- What is a neural differential equation (NDE)?
- The link between NDEs and neural network architectures
- State of the art NDEs
	- Coupled oscillatory RNNs
	- Diffusion models

Lecture overview Learning objectives

- Be able to define an NDE
- Explain the connection between numerical PDE solvers and neural network architectures
- Be aware of state-of-the-art applications of NDEs

Diffusion models

Source: DALL·E 3, OpenAI

Diffusion = movement of (atoms, molecules, energy, prices, …) from a region of **higher** concentration to a region of **lower** concentration, driven by **random** motion

Image credit: Song et al, Score-Based Generative Modeling through Stochastic Differential Equations. ICLR, 2020

ETHzürich

Diffusion – turning images into noise

 $x_0 \sim p_0(x)$ $x_T \sim p_T(x)$

Forward model (stochastic differential equation):

Image credit: Song et al, Score-Based Generative Modeling through Stochastic Differential Equations. ICLR, 2020

Diffusion – turning images into noise

 $x_0 \sim p_0(x)$ $x_T \sim p_T(x)$

Forward model (stochastic differential equation):

 $dx = f(x, t)dt + g(t)dw$

This SDE can be **reversed** by solving the following SDE **backwards in time** (starting at x_T):

Anderson, Reverse-time diffusion equation models. Stochastic Processes and their Applications, 1982

Song et al, Score-Based Generative Modeling through Stochastic Differential Equations. ICLR, 2020

$$
dx = [f(x, t) - g(t)^2 \nabla_x \log p_t(x)]dt + g(t)d\overline{w}
$$

Diffusion – turning images into noise

 $d\mathbf{x}$

 dt

 $x_0 \sim p_0(x)$ $x_T \sim p_T(x)$

Forward model (stochastic differential equation):

 $dx = f(x, t)dt + g(t)dw$

Moreover, it can be shown solving the following ODE backwards in time (starting at x_T) results in trajectories drawn from the **same distribution** as the SDE:

Anderson, Reverse-time diffusion equation models. Stochastic Processes and their Applications, 1982

Song et al, Score-Based Generative Modeling through Stochastic Differential Equations. ICLR, 2020

ETHzürich

 $\frac{1}{2} g(t)^2 \nabla_x \log p_t(x)$

 $= f(x, t) - \frac{1}{2}$

To generate an image:

- 1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)
- 2. Solve the ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x)
$$

To generate an image:

- 1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)
- 2. Solve the ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x)
$$

What's the problem here?

ETHzürich

To generate an image:

- 1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)
- 2. Solve the ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x)
$$

Problem: we don't know what $p_t(x)$ is!

To generate an image:

1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x, t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x) \quad \text{(dea: use a neural network to learn the "score function")}
$$

Problem: we don't know what $p_t(x)$ is!

lon"

 $s(x, t; \theta) \approx \nabla_x \log p_t(x)$

To generate an image:

1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)

2. Solve the ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x,t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x) \frac{\partial}{\partial x}
$$

Idea: use a neural network to **learn** the "score function"

$$
\frac{dx}{dt} = f(x,t) - \frac{1}{2}g(t)^2 s(x,t;\theta)
$$

And we now solve a **neural ODE** to generate an image

ETHzürich

We want the network to match the true score function, i.e.

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_t \sim p_t} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_t(x_t) \right\|^2 \right]
$$

We want the network to match the true score function, *i.e.*

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_t \sim p_t} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_t(x_t) \right\|^2 \right]
$$

It can be shown that this is equivalent to

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_0}(\mathbf{x}_t | \mathbf{x}_0) \left[\left\| \mathbf{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_0(\mathbf{x}_t | \mathbf{x}_0) \right\|^2 \right] + C
$$

where $p_{0t}(x_t|x_0)$ is the **transition** probability and C is a constant.

Vincent, A connection between score matching and denoising autoencoders. Neural Computation, 2011

We want the network to match the true score function, *i.e.*

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_t \sim p_t} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_t(x_t) \right\|^2 \right]
$$

It can be shown that this is equivalent to

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_{0t}(x_t|x_0)} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_{0t}(x_t|x_0) \right\|^2 \right] + C
$$

where $p_{0t}(x_t|x_0)$ is the **transition** probability and C is a constant.

Consider the simple forward SDE $dx = dw$ then

$$
p_{0t}(x_t|x_0) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{||x_t - x_0||^2}{2t}} \Rightarrow \nabla_{x_t} \log p_{0t}(x_t|x_0) = -\frac{1}{t}(x_t - x_0)
$$

Vincent, A connection between score matching and denoising autoencoders. Neural Computation, 2011

We want the network to match the true score function, *i.e.*

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_t \sim p_t} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_t(x_t) \right\|^2 \right]
$$

It can be shown that this is equivalent to

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_0}(\mathbf{x}_t | \mathbf{x}_0) \left[\left\| \mathbf{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_0(\mathbf{x}_t | \mathbf{x}_0) \right\|^2 \right] + C
$$

where $p_{0t}(x_t|x_0)$ is the **transition** probability and C is a constant.

Consider the simple forward SDE $dx = dw$ then

$$
p_{0t}(x_t|x_0) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{||x_t - x_0||^2}{2t}} \Rightarrow \nabla_{x_t} \log p_{0t}(x_t|x_0) = -\frac{1}{t}(x_t - x_0)
$$

$$
\mathcal{L}(\theta) = E_{t, x_0 \sim p_0, x_t \sim p_{0t}(x_t|x_0)} \left[\left\| \mathbf{s}(x_t, t; \theta) - \frac{1}{t}(x_0 - x_t) \right\|^2 \right] + C
$$

Vincent, A connection between score matching and denoising autoencoders. Neural Computation, 2011

ETH zürich

and

We want the network to match the true score function, *i.e.*

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_t \sim p_t} \left[\left\| \boldsymbol{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_t(x_t) \right\|^2 \right]
$$

It can be shown that this is equivalent to

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_0}(\mathbf{x}_t | \mathbf{x}_0) \left[\left\| \mathbf{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_0(\mathbf{x}_t | \mathbf{x}_0) \right\|^2 \right] + C
$$

where $p_{0t}(x_t|x_0)$ is the **transition** probability and C is a constant.

Consider the simple forward SDE $dx = dw$ then

$$
p_{0t}(x_t|x_0) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{||x_t - x_0||^2}{2t}} \Rightarrow \nabla_{x_t} \log p_{0t}(x_t|x_0) = -\frac{1}{t}(x_t - x_0)
$$

and

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_0 t}(x_t | x_0) \left[\left\| \mathbf{s}(x_t, t; \boldsymbol{\theta}) - \frac{1}{t}(x_0 - x_t) \right\|^2 \right] + C \quad \text{In this case} \text{ - score function just} \text{ predicts the noise added to image}
$$

Vincent, A connection between score matching and denoising autoencoders. Neural Computation, 2011

Diffusion models – summary

-
- 1. Get lots of examples of x_0
- 2. Assume some underlying SDE of the form $dx =$ $f(x, t)dt + g(t)dw$ with transition probability $p_{0t}(x_t|x_0)$
- 3. Train score function $s(x_t, t; \theta)$ using

$$
\mathcal{L}(\boldsymbol{\theta}) = E_{t, x_0 \sim p_0, x_t \sim p_0}(\mathbf{x}_t | \mathbf{x}_0) \left[\left\| \mathbf{s}(x_t, t; \boldsymbol{\theta}) - \nabla_{x_t} \log p_0(\mathbf{x}_t | \mathbf{x}_0) \right\|^2 \right]
$$

To generate an image:

- 4. Sample $x_T \sim p_T(x)$ (usually a Gaussian)
- 5. Solve the neural ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x,t) - \frac{1}{2}g(t)^2 s(x,t;\theta)
$$

For more on diffusion models, see e.g.: Yang et al, Diffusion Models: A Comprehensive Survey of Methods and Applications, ArXiv 2024

Computed tomography – inverse problem

Ground truth computed tomography image

Resulting tomographic data (sinogram)

 $a(x, y)$ $b(\theta, \tau) = F(a) = I_0 e^{-\int_{l_{\theta, \tau}} a(x, y) ds}$

Image source: Wikipedia

Result of inverse algorithm \hat{a}

Observed sinogram

 \boldsymbol{b}

- $a =$ set of input conditions
- $F =$ physical model of the system
- $b =$ resulting properties given F and a

ETHzürich

• We can use a diffusion model to learn the prior distribution of images

Song et al, Solving Inverse Problems in Medical Imaging with Score-Based Generative Models, ICLR (2022)

Song et al, Solving Inverse Problems in Medical Imaging with Score-Based Generative Models, ICLR (2022)

- We can use a diffusion model to learn the prior distribution of images
- Q: how could we use this model to solve the CT inverse problem?

2. Solve the neural ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

$$
\frac{dx}{dt} = f(x,t) - \frac{1}{2}g(t)^2 s(x,t;\theta)
$$

Song et al, Solving Inverse Problems in Medical Imaging with Score-Based Generative Models, ICLR (2022)

ETHzürich

ETHzürich

To generate an image:

- 1. Sample $x_T \sim p_T(x)$ (usually a Gaussian)
- 2. Solve the neural ODE (or reverse SDE) backwards from $t = T$ to $t = 0$:

 $\frac{dx}{dt} = f(x, t) - \frac{1}{2}g(t)^2 s(x, t; \theta)$

Song et al, Solving Inverse Problems in Medical Imaging with Score-Based Generative Models, ICLR (2022)

```
x_0 \sim p_0(x) def sample_diffusion_model(theta): x_T \sim p_T(x)
```
sample prior $x =$ torch.randn $(128, 128)$

```
# solve neural ODE in reverse
for t in range(T, \emptyset, -1):
     x = x - dt * (f(x, t) - 0.5 * g(t) * * 2 * NN(x, t, theta))
```
def sample diffusion model(theta, y_obs):

sample prior $x =$ torch.randn $(128, 128)$

```
# solve neural ODE in reverse
for t in range(T, 0, -1):
```

```
# "nudge" x so that it satisfies F(x)=y obs
# using a proximal optimisation step
x = proximal\_update(x, F(x)-y\_obs)
```

```
x = x - dt * (f(x, t) - 0.5 * g(t) * * 2 * NN(x, t, theta))
```


```
\mathbf{y}_{obs}
```


(a) FISTA-TV

 $(b) cGAN$

(c) Neumann

 (d) SIN-4c-PRN

(e) Ours

(f) Ground truth

Song et al, Solving Inverse Problems in Medical Imaging with Score-Based Generative Models, ICLR (2022)

ETHzürich

Lecture summary

- A neural differential equation uses neural networks to represent **learnable parts** of the equation
- A discretised NDE solver can be thought of as neural network architecture with **interpretable dynamics**
- State of the art ML models, e.g. diffusion models, solve NDEs

