Al in the Sciences and Engineering

Symbolic Regression and Model Discovery

Spring Semester 2024

Siddhartha Mishra Ben Moseley

ETH zürich

Course timeline

Tutorials		Lectures				
Mon 12:15-14:00 HG E 5		Wed 08:15-10:00 ML H 44		Fri 12:15-13:00 ML H 44		
19.02.		21.02.	Course introduction	23.02.	Introduction to deep learning I	
26.02.	Introduction to PyTorch	28.02.	Introduction to deep learning II	01.03.	Introduction to PDEs	
04.03.	Simple DNNs in PyTorch	06.03.	Physics-informed neural networks – introduction	08.03.	Physics-informed neural networks - limitations	
11.03.	Implementing PINNs I	13.03.	Physics-informed neural networks – extensions	15.03.	Physics-informed neural networks – theory I	
18.03.	Implementing PINNs II	20.03.	Physics-informed neural networks – theory II	22.03.	Supervised learning for PDEs I	
25.03.	Operator learning I	27.03.	Supervised learning for PDEs II	29.03.		
01.04.		03.04.		05.04.		
08.04.	Operator learning II	10.04.	Introduction to operator learning I	12.04.	Introduction to operator learning II	
15.04.		17.04.	Convolutional neural operators	19.04.	Time-dependent neural operators	
22.04.	GNNs	24.04.	Large-scale neural operators	26.04.	Attention as a neural operator	
29.04.	Transformers	01.05.		03.05.	Windowed attention and scaling laws	
06.05.	Diffusion models	08.05.	Introduction to hybrid workflows I	10.05.	Introduction to hybrid workflows II	
13.05.	Coding autodiff from scratch	15.05.	Neural differential equations	17.05.	Diffusion models	
20.05.		22.05.	Introduction to JAX / symbolic regression	24.05.	Symbolic regression and model discovery	
27.05.	Intro to JAX / Neural ODEs	29.05.	Guest lecture: AlphaFold	31.05.	Guest lecture: AlphaFold	

ETH zürich

Lecture overview

- What is model discovery?
- Challenges of symbolic regression
- Function discovery
 - Al Feynman
 - Genetic algorithms
- Model discovery
 - SINDy
 - Other approaches

Lecture overview

- What is model discovery?
- Challenges of symbolic regression
- Function discovery
 - Al Feynman
 - Genetic algorithms
- Model discovery
 - SINDy
 - Other approaches

Learning objectives

- Understand how symbolic regression (SR) algorithms are designed
- Understand how SR is used for function and model discovery

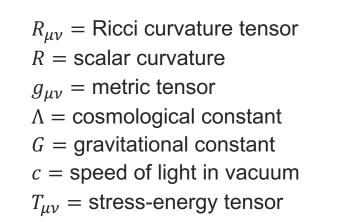
ETHzürich

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Curvature of space-time

Stress-energy-momentum content of space-time



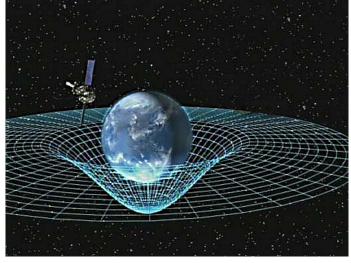
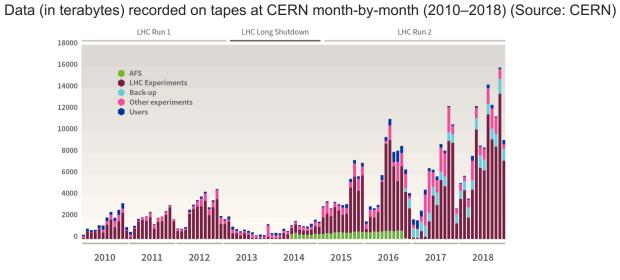


Image source: NASA

ETH zürich

• What if AI could discover the laws of physics?

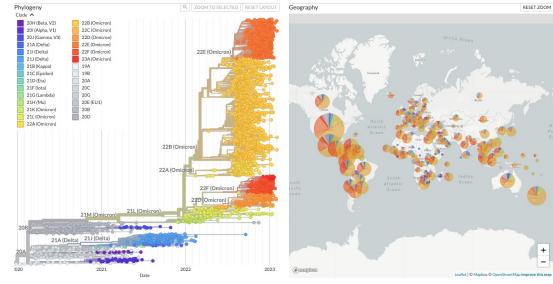
- What if AI could discover the laws of physics?



ETH zürich

Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months

Built with nextstrain/ncov. Maintained by the Nextstrain team. Enabled by data from CSAID Showing 2767 of 2767 genomes sampled between Dec 2019 and Feb 2023.



Source: Nextstrain

Model discovery

Task:

Given observations of a physical system

Find an underlying **model**

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

Function discovery

Task:

Given observations of some function f(x),

 $D = \{ (x_1, f_1), \dots, (x_N, f_N) \}$

Find its **mathematical expression** (= **symbolic regression**)

$$PV = nRT$$

$$F = k \frac{q_1 q_2}{r^2}$$

$$F = hv$$

$$V = IR$$

$$F = k \frac{q_1 q_2}{r^2}$$

$$F = k \frac{q_1 q_2}{r^2}$$

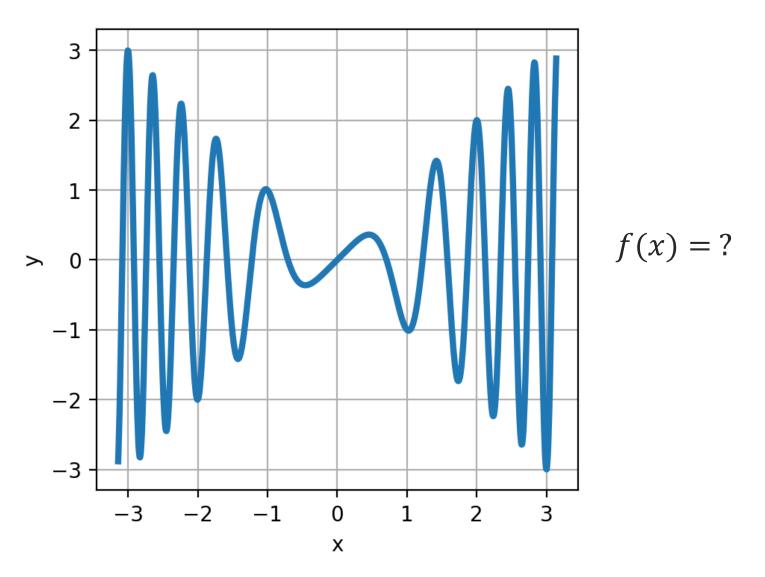
$$F = \sigma A T^4$$

$$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$$

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

ETH zürich

Challenge: guess the function



401-4656-21L AI in the Sciences and Engineering 2024

Challenge: guess the function

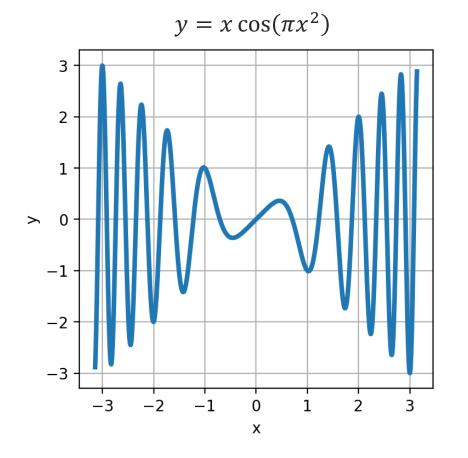
 $y = x \cos(\pi x^2)$ 3 2 1 \geq 0 $^{-1}$ -2 -3 -2 -3 $^{-1}$ 2 3 0 1 Х

How I might guess this function:

- 1. It's oscillatory
- 2. Frequency increases as *x* increases
- 3. Amplitude grows linearly
- 4. Use location of peaks and troughs to derive coefficients

 $\Rightarrow y = x \cos(\pi x^2)$

Symbolic regression vs function fitting



How I might guess this function:

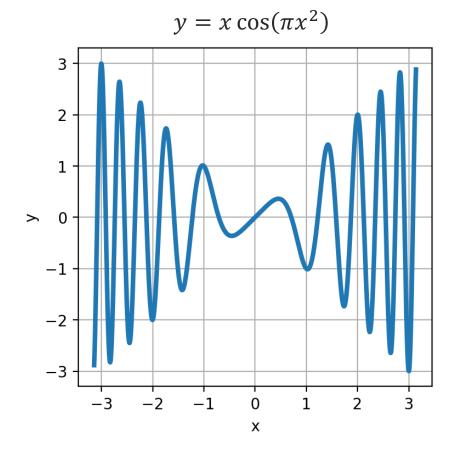
- 1. It's oscillatory
- 2. Frequency increases as *x* increases
- 3. Amplitude grows linearly
- 4. Use location of peaks and troughs to derive coefficients

 $\Rightarrow y = x \cos(\pi x^2)$

How a neural network would fit this function:

- 1. Assume the function has some prior form, e.g. $y = w_2 \sigma(w_1 x + b_1) + b_2$
- 2. Find coefficients which best fit data

Symbolic regression vs function fitting



How I might guess this function:

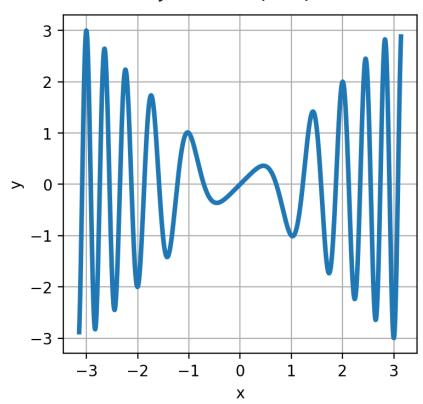
- 1. It's oscillatory
- 2. Frequency increases as *x* increases
- 3. Amplitude grows linearly
- 4. Use location of peaks and troughs to derive coefficients
 - $\Rightarrow y = x \cos(\pi x^2)$

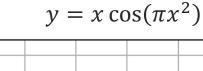
How a neural network would fit this function:

- 1. Assume the function has some prior form, e.g. $y = w_2 \sigma(w_1 x + b_1) + b_2$
- 2. Find coefficients which best fit data

Q: why is SR often harder than function fitting?

Q: why is SR often harder than function fitting?

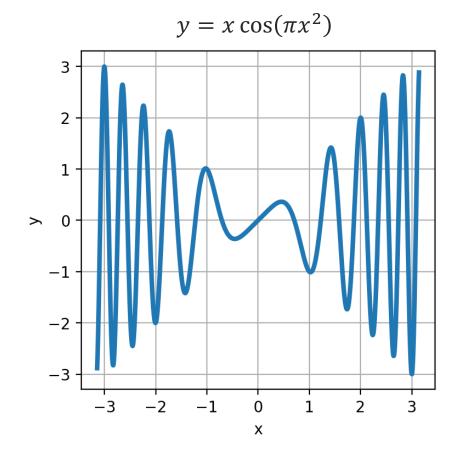




 $y = x \cos(\pi x^2)$ 3 2 1 \succ -1 -2 -3 -2 -3 -1 2 3 0 1 Х

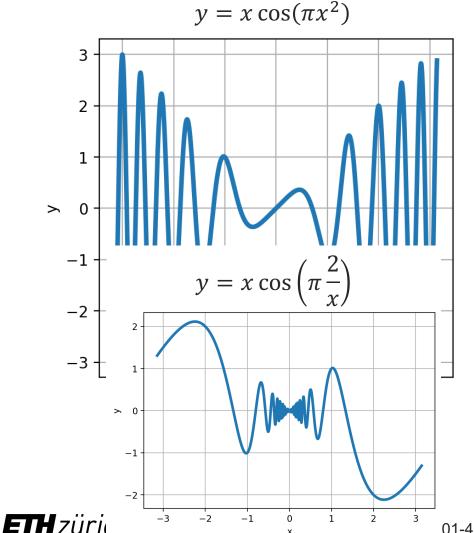
Q: why is SR often harder than function fitting?

• Need to learn **entire expression**, not just coefficients, and we may not know its **length**



Q: why is SR often harder than function fitting?

- Need to learn **entire expression**, not just coefficients, and we may not know its **length**
- The search space is **exponential**
 - There are sⁿ strings of length n for a library of s "elementary operators" (+, -, /, *, sin, cos, ...)



Q: why is SR often harder than function fitting?

• Need to learn **entire expression**, not just coefficients, and we may not know its **length**

There is typically **not** a **smooth** interpolation

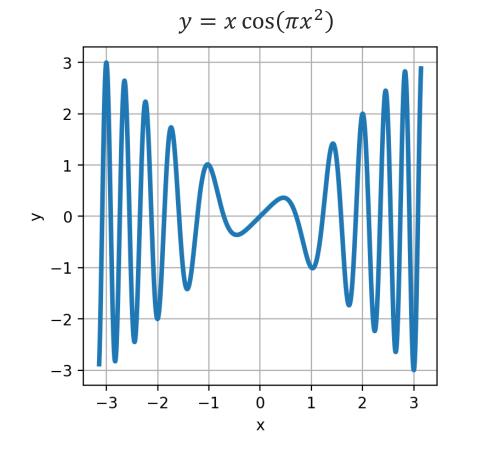
between different expressions (= lack of

- The search space is **exponential**
 - There are sⁿ strings of length n for a library of s "elementary operators" (+, -, /, *, sin, cos, ...)

01-4656-21L AI in the Sciences and Engineering 2024

differentiability)

۲



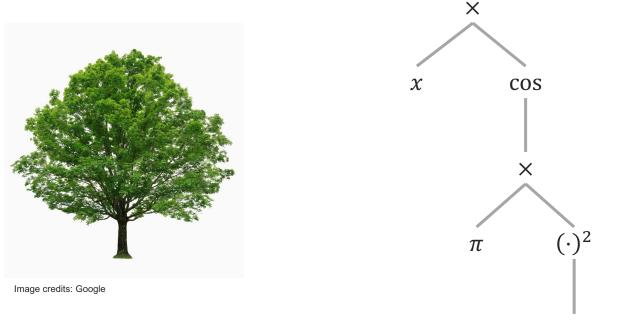
Q: why is SR often harder than function fitting?

- Need to learn **entire expression**, not just coefficients, and we may not know its **length**
- The search space is **exponential**
 - There are sⁿ strings of length n for a library of s "elementary operators" (+, -, /, *, sin, cos, ...)

- There is typically not a smooth interpolation between different expressions (= lack of differentiability)
- With only a finite number of observations (*N*), there may be **many valid** expressions (ill-posed)

Mathematical expressions as trees

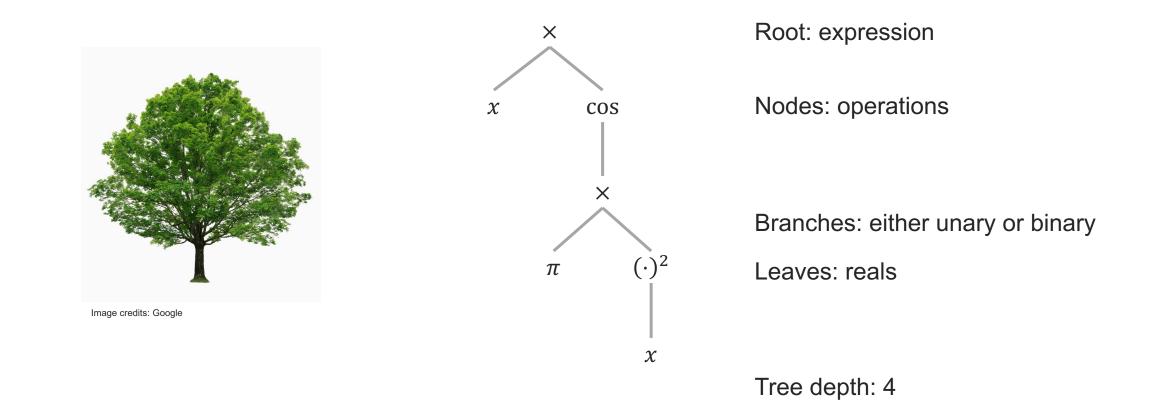
 $y = x\cos(\pi x^2)$



ETH zürich

Mathematical expressions as trees

 $y = x\cos(\pi x^2)$



ETH zürich

Search space

Tree depth: 2, Library: $\{+,\times, ^2, \cos, \sin\}$

$\cos(\cos(x))$	$\sin^2(x)$	$x^2\cos(x)$	$x + x\sin(x)$	xxx^2
sin(cos(x))	$\sin(x) + \cos(x)$	$x^2 + \sin(x)$	$x + x + x^2$	xx + x + x
$\cos^2(x)$	sin(x)cos(x)	$x^2 \sin(x)$	$x + xx^2$	xxx + x
$\cos(x) + \cos(x)$	$\sin(x) + \sin(x)$	$x^2 + x^2$	x + x + x + x	xx + xx
$\cos(x)\cos(x)$	sin(x)sin(x)	$x^{2}x^{2}$	x + xx + x	xxxx
$\cos(x) + \sin(x)$	$\sin(x) + x^2$	$x^2 + x + x$	x + x + xx	
$\cos(x)\sin(x)$	$\sin(x) x^2$	$x^2x + x$	x + xxx	
$\cos(x) + x^2$	$\sin(x) + x + x$	$x^2 + xx$	$\cos(xx)$	65 expressions
$\cos(x) x^2$	$\sin(x)x + x$	x^2xx	sin(xx)	
$\cos(x) + x + x$	$\sin(x) + xx$	$\cos(x+x)$	xx^2	
$\cos(x)x + x$	sin(x)xx	sin(x + x)	$xx + \cos(x)$	
$\cos(x) + xx$	$\cos(x^2)$	$x + x^2$	$xx\cos(x)$	
$\cos(x)xx$	$sin(x^2)$	$x + x + \cos(x)$	$xx + \sin(x)$	
$\cos(\sin(x))$	x^{2^2}	$x + x\cos(x)$	$xx\sin(x)$	
sin(sin(x))	$x^2 + \cos(x)$	$x + x + \sin(x)$	$xx + x^2$	

C С

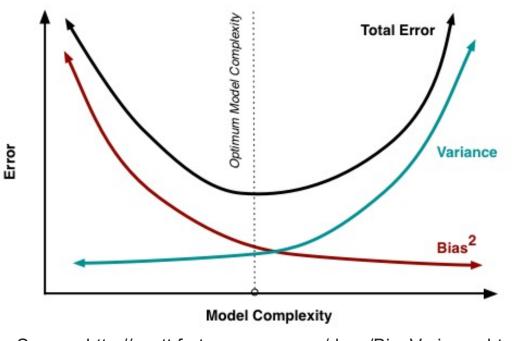
ETH zürich

Pruning

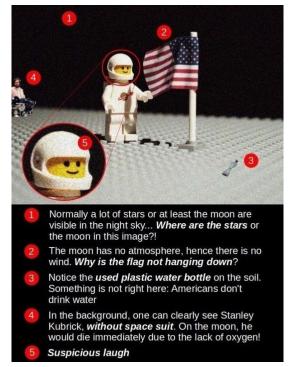
Image credits: Seattle Department of Construction and Inspections

Occam's razor

The simplest explanation is usually the best one



Source: http://scott.fortmann-roe.com/docs/BiasVariance.html



https://9gag.com/gag/5163763

ETH zürich

Requirements

To successfully solve a symbolic regression problem, we need:

1. An assumption (prior) on the structure of the expression

2. A search algorithm

... there's a lot of innovation in both areas!

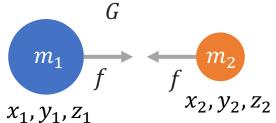
See e.g. here for state-of-the-art reviews:

Makke & Chawla, Interpretable scientific discovery with symbolic regression: a review, AI Review (2024) Landajuela et al, A Unified Framework for Deep Symbolic Regression, NeurIPS (2022)

ETH zürich

- Idea: look for "hidden simplicities" in the expression

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



What simplicities does this function have?

Udrescu and Tegmark, Al Feynman: A physics-inspired method for symbolic regression. Science Advances (2020) Udrescu et al, Al Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. NeurIPS (2020)

N

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Mm^2/kg^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

m

1. Units must match!

N

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Mm^2/kg^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

m

1. Units must match!

 \Rightarrow *f* can transformed into a **dimensionless** function, *g*

$$f = \frac{Gm_1^2}{x_1^2} \frac{\frac{m_2}{m_1}}{\left(\frac{x_2}{x_1} - 1\right)^2 + \left(\frac{y_2}{x_1} - \frac{y_1}{x_1}\right)^2 + \left(\frac{z_2}{x_1} - \frac{z_1}{x_1}\right)^2}$$
$$\equiv \frac{Gm_1^2}{x_1^2} \frac{a}{(b-1)^2 + (c-d)^2 + (e-f)^2} \equiv Cg(a, b, c, d, e, f)$$

N

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Mm^2/kg^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

m

1. Units must match!

 \Rightarrow *f* can transformed into a **dimensionless** function, *g*

$$f = \frac{Gm_1^2}{x_1^2} \frac{\frac{m_2}{m_1}}{\left(\frac{x_2}{x_1} - 1\right)^2 + \left(\frac{y_2}{x_1} - \frac{y_1}{x_1}\right)^2 + \left(\frac{z_2}{x_1} - \frac{z_1}{x_1}\right)^2}$$
$$\equiv \frac{Gm_1^2}{x_1^2} \frac{a}{(b-1)^2 + (c-d)^2 + (e-f)^2} \equiv Cg(a, b, c, d, e, f)$$

What does this do to the search space?

ETH zürich

N

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Mm^2/kg^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

m

1. Units must match!

 \Rightarrow *f* can transformed into a **dimensionless** function, *g*

$$f = \frac{Gm_1^2}{x_1^2} \frac{\frac{m_2}{m_1}}{\left(\frac{x_2}{x_1} - 1\right)^2 + \left(\frac{y_2}{x_1} - \frac{y_1}{x_1}\right)^2 + \left(\frac{z_2}{x_1} - \frac{z_1}{x_1}\right)^2}$$
$$\equiv \frac{Gm_1^2}{x_1^2} \frac{a}{(b-1)^2 + (c-d)^2 + (e-f)^2} \equiv Cg(a, b, c, d, e, f)$$

What does this do to the search space? => Reduces the number of variables

ETH zürich

N

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Mm^2/kg^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

m

1. Units must match!

$$f = Cg(a, b, c, d, e, f)$$

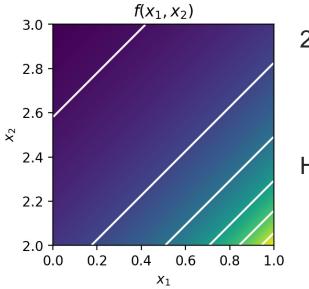
See the paper for how C and the dimensionless variables can be determined (given only the units of f and its independent variables)

Udrescu and Tegmark, AI Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

2. Translational symmetry

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



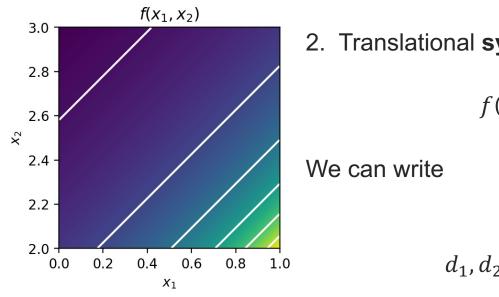
2. Translational symmetry

$$f(..., x_1, x_2, ...) = g(..., x_2 - x_1, ...)$$

How does knowing this reduce the search space?

ETH zürich

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



2. Translational symmetry

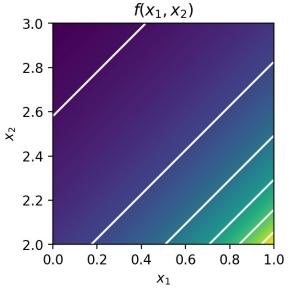
$$f(..., x_1, x_2, ...) = g(..., x_2 - x_1, ...)$$

 $f = g(G, m_1, m_2, d_1, d_2, d_3)$ $d_1, d_2, d_3 = (x_2 - x_1), (y_2 - y_1), (z_2 - z_1)$

Which again reduces the number of variables

ETH zürich

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



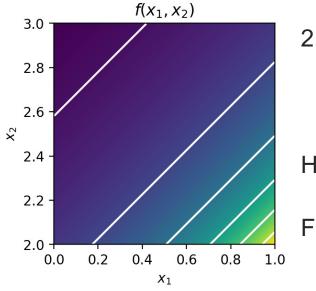
2. Translational symmetry

$$f(\dots, x_1, x_2, \dots) = g(\dots, x_2 - x_1, \dots)$$

How can we test for symmetry (given the ability to query f)?

ETH zürich

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



2. Translational symmetry

$$f(\dots, x_1, x_2, \dots) = g(\dots, x_2 - x_1, \dots)$$

How can we test for symmetry (given the ability to query f)?

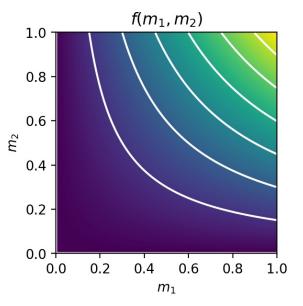
For some constant *a*, test if:

$$f(..., x_1, x_2, ...) = f(..., x_1 + a, x_2 + a, ...) \quad \forall x$$

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

3. Multiplicative separability

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

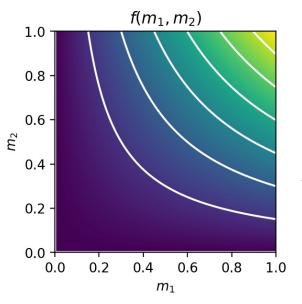


3. Multiplicative separability

$$f = g(G)h(m_1)i(m_2)j(x_1, x_2, y_1, y_2, z_1, z_2)$$

How does knowing this reduce the search space?

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

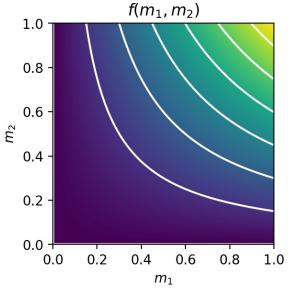


3. Multiplicative separability

$$f = g(G)h(m_1)i(m_2)j(x_1, x_2, y_1, y_2, z_1, z_2)$$

Allows us to carry out four **independent** searches for *g*, *h*, *i*, *j*

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

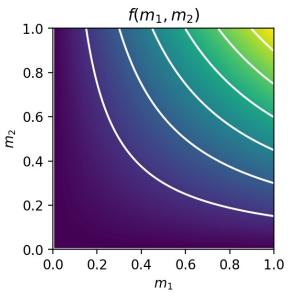


3. Multiplicative separability

 $f = g(G)h(m_1)i(m_2)j(x_1, x_2, y_1, y_2, z_1, z_2)$

How can we test e.g. $f(x_1, x_2) = g(x_1)h(x_2)$ (given the ability to query *f*)?

$$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2) = \frac{Gm_1m_2}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$



3. Multiplicative separability

$$f = g(G)h(m_1)i(m_2)j(x_1, x_2, y_1, y_2, z_1, z_2)$$

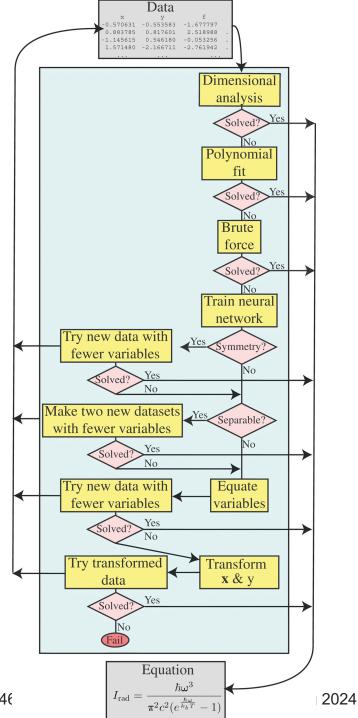
How can we test e.g. $f(x_1, x_2) = g(x_1)h(x_2)$ (given the ability to query *f*)? For some constants c_1 and c_2 , test if:

$$f(x_1, x_2) = \frac{f(x_1, c_2)f(c_1, x_2)}{f(c_1, c_2)} \quad \forall \ \mathbf{x}$$

ETH zürich

	Mystery function	$f(G, m_1, m_2, x_1, x_2, y_1, y_2, z_1, z_2)$
Requires us to query f	Dimensionality analysis	$= \frac{Gm_1^2}{x_1^2} \alpha(a, b, c, d, e, f), \qquad a, b, c, d, e, f = \frac{m_2}{m_1}, \frac{x_2}{x_1}, \frac{y_2}{x_1}, \frac{y_1}{x_1}, \frac{z_2}{x_1}, \frac{y_1}{x_1}$
	Symmetry testing	$=\frac{Gm_1^2}{x_1^2}\beta(a,b,g,h), \qquad g,h=(c-d),(e-f)$
	Separability testing	$=\frac{Gm_1^2}{x_1^2}a\gamma(b,g,h)$
	Brute-force search	$=\frac{Gm_1^2}{x_1^2}a\frac{1}{(b-1)^2+g^2+h^2}$
	Re-substitute variables	$=\frac{Gm_1m_2}{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

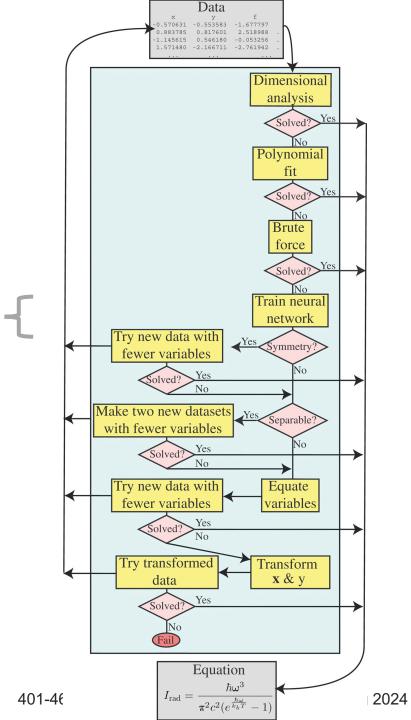
ETH zürich



Udrescu and Tegmark, AI Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)

A neural network $NN(x, \theta) \approx f(x)$ is trained simply so we can query f(x) anywhere

Udrescu and Tegmark, AI Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)

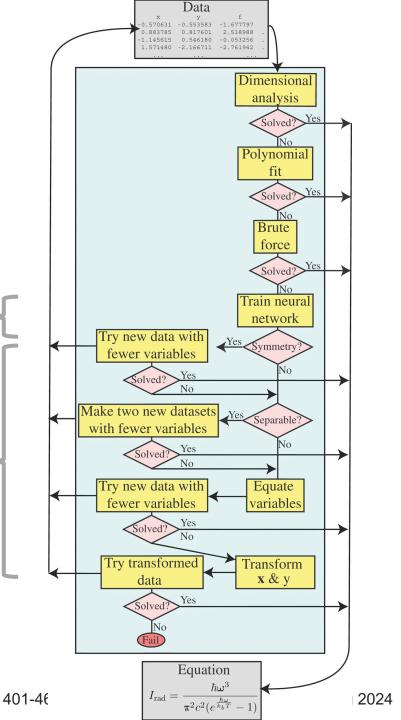


A neural network $NN(x, \theta) \approx f(x)$ is trained simply so we can query f(x) anywhere

-`@

Al Feynman looks for ways to **simplify** the expression to make the search **easier**

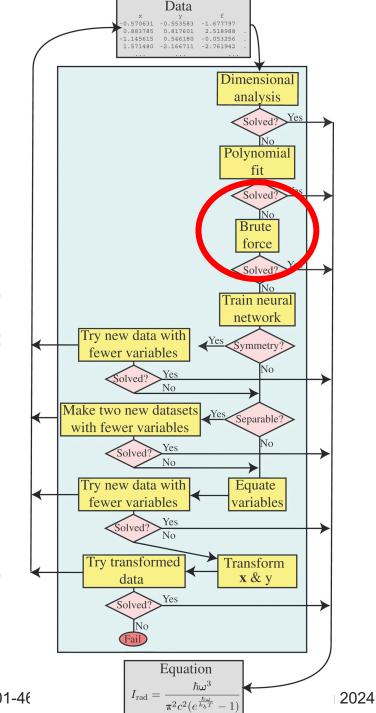
Udrescu and Tegmark, AI Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)



A neural network $NN(x, \theta) \approx$ f(x) is trained simply so we can query f(x) anywhere

AI Feynman looks for ways to simplify the expression to make the search easier

Udrescu and Tegmark, AI Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)



Even so, the resulting search problem may still be hard to solve

We may be able to **improve** on brute-force (combinatorial) search

Requirements

To successfully solve a symbolic regression problem, we need:

1. An assumption (prior) on the structure of the expression

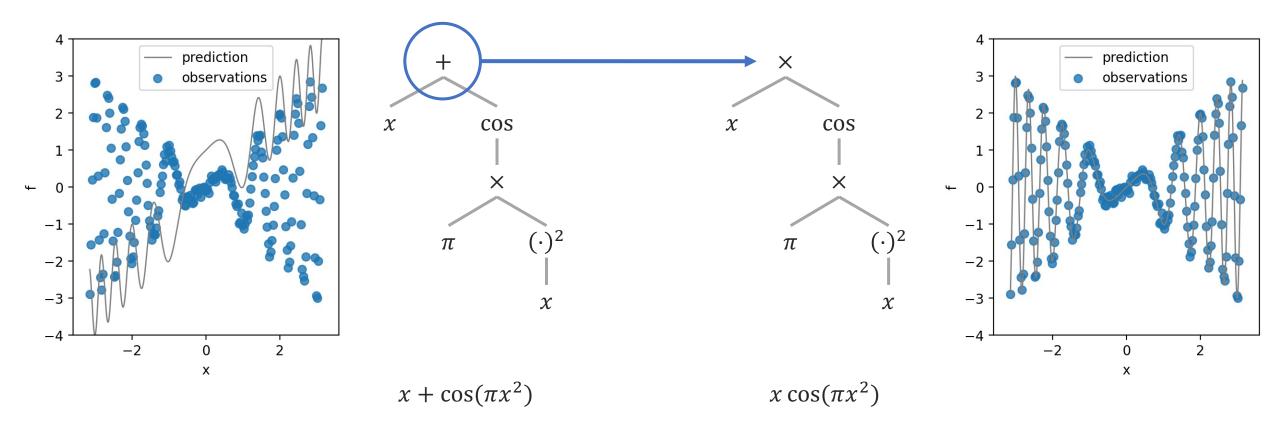
2. A search algorithm

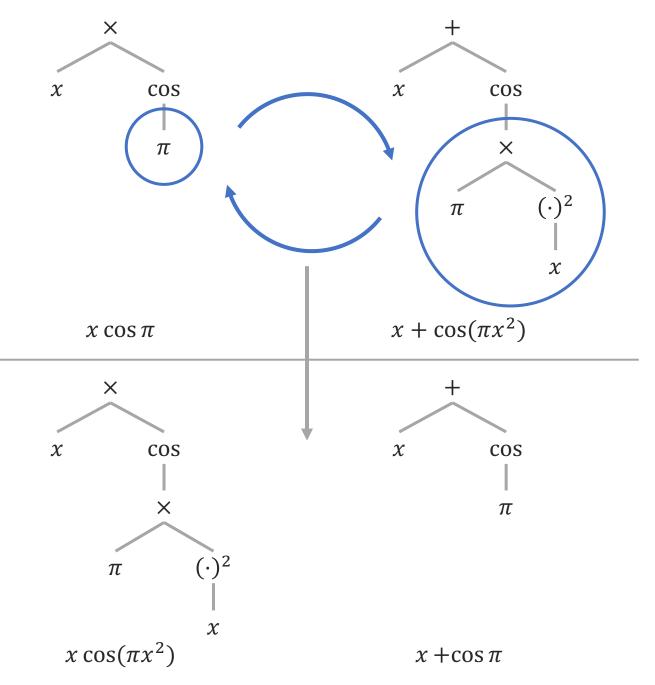
... there's a lot of innovation in both areas!

See e.g. here for state-of-the-art reviews:

Makke & Chawla, Interpretable scientific discovery with symbolic regression: a review, AI Review (2024) Landajuela et al, A Unified Framework for Deep Symbolic Regression, NeurIPS (2022)

Mutation

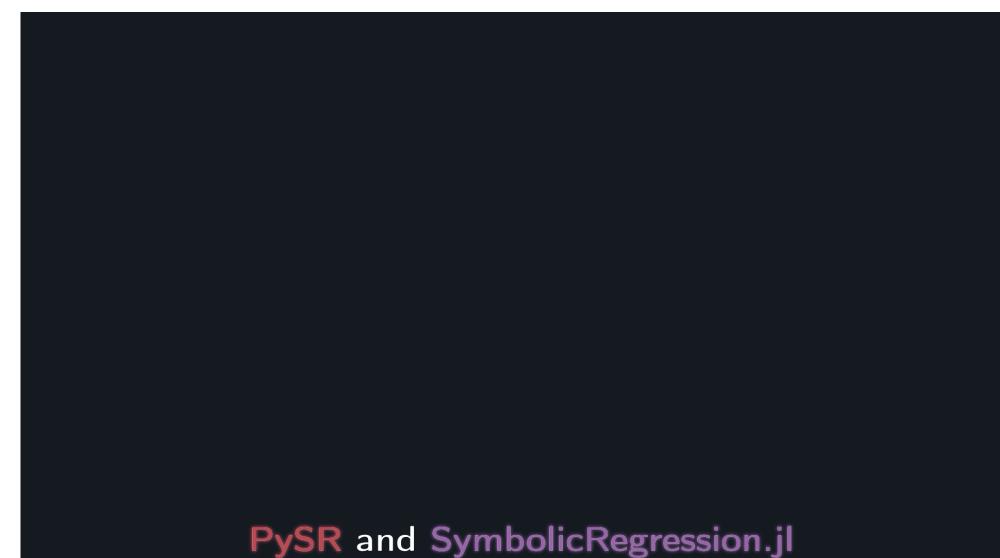




ETH zürich

Genetic search algorithms

- 1. Start with a random population of trees
- 2. Loop:
 - 1. Select "fittest" trees
 - E.g. based on test error
 - 2. Apply "genetic operators" with specified probabilities
 - Mutation
 - Crossover
 - 3. Remove "oldest" trees
- 3. Until an acceptable solution is found



<u>(</u>@`

PySR

github.com/Miles

Machine Learning for Science

SymbolicRegression.jl, ArXiv

Cranmer/PySR

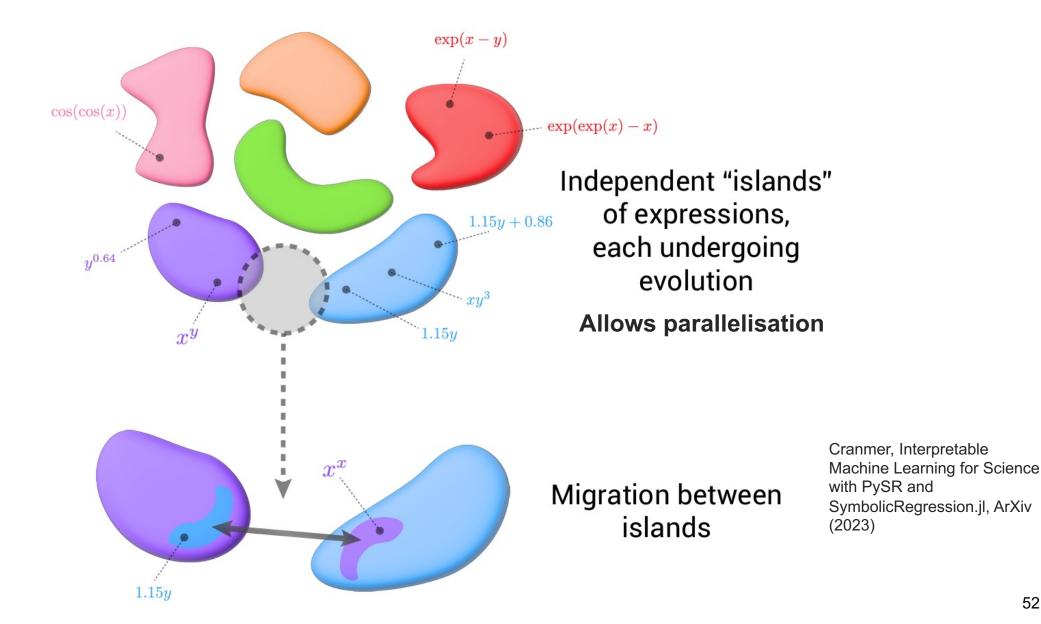
Cranmer, Interpretable

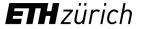
with PySR and

(2023)

Source:

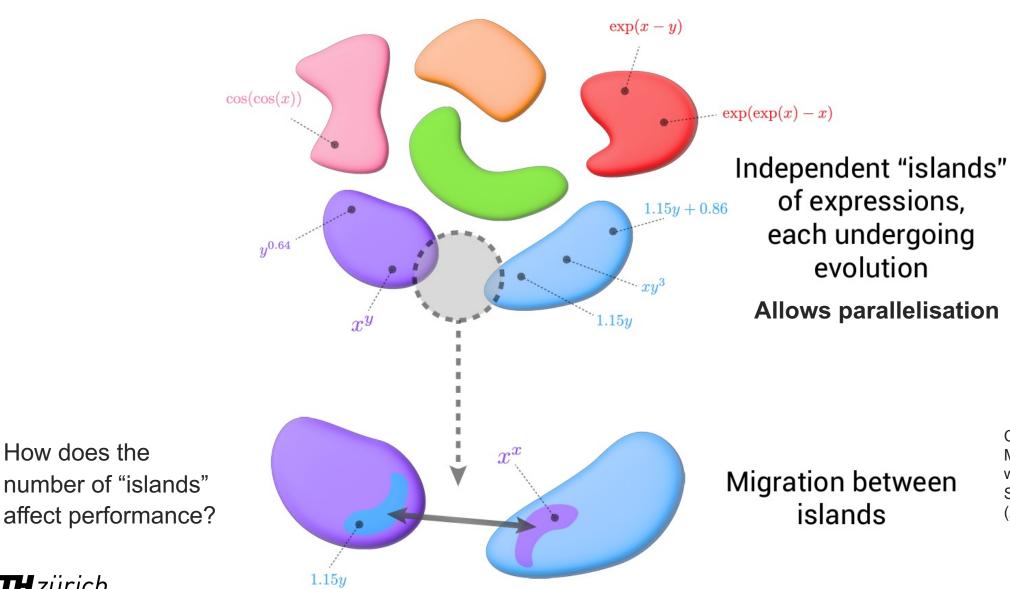
Tournament selection





Tournament selection

ETH zürich

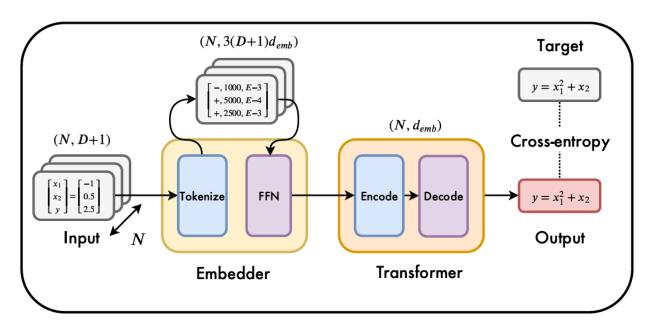


Cranmer, Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl, ArXiv (2023)

Other search algorithms

Goal: find *f* given $D = \{(x_1, f_1), ..., (x_N, f_N)\}$

• **Directly** (no search) using a neural network (e.g. Transformer)

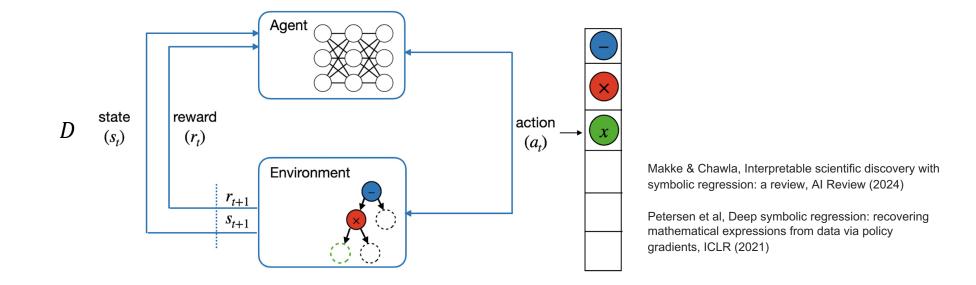


Kamienny et al, End-to-end symbolic regression with transformers, NeurIPS (2022)

Other search algorithms

Goal: find *f* given $D = \{(x_1, f_1), ..., (x_N, f_N)\}$

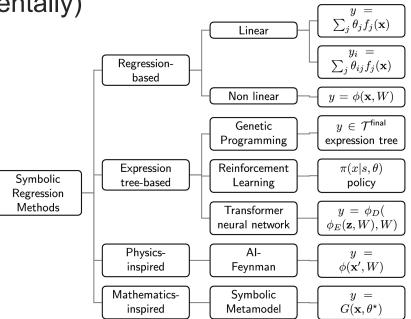
- **Directly** (no search) using a neural network (e.g. Transformer)
- By using reinforcement learning (building expressions incrementally)



Other search algorithms

Goal: find *f* given $D = \{(x_1, f_1), ..., (x_N, f_N)\}$

- Directly (no search) using a neural network (e.g. Transformer)
- By using reinforcement learning (building expressions incrementally)
- By learning a tree search algorithm
- + many others...



Makke & Chawla, Interpretable scientific discovery with symbolic regression: a review, AI Review (2024)

ETH zürich

Lecture overview

- What is model discovery?
- Challenges of symbolic regression
- Function discovery
 - Al Feynman
 - Genetic algorithms
- Model discovery
 - SINDy
 - Other approaches

Learning objectives

- Understand how symbolic regression (SR) algorithms are designed
- Understand how SR is used for function and model discovery

5 min break

Function discovery

Task:

Given observations of some function f(x),

 $D = \{(x_1, f_1), \dots, (x_N, f_N)\}$

Find its mathematical expression

PV = nRT $F = k \frac{q_1 q_2}{r^2}$ $E = h\nu$ $P = \sigma AT^4$

Model discovery

Task:

Given **observations** of a physical system

Find an underlying **model**

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

Function discovery

Task:

Given observations of some function f(x),

 $D = \{(x_1, f_1), \dots, (x_N, f_N)\}$

Find its mathematical expression

 $PV = nRT F = k \frac{q_1 q_2}{r^2}$

E = hv

, i

$$P = \sigma A T^4$$

Model discovery

Task:

Given **observations** of a physical system

Find an underlying **model**

$$m\frac{d^2u}{dt^2} + \mu\frac{du}{dt} + ku = 0$$

- Both can use symbolic regression for discovery
- Model discovery usually combines SR with domain constraints and adds extra operators (e.g. derivatives)

SINDY Sparse Identification of Nonlinear Dynamics

Assume an unknown dynamical system has the form

$$\frac{dx}{dt} = f(x)$$

Task:

Given many examples

Find f(x)

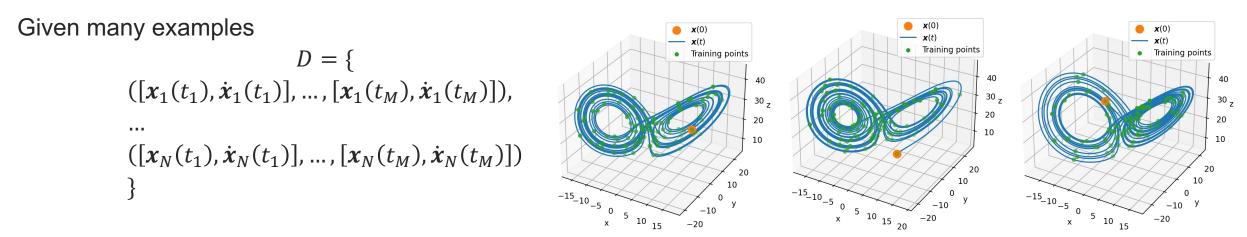
Brunton et al, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, (2016)

Assume an unknown dynamical system has the form

$$\frac{dx}{dt} = f(x)$$

$$\dot{x} = \sigma(y - x)$$
$$\dot{y} = x(\rho - z) - y$$
$$\dot{z} = xy - \beta z$$

Task:



Find f(x)

Brunton et al, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, (2016)

Assume an unknown dynamical system has the form

$$\frac{dx}{dt} = f(x)$$

Task:

Given many examples

 $D = \{ ([\mathbf{x}_{1}(t_{1}), \dot{\mathbf{x}}_{1}(t_{1})], \dots, [\mathbf{x}_{1}(t_{M}), \dot{\mathbf{x}}_{1}(t_{M})]), \dots \\ ([\mathbf{x}_{N}(t_{1}), \dot{\mathbf{x}}_{N}(t_{1})], \dots, [\mathbf{x}_{N}(t_{M}), \dot{\mathbf{x}}_{N}(t_{M})]) \}$

Find f(x)

Brunton et al, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, (2016)

ETH zürich

401-4656-21L AI in the Sciences and Engineering 2024

Note:

We are given measurements of $\dot{x} = f$

Then the training data can simply be written as

$$D = \{(x_1, f_1), \dots, (x_{NM}, f_{NM})\}$$

Which is **the same SR task** as above, except that we need to find a **vectorvalued** function

Assume that f(x) can be written as

 $f^{T}(x) = \phi^{T}(x) \Lambda$

Where $\phi(x)$ is a **library** of expressions

And Λ is an (unknown) **sparse** matrix of coefficients

E.g.
$$\phi^{T}(x) = (1 \ x \ y \ z \ xz \ ...) \begin{pmatrix} 0 & 0 & 0 \\ -\sigma & \rho & 0 \\ \sigma & -1 & 0 \\ 0 & 0 & -\beta \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ \dots & \dots & \dots \end{pmatrix}$$
$$= (\sigma(y-x) \ x(\rho-z) - y \ xy - \beta z)$$

Assume that f(x) can be written as

 $f^T(x) = \phi^T(x) \Lambda$

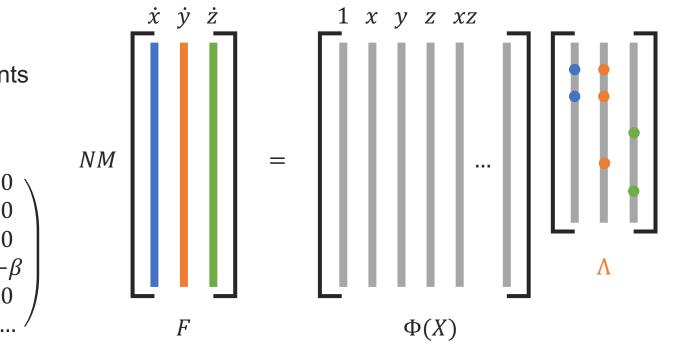
Where $\phi(x)$ is a **library** of expressions

And Λ is an (unknown) **sparse** matrix of coefficients

E.g. $\phi^{T}(x) = (1 \ x \ y \ z \ xz \ \dots) \begin{pmatrix} 0 & 0 & 0 \\ -\sigma & \rho & 0 \\ \sigma & -1 & 0 \\ 0 & 0 & -\beta \\ 0 & -1 & 0 \\ \dots & \dots & \dots \end{pmatrix}$ = $(\sigma(y-x) \ x(\rho-z)-y \ xy-\beta z)$ NM

Then for all our training data

 $D = \{(x_1, f_1), \dots, (x_{NM}, f_{NM})\}$



Assume that f(x) can be written as

 $f^T(x) = \phi^T(x) \Lambda$

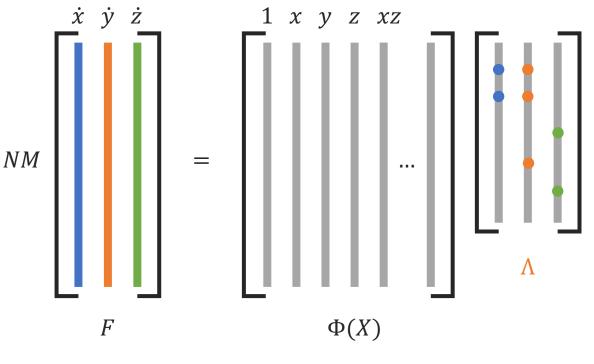
Where $\phi(x)$ is a **library** of expressions

And Λ is an (unknown) **sparse** matrix of coefficients

E.g. $\phi^{T}(x) = (1 \ x \ y \ z \ xz \ \dots) \begin{pmatrix} 0 & 0 & 0 \\ -\sigma & \rho & 0 \\ \sigma & -1 & 0 \\ 0 & 0 & -\beta \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ \dots & \dots & \dots \end{pmatrix}$ = $(\sigma(y-x) \ x(\rho-z) - y \ xy - \beta z)$ NM

Then for all our training data

 $D = \{(x_1, f_1), \dots, (x_{NM}, f_{NM})\}$



This is just (sparse) linear regression

ETH zürich

To successfully solve a symbolic regression problem, we need:

- 1. An **assumption** (prior) on the structure of the expression
- 2. A search algorithm

To successfully solve a symbolic regression problem, we need:

- 1. An **assumption** (prior) on the structure of the expression
- 2. A search algorithm

Expressions must have the form

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{\Lambda}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$

Limited set of operators, e.g.

$$\boldsymbol{\phi}^T = (1, x, y, z, xy, x^2, \dots)$$

To successfully solve a symbolic regression problem, we need:

- 1. An **assumption** (prior) on the structure of the expression

2. A **search** algorithm - Sparse linear regression (e.g. LASSO) to find Λ

Expressions must have the form

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{\Lambda}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$

Limited set of operators, e.g.

$$\boldsymbol{\phi}^T = (1, x, y, z, xy, x^2, \dots)$$

To successfully solve a symbolic regression problem, we need:

- 1. An **assumption** (prior) on the structure of the expression

2. A **search** algorithm - Sparse linear regression (e.g. LASSO) to find Λ

Expressions must have the form

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{\Lambda}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$

Limited set of operators, e.g.

$$\boldsymbol{\phi}^T = (1, x, y, z, xy, x^2, \dots)$$

What are the limitations of SINDy?

To successfully solve a symbolic regression problem, we need:

- 1. An **assumption** (prior) on the structure of the expression
- 2. A **search** algorithm

Sparse linear regression (e.g. LASSO) to find Λ

Expressions must have the form

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{\Lambda}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$

Limited set of operators, e.g.

$$\boldsymbol{\phi}^T = (1, x, y, z, xy, x^2, \dots)$$

What are the limitations of SINDy?

- Requires measurements of x and \dot{x}
- Only learns a first-order ODE

Assume an unknown dynamical system has the form

$$\frac{d^2 \mathbf{z}}{dt^2} = \mathbf{f}(\mathbf{z})$$

Task:

Given many **transformed** observations of *z*

$$D = \{ [X(\mathbf{z}_{1}(t_{1})), ..., X(\mathbf{z}_{1}(t_{M}))], ..., X(\mathbf{z}_{N}(t_{M}))], ..., X(\mathbf{z}_{N}(t_{M}))]$$
....

Find f(z)

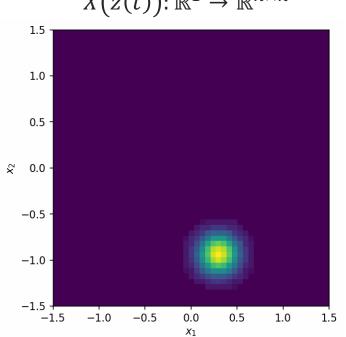
ETH zürich

Champion et al, Data-driven discovery of coordinates and governing equations, PNAS (2019)

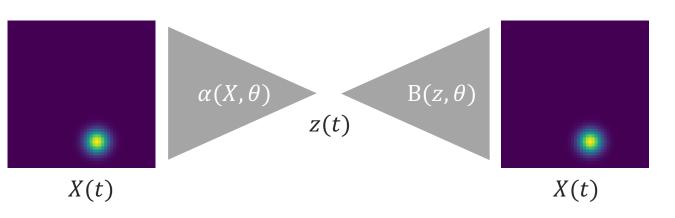
For example, nonlinear pendulum

$$\frac{d^2z}{dt^2} = -\sin(z)$$

Where *z* is the **angle** of the pendulum and *X* is an **image** of the pendulum



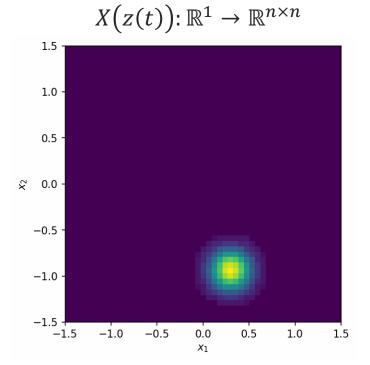
$$X(z(t)): \mathbb{R}^1 \to \mathbb{R}^{n \times n}$$



For example, nonlinear pendulum

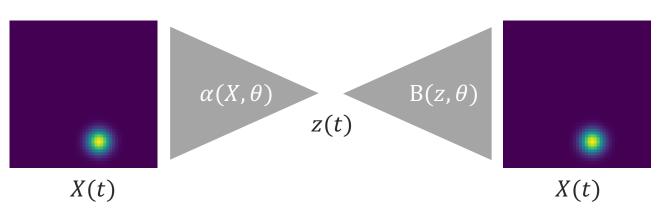
$$\frac{d^2z}{dt^2} = -\sin(z)$$

Where *z* is the **angle** of the pendulum and *X* is an **image** of the pendulum



Champion et al, Data-driven discovery of coordinates and governing equations, PNAS (2019)

ETH zürich



For example, nonlinear pendulum

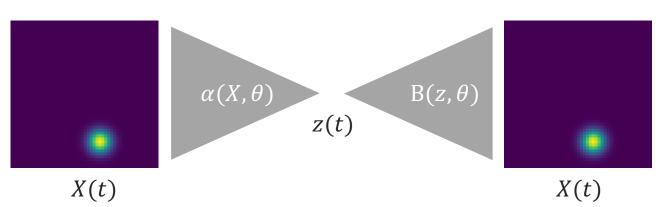
$$\frac{d^2z}{dt^2} = -\sin(z)$$

Where *z* is the **angle** of the pendulum and *X* is an **image** of the pendulum

 x_1

$$L(\theta, \Lambda) = \sum_{D} \left(||X - B(\alpha(X, \theta), \theta)||^{2} + \left\| \frac{d^{2}z}{dt^{2}} - \phi^{T}(\alpha(X, \theta))\Lambda \right\|^{2} + ||\Lambda||^{1} \right)$$
Reconstruction loss SINDy loss
Champion et al, Data-driven discovery of coordinates and governing
equations, PNAS (2019)
$$X(z(t)): \mathbb{R}^{1} \to \mathbb{R}^{n \times n}$$

ETH zürich



For example, nonlinear pendulum

$$\frac{d^2z}{dt^2} = -\sin(z)$$

Where *z* is the **angle** of the pendulum and *X* is an image of the pendulum

0.0

*X*1

0.5

$$L(\theta, \Lambda) = \sum_{D} \left(\|X - B(\alpha(X, \theta), \theta)\|^{2} + \left\| \frac{d^{2}z}{dt^{2}} - \phi^{T}(\alpha(X, \theta))\Lambda \right\|^{2} + \|\Lambda\|^{1} \right) \xrightarrow{1.5} X(z(t)): \mathbb{R}^{1} \to \mathbb{R}^{n \times n}$$

Reconstruction loss SINDy loss
Where $\frac{d^{2}z}{dt^{2}}$ can be estimated numerically e.g.
 $\frac{d^{2}z}{dt^{2}} \approx \frac{\alpha(X(t+1), \theta) - 2\alpha(X(t), \theta) + \alpha(X(t-1), \theta)}{\delta t^{2}}$
Champion et al, Data-driven discovery of coordinates and governing equations, PNAS (2019)

ETH zürich

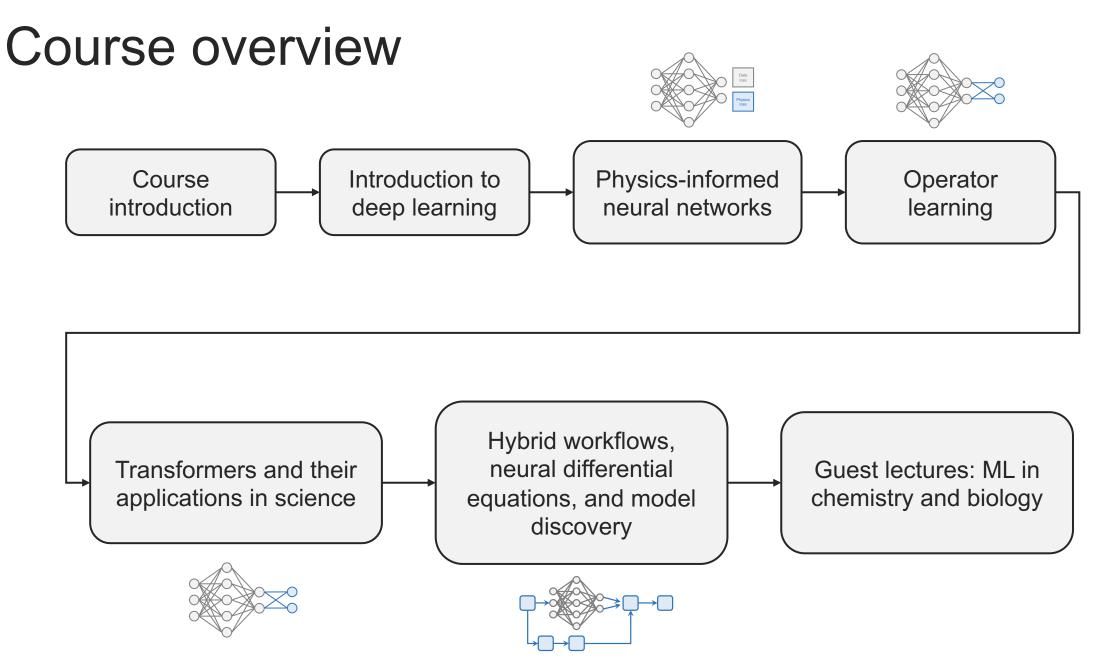
equations, PNAS (2019)

Lecture summary

- Function and model discovery is usually extremely challenging because of the exponential search space
- We can **prune** the search space by using **domain-specific** constraints
- Many different pruning strategies and search algorithms exist

Course learning objectives

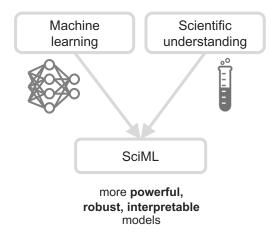
- Aware of advanced **applications** of AI in the sciences and engineering
- Familiar with the **design**, **implementation**, and **theory** of these algorithms
- Understand the **pros** and **cons** of using AI and deep learning for science
- Understand key scientific machine learning **concepts** and themes



ETH zürich

Scientific machine learning

Hamiltonian neural networks Learned sub-grid processes Hidden physics models DeepONets Differentiable simulation Fourier neural operators Encoding conservation laws Colver-in-the-loop Physics-constrained Gaussian processes Physics-informed neural networks AI Feynman AlphaFoldLearned regularisation Physics-informed neural operators Encoding physical symmetries Neural ODEs



Some key takeaways

- There are both pros and cons of using deep learning for science
- Incorporating scientific understanding into ML usually **improves** performance
 - There are a plethora of SciML approaches; chose the one which **suits** your problem
 - SciML approaches can be as **flexible** (learnable) or as **inflexible** (unlearnable) as necessary
 - SciML approaches **still** suffer from the limitations of deep neural networks (generalisation, lack of interpretability, optimisation challenges, ...)
- Al can be applied to:
 - many different problems (simulation, inversion, data assimilation, control, model discovery,
 ...)
 - many different fields
- Truly interdisciplinary research is required to solve grand challenges in science

Impactful directions

Search / optimisation

Scientific applications

Inverse problems Model discovery Control Representation

"Every model is approximate" Finite amount of computing power

AI applications

Planning Reasoning Learning

. . .

Hierarchical representations Abstract features and concepts

