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Head CT deep learning model 
is highly accurate for early infarct 
estimation
Romane Gauriau 1,7, Bernardo C. Bizzo 1,2,3,7*, Donnella S. Comeau 1, James M. Hillis 1,5, 
Christopher P. Bridge 1,2, John K. Chin 1, Jayashri Pawar 1, Ali Pourvaziri 1,2, Ivana Sesic 1, 
Elshaimaa Sharaf 1, Jinjin Cao 1,2, Flavia T. C. Noro 1, Walter F. Wiggins 1,4, M. Travis Caton 1,4, 
Felipe Kitamura 3, Keith J. Dreyer 1,2, John F. Kalafut 6, Katherine P. Andriole 1,4, 
Stuart R. Pomerantz 1,2, Ramon G. Gonzalez 1,2 & Michael H. Lev 1,2

Non-contrast head CT (NCCT) is extremely insensitive for early (< 3–6 h) acute infarct identification. We 
developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, 
using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially 
outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential 
candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory 
only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61–66% (specificity 90–92%) 
for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI 
 (r2 > 0.98). When this 150 CT test set was expanded to include a total of 364 CT scans with a more 
heterogeneous distribution of infarct locations (94 stroke-negative, 270 stroke-positive mixed 
territory infarcts), model sensitivity was 97%, specificity 99%, for detection of infarcts larger than the 
70 mL volume threshold used for patient selection in several major randomized controlled trials of 
thrombectomy treatment.

Stroke is a significant public health issue, affecting approximately 13.7 million people annually and the second 
major cause of death and disability  worldwide1. Selection of stroke patients for treatment is typically based on 
both the: (i) clinical presentation and (ii) imaging findings, including but not limited to the presence or absence 
of intracranial hemorrhage (ICH), the presence of a target large vessel occlusion (LVO) in patients who are 
potential endovascular thrombectomy (EVT) candidates, and the size of the ischemic core. The management 
of acute ischemic stroke was revolutionized in 2018 with publication of the DAWN  trial2. This study showed 
that the time window for safe and effective stroke treatment could be expanded from 6 to 24 h post symptom 
onset, with appropriate patient selection using “advanced” CT or MR imaging to detect and estimate the vol-
ume of irreversibly ischemic “core” infarction. Specifically, stroke patients with intracranial vascular occlusions 
and “small” (< 50 mL) estimated cores, treated with EVT, achieved a 49% rate of functional independence at 
90-days, compared to only 13% with best medical therapy. A 50 mL infarct volume threshold was chosen as an 
enrollment criterion to minimize the risk of ICH as a treatment complication. The resulting effect size of 36% 
(49–13%) remains among the highest of any stroke trial to date, especially considering the treatment window 
of up to one-full day after symptom onset, with a “number-needed-to-treat” of only 2.8. In DAWN and related 
late-window (6-24 h) treatment studies, infarct volume was either estimated using maximally efficient, ground 
truth MR diffusion-weighted imaging (DWI) as the operational reference standard or approximated using CT 
perfusion imaging (CTP)3–5. Regardless of the imaging modality used for core estimation, however, all stroke 
clinical treatment trials have underscored the critical need for rapid, safe, highly sensitive and specific assess-
ment, ideally minimizing cost, complexity, and technical  variability6,7.

Only one major EVT clinical trial, MR CLEAN, which assessed treatment safety and efficacy in early stroke 
(< 6 h), used non-contrast CT (NCCT) exclusively to both rule out ICH prior to enrollment and to estimate 
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infarct volume for subgroup  analyses7. Unfortunately, both detection and volume estimation of early ischemic 
findings on NCCT—even by expert, subspecialty-certified neuroradiologists with decades of experience inter-
preting complex stroke scans—is significantly limited by the typically-subtle decreased X-ray attenuation and 
low contrast-to-noise ratios of acute infarcts. This poor conspicuity, attributable to the mildly reduced blood 
pool and early vasogenic edema of these developing lesions, is especially difficult to perceive in the first 3–6 h 
after stroke onset, before blood brain barrier breakdown becomes well  established8,9. Even with interpretation 
by highly-trained readers using optimal image review display parameters, the sensitivity of NCCT for early 
(3–6 h) stroke detection has been reported to range as low as 43–71%, compared to 97% for  DWI8–10. In a 2002 
study comparing NCCT and DWI stroke detection within 3 h of symptom onset, sensitivity for expert readers 
was 61% by CT and 91% by DWI; for novice readers, sensitivity was 46% by CT and 81% by DWI, with CT 
described as “little better than flipping a coin”11. These results and others suggest that DWI is highly accurate for 
rapid, emergency department assessment of brain tissue viability; it identifies regions of reduced water diffusiv-
ity attributable to cytotoxic edema that are likely to be irreversibly infarcted even in the setting of early, robust 
restoration of critically ischemic cerebral blood  flow12.

In this study, we developed a deep learning model that detects, delineates, and estimates the volume of early 
acute infarction on NCCT, using diffusion MRI as ground truth (3,566 NCCT/MRI training patient pairs). We 
evaluated the performance of this model in two NCCT test sets (Table 1), the first a subset that included both 
stroke-negative and stroke-positive middle cerebral artery (MCA) territory only infarcts (n = 150, Figs. 1, 2 
and 3) and the second an expanded set that included additional CT scans with more varied infarct locations 
(n = 364, Table 3). For the “MCA-territory-only” test set, we compared model performance with that of three 
expert neuroradiologists (mean 25-years’ experience, blinded to all other clinical/imaging data); expert review 
was randomized with a different order of presentation for each radiologist. The experts recorded the presence 
or absence of acute infarct and categorized estimated infarct sizes as > 0–20 mL,  > 20–50 mL, or  > 50 mL, using 
the formula [length x width x height]/2 (each in cm) to approximate volume in  mL13.

Table 1.  Dataset description with patient demographics and acquisition details. (Legend: no. = number, 
Std = standard deviation, M/F = male/female, IQR = inter-quartile range, mAs = milliampere-seconds, 
kVp = kilovoltage peak, MCA = middle cerebral artery, BG = basal ganglia, PCA = posterior cerebral artery, 
CorRad WM = corona radiata white matter, and ACA = anterior cerebral artery, LVO = large vessel occlusion 
[ICA, M1, M2]).

Patient demographics Training Validation
Full Test Set: Various Location 
Infarcts

Subset Test Set: MCA-territory only 
Infarcts

No. patients
(stroke positive / negative)

3566
(1896 / 1670)

133
(66 / 67)

364
(270 / 94)

150
(90 / 60)

No. NCCT series 9528 338 364 150

Mean age (Std) 65 (17) 64 (17) 68 (15) 67 (17)

Gender: M / F 1779 (49.9%) / 1787 (50.1%) 74 (55.6%) / 59 (44.4%) 208 (57.1%) / 156 (42.9%) 73 (48.7%) / 77(51.3%)

Infarct volume ≥ 50 mL (no.) 334 17 43 30

Infarct volume ≥ 20 mL (no.) 641 19 88 60

Median DWI infarct volume, mL 9.4 5.2 8.8 29.6

Stroke laterality (no., %)
Left: 137/270 (51)
Right: 128/270 (47)
Unilateral: 265/270 (98)
Bilateral: 5/270 (2)

Left: 46/90 (51)
Right: 44/90 (49)
Unilateral: 90/90 (100)
Bilateral: 0/90 (0)

Stroke territory (no., %)

MCA: 183/270 (68)
BG: 30/270 (11)
PCA: 19/270 (7)
CorRad WM: 14/270 (5)
Brainstem: 13/270 (5)
Cerebellum: 9/270 (3)
ACA: 2/270 (1)

MCA: 90/90 (100)

LVO (no., %)

No LVO (11/90 = 12%)
Bilateral LVO (2/90 = 2%)
Left LVO (34/90 = 38%)
3 partial, 2 M3
Right LVO (29/90 = 32%)
1 partial, 1 M3
No CTA (14/90 = 16%)

Acquisition

Mean time from NCCT-to-DWI: stroke 
positive / stroke negative 50 min / 16 h 50 min / 9 h 44 min / 16 h 35 min / 19 h

No. CT scans per vendor:
GE Healthcare / Siemens
(No. different CT models per vendor)

2509 / 1184 88 / 54 284 / 80 110 / 40
(5 / 3)

Range of years from which NCCT/DWI 
scans obtained 2001–2019 2002–2019 2002–2019 2002–2019

Mean X-ray scanning current 225 mA 217 mA 220 mA 220 mA

Mean X-ray scanning voltage 119 kVp 120 kVp 120 kVp 122 kVp
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Our model, adapted from the U-Net architecture, takes an NCCT series as input and generates a segmentation 
mask of the early infarct changes, which is used to estimate infarct volume [23, Methods]. Model training relied 
on a large dataset of paired admission NCCT followed by ground truth DWI scans, acquired within a short time 
interval of one another. Infarcts were segmented semi-automatically, and segmentation masks for each pair were 
registered to the corresponding NCCT images (Fig. 3a).

Results
The “MCA-territory only” test set included a subset of 150 scans from two different vendors and 8 different 
scanner models (Table 1, Methods). For this test set, our model significantly outperformed the three expert 
neuroradiologists for core detection of 150 NCCT scans (sensitivity 96%, specificity 72% model versus 61–66%, 
90–92% experts, Figs. 1a and 2b). Of these 150 scans, 90 were stroke-positive and 60 stroke-negative; for the 
stroke-positive scans, median time (a) from symptom-onset-to-NCCT was 3.7 h (IQR 1.3–5.1 h; 14 time-points 
unavailable) and (b) from NCCT-to-DWI was 28 min (IQR 22–36 min); median time from NCCT-to-DWI for 
stroke-negative scans was 5.9 h (IQR 1.9–27.1).

Our model also approached the accuracy of ground truth DWI for core volume estimation  (r2 > 0.98, Fig. 1b). 
Regarding the 50 mL core volume threshold used for patient selection in most late window clinical trials, our 
model correctly estimated infarcts larger than 50 mL with 97% (29/30) accuracy, compared to the three experts 

Figure 1.  Model performance for infarct detection (a, ROC curve) and delineation (b, scatterplot; c, Bland–
Altman plot; d, confusion matrices) in the “MCA-territory only” test set (see Table 1), based on DWI ground 
truth, compared to three human experts. (a) Model AUC was 0.95; sensitivity/specificity were 0.96/0.72 
at a 0 mL-threshold operating point for infarct detection, 0.82/0.92 at a 1 mL-threshold, and 0.78/0.98 at a 
5 mL-threshold for infarct detection, compared to mean reader sensitivity/specificity of 0.64/0.91. (b) Model 
infarct volume estimates strongly correlated with those of DWI ground truth  (r2 > 0.98). As per the Bland–
Altman plot (c), the model had excellent performance for estimating infarcts smaller versus larger than 50 mL 
(95%CI <  ± 17 mL), the volume threshold used for patient selection in major late window stroke treatment trials. 
Expert interrater Cohen’s kappa values ranged from 0.42 to 0.48, suggesting significant variability compared to 
the model, confirmed by the confusion matrices for volume segmentation (d, mean study-counts-per-category 
and ranges shown for the 3-experts; calculated at the model’s 0 mL-threshold for infarct detection).
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whose accuracy varied from 23% (7/30) to 47% (14/30; p < 0.0001). The experts failed to detect 7% (2/30) to 
23% (7/30) of these large infarcts and categorized 17% (5/30) to 47% (14/30) as being < 20 mL. Our model also 
detected 100% (60/60) of strokes > 20 mL, of which the experts missed 18% (11/60) to 32% (19/60); indeed, as 
per the Bland–Altman plot (Fig. 1c), the 95% confidence interval for mean DWI-NCCT core volume measure-
ment was under ± 17 mL overall, across all volumes. Confusion matrices for infarct estimation accuracy confirm 
superior model performance versus experts for estimating > 0–20 mL, > 20–50 mL, > 50 mL volume thresholds 
(Fig. 1d).

Our model similarly showed excellent performance not only for detection and volume estimation of suspected 
MCA-territory infarcts larger than 70 mL and 100 mL (Fig. 2), as well as for each of the stratified onset-to-
imaging time windows (0–3 h, 3–6 h, > 6 h, Table 2), but also for detection and volume estimation of suspected 
infarcts in an expanded, more heterogeneous test set of 364 total CT scans (94 stroke-negative, 270 stroke-
positive) with mixed territory strokes (Tables 1 and 3); in this cohort, model sensitivity was 97% and specificity 
99%, for detection of infarcts larger than the 70 mL volume threshold used for patient selection in several major, 
randomized controlled trials of thrombectomy treatment.

The performance of our model for safe rapid estimation of infarct core, essential to patient selection for both 
early and late time window stroke treatments such as EVT, compared favorably not only to that of other published 
AI models for NCCT acute stroke detection and delineation, but also to the performance of more complex, costly, 
and time-consuming “advanced” CT and MR imaging techniques such as CT perfusion imaging and MR-DWI.

These results are likely in large part attributable to our large, accurately labeled training set consisting of 
3566 NCCT / ground truth diffusion MRI patient pairs of early strokes (most < 6 h post-onset), for which DWI 
was obtained within 3-h of admission CT for stroke-positive patients (median ≤ 50 min) and within 5-days for 
stroke-negative patients (median ≤ 19 h) (Fig. 3a)14–19. It is noteworthy that both our training/validation and test 
sets contained predominantly small volume strokes (median DWI infarct volume estimates < 10 mL and < 30 mL, 
respectively; see Table 1, Methods). Much of the existing work on automated detection and analysis of acute 
stroke focuses on three approaches: imaging features engineering, ischemic region segmentation, or biomarkers 
 computation14. Although some of this literature reports high performance, few of these studies are focused on 
early ischemic findings and limitations include small and/or poorly annotated training datasets, as well as weaker 
“reference standard” ground truth (e.g., ground truth based on reader consensus or on less accurate, more highly 
variable modalities than MR-DWI, such as CTP)3,4,14–19.

Discussion
It is noteworthy that, at the 50 & 70 ml infarct volume thresholds that are clinically relevant for thrombectomy 
treatment decisions in MCA stroke patients (Fig. 2b), sensitivity is 97% for the model and ranges from 23 to 
47% for the expert readers, for equal specificities of 99–100%. Table 3 shows similarly good results for model 
performance in the full, heterogeneous test set of mixed stroke subtypes at these infarct volume thresholds. 
These results highlight what may be one of the more important potential use cases for our model; specifically, 
estimation of core volume to help select MCA occlusive stroke patients with infarcts smaller than the 50 or 70 ml 
thresholds suggested by the major stroke therapy randomized controlled trials (RCT’s) for thrombolytic treatment 
 inclusion2,4. Indeed, the “MCA-territory-only” test set was restricted to focus specifically on model performance 
for this clinically relevant subset of patients who are potential candidates for catheter thrombectomy.

In one published model tested on 100 CT scans, for example (median 48-min after symptom onset, IQR 
27–93 min), there was moderate correlation between algorithm-predicted NCCT and expert-contoured DWI 

Figure 2.  Detailed confusion matrix for additional volume stratification (as per Fig. 1d), at the 50–70 mL, 
70–100 mL, and > 100 mL ranges, in the “MCA-territory only” test set (a, calculated at the model’s 
0 mL-threshold for infarct detection). (b) Comparison of model sensitivity, specificity at the 20 mL, 50 mL, 
70 mL, and 100 mL thresholds, versus the three individual expert raters at the 20 mL and 50 mL thresholds.
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infarct estimated volumes (r = 0.76,  r2 = 0.58), with the Bland–Altman plot 95% confidence interval for DWI-
NCCT core volume measurement ranging from −59 to 80 mL, versus -18 to 16 mL for our model (Fig. 1c)15. 
Recently, a model trained on NCCT/DWI pairs showed 0.76 accuracy for < 9 h infarct  detection16. For a different 
recently published model tested on 479 early and late window acute stroke CTs, there was modest correlation 
between NCCT predicted volumes and both CTP derived (r = 0.44,  r2 = 0.19) and final-infarct (r = 0.52,  r2 = 0.27) 
estimated  volumes17. Another recent model showed moderate performance in correlating automated NCCT 
Alberta Stroke Program Early CT Scores (i.e., “ASPECTS”, a 10-point scoring system for infarct size estimates) 
with measured CTP  (r2 = 0.58) and DWI  (r2 = 0.46) core  volumes18. Moreover, our algorithm’s accuracy is notably 
superior to that of the CTP derived estimated infarct volume accuracies reported in the literature (e.g., Bland–Alt-
man plot 95% confidence interval for mean CTP-DWI core volume measurement ranging from –59 to 55  mL19).

Few medical artificial intelligence (AI) models to date have significantly outperformed human experts, and 
better-than-human detection and delineation of clinically important findings on CT or MRI cross sectional 
imaging has not previously been emphasized in the  literature20,21. In one study of a convolutional neural network 
(CNN) for malignant melanoma detection, compared to a group of 58 dermatologists with a broad range of 
experience including 30 experts, the “CNN missed fewer melanomas and misdiagnosed benign moles less often 
as malignant”20. In another AI imaging study, McKinney et al. described a system for breast cancer screening 

Figure 3.  (a) Schematic representation of model development steps from cohort creation and data preparation 
to model inference training. (b) Examples of infarcts not detected by each of the three expert neuroradiologists, 
but accurately detected and delineated by the model.
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mammography that outperformed US board certified radiologists “compliant with the requirements of the Mam-
mography Quality Standards Act”21. There was a 5.7% reduction in false positives and a 9.4% reduction in false 
negatives with this system, which outperformed all human readers with an area under the receiver operating 
characteristic curve (AUC-ROC) of 0.740, reflecting an 11.5% improvement over the 0.625 AUC radiologist aver-
age. The authors concluded that AI has the potential to alleviate pressures on limited radiology staffing resources, 
as well as to discern “patterns and associations that are often imperceptible to humans”. Indeed, Fig. 3b shows two 
head CT’s that were interpreted as negative for stroke by all three of our neuroradiology experts, but correctly 
classified by our model as positive for early infarction (one of which had a large, > 125 mL estimated infarct core).

In summary, we have developed a deep learning model that leverages the high sensitivity of DWI as ground 
truth to automate the detection, segmentation, and volume estimation of early ischemic changes on NCCT. 
Although DWI remains the operational reference standard for maximally sensitive, early infarct estimation, 

Table 2.  Model and expert reader sensitivities and specificities of Fig. 2b, stratified by 0-3 h, 3-6 h, and > 6 h 
symptom (sx) onset-to-NCCT times, in the “MCA-territory only” test set (a-c, calculated at the model’s 
0 mL-threshold for infarct detection, for the n = 76 patients for whom onset-to-NCCT time data was available). 
Overall onset-to-NCCT times ranged from 32 min to 22.9 h, median 3.7 h.

Threshold 0 ml 20 mL 50 mL 70 mL 100 mL

Sx Onset-to-NCCT 0–3 h (n = 30)

Model Sensitivity 0.90 (0.79–1.0) 0.88 (0.76–0.99) 0.93 (0.84–1.00) 1.00 (1.00–1.00) 0.83 (0.70–0.97)

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.95 (0.87–1.00) 0.96 (0.89–1.00)

Expert 1 Sensitivity 0.47 (0.29–0.65) 0.25 (0.10–0.40) 0.14 (0.02–0.27) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Expert 2 Sensitivity 0.63 (0.46–0.81) 0.12 (0.01–0.24) 0.07 (0.00–0.16) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Expert 3 Sensitivity 0.57 (0.39–0.74) 0.38 (0.20–0.55) 0.21 (0.07–0.36) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Sx Onset-to-NCCT 3–6 h (n = 37)

Model Sensitivity 1.00 (1.00–1.00) 0.95 (0.88–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Specificity - 0.88 (0.77–0.98) 0.96 (0.90–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Expert 1 Sensitivity 0.68 (0.52–0.83) 0.48 (0.32–0.64) 0.80 (0.67–0.93) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Expert 2 Sensitivity 0.68 (0.52–0.83) 0.52 (0.36–0.68) 0.40 (0.24–0.56) – –

Specificity - 0.94 (0.86–1.00) 1.00 (1.00–1.00) – –

Expert 3 Sensitivity 0.73 (0.59–0.87) 0.52 (0.36–0.68) 0.60 (0.44–0.76) – –

Specificity - 0.94 (0.86–1.00) 0.96 (0.90–1.00) – –

Sx Onset-to-NCCT > 6 h (n = 9)

Model Sensitivity 1.00 (1.00–1.00) – 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00)

Expert 1 Sensitivity 0.67 (0.36–0.97) 0.50 (0.17–0.83) 1.00 (1.00–1.00) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Expert 2 Sensitivity 0.67 (0.36–0.97) 0.75 (0.47–1.00) 1.00 (1.00–1.00) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Expert 3 Sensitivity 0.67 (0.36–0.97) 0.50 (0.17–0.83) 1.00 (1.00–1.00) – –

Specificity - 1.00 (1.00–1.00) 1.00 (1.00–1.00) – –

Table 3.  Sensitivity, specificity, AUROC, and Dice values for the full, heterogeneous test set including both 
MCA and non-MCA territory infarcts (n = 364 patients, Table 1), at the 0 mL, 5 mL, 10 mL, 20 mL, 50 mL, 
70 mL, and 100 mL volume thresholds for detection.

Sensitivity Specificity AUROC Dice

Threshold 0 mL 0.83 (0.78–0.87) 0.64 (0.54–0.73) 0.68 (0.60–0.76) 0.36 (0.31–0.40)

Threshold 5 mL 0.75 (0.69–0.82) 0.96 (0.93–0.99) 0.77 (0.70–0.83) 0.59 (0.54–0.64)

Threshold 10 mL 0.83 (0.76–0.89) 0.99 (0.97–1.00) 0.83 (0.77–0.90) 0.66 (0.61–0.71)

Threshold 20 mL 0.89 (0.81–0.95) 0.98 (0.97–1.00) 0.91 (0.85–0.96) 0.75 (0.71–0.79)

Threshold 50 mL 0.93 (0.84–1.00) 1.00 (0.99–1.00) 0.93 (0.84–1.00) 0.78 (0.71–0.83)

Threshold 70 mL 0.97 (0.89–1.00) 0.99 (0.98–1.00) 0.97 (0.89–1.00) 0.80 (0.73–0.84)

Threshold 100 mL 0.91 (0.76–1.00) 0.99 (0.99–1.00) 0.95 (0.84–1.00) 0.80 (0.71–0.87)
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MRI is a limited resource, not rapidly and routinely accessible in most acute care settings, such as community 
hospitals and rural urgent-care facilities, where only CT is likely to be available. Indeed, our deep learning 
platform might be especially beneficial to stroke patients in underserved areas, without 24/7 advanced imaging 
capability or off-hour radiologist staffing.

It is noteworthy that, because our training set used the DWI-lesion as the ground truth “operational” refer-
ence standard, we are limited in our ability to assess the intriguing possibility that CT based estimation of infarct 
might, in fact, be superior to that obtained by MR-DWI. Although it would be fascinating to compare our DWI 
trained model to a CT trained AI model for infarct detection, unfortunately, there are insufficient patients in our 
dataset with appropriate ground truth based on follow-up CT imaging, in the setting of early robust reperfusion, 
for training and testing. Interestingly, Flumazenil-PET scanning has been used for more accurate core assess-
ment than other “operational” measures, but it’s use is also beyond the scope of this  study12. Indeed, because 
NCCT was obtained as the first imaging exam, prior to MRI, for all cases, any bias in the study design is likely to 
favor MRI as being more sensitive than NCCT for infarct detection. Given, however, that the 50 mL, 70 mL, and 
100 mL core volume thresholds relevant to patient selection for  thrombectomy3 are typically estimated clinically 
from CT perfusion and/or high signal-to-noise ratio MR DWI images—rather than from NCCT images that 
have relatively poor signal-to-noise ratio and are therefore challenging to segment accurately—the ability of our 
AI model to accurately distinguish between different volume thresholds, based only on NCCT exams, seems 
especially relevant to clinical workflow.

Potential limitations of our study include focusing the testing set on patients who were potential candidates 
for thrombectomy. Specifically, our study focused primarily on MCA territory strokes, which limits the general-
izability of our model to assess head CT scans with more varied stroke locations, mechanisms (e.g., large vessel 
versus non-large vessel occlusive strokes), and onset-to-imaging times, as well as the ability to assess exams per-
formed on different CT models from different manufacturers, acquired using more varied scanning parameters 
(see Table 1). Moreover, in our selection of cases for both training and testing, it is unfeasible to determine what 
proportion of non-MCA strokes were not included.

In conclusion, the accuracy of our AI model for non-contrast head CT early stroke detection and volume esti-
mation in a thrombectomy eligible cohort (greater-than versus less-than 50 mL), exceeds that of human experts 
and approaches that of ground truth MR-DWI. If prospectively validated and confirmed to be generalizable 
across a variety of different CT-scanner platforms, manufacturers, and acquisition protocols at different institu-
tions, this model has the potential to be a suitable alternative for more complex, costly, and time-consuming 
exams, especially at primary stroke referral centers that may have limited availability of advanced CT and MR 
imaging techniques. Further studies are currently underway to assess the generalizability of this model for the 
safe rapid selection of patients for early- and late-time window, highly effective stroke treatments such as endo-
vascular thrombectomy.

Methods
This was a HIPAA-compliant retrospective study with the approval of Partners HealthCare System (now Mass 
General Brigham) Institutional Review Board. Inform patient consent was waived by Partners HealthCare Sys-
tem (now Mass General Brigham) Institutional Review Board and all methods were performed in accordance 
with the ethical standards of Helsinki Declaration. The dataset was identified by searching the radiology exam 
archive of two large US academic medical centers (AMC) for NCCT scans for which patients also had MR-DWI 
scans acquired within the following 5 days (AMC1 date range, 2001–2019; AMC2 date range, 2008–2019; Fig. 4). 
MRI reports were screened using parsing methods (keyword and sentence matching) to identify studies positive 
and negative for acute stroke. CNN input of stroke negative versus positive cases was based on MRI-DWI clas-
sification, with stroke-negative cases confirmed to have DWI/ADC infarct volume = 0. All images were reviewed 
and verified by experienced radiologists; areas of restricted diffusion in stroke-positive patients were manually 
segmented and the segmentation masks were inputted to the CNN. For stroke-negative exams, no segmentation 
masks were created.

The time difference between the NCCT and MR-DWI scans was limited to under 3 h for stroke-positive 
scans, to capture infarct-related physiological changes on NCCT as close as possible to the MRI ground truth, 
and to under 5-days for stroke-negative scans, as restricted diffusion persists for several weeks following acute 
stroke. NCCT was obtained prior to MR-DWI for all exam pairs included in this study. DWI was routinely 
performed immediately following CT for all stroke patients imaged at one of our two medical centers, as part 
of our standardized “stroke code” protocol, for the date ranges searched. All reports were manually reviewed by 
a trained radiologist. Scans were de-identified using the Radiological Society of North America Clinical Trial 
Processor with customized scripts.

Brain MR-DWI and Apparent Diffusion Coefficient (ADC) sequences were considered ground truth for 
the presence or absence of suspected acute infarction; axial DWI “b = 1000” and ADC series with slice thick-
ness ≥ 5 mm were selected using a brain MRI series selection  algorithm23. All images were reviewed by a trained 
radiologist to ensure correct classification. Infarct segmentation was performed using established methodology, 
including a previously developed algorithm for mask  generation24. The automated masks were reviewed by a 
trained radiologist along with the corresponding MR-DWI/ADC series and radiology reports. Only segmenta-
tions with high quality were used for model development; the others were discarded or manually segmented by 
a trained radiologist (Osirix MD v11.0.3).

The segmented DWI stroke-positive and negative scans were paired with the corresponding NCCT scans, 
obtained post-symptom onset but prior to DWI acquisition. Axial CT images with slice thickness ≤ 5 mm and 
standard or soft kernel reconstructions, computed using routine iterative reconstruction or filtered back projec-
tion algorithms, were manually selected for model input (JKC, DC, JP, AP, JC, ES); in some cases, this resulted 
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in several CT scans per patient (Table 1, 2nd row). Scans were excluded if they were non-diagnostic (e.g., severe 
metal or motion artifact). NCCT/DWI image pairs were spatially registered using the SimpleITK Python package 
(v1.2) with a multiscale affine transformation and mutual information loss. Registration results were assessed 
visually; failed or imprecisely registered images were excluded.

The resulting dataset was randomly sampled to create the training (80%), validation (10%), and testing (10%) 
sets (Table 1 and Fig. 4). For the purposes of this study, the model was applied to two test sets; the first, an “MCA-
territory-only” subset that was restricted to 150 patients, and the second, an expanded test set of 364 patients 
that included these 150 plus additional patients with more varied infarct locations (Table 1). For the training and 
validation sets, all selected CT scans were retained for model training and validation, even if there were multiple 
scans per patient, in order to maximize algorithm robustness at training and enhance algorithm evaluation at 
validation. For the test sets, only a single CT scan per patient was used; if more than one was available, the earliest 
(i.e., closest to admission) within the defined post-symptom onset timeframe was used, with 5 mm-thick standard 
kernel reconstructed slices prioritized. The “MCA-territory-only” test set included 60 stroke-negative control 
patients and 90 stroke-positive patients, distributed evenly with 30 NCCT/DWI pairs in each of the > 0–20 mL
, > 20–50 mL, > 50 mL estimated infarct volume categories. Only patients with strokes in the treatment-relevant 
middle cerebral artery vascular territory of the brain were selected for inclusion. The second test set, with more 
varied infarct locations, included 94 stroke-negative patients, 270 stroke-positive patients.

We developed a neural network that takes a 3D CT axial image stacks of varying number of slices as an input 
and outputs both a classification result and a segmentation mask. Pre-processing steps on the input 3D image 

Figure 4.  Flowchart of patient inclusion from two academic medical centers. (Legend: AMC = academic 
medical center, NCCT = non-contrast head CT, MRN = medical record number, NLP = natural language 
processing, MCA = middle cerebral artery).
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are: (1) the NCCT axial slices are resampled to 5 mm thickness, and each slice are then resized to 256 × 256, with 
a maximum of 35 axial slices; (2) pixel intensities are clipped to window-width and center-level display range 
settings of 90 and 40 Hounsfield units, respectively (typical display parameters used clinically by neuroradiolo-
gists for stroke CT image  interpretation8); and (3) the resampled image pixel values are mapped between 0 and 
1. The binary masks, superimposed in the preprocessing step onto the original NCCT input slices, allows infarct 
volume estimation into ≤ 20 mL, > 20–50 mL, or > 50 mL categories. The input to the CNN is a 3D volume; these 
categories were used only for testing purposes, but not for model training. The Dice score and the classification 
scores were used for optimizing the model.

The network design extends the U-Net approach for biomedical image  segmentation22. The 3D architecture is 
slightly modified, with an additional classification output that adds a classification component to the loss func-
tion, while maintaining segmentation and classification output consistency. Adding a classification component 
improved performance compared to using the Dice loss alone, as several very small stroke masks in our dataset 
could contribute disproportionally to lower the Dice score. The model was developed using Python 3.6 and 
Tensorflow 1.13.1. Although the input image size is fixed in the axial in-plane dimensions, the framework can 
process 3D image volumes with varying numbers of slices. The architecture otherwise follows a U-Net design, 
with 6 down-sampling blocks (composed of 3 × 3 convolutions, batch normalization, and maximum pooling 
layers, followed by ReLU activation) and 6 up-sampling blocks. It differs from a classical architecture in that the 
pooling operations are done at the slice level only, with shape (2, 2, 1), rather than between slices. This avoids 
unintended interpolation effects when the slice thickness is large. The neural network is optimized using a loss 
function that combines a differentiable Dice loss (for segmentation) and a cross entropy loss (for study-level 
classification). The combination of the losses is a linear combination, using a constant that is set manually. This 
parameter was tuned manually by training multiple models with different values between 0 and 1.

We applied geometrical and pixel intensity-based data augmentation techniques at the 3D volume level, 
including a combination of in-slice rotations and translations, scaling, right-left flipping, and both Gaussian and 
Poisson random noise. At each epoch, each transformation (applied in the image space) was drawn with a prob-
ability of 0.5, and if applicable, the transformation parameters were randomly modified with a probability of 0.95.

To control for data imbalance in our training set, we developed a batch sampling strategy. For each batch: (1) 
selecting 8 stroke-positive and 4 stroke-negative scans, to ensure there is always a sufficient number of positives 
in a batch; and (2) selecting 7 scans acquired from General Electric (GE) CT platforms and 1 from Siemens plat-
forms for stroke positive patients, and 2 from GE and 1 from Siemens for stroke negative patients, to reflect the 
manufacturer distribution of scanner platforms typically available for emergency department “stroke code” use 
at both institutions. Moreover, among stroke-positive scans, there was a large percentage of very small infarcts 
(< 1 mL) in the training set (455/1896 = 24%). Because signal-to-noise ratio, and hence CT conspicuity, of these 
tiny infarcts is likely to be poor—which could contribute to both decreased accuracy for stroke detection and 
increased error rate for small structure segmentation, impacting Dice loss—we studied the effects on model 
performance of excluding infarcts smaller than 1 or 5 mL in our analyses (Fig. 1a). Those results suggest that, for 
future clinical implementation, exclusion of infarcts smaller than 1 mL might provide an appropriate operating 
point on the ROC curve as a trade-off between optimizing both sensitivity and specificity for stroke detection.

Our neural network was trained using the Adam optimizer; network parameters were initialized with the 
uniform approach proposed by Glorot and  Bengio25. The learning rate was reduced by a factor of 0.75 when the 
validation loss did not improve after 20 epochs. Our network trained for a maximum of 200 epochs, processed 
using NVIDIA 4 GPU Tesla V100 with 32 Gb RAM, allowing batch sizes of twelve 3D volumes; training a single 
model took approximately 2.5 days. Such computationally demanding training was prohibitive for extensive 
hyperparameter search; approximately 400 different models were trained during the roughly 2-year development 
cycle. Hyperparameter search was performed manually with a grid search approach; the following parameters 
were tuned: learning rate, loss weights, batch sampling strategy (random uniform, positive/negative sampling, 
manufacturer sampling), exclusion/inclusion of infarcts (< 1 mL, < 5 mL), and size of the first convolutional 
layer. Hyperparameter tuning was performed on the validation and training sets exclusively. Next, a small set 
of models were selected according to pre-defined performance metrics (Dice, ROC-AUC, sensitivity/specific-
ity). These models were presented to a panel of several experienced radiologists, blinded to the specific model 
parameters, but with the performance metrics and a random, representative sample of segmentation results 
available for review for each model. The experts ranked these models and provided justification for their ratings; 
majority voting was used to select the final model to use for MCA-territory-only test set comparison to three, 
independent, expert neuroradiologists (Fig. 1a).

For model metrics, 95% confidence intervals were computed using either the simple asymptotic method (for 
classification metrics) or bootstrapping technique (for continuous values, bootstrap size 500). Bland–Altman 
plot analysis was performed with MedCalc software. Python (v3.7) with NumPy package (v1.2) was used for all 
other statistical calculations, including but not limited to ROC curve analyses and linear regression. A p < 0.05 
level of confidence was considered statistically significant.

Data availability
The training, validation, and test datasets generated for this study are protected patient information. Some data 
may be available for research purposes from the corresponding author upon reasonable request.

Code availability
The code base for the deep-learning framework makes use of proprietary components and we are unable to pub-
licly release the full code base. However, all experiments and implementation details are described in sufficient 
detail in the Methods to enable independent replication with non-proprietary libraries.
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