimental evidence
for the CEP, holographic methods offer a promising al-
ternative for advancing our understanding of the QCD

phase structure within a controllable non-perturbative
framework. By mapping strongly coupled non-Abelian
gauge theories into classical gravity dynamics, the holo-
graphic approach has shown promise in describing hot
and dense QCD [6–8]. The most challenge is to deter-
mine the gravitational models using available lattice and
experimental data. The bulk gravitational theory has a
functional degree of freedom, known as the inverse prob-
lem. Exhaustively exploring all possible model parame-
ters to fit the data is akin to searching for a needle in
a haystack, for which manually tuning control parame-
ters becomes impractical. Only few works [8, 12, 20] have
tried incorporated magnetic fields in holographic models.

One the other hand, machine learning has become a
powerful artificial intelligence technique in representing
complex correlation. It can easily extract relevant fea-
tures from complex data. Combination of machine learn-
ing and holography provides a data-driven gravity model-
ing of strongly coupled quantum systems. In this Letter,
we introduce machine learning, specifically neural ordi-
nary differential equations (ODEs), to optimize the com-
plex parameter space of gravitational models, enabling
a precise fit to lattice data and improving quantitative
accuracy in capturing magnetic effects.

Unlike previous machine learning applications that rely
on empirical formulas to fit finite-dimensional parame-
ters [23–27], the novelty of our approach is to directly
optimize the interaction forms over complex parameter
spaces without semi-empirical guidance. We present the
first fully quantitative three-dimensional QCD phase di-
agram. It not only confirms anticipated phase structures
at B = 0 case and µB = 0 case, but also reveals surpris-
ing novel features. In particular, it uncovers the existence
of two CEPs in the T -µB plane under strong magnetic
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fields, which could significantly impact future experimen-
tal research in high-energy physics.

Holographic model–To capture essential QCD dy-
namics at finite magnetic field, temperature, and baryon
chemical potential, we employ a holographic framework
based on the five-dimensional Einstein-Maxwell-Dilaton
(EMD) theory:
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where κ2
N is the effective Newton constant. The metric

gµν characterizes spacetime geometry, and the real scalar
field ϕ accounts for conformal symmetry breaking. The
Maxwell field Aµ with Fµν = ∂µAν − ∂νAµ introduces
a finite baryon number density, while the magnetic field
B is described by another Maxwell field Âµ with F̂µν =

∂µÂν − ∂νÂµ. The functions Z(ϕ), Ẑ(ϕ), and V (ϕ) that
encode the non-perturbative features of our system are
calibrated against lattice QCD data.

The magnetic field B breaks Lorentz invariance along
the z-axis, leading to anisotropic pressure. Solving
the bulk equations of motion (EoMs) allows us to ex-
tract thermodynamic quantities, such as the free energy
density Ω, longitudinal pressure Pz, entropy density s,
baryon density nB , and magnetization M . For further
details, see Supplementary Material [34]. This holo-
graphic approach provides a first-principles description
of QCD dynamics under extreme conditions.

Neural ODEs—In the absence of a first-principle
method to determine the coupling functions in our
bottom-up model, we constrain this functional using
available lattice QCD data—a challenge known as the in-
verse problem. As lattice QCD data at finite B and µB

become more abundant, manually tuning control param-
eters becomes impractical. Instead of traditional neu-
ral networks that approximate solutions in a fixed finite-
dimensional parameter space, our neural ODE approach
systematically explores the infinite-dimensional parame-
ter space of the coupling functions, achieving higher pre-
cision and accuracy.

In practice, we impose boundary conditions at both
the ultraviolet (UV) boundary and the black hole event
horizon. By solving the EoMs numerically, the neural
ODE generates a trial equation of state that is iteratively
optimized through backpropagation to reduce deviations
from lattice QCD data. This process efficiently converges
to an optimal magnetic coupling, providing a good agree-
ment with lattice data and refining model predictions
across unexplored magnetic fields and chemical poten-
tials, see Fig. 1 for illustration. A detailed algorithmic
breakdown of this methodology is included in the Sup-
plementary Material [34]. More precisely, we construct
a (2+1)-flavor holographic QCD model, using this neu-
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FIG. 1. Illustration of the neural ODE approach to the in-
verse problem of QCD phase diagram: The initial conditions
for horizon are connected with boundary QCD by EOM. The
function to be solved Ẑ is used as the initialized neural net-
work to enter the EOM solution. L is the loss function, which
represents the gap between the model and lattice QCD. ξ
represents all the parameters of the neural network Ẑ, which
is solved by the gradient descent optimization method. The
detailed calculation process of gradient ∂L

∂ξ
is provided in the

Supplementary Material [34]

ral ODE approach to achieve a precise fit with lattice
QCD results [22]. A similar neural ODE-based method
is applied to determine Z(ϕ) and V (ϕ) by matching to
data at B = 0 [21, 38]. The resulting functional forms
are benchmarked rigorously and agree with recent lattice
simulations and experimental data [39, 40].
Fig. 2 presents our holographic predictions for four in-

dependent thermodynamic quantities: magnetic suscep-
tibility χB , magnetization M , entropy density s, and lon-
gitudinal pressure pz, compared to lattice QCD data [22].
We find good agreement across the available magnetic
fields, supporting our holographic model. This is the
first holographic model to achieve good agreement with
lattice data for magnetic fields up to B = 0.6 GeV2. Fur-
ther analysis is provided in the Supplementary Material,
showing consistency with lattice QCD results [22].
QCD phase diagram—With the model fully es-

tablished, we construct the QCD phase diagram at fi-
nite B, T , and µB by computing the free energy den-
sity Ω. The full phase diagram is depicted in Fig. 3.
The light blue area denotes the first-order phase transi-
tion surface, dividing the quadrant into two parts: the
high-temperature region corresponds to the quark-gluon
plasma, while the low-temperature region corresponds to
the hadron gas phase. The deep blue line in the dia-
gram marks the location of CEP for various magnetic
fields, where the first-order phase transition terminates
and transitions into a smooth crossover at small chemical
potentials. At B = 0, the phase diagram was presented
in Fig. 3 of [39], where the first-order transition line ter-
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FIG. 2. Thermodynamic Quantities from Holographic QCD Model vs. Lattice Data. Temperature dependence of (a) magnetic
susceptibility χB , (b) magnetization M , (c) entropy density s/T 3, and (d) longitudinal pressure ∆pz = pz|B − pz|B=0 across
magnetic fields. Shaded regions show lattice QCD estimates [22]; solid lines indicate model predictions. Here, e = 1, giving
B = 1GeV2 = 1.602× 1019 Gauss.

minates at (TC = 105MeV, µC = 555MeV). Similarly,
the phase structure in the T -B plane at µB = 0 reveals
a line of first-order transitions ending at the CEP with
(TC = 89.6MeV, B = 1.6GeV2), consistent with lattice
QCD predictions [41].

Fig. 3 highlights the following three key observa-
tions [42].

1. As the magnetic field B increases up to B =
1.618GeV2, the critical chemical potential µC at
the CEP decreases, indicating that stronger mag-
netic fields shift the CEP to lower chemical poten-
tials.

2. The critical temperature TC at the CEP initially
decreases with increasing B, reaching a minimum
before increasing again. This turning point oc-
curs around T = 80MeV, B = 1.6 ∼ 1.7GeV2,
and µB = 0.2 ∼ 0.28GeV. This behavior suggests
complicated effects in the presence of a background
magnetic field. It could related to the inverse mag-
netic catalysis and magnetic catalysis reported in
the literature.

3. At sufficiently strong magnetic field, multiple CEPs
develop in the T -µB plane, as shown in Fig. 4.

A first-order phase transition is observed for 0 <
µB < µC1 and µB > µC2, while a crossover occurs
for µC1 < µB < µC2. As B increases, µC1 and µC2

converge to a single point. This reveals a rich phase
structure in a strong magnetic field and warrants
further experimental verification.

Critical exponents—Beyond mapping the phase di-
agram, we examine critical behavior near the CEPs via
critical exponents. These exponents describe how ther-
modynamic quantities, such as susceptibility and spe-
cific heat, diverge near critical points, typically follow-
ing power-law scaling. These exponents help identify the
CEP’s universality class and provide insights into QCD
transitions under extreme conditions.

Four critical exponents can be directly extracted from
the phase diagram of Fig. 3.

• Critical exponent α: The exponent α quanti-
fies the power-law behavior of specific heat near
a CEP along the axis defined as approaching the
CEP along the tangent of the first-order line:

Cn = T

(
∂s

∂T

)
nB ,B

∼ |T − TCEP|−α.
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FIG. 3. QCD Phase Diagram at Finite Magnetic Field B.
Phase structure in temperature T , baryon chemical potential
µB , and magnetic field B from our holographic model. The
light blue surface denotes the first-order transition boundary,
separating the hadronic phase from the quark-gluon plasma.
The dark blue line traces the CEP trajectory, marking where
the first-order transition ends in a crossover.
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FIG. 4. QCD Phase Diagram in the T -µB Plane at B =
1.618GeV2. The purple line shows the first-order transi-
tion ending at the first critical endpoint (CEP) at µC1 =
115.9MeV, where it transitions to a crossover. A second
CEP appears at µC2 = 224.0MeV, indicating an additional
crossover at higher µB .

• Critical exponent β: It characterizes the discon-
tinuity of entropy density s across the first-order
line:

∆s = s> − s< ∼ (TCEP − T )β ,

where s> and s< represent the entropy densities in
the high- and low-temperature phases, respectively.

• Critical exponent γ: It represents the power-law
behavior of baryon susceptibility with the temper-

ature near the CEP along the first-order axis:

χB
2 =

1

T 2

(
∂nB

∂µB

)
T,B

∼ |T − TCEP|−γ .

• Critical exponent δ : The definition of δ relies
on the power-law relationship between entropy and
chemical potential with T = TCEP at the critical
isotherm:

s− sCEP ∼ |µB − µBCEP|1/δ,

where sCEP is the entropy density at the CEP.

Table I presents the critical exponents for the CEP at
three different magnetic field values, denoted by hQCD
(I, II, III) [42]. The critical exponents satisfy the scaling
relations α + 2β + γ = 2 and α + β(1 + δ) = 2, ensur-
ing the self-consistency of our results. Although close to
mean-field values, these exponents show significant devi-
ations depending on the CEP location, particularly as B
increases. Such deviations highlight the features of our
holographic QCD model, which cannot be attributed to
large-N effects typical in conventional holographic du-
ality, where mean-field behavior is expected. Based on
2+1-flavor lattice QCD data with Nc = 3, our model
captures critical behavior distinct from mean-field the-
ory, reinforcing its capability to describe non-mean-field
dynamics. In the holographic 2-flavor model [43], the
critical exponents match those of the quantum 3D Ising
model, further emphasizing the distinct nature of our ap-
proach compared to traditional large-N QCD models.

α β γ δ
Experiment 0.110-0.116 0.316-0.327 1.23-1.25 4.6-4.9
3D Ising 0.110(5) 0.325±0.0015 1.2405±0.0015 4.82(4)
Mean field 0 1/2 1 3
DGR model 0 0.482 0.942 3.035
hQCD(I) 0.002296 0.485518 0.9558187 3.00993
hQCD(II) 0.001694 0.50373 0.91803 2.9455
hQCD(III) 0.00917 0.3944 0.98696 3.9878

TABLE I. Critical exponents from experiments in non-QCD
fluids, the full quantum 3D Ising model, mean-field (van
der Waals) theory, the DGR model [10], and our 2+1-flavor
hQCD model. The hQCD (I, II, III) correspond to the crit-
ical exponents for µB = 554.66 MeV, B = 0 (hQCD I),
µB = 501.4 MeV, B = 0.3 GeV2 (hQCD II), and µB = 0, B =
1.6 GeV2 (hQCD III), respectively.

Conclusion– We have developed a novel neural ODE
framework that solves the inverse problem of construct-
ing a holographic QCD action from observational data.
This framework results in the first holographic model ca-
pable of capturing key thermodynamic behaviors of hot
and dense QCD at finite magnetic fields. Notably, the
model reveals a rich phase structure in a strong mag-
netic field, including non-monotonic CEP temperature
behavior (Fig. 3) and multiple CEPs in the T -µB plane
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(Fig. 4), providing specific experimental markers for val-
idation at future facilities like FAIR, JPARC-HI, and
NICA [44]. Furthermore, we have determined critical
exponents that depend on the location of CEPs, offering
valuable insights for experimental studies in regions ac-
cessible to RHIC and LHC. Experimental observables,
such as baryon number or magnetization fluctuations,
could directly test these predictions in current experi-
ments, e.g. RHIC [45], the STAR fixed target program
(FXT), and future experiments [44].

Future research should extend the model to include
isospin asymmetry, rotation effects, and real-time dy-
namics, thereby bridging gaps between theoretical pre-
dictions and experimental findings across energy scales.
This includes incorporating isospin asymmetry, which is
relevant for neutron stars, and rotational effects, which
are critical for understanding dynamics in rapidly spin-
ning neutron stars and heavy-ion collisions. Extending
the model to non-equilibrium scenarios could also pro-
vide insights into the real-time dynamics of phase tran-
sitions, capturing rapid changes in temperature, density,
and magnetic field during heavy-ion collisions. Exploring
other bottom-up or top-down holographic models could
help establish whether features like dual CEPs are uni-
versal in strongly coupled QCD-like theories or specific
to our model. Applying our findings to neutron stars
and early universe conditions, where understanding the
equation of state for strongly interacting QCD matter
under varying magnetic fields is crucial, presents another
promising direction for future research.
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K. K. Szabó, “Lattice QCD equation of state at fi-
nite chemical potential from an alternative expansion
scheme,” Phys. Rev. Lett. 126 (2021) no.23, 232001
[arXiv:2102.06660 [hep-lat]].

[39] R. G. Cai, S. He, L. Li and Y. X. Wang, “Probing QCD
critical point and induced gravitational wave by black
hole physics,” Phys. Rev. D 106 (2022) no.12, L121902
[arXiv:2201.02004 [hep-th]].

[40] Z. Li, J. Liang, S. He and L. Li, “Holographic study of
higher-order baryon number susceptibilities at finite tem-
perature and density,” Phys. Rev. D 108, no.4, 046008
(2023) [arXiv:2305.13874 [hep-ph]].

[41] F. Cuteri, “QCD thermodynamics: an overview of recent
progress,” PoS LATTICE2022 (2023), 243

[42] As the quantitative results significantly depend on com-
putational power, we plan to present more detailed phase
structures and additional findings on the critical expo-
nents in the forthcoming version.

[43] Y. Q. Zhao, S. He, D. Hou, L. Li and Z. Li, “Phase
structure and critical phenomena in two-flavor QCD by
holography,” Phys. Rev. D 109 (2024) no.8, 086015
[arXiv:2310.13432 [hep-ph]].

[44] K. Fukushima, B. Mohanty and N. Xu, “Little-Bang
and Femto-Nova in Nucleus-Nucleus Collisions,” AAPPS
Bull. 31, 1 (2021) [arXiv:2009.03006 [hep-ph]].

[45] J. Adam et al. [STAR], “Nonmonotonic Energy Depen-
dence of Net-Proton Number Fluctuations,” Phys. Rev.
Lett. 126, no.9, 092301 (2021) [arXiv:2001.02852 [nucl-
ex]].


