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Course timeline

Tutorials

Mon 12:15-14:00 HG E 5

26.02.
04.03.
11.03.
18.03.
25.03.

08.04.

22.04.

29.04.

06.05.

13.05.

27.05.

Introduction to PyTorch
Simple DNNs in PyTorch
Implementing PINNSs |
Implementing PINNSs Il

Operator learning |

Operator learning |l

GNNs
Transformers
Diffusion models

Coding autodiff from scratch

Intro to JAX / Neural ODEs

ETHzurich

Wed 08:15-10:00 ML H 44
21.02.
28.02.
06.03.
13.03.
20.03.
27.03.

10.04.
17.04.
24.04.

08.05.
15.05.
22.05.
29.05.

Lectures

Introduction to deep learning Il 01.03.
Physics-informed neural networks — introduction 08.03.
Physics-informed neural networks — extensions  15.03.

Physics-informed neural networks — theory |l 22.03.

Supervised learning for PDEs Il

Introduction to operator learning | 12.04.
Convolutional neural operators 19.04.
Large-scale neural operators 26.04.

03.05.
Introduction to hybrid workflows | 10.05.
Neural differential equations 17.05.
Introduction to JAX / symbolic regression 24.05.
Guest lecture: AlphaFold 31.05.

401-4656-21L Al in the Sciences and Engineering 2024

Fri 12:15-13:00 ML H 44

Course introduction 23.02.

Introduction to deep learning |

Introduction to PDEs

Physics-informed neural networks - limitations
Physics-informed neural networks — theory |

Supervised learning for PDEs |

Introduction to operator learning |l
Time-dependent neural operators

Attention as a neural operator

Windowed attention and scaling laws
Introduction to hybrid workflows |l

Diffusion models

Symbolic regression and model discovery

Guest lecture: AlphaFold



Lecture overview

What is model discovery?

Challenges of symbolic regression

Function discovery
* Al Feynman

« Genetic algorithms

Model discovery

. SINDy

» Other approaches

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Lecture overview Learning objectives

What is model discovery? « Understand how symbolic regression (SR)

algorithms are designed

Challenges of symbolic regression
* Understand how SR is used for function

Function discovery

. Al Feynman and model discovery

« Genetic algorithms

Model discovery

. SINDy

» Other approaches

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Discovering physics

8nlG
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Discovering physics

R, = Ricci curvature tensor
R = scalar curvature

g = metric tensor

A = cosmological constant
G = gravitational constant

¢ = speed of light in vacuum

T,y = stress-energy tensor

ETHzurich

1 8nG
R/,n/ - ERguv + Aguv — C—4Tuv
Curvature of space-time Stress-energy-momentum

content of space-time

Image source: NASA
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Discovering physics

What if Al could discover the laws of physics?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Discovering physics

- What if Al could discover the laws of physics?

Genomic epidemiology of SARS-CoV-2 with subsampling focused globally over the past 6 months
& Built with nextstrain/ncov. Maintained by the Nextstrain team. Enabled by data from (SEI[)-
Showing 2767 of 2767 genomes sampled between Dec 2019 and Feb 2023.

Data (in terabytes) recorded on tapes at CERN month-by-month (2010-2018) (Source: CERN) Piyicseny Geography
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Source: Nextstrain
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Model discovery

ETHzurich

Task:
Given observations of a physical system

2  _

Find an underlying model

d2u+ du
mdt2 “dt

+ku=20

401-4656-21L Al in the Sciences and Engineering 2024



Function discovery

ETHzurich

Task:

Given observations of some function f(x),

D = {(xlr fl)' e (xN'fN)}

Find its mathematical expression (= symbolic regression)

P 1
_ - E-p
PV =nRT L el + 1
F =k
T
= hv
P = gAT?
V = IR E=

n,sinf; = n, sinb,

401-4656-21L Al in the Sciences and Engineering 2024

10



Challenge: guess the function

ETHzurich



Challenge: guess the function

y = x cos(mx?) How | might guess this
function:

* ** 1. It's oscillatory
“ n ” 2. Frequency increases as

x increases
>~ 0 3. Amplitude grows linearly
4. Use location of peaks

-1+ U “ and troughs to derive
| v * “ “ coefficients

= y = x cos(mx?)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Symbolic regression vs function fitting

y = x cos(mx?) How | might guess this How a neural network would
3 function: fit this function:
2 1 * * * * 1. It's oscillatory 1. Assume the function has
. ﬂ n ” 2. Frequency increases as some prior form, e.g.
x increases y =w,o(w;x+ b))+ b,
>~ 0 3. Amplitude grows linearly 2. Find coefficients which
4. Use location of peaks best fit data

= y = x cos(mx?)

-1+ U “ and troughs to derive
N w * “ “ % coefficients

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 13



Symbolic regression vs function fitting

y = x cos(mx?) How | might guess this How a neural network would
3 function: fit this function:
2 1 * * * * 1. It's oscillatory 1. Assume the function has
. ﬂ n ” 2. Frequency increases as some prior form, e.g.
x increases y =w,o(w;x+ b))+ b,
>~ 0 3. Amplitude grows linearly 2. Find coefficients which
4. Use location of peaks best fit data
7 | “ and troughs to derive
. * “ “ % coefficients
= y = x cos(mx?)
_3

Q: why is SR often harder than function fitting?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 14



Challenges of symbolic regression

Q: why is SR often harder than function fitting?
y = x cos(mx?)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Challenges of symbolic regression

Q: why is SR often harder than function fitting?
y = x cos(mx?)

* Need to learn entire expression, not just
* coefficients, and we may not know its length

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Challenges of symbolic regression

y = x cos(mx?)

Q: why is SR often harder than function fitting?

* Need to learn entire expression, not just
coefficients, and we may not know its length

 The search space is exponential
» There are s™ strings of length n for a library of
s “elementary operators” (+, -, /, ¥, sin, cos, ...)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024
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Challenges of symbolic regression

Q: why is SR often harder than function fitting?
y = x cos(mx?)

* Need to learn entire expression, not just
* coefficients, and we may not know its length

 The search space is exponential
» There are s™ strings of length n for a library of

- 0 s “elementary operators” (+, -, /, ¥, sin, cos, ...)
1
—17 B 2 * There is typically not a smooth interpolation
] Y = XC0s (n x) between different expressions (= lack of
21 differentiability)
_3 - 1

E’HZUfi( coo7 7 2 ' i ’ 01-4656-21L Al in the Sciences and Engineering 2024
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Challenges of symbolic regression

Q: why is SR often harder than function fitting?
y = x cos(mx?)

* Need to learn entire expression, not just
* coefficients, and we may not know its length

 The search space is exponential
» There are s™ strings of length n for a library of
- 0 s “elementary operators” (+, -, /, ¥, sin, cos, ...)

A

between different expressions (= lack of

—11 “ U “ % * There is typically not a smooth interpolation
* differentiability)

3 2 -1 0 1 2 3 - With only a finite number of observations (N), there
X may be many valid expressions (ill-posed)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 19



Mathematical expressions as trees

y = x cos(mx?)

X COS

T ()*

Image credits: Google

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Mathematical expressions as trees

ETHzurich

Image credits: Google

y = x cos(mx?)

X Root: expression

X cosS Nodes: operations

Branches: either unary or binary

T (+)? Leaves: reals

Tree depth: 4

401-4656-21L Al in the Sciences and Engineering 2024
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Search space

cos(cos(x))
sin(cos(x))
cos?(x)
cos(x) + cos(x)
cos(x)cos(x)
cos(x) + sin(x)
cos(x)sin(x)
cos(x) + x*
cos(x) x?
cos(x) +x +x
cos(x)x + x
cos(x) + xx
cos(x)xx
cos(sin(x))
sin(sin(x))

ETHzurich

Tree depth: 2, Library: {+,%, *2, cos, sin}

sin”(x) x%cos(x)
sin(x) + cos(x) x% + sin(x)
sin(x)cos(x) x%sin(x)
sin(x) + sin(x) x% + x*
sin(x)sin(x) x2x?
sin(x) + x?2 x‘+x+x
sin(x) x? x%x + x
sin(x) + x + x x% + xx
sin(x)x + x x%xx
sin(x) + xx cos(x + x)
sin(x)xx sin(x + x)
cos(x?) x + x?
sin(x?) x + x + cos(x)
x2° x + x cos(x)
x? + cos(x) x + x + sin(x)

x + x sin(x)
x + x + x*
x + xx*
X+Xx+x+x
X+ xx+x
X+ x+ xx
X + xxx
cos(xx)
sin(xx)
xx?

xx + cos(x)
xx cos(x)
xx + sin(x)
xx sin(x)
xx + x°

401-4656-21L Al in the Sciences and Engineering 2024

XXX
XX+ x+x
Xxx + x
xXx + xx
XXXX

65 expressions

22



Pruning

ETHzurich

Image credits: Seattle Department of Construction and Inspections
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Occam’s razor

The simplest explanation is usually the best one

A 2
s - Total Error
% :
O
g :
=
S
i £ .
) 2 Variance
b &)
Loy
w
Normally a lot of stars or at least the moon are
visible in the night sky... Where are the stars or
the moon in this image?!
Bi The moon has no atmosphere, hence there is no
1as wind. Why is the flag not hanging down?
- I — Notice the used plastic water bottle on the soil.
. Something is not right here: Americans don't
ral = drink water
. In the background, one can clearly see Stanley
Model Complexrty Kubrick, without space suit. On the moon, he
would die immediately due to the lack of oxygen!
Source: http://scott.fortmann-roe.com/docs/BiasVariance.html Stlipieious i

https://9gag.com/gag/5163763

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024



Requirements

To successfully solve a symbolic regression problem, we need:
1. An assumption (prior) on the structure of the expression

2. Asearch algorithm

... there’s a lot of innovation in both areas!

See e.g. here for state-of-the-art reviews:
Makke & Chawla, Interpretable scientific discovery with symbolic regression: a review, Al Review (2024)
Landajuela et al, A Unified Framework for Deep Symbolic Regression, NeurlPS (2022)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

ETHzurich

-@)- Idea: look for “hidden simplicities” in the expression

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

G
Q-0

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

X Z
X1, V1,21 2, Y2,2Z7

What simplicities does this function have?

Udrescu and Tegmark, Al Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)
Udrescu et al, Al Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. NeurlPS (2020)

401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

N

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

1. Units must match!

Nm2/kg? kg
Gmym,
Xy —x1)% + (V2 —y1)* + (25 — 71)?
m

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

ETHzurich

Nm2/kg? kg
(G ) Gmym,
;m ;m ;x ;x; ) ;Z;Z —
2 X0 X2 Y0 Y2 21 22) = 0 T )+ (s — y)2 + (2 — 21)?
m

1. Units must match!

= f can transformed into a dimensionless function, g

m;
o Gm m
R R
X1 X1 X1 X1 X1
_ Gmf a

= G-t c—dr+(e—pr_ d@beded

401-4656-21L Al in the Sciences and Engineering 2024

28



Al Feynman

ETHzurich

Nm2/kg? kg
(G ) Gmym,
;m ;m ;x ;x; ) ;Z;Z —
2 X0 X2 Y0 Y2 21 22) = 0 T )+ (s — y)2 + (2 — 21)?
m

1. Units must match!

= f can transformed into a dimensionless function, g

m;
f:Gm% m,
2 2 2 2
T G
= Gmi : =Cg(a,b,c,d,e,f)

x2 (b—1)24(c—d)?+ (e —)?

What does this do to the search space?
401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

ETHzurich

N Nm2/kg?2 kg
Gmym,
Xy —x1)% + (V2 —y1)? + (22 — 21)?
m

) —
f(G,my, My, X1, X2, Y1, Y2, 21, Z2) (

1. Units must match!

= f can transformed into a dimensionless function, g

m;

f_Gm% m,
X3 (ﬁ_1)2+(&_h)2+(z_z_ﬂ)2
X4 X1 X1 X1 X

_Gm% a _C
— = 0
x2 (b—1)2%+ (c—d)?+ (e —? a,b,c,a,e,

What does this do to the search space? => Reduces the number of variables
401-4656-21L Al in the Sciences and Engineering 2024 30



Al Feynman

ETHzurich

N Nm2/kg? kg
(G ) Gmym,
;m ;m ;x ;x ) ) yZ1,Z —
12, X1 X2 Y0 V2, 210 22 (X2 —x1)% + (2 —y1)?* + (22 — 21)?
m

1. Units must match!
f=Cg(ab,cdef)
See the paper for how C and the dimensionless variables can

be determined (given only the units of f and its independent
variables)

Udrescu and Tegmark, Al Feynman: A physics-inspired method for symbolic regression. Science Advances (2020)

401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

Gmym,

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

X2 = X1)% + (2 = y1)? + (22 — 21)?

2. Translational symmetry

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

32



Al Feynman

Gmym,

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

fix1, x2)

How does knowing this

X2 = Xx1)% + (2 = y1)? + (22 — 21)?

2. Translational symmetry

f("'»xler» ) — g(---»xz — X1, )

reduce the search space?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

Gmym,

G, mq{, My, X1,X2,V1, V2,21, %) =
J (G, M, 20, X2, Y10 V2 200 22) = N~y 4 (25 — 2,)2

fix1, x2)

2. Translational symmetry

f("'»xler» ) — g(---»xz — X1, )

We can write

f = g(Gr mq, my, dlr dzr d3)
dy,dy,ds = (X3 —x1), (2 —y1), (22 — 21)

Which again reduces the number of variables

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

fix1, x2)

2. Translational symmetry

f("'»xler» ) — g(---»xz — X1, )

How can we test for symmetry (given the ability to query f)?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

fix1, x2)

2. Translational symmetry
f( y X1, X2, e ) — g( y X2 T X9, )
How can we test for symmetry (given the ability to query f)?

For some constant a, test if:

fl,x1,%9,..)=f(,x; +a,x,+a,..) Vx

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Al Feynman

Gmym,

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

X2 = X1)% + (2 = y1)? + (22 — 21)?

3. Multiplicative separability

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

Gmym,

G, mq{, My, X1,X2,V1, V2,21, %) =
J (G, M, 20, X2, Y10 V2 200 22) = N~y 4 (25 — 2,)2

flm1, my)

3. Multiplicative separability

f = g(G)h(my)i(my)j(x1, X2, Y1, V2, Z1, Z2)

How does knowing this reduce the search space?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

ETHzurich

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

3. Multiplicative separability

f = g(G)h(my)i(my)j(x1, X2, Y1, V2, Z1, Z2)

Allows us to carry out four independent searches for g, h, i, j

401-4656-21L Al in the Sciences and Engineering 2024

39



Al Feynman

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

flm1, my)

3. Multiplicative separability

f = g(G)h(my)i(my)j(x1, X2, Y1, V2, Z1, Z2)

How can we test e.g. f(x1,x,) = g(xy)h(x,) (given the ability
to query f)?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

ETHzurich

Gmym,
Xz = %)% + (V2 =y1)? + (22 — 21)?

f(G,my,my, X1, X2, Y1, Y2, 21, 22) = (

3. Multiplicative separability

f = g(G)h(my)i(my)j(x1, X2, Y1, V2, Z1, Z2)

How can we test e.g. f(x1,x,) = g(xy)h(x,) (given the ability

to query f)?
For some constants c; and c¢,, test if:

f(beZ)f(Cl»xZ)
f(C1; CZ)

401-4656-21L Al in the Sciences and Engineering 2024
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Al Feynman

MySteW funCt|On f(G,ml,mz,xl,xZ,yl,yz,Zl,Zz)

2
Gmj
2

m; Xz Y2 Y1 22 Y1
my Xy Xy X1 Xy Xq

Dimensionality analysis = a(a,b,c,d,e,f), a,b,c,d,ef=

Xq
: Gm?
Symmetry testing = B(a,b,g,h), g, h=(c—d),(e—9
1
Requires N _ - Gm?
us to query Separability testing =2 ay(b, g,h)
f
_ Gmj 1

Brute-force search

BN Y

Gmym,
(X2 —x1)% + (Y2 —y1)* + (22 — 21)?

Re-substitute variables =

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



x
-0.570631
0.883785
-1.145615
1.571480

Data

=[-553583
0.817601
0.546180
-2.166711
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fit
@Yﬁs P
No
Brute
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>
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[No
Yes »
lved?
@NO < 4
T
Ma.ke two new Qatasets Yes Grarable)
with fewer variables
INo
Yes
Solved? >
@NO » 4
>
P Try new data with| Equate
N fewer variables | variables
Yo
olved? N‘:')S >
Try transformed ‘\> Transform
Udrescu and Tegmark, Al Feynman: A physics-inspired data P x&y
method for symbolic regression. Science Advances (2020) Solvedr>TES )
No
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Full workflow

A neural network NN(x, 0) =
f(x) is trained simply so we

Data

x

£
-1.677797
2.518988 .
=0, 0532565
-2.761942 .

=0-570631 = -"553583
>0.883755 0.817601
-1.145615 0.546180

1.571480 -2.166711

can query f(x) anywhere

A

Udrescu and Tegmark, Al Feynman: A physics-inspired
method for symbolic regression. Science Advances (2020)

ETH:zurich 401-4¢

Dimensional
analysis
4<:§§§IiE§§:>YbS ):
No '
Polynomial
fit
@Yes }
No
Brute
force
@Yes >
_ No
Train neural
network
Try new data with| v, >
S mmetry?’
fewer variables 4 7
N
No N
7
Make two new datasets :
: : Jis Separable?
with fewer variables
INo
No N
»
Try new data with Equate
. A .
fewer variables | variables
olved? Y‘:')S >
Try transformed ‘\> Transform
data e x&y
ies
Solved? —>
No
Equation (J
hw? 1
Iraa = TR
w2c2(e™T — 1)

| 2024
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Full workflow

\ ’
@

A neural network NN(x, 0) =
f(x) is trained simply so we
can query f(x) anywhere

Al Feynman looks for ways to
simplify the expression to
make the search easier

Udrescu and Tegmark, Al Feynman: A physics-inspired
method for symbolic regression. Science Advances (2020)

ETHzurich

x

S0 K763 1 =—N"E53583 =1 677707
>0.883755 0.817601 2.518988 .
-1.145615 0.546180 -0.053256 .
1.571480 -2.166711 -2.761942 .

Data

£

A

401-4¢

Dimensional
analysis
@Yes ;
No '
Polynomial
fit
@Yes }
No
Brute
force
@Yes >
_ No
Train neural
network
Try new data with| v, >
S mmetry?’
fewer variables 4 7
N
No N
7
Make two new datasets ]
: : Jis Separable?
with fewer variables
INo
No N
>
Try new data with Equate
. A .
fewer variables | variables
Yes
lved? >
olve No >
Try transformed ‘\> Transform
data e x&y
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Solved? —>
No
Equation (J
hw? 1
1, rads=

hw
722 (6 KE L
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Full workflow

A neural network NN(x, 0) =
f(x) is trained simply so we

can query f(x) anywhere

. Al Feynman looks for ways to
-@): simplify the expression to
make the search easier

A

Udrescu and Tegmark, Al Feynman: A physics-inspired
method for symbolic regression. Science Advances (2020)

ETH:zurich 401-4¢

Dimensional
analysis
Even so, the resulting search A
problem may still be hard to
solve
[No
Train neural
twork .
T o T (_%& We may be able to improve on
fevzm;bfs Ko brute-force (combinatorial)
olved? >2<8 >
- > search
Make two new datasets| e i,
with fewer variables - ;
<>Yes b »
Solved? >
No >
Try new data with| Equate
fewer variables | variables
olved > >
No
Try transformed ‘\> Transform
data B x&y
Solved > —>
No
Gy
Equation (J
T hw? 1
Ll ) | 2024 46




Requirements

To successfully solve a symbolic regression problem, we need:
1. An assumption (prior) on the structure of the expression

2. Asearch algorithm

... there’s a lot of innovation in both areas!

See e.g. here for state-of-the-art reviews:
Makke & Chawla, Interpretable scientific discovery with symbolic regression: a review, Al Review (2024)
Landajuela et al, A Unified Framework for Deep Symbolic Regression, NeurlPS (2022)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Mutation

—— prediction
® observations

-1 -
-2
—3 -
—4 . T
=2 0
X
ETH:zurich

+ X
/\
cos cos
| |
X X
/\ /\
™ ()? ™ ()?
| |
X x
x + cos(mx?) x cos(mx?)
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—— prediction
@ observations
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i
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X +
Crossover N SN
x oS /\x cos
X COS T x + cos(mx?)
X +
N | N
x oS x cos
| |
X s
/\
T (1)?
|
x
x cos(mx?) X +cosm
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Genetic search algorithms

1. Start with a random population of trees
2. Loop:

1. Select “fittest” trees
 E.g. based on test error

2. Apply “genetic operators” with specified
probabilities
* Mutation
» Crossover

3. Remove “oldest” trees

3. Until an acceptable solution is found

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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PySR

Source:
github.com/Miles
Cranmer/PySR

Cranmer, Interpretable
Machine Learning for Science
with PySR and
SymbolicRegression.jl, ArXiv
(2023)




Tournament selection

ETHzurich

exp(z — y)

cos(cos(x)) exp(exp(z) — z)

evolution

Migration between
Islands

poa” f . each undergoing

Allows parallelisation

Independent “islands”
15,08 of expressions,

Cranmer, Interpretable
Machine Learning for Science
with PySR and
SymbolicRegression.jl, ArXiv
(2023)
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Tournament selection

exp(z — y)

cos(cos(x)) exp(exp(z) — )

Independent “islands”
sy r0se  Of expressions,

e i each undergoing
evolution

Allows parallelisation

Cranmer, Interpretable
Machine Learning for Science

s = with PySR and
M I g ration between SymbolicRegression.jl, ArXiv

iIslands (2023)

How does the
number of “islands”
affect performance?

ETHzurich
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Other search algorithms

Goal: find f given D = {(xq, f1), ..., (xn, fn)}

 Directly (no search) using a neural network (e.g. Transformer)

/ (N, 3(D+ Do) Target \

y=x}+x2
(N’ demb) )
Ve ~,  Cross-entropy
Tokcnize] [ FFN }——W)[EncodeHDecoch L’ y=x}+x2
\_ ) Output

\ Embedder Transformer /

Kamienny et al, End-to-end symbolic regression with transformers,
NeurlPS (2022)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Other search algorithms

Goal: find f given D = {(xq, f1), ..., (xn, fn)}

 Directly (no search) using a neural network (e.g. Transformer)

* By using reinforcement learning (building expressions incrementally)

N

state reward

(5,) ()

LTS

‘(Agent %1
N j

action .
(a)

ETHzurich

P Serl

4 .
Environment l

Makke & Chawla, Interpretable scientific discovery with
symbolic regression: a review, Al Review (2024)

Petersen et al, Deep symbolic regression: recovering
mathematical expressions from data via policy
gradients, ICLR (2021)
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Other search algorithms

Goal: find f given D = {(xq, f1), ..., (xn, fn)}

+ many others...

ETHzurich

Directly (no search) using a neural network (e.g. Transformer)

By using reinforcement learning (building expressions incrementally)

By learning a tree search algorithm

Symbolic
Regression
Methods

401-4656-21L Al in the Sciences and Engineering 2024

Regression-
based

—| Linear }—‘ L J
! e

K2
.—

Non linear

Genetic
Programming

expression tree
L )

Expression _' Reinforcement ‘_ m(xl|s,0)
tree-based Learning policy
|| Transformer | | y = ép(
neural network op(z, W), W)
Physics- ( Al- | y =
inspired Feynman o(x', W)
Mathematics- ( Symbolic ‘* y =
inspired Metamodel G(x,6%)

Makke & Chawla, Interpretable scientific discovery with
symbolic regression: a review, Al Review (2024)
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Lecture overview Learning objectives

What is model discovery? « Understand how symbolic regression (SR)

algorithms are designed

Challenges of symbolic regression
* Understand how SR is used for function

Function discovery

. Al Feynman and model discovery

« Genetic algorithms

Model discovery

. SINDy

» Other approaches

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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5 min break

ETHzurich
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Function discovery Model discovery

Task: Task:

Given observations of some function f(x), Given observations of a physical system

D ={(xy, f1), ... (xn, fn)} .

\(

\ /\
\ / \ o
u(t) |\ [\
‘(‘\ s/‘" ) \ / \:\ /”/
\ / \ / N
\ / \ /
\ /
\ /

Find its mathematical expression

PV = nRT d19> .
F=k 2 Find an underlying model
E = hy
P = gAT* d2 du
d ) + Md— +ku=0

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Function discovery

Task:

Given observations of some function f(x),

D = {(x4,f1), ... (xn, fn)}

Find its mathematical expression

PV = nRT
F— k‘h;lz
r
E = hv
P = gAT*

Model discovery

Task:
Given observations of a physical system

Find an underlying model

d2 du
d 2+ud—+ku—0

» Both can use symbolic regression for discovery

* Model discovery usually combines SR with domain
constraints and adds extra operators (e.g. derivatives)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 60



S I N Dy Sparse Identification of Nonlinear Dynamics

Assume an unknown dynamical system has the form

Task:

Given many examples
D={
([x1 (1), 21 (€], o) [ (Eag), X1 (E) D,

.(.th (t1), 2y (€], oo, [xn (E), Xy (Ep)])
}
Find f(x)

Brunton et al, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, PNAS, (2016)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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SINDy

Assume an unknown dynamical system has the form  For example, the Lorenz system

dx x=0(y—x)
ac =T y=x(p=2)-y
zZ=xy— Pz
Task:
Given many examples o 2 -
D — { e Training points e Training points e Training points
A EADINEAGHEAGID]
([xen (), 2xn ()], o) [y (Ear), X (E1) D
}
Find f(x)

Brunton et al, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, PNAS, (2016)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 62



SINDy

Assume an unknown dynamical system has the form

Task:

Given many examples
D={
([x1 (1), 21 (€], o) [ (Eag), X1 (E) D,

(lxn (1), 2y (€], o) [y (Eag), X3 (Ea) D

}

Find f(x)

Brunton et al, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, PNAS, (2016)

Note:

We are given measurements of x = f

Then the training data can simply be
written as

D ={(x1,f1)s o, Xy Fum)}

Which is the same SR task as above,
except that we need to find a vector-

valued function

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



SINDy

Assume that f(x) can be written as

ffix) =" (x)

Where ¢(x) is a library of expressions

And A is an (unknown) sparse matrix of coefficients

E.g. o7 (x)

ffx)=1 x y z xz ..

=(cly—x) x(p—2z)—y xy

ETHzurich

0 0 0

-0 p 0

co —1 0

0 0 -—p

0O -1 0
— Bz)

401-4656-21L Al in the Sciences and Engineering 2024
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SINDy

Assume that f(x) can be written as Then for all our training data
ffx) =" (A D ={(xq,f1) -, Gy Fum)}
Where ¢(x) is a library of expressions Xy z 1 xy z xz
And A is an (unknown) sparse matrix of coefficients
E.Q. T
° ¢ (x) A NM -
0O 0 O
-0 p 0
ffx)=1 x y z xz .. g _01 _0’3
0 -1 0 —_ — — —
F d(X)

—(oly-x) x(p—2)—y xy—Bz)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024




SINDy

Assume that f(x) can be written as Then for all our training data
ffx) =" (A D ={(xq,f1) -, Gy Fum)}
Where ¢(x) is a library of expressions Xy z 1 xy z xz
And A is an (unknown) sparse matrix of coefficients
E.Q. T
° ¢ (x) A NM -
0O 0 O
-0 p 0
ffx)=1 x y z xz .. C(; _01 _Oﬁ
0 -1 0 —_ — — —
F d(X)

=(@ly—-x) x(p—z)-y xy—Pz)
This is just (sparse) linear regression

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024




Requirements - SINDy

To successfully solve a symbolic regression problem, we need:
1. An assumption (prior) on the structure of the expression

2. Asearch algorithm

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Requirements - SINDy

To successfully solve a symbolic regression problem, we need: Expressions must have the form
dx AT
1. An assumption (prior) on the structure of the expression dt f(x) = A ¢(x)

Limited set of operators, e.g.
2. Asearch algorithm
¢f = (1,x,y,2z,xy,x2,...)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 68



Requirements - SINDy

To successfully solve a symbolic regression problem, we need:

1. An assumption (prior) on the structure of the expression

Sparse linear regression

2. A search algorithm _
(e.g. LASSO) to find A

Expressions must have the form

dx

T f(x) =A¢x)

Limited set of operators, e.g.

" = (1,x,y,2zxy,x2..)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 69



Requirements - SINDy

To successfully solve a symbolic regression problem, we need:

1. An assumption (prior) on the structure of the expression

Sparse linear regression

2. A search algorithm _
(e.g. LASSO) to find A

What are the limitations of SINDy?

Expressions must have the form

dx

T f(x) =A¢x)

Limited set of operators, e.g.

" = (1,x,y,2zxy,x2..)
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Requirements - SINDy

To successfully solve a symbolic regression problem, we need:

1. An assumption (prior) on the structure of the expression

Sparse linear regression

2. A search algorithm _
(e.g. LASSO) to find A

What are the limitations of SINDy?

* Requires measurements of x and x
* Only learns a first-order ODE

Expressions must have the form

dx

T f(x) =A¢x)

Limited set of operators, e.g.

" = (1,x,y,2zxy,x2..)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 71



SINDy Autoencoders

Assume an unknown dynamical system has the form

d*z

=@
Task:

Given many transformed observations of z

D={
1X(2,(¢1)), ..., X (21 (Ep))],

(X (zy(t1)), ..., X(zn (tp))]

}
Find f(2)

Champion et al, Data-driven discovery of coordinates and governing
equations, PNAS (2019)

ETHzurich

For example, nonlinear pendulum

d*z _
ﬁ = — Sln(Z)

Where z is the angle of the pendulum and X is
an image of the pendulum

X(z(t)): R » R

1.5

1.0

0.5

< 0.0

-0.5

-1.0

=15
=15 -1.0 -0.5 0.0 0.5 1.0 1.5
X1

401-4656-21L Al in the Sciences and Engineering 2024

72



SINDy Autoencoders

For example, nonlinear pendulum

d*z _
ﬁ = — SlIl(Z)

z(t
© Where z is the angle of the pendulum and X is
X(0) X(t) an image of the pendulum

X(z(t)): R » R

1.5

1.0

0.5

0.0

X2

-0.5

-1.0

Champion et al, Data-driven discovery of coordinates and governing _15

equations, PNAS (2019) -15 -10 -05 0.0 0.5 1.0 1.5
X1
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SINDy Autoencoders

For example, nonlinear pendulum

d*z _
ﬁ = — SlIl(Z)
z(t) : -
Where z is the angle of the pendulum and X is
X(6) X () an image of the pendulum
2, 2 X(z(t)): R » R
L, )=ZD(||X—B<a(X, )OI+ |- — &7 (alx, ))A|| + 14| ) .
1.0
Reconstruction loss SINDy loss
0.5
L 00
-0.5
-1.0
Champion et al, Data-driven discovery of coordinates and governing _15
equations, PNAS (2019) -15 -10 -05 0.0 0.5 1.0 1.5

X1
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SINDy Autoencoders

z(t)

X(t) X(t)

2

d
—— " (a(x,0))

L(6, 1)

2
+ | II1>

SINDy loss

ZD(MX—B(a(X, ), O)II? +

Reconstruction loss

~
9

d? : :
Where — can be estimated numerically e.g.

2z a(X(t+1),0) - 2a(X(1),8) + a(X(t — 1),6)
dt2 St2

Champion et al, Data-driven discovery of coordinates and governing
equations, PNAS (2019)

ETHzurich
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For example, nonlinear pendulum

d?z B

e i sin(z)

Where z is the angle of the pendulum and X is
an image of the pendulum

X(z(t)): R » R

=

5

1.0

0.5

0.0

-0.5

-1.0

=i s
= 55

-1.0

-0.5 0.0

X1

0.5 1.0 1.5
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Lecture summary

« Function and model discovery is usually extremely challenging because of the
exponential search space

« We can prune the search space by using domain-specific constraints

« Many different pruning strategies and search algorithms exist

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Course learning objectives

Aware of advanced applications of Al in the sciences and engineering

Familiar with the design, implementation, and theory of these algorithms

Understand the pros and cons of using Al and deep learning for science

Understand key scientific machine learning concepts and themes

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Course overview

Course
introduction

H

Introduction to
deep learning

H

Physics-informed
neural networks

Operator
learning

-

\ 4

Transformers and their
applications in science

~

-

ETHzurich

\ 4

Hybrid workflows,
neural differential
equations, and model
discovery

~

-

\ 4

o

Guest lectures: ML in
chemistry and biology

~

J
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Scientific machine learning

Hamiltonian neural networks . .ic.con Solver-in-the-loop
Learned sub-grid processes
Physics- 1nformed neural networks
AI Feynman
DeepONets PDE-NetAlgorithm unrolling

Learned regularisation

F 1 t Physics-informed neural operators
Ourler neura OP%&FMSEMMK&IgmmUuﬁ Neural ODEs

Machine Scientific
learning understanding
@ E
SciML

more powerful,

robust, interpretable
models
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Some key takeaways

There are both pros and cons of using deep learning for science

Incorporating scientific understanding into ML usually improves performance
« There are a plethora of SciML approaches; chose the one which suits your problem
« SciML approaches can be as flexible (learnable) or as inflexible (unlearnable) as necessary

« SciML approaches still suffer from the limitations of deep neural networks (generalisation,
lack of interpretability, optimisation challenges, ...)

Al can be applied to:
« many different problems (simulation, inversion, data assimilation, control, model discovery,

)

* many different fields

Truly interdisciplinary research is required to solve grand challenges in science

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Impactful directions

Scientific applications

Al applications

ETHzurich

Search / optimisation

Inverse problems
Model discovery
Control

Planning
Reasoning
Learning

Representation

“Every model is approximate”
Finite amount of computing power

Hierarchical representations
Abstract features and concepts
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