
401-4656-21L AI in the Sciences and Engineering 2024 1

Lecture overview Learning objectives
• Be able to define an NDE

• Explain the connection between numerical
PDE solvers and neural network
architectures

• Be aware of state-of-the-art applications of
NDEs

• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 2

Diffusion models

Source: DALL·E 3, OpenAI

401-4656-21L AI in the Sciences and Engineering 2024 3

Diffusion

Image credit: Song et al, Score-Based
Generative Modeling through Stochastic
Differential Equations. ICLR, 2020

Diffusion = movement of (atoms, molecules, energy, prices,
…) from a region of higher concentration to a region of
lower concentration, driven by random motion

Source: Wikipedia
Source: Wikipedia

Pr
ic

e
Time

401-4656-21L AI in the Sciences and Engineering 2024 4

Diffusion – turning images into noise

Forward model (stochastic differential equation):

𝑑𝒙 = 𝒇 𝒙, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Drift function Diffusion function Wiener process
(Add Gaussian noise at each step)

Image credit: Song et al, Score-Based
Generative Modeling through Stochastic
Differential Equations. ICLR, 2020

401-4656-21L AI in the Sciences and Engineering 2024 5

Diffusion – turning images into noise

Forward model (stochastic differential equation):

𝑑𝒙 = 𝒇 𝒙, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘

This SDE can be reversed by solving the following SDE backwards
in time (starting at 𝒙"):

𝑑𝒙 = 𝒇 𝒙, 𝑡 − 𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙) 𝑑𝑡 + 𝑔(𝑡)𝑑4𝒘

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Anderson, Reverse-time diffusion equation
models. Stochastic Processes and their
Applications, 1982

Song et al, Score-Based Generative
Modeling through Stochastic Differential
Equations. ICLR, 2020

401-4656-21L AI in the Sciences and Engineering 2024 6

Diffusion – turning images into noise

Forward model (stochastic differential equation):

𝑑𝒙 = 𝒇 𝒙, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘

Moreover, it can be shown solving the following ODE backwards in
time (starting at 𝒙") results in trajectories drawn from the same

distribution as the SDE:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Anderson, Reverse-time diffusion equation
models. Stochastic Processes and their
Applications, 1982

Song et al, Score-Based Generative
Modeling through Stochastic Differential
Equations. ICLR, 2020

401-4656-21L AI in the Sciences and Engineering 2024 7

Diffusion models – turning noise into images

To generate an image:

1. Sample 𝒙"~𝑝" 𝒙 (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 8

Diffusion models – turning noise into images

To generate an image:

1. Sample 𝒙"~𝑝" 𝒙 (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

What’s the problem here?

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 9

Diffusion models – turning noise into images

To generate an image:

1. Sample 𝒙"~𝑝" 𝒙 (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

Problem: we don’t know what 𝑝%(𝒙) is!

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 10

Diffusion models – turning noise into images

To generate an image:

1. Sample 𝒙"~𝑝" 𝒙 (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

Problem: we don’t know what 𝑝%(𝒙) is!

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Idea: use a neural network to
learn the “score function”

𝒔 𝒙, 𝑡; 𝜽 ≈ ∇𝒙 log 𝑝%(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 11

Diffusion models – turning noise into images

To generate an image:

1. Sample 𝒙"~𝑝" 𝒙 (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #∇𝒙 log 𝑝%(𝒙)

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 #𝒔(𝒙, 𝑡; 𝜽)

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Idea: use a neural network to
learn the “score function”

And we now solve a neural
ODE to generate an image

401-4656-21L AI in the Sciences and Engineering 2024 12

Diffusion models – learning the score function
We want the network to match the true score function, i.e.

ℒ 𝜽 = 𝐸!,	𝒙!~&! 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝!(𝒙!)
'

401-4656-21L AI in the Sciences and Engineering 2024 13

Diffusion models – learning the score function
We want the network to match the true score function, i.e.

ℒ 𝜽 = 𝐸!,	𝒙!~&! 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝!(𝒙!)
'

It can be shown that this is equivalent to

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝+!(𝒙!|𝒙+)
' + 𝐶

where 𝑝+!(𝒙!|𝒙+) is the transition probability and 𝐶 is a constant.

Vincent, A connection between score
matching and denoising autoencoders.
Neural Computation, 2011

401-4656-21L AI in the Sciences and Engineering 2024 14

Diffusion models – learning the score function
We want the network to match the true score function, i.e.

ℒ 𝜽 = 𝐸!,	𝒙!~&! 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝!(𝒙!)
'

It can be shown that this is equivalent to

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝+!(𝒙!|𝒙+)
' + 𝐶

where 𝑝+!(𝒙!|𝒙+) is the transition probability and 𝐶 is a constant.

Consider the simple forward SDE 𝑑𝒙 = 𝑑𝒘 then

𝑝+! 𝒙! 𝒙+ =
1
2𝜋𝑡

𝑒,
𝒙!,𝒙" #

'! 	⇒ 	∇𝒙! log 𝑝+!(𝒙!|𝒙+) = −
1
𝑡
𝒙! − 𝒙+

Vincent, A connection between score
matching and denoising autoencoders.
Neural Computation, 2011

401-4656-21L AI in the Sciences and Engineering 2024 15

Diffusion models – learning the score function
We want the network to match the true score function, i.e.

ℒ 𝜽 = 𝐸!,	𝒙!~&! 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝!(𝒙!)
'

It can be shown that this is equivalent to

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝+!(𝒙!|𝒙+)
' + 𝐶

where 𝑝+!(𝒙!|𝒙+) is the transition probability and 𝐶 is a constant.

Consider the simple forward SDE 𝑑𝒙 = 𝑑𝒘 then

𝑝+! 𝒙! 𝒙+ =
1
2𝜋𝑡

𝑒,
𝒙!,𝒙" #

'! 	⇒ 	∇𝒙! log 𝑝+!(𝒙!|𝒙+) = −
1
𝑡
𝒙! − 𝒙+

and

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 −
1
𝑡
𝒙+ − 𝒙!

'
+ 𝐶

Vincent, A connection between score
matching and denoising autoencoders.
Neural Computation, 2011

401-4656-21L AI in the Sciences and Engineering 2024 16

Diffusion models – learning the score function
We want the network to match the true score function, i.e.

ℒ 𝜽 = 𝐸!,	𝒙!~&! 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝!(𝒙!)
'

It can be shown that this is equivalent to

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝+!(𝒙!|𝒙+)
' + 𝐶

where 𝑝+!(𝒙!|𝒙+) is the transition probability and 𝐶 is a constant.

Consider the simple forward SDE 𝑑𝒙 = 𝑑𝒘 then

𝑝+! 𝒙! 𝒙+ =
1
2𝜋𝑡

𝑒,
𝒙!,𝒙" #

'! 	⇒ 	∇𝒙! log 𝑝+!(𝒙!|𝒙+) = −
1
𝑡
𝒙! − 𝒙+

and

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 −
1
𝑡
𝒙+ − 𝒙!

'
+ 𝐶

Vincent, A connection between score
matching and denoising autoencoders.
Neural Computation, 2011

In this case – score function just
predicts the noise added to image

401-4656-21L AI in the Sciences and Engineering 2024 17

Diffusion models – summary

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

1. Get lots of examples of 𝒙+

2. Assume some underlying SDE of the form 𝑑𝒙 =
𝒇 𝒙, 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝒘 with transition probability 𝑝+!(𝒙!|𝒙+)

3. Train score function 𝒔 𝒙!, 𝑡; 𝜽 using

ℒ 𝜽 = 𝐸!,	𝒙"~&",	𝒙!~&"!(𝒙!|𝒙") 𝒔 𝒙!, 𝑡; 𝜽 − ∇𝒙! log 𝑝+!(𝒙!|𝒙+)
'

To generate an image:

4. Sample 𝒙-~𝑝- 𝒙 (usually a Gaussian)

5. Solve the neural ODE (or reverse SDE) backwards from
𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡

= 𝒇 𝒙, 𝑡 −
1
2
𝑔 𝑡 '𝒔(𝒙, 𝑡; 𝜽)

For more on diffusion models, see e.g.: Yang et al,
Diffusion Models: A Comprehensive Survey of
Methods and Applications, ArXiv 2024

401-4656-21L AI in the Sciences and Engineering 2024 18

Computed tomography – inverse problem

Ground truth computed
tomography image

Resulting tomographic
data (sinogram)

Image source: Wikipedia

Result of inverse
algorithm

Observed sinogram

!𝑎

𝑏 = 𝐹(𝑎)
𝑎 = set of input conditions

𝐹 = physical model of the system

𝑏 = resulting properties given 𝐹 and 𝑎

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼$𝑒
% ∫!",$

'(),+) -.𝑎(𝑥, 𝑦)

𝑏

401-4656-21L AI in the Sciences and Engineering 2024 19

Diffusion models for medical imaging

Song et al, Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models, ICLR (2022)

• We can use a diffusion model to learn
the prior distribution of images

401-4656-21L AI in the Sciences and Engineering 2024 20

Diffusion models for medical imaging

Song et al, Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models, ICLR (2022)

• We can use a diffusion model to learn
the prior distribution of images

• Q: how could we use this model to solve
the CT inverse problem?

401-4656-21L AI in the Sciences and Engineering 2024 21

Diffusion models for medical imaging

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

To generate an image:

1. Sample 𝒙-~𝑝- 𝒙 (usually a Gaussian)

2. Solve the neural ODE (or reverse SDE) backwards
from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 '𝒔(𝒙, 𝑡; 𝜽)

Song et al, Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models, ICLR (2022)

401-4656-21L AI in the Sciences and Engineering 2024 22

Diffusion models for medical imaging

𝒙!~𝑝!(𝑥) 𝒙"~𝑝"(𝒙)

Song et al, Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models, ICLR (2022)

To generate an image:

1. Sample 𝒙-~𝑝- 𝒙 (usually a Gaussian)

2. Solve the neural ODE (or reverse SDE) backwards
from 𝑡 = 𝑇 to 𝑡 = 0:

𝑑𝒙
𝑑𝑡 = 𝒇 𝒙, 𝑡 −

1
2𝑔 𝑡 '𝒔(𝒙, 𝑡; 𝜽)

𝒚&'(

401-4656-21L AI in the Sciences and Engineering 2024 23

Diffusion models for medical imaging

Song et al, Solving Inverse Problems in Medical Imaging with
Score-Based Generative Models, ICLR (2022)

401-4656-21L AI in the Sciences and Engineering 2024 24

• A neural differential equation uses neural networks to represent
learnable parts of the equation

• A discretised NDE solver can be thought of as neural network
architecture with interpretable dynamics

• State of the art ML models, e.g. diffusion models, solve NDEs

Lecture summary

