Al in the Sciences and
Engineering

* === ST
7 e e
= —%—— Z=7 4

Spring Semester 2024 l,
Z

i e/
i, e
P — 'S
Y T o 7/ s

== 2\

< f

Siddhartha Mishra Rk
Ben Moseley O

TN
il | ETH-urich

i L ALARR AN
(LIRS] ' i \ \ N
N T AR
ORI / N NN 2
. T el INRT/ Y SN
8 | ’/ . . . \‘ IR
l/ ‘/g"//!‘,’a'g’.;«:“;,:';/‘l!;' 401-24656-21L Al in the Sciences and Engineering-2024 '§‘§\\Q\;&}.‘:\§~{»\“’»\’ \\
N NN ANV L

Recap - computed tomography

*

Image source: Wikipedia

Ground truth computed Resulting tomographic
tomography image data (sinogram)
- a(x,y)ds
a(x,y) b(8,7) = F(a) = lye o= "®

N b= F(a)

a = set of input conditions

F = physical model of the system

b = resulting properties given F and a

Result of inverse
algorithm

A

a

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap - solving the inverse problem

Starting

model Real data

Forward

modelling Synthetic

data

Loss function
Updated
Pl and gradients

model

Final model

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap - hybrid computed tomography

Starting

model Real data

Forward
modelling

Synthetic

data

Loss function
Updated
iy and gradients

model

aL(a)
&
oa

NN _() aA b R a,A . 9
a/\ LY ()1

@ Idea: learn a “better” direction to step in the

"= parameter space N

L©O) =) IH(@o b 0) — il
i

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 4

Recap - hybrid computed tomography

Ground truth Traditional inversion Learned gradient descent

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap - hybrid computed tomography

Starting Real data

ol Synthetic

modelling

: data A
-(®)- | Key idea:
- Traditional algorithms can be
made as learnable (flexible) or

Loss function as unlearnable (rigid) as you like

Updated

and gradients

oL(a)
&
oa

NN oL(@) d,b,R(Q); 0
W;a') (a’)l
Final model

N
L©O) =) IH(@o b 0) — il
i

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 6

Course timeline

Tutorials

Mon 12:15-14:00 HG E 5

26.02.
04.03.
11.03.
18.03.
25.03.

08.04.

22.04.

29.04.

06.05.

13.05.

27.05.

Introduction to PyTorch
Simple DNNs in PyTorch
Implementing PINNSs |
Implementing PINNSs Il

Operator learning |

Operator learning |l

GNNs
Transformers
Diffusion models

Coding autodiff from scratch

Intro to JAX / Neural ODEs

ETHzurich

Wed 08:15-10:00 ML H 44
21.02.
28.02.
06.03.
13.03.
20.03.
27.03.

10.04.
17.04.
24.04.

08.05.
15.05.
22.05.
29.05.

Lectures

Introduction to deep learning Il 01.03.
Physics-informed neural networks — introduction 08.03.
Physics-informed neural networks — extensions 15.03.

Physics-informed neural networks — theory |l 22.03.

Supervised learning for PDEs Il

Introduction to operator learning | 12.04.
Convolutional neural operators 19.04.
Large-scale neural operators 26.04.

03.05.
Introduction to hybrid workflows | 10.05.
Neural differential equations 17.05.
Symbolic regression and model discovery 24.05.
Guest lecture: AlphaFold 31.05.

401-4656-21L Al in the Sciences and Engineering 2024

Fri 12:15-13:00 ML H 44

Course introduction 23.02.

Introduction to deep learning |

Introduction to PDEs

Physics-informed neural networks - limitations
Physics-informed neural networks — theory |

Supervised learning for PDEs |

Introduction to operator learning Il
Time-dependent neural operators
Attention as a neural operator
Windowed attention and scaling laws
Introduction to hybrid workflows |l
Introduction to JAX

Course summary

Guest lecture: AlphaFold

Lecture overview

« What is a neural differential equation (NDE)?

 The link between NDEs and neural network
architectures

« State of the art NDEs
* Coupled oscillatory RNNs

« Diffusion models

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Lecture overview Learning objectives

« What is a neural differential equation (NDE)? » Be able to define an NDE
* The link between NDEs and neural network « Explain the connection between numerical
architectures PDE solvers and neural network
« State of the art NDEs architectures
 Coupled oscillatory RNNs « Be aware of state-of-the-art applications of
« Diffusion models NDEs

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Lotka-Volterra system

w
o
1

The Lotka-Volterra system models predator-prey
dynamics:

—— Prey
—=- Predator

N
w
1

Iy
=

population
=
w

dy _ 5
il £ A

x = population density of prey 0

y = population density of predator 0 20 w0 e 80 R 16?
a, f = max prey birth rate, effect of predators on prey Source: wikipedia
growth rate o f = 11,04
§,y = max predator death rate, effect of prey on 5.y =04 01

predator growth rate Xo =y, = 10

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

ETHzurich

Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

dx B i 20

dt = ax ﬁxy gls_

dy — 5 Q-10-
x = population density of prey 01—

y = population density of predator

a, 3 = max prey birth rate, effect of predators on prey
growth rate

§,y = max predator death rate, effect of prey on
predator growth rate

* How can we solve this system of ODEs
(numerically)?

w
o
1

N
w
1

—— Prey
—=- Predator

20

401-4656-21L Al in the Sciences and Engineering 2024

40 60 80 100
time

Source: wikipedia

a,f=11,04
6,y =04,0.1
Xo = Yo =10

11

Solving Lotka-Volterra system

The Lotka-Volterra system models predator-prey We can solve numerically using the Euler

dynamics: method:
dx B xi—+1 —Xi ~ X — ﬁxy
gt = ax — fxy }t]i+1 _ g,‘ i iVi
ay _ _ THL L v — SV
T yxXy 5y tivg —t; VXiYi Vi

x = population density of prey Rearrange:

y = population density of predator

a, f = max prey birth rate, effect of predators on prey Xip1 = X; + At(ax; — Bx;y;)

growth rate Yiv1 = Yi + At(yx;y; — 6y;)

§,y = max predator death rate, effect of prey on tiyg = t; + At

predator growth rate

ISR,

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 ™ 1

Assumptions of Lotka-Volterra system

The Lotka-Volterra system models predator-prey Assumptions:
dynamics:
« The prey population always finds ample food.
dx « The food supply of the predator population
dr - T Bxy depends entirely on the size of the prey
dy _ oy — & population.
ac YT « The rate of change of population is

proportional to its size.

x = population density of prey * Predators have limitless appetite.
y = population density of predator .

a, f = max prey birth rate, effect of predators on prey
growth rate

§,y = max predator death rate, effect of prey on
predator growth rate

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 13

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey 81 @ Xobserved
dynamics:
6 f
dx
dt 2
dy ;4 L
dt X
x = population density of prey 2|
y = population density of predator
0F

0 1 2 3 4 5 6

: : t
« What if we are unsure of the RHS of the equation?
“ ” . Rackauckas et al, Universal differential equations
How could we “learn” the ODEs based on population for scientific machine learning, ArXiv (2021)
measurements?

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey 81 @ Xobserved

dynamics:

x = population density of prey
y = population density of predator

X
E = ax + NNl(x,y, 91)
y

'

X(t), y(t)

dt = NN,(x,y;0,) — 03y

0 1 2 3 4 5 6

\ ’
l@\
-
-

t

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

15

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey How can we solve this system of ODEs
dynamics: (numerically)?

X

E = ax + NNl(x,y, 91)
y

dt NNy (x,y;0;) — O3y

x = population density of prey

y = population density of predator

@ Key idea: use NNs to represent parts of

- differential equations we don’t know

= neural differential equation (NDE)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey

dynamics:

X

E = ax + NNl(x,y, 91)
y

E = NN,(x,y;0,) — 03y

x = population density of prey
y = population density of predator

\ ’
l@\
-
-

Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

ETHzurich

We can solve numerically using the same
Euler method:

Xiy1 — X;
L U~ ax; — NNy (x, v 04)
yti+1 _}fi
+1 — Ji
— =~ NN,(x;, v 0,) — 65y;
tiv1 — ¢t
Rearrange:

Xiy1 = X; + At(ax; — NNy (x;, v 01))
Vit1 = ¥i + At(NNy(x;, 555 05) — 03y;)
ti+1 = ti + At

401-4656-21L Al in the Sciences and Engineering 2024

17

Learning Lotka-Volterra system

. Note this is an example of a hybrid simulation

= workflow:

def Hybrid LV Euler solver(x0, y0, dt, theta):
"""pPseudocode for solving Lotka-Volterra system,
with learnable dynamics"""

X, y = x0, y0
for t in range(0, T):

X x + dt*(alpha*x + NN(x, y, theta[0]))

y y + dt*(NN(x, y, theta[l]) - theta[2]*y)
return x, y

We can solve numerically using the same
Euler method:

Xiy1 — X
T U~ ax; — NNy (g, vi504)
yti+1 _}fi
+1 — Ji
— =~ NN,(x;, v 0,) — 65y;
tiv1 — L
Rearrange:

Xiy1 = X; + At(ax; — NNy (x;, v 01))
Vit1 = ¥i + At(NNy(x;, 555 05) — 03y;)
ti+1 = ti + At

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

18

Learning Lotka-Volterra system

=y. Note this is an example of a hybrid simulation Suppose we are given these population measurements:

= workflow:

sl X
def Hybrid LV Euler solver(x0, y0, dt, theta): observed

"""Pseudocode for solving Lotka-Volterra system,
with learnable dynamics"""

X, vy =x0, yo
for t in range(0, T):

X x + dt*(alpha*x + NN(x, y, theta[0]))

y y + dt*(NN(x, y, theta[l]) - theta[2]*y)
return x, y

H

X(t), y(t)

o 1 2 3 4 5 6
t
* How can we train the neural networks using this

data?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

19

Learning Lotka-Volterra system

def Hybrid LV Euler solver(x0, y0, dt, theta):
"""pPseudocode for solving Lotka-Volterra system,
with learnable dynamics

= workflow:

Note this is an example of a hybrid simulation Suppose we are given these population measurements:

8t ® Xobserved

man

x, y = x0, yo0
for t in range(0, T): =)
X = x + dt*(alpha*x + NN(x, y, theta[0])) 4
y =y + dt*(NN(x, y, theta[l]) - theta[2]*y) =
return x, y
. . . . 2
Train the hybrid solver using loss function:
T o | —_y N
_ 2 0 1 2 3 4 5 6
L(H) - Z“xEuleri(xOJ Atr 9) — Xobserved l” t
l * How can we train the neural networks using this

data?

(Using autodifferentiation + gradient descent)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

20

Hybrid Lotka-Volterra solver

X data

O ydata
Estimated x(t)
Estimated y(t)
............. True x(t)

True y(t)

10
X
E = ax + NNl(x,y, 91)

dy
E = NN,(x,y;0,) — 03y

T
L(H) = Z”xEuler i(xo: At: 9) — xobservedillz
i

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

Rackauckas et al, Universal differential equations

for scientific machine learning, ArXiv (2021)

21

Hybrid Lotka-Volterra solver

Rackauckas et al, Universal differential equations

for scientific machine learning, ArXiv (2021)

T
L(H) = Z”xEuler i(xo» Atr 0) — Xobserved i”2
i

ETHzurich

X
E = ax + NNl(x,y, 01)

dy
E = NN,(x,y;0,) — 03y

X data
O ydata 1o
Estimated x(t)
Estimated y(t) —20
............. True X(t) 50
True y(t)
-40
10 ~50

* Note, after training, we can do symbolic regression
on NN,(x,y;0,) and NN, (x,y; 6,) to “discover” their
functional form, e.g. that NN, (x,y; 0,) = —fxy

401-4656-21L Al in the Sciences and Engineering 2024

22

Hybrid Lotka-Volterra solver

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

@ xdata
O ydata
——— Estimated x(t)
Estimated y(t)
............. True X(t)
True y(t)
TS TE_ T
40 50
t
X
dd_t = ax + NNl(x,y, 91)
=LA NN, (x,y;0,) — 03y This model generalizes well!

dt

T
L(H) = Z”xEuler i(xo: At: 9) — Xobserved i”2
i

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

23

Hybrid Lotka-Volterra solver

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

@ xdata
O ydata
——— Estimated x(t)
Estimated y(t)
............. True X(t)
True y(t)
TS TE_ T
40 50
t
T ax + NN;(x,y; 0,) Red curve = comparison to training
dy ~ .
dt NN,(x,y;0,) — 03y x ~ NN(E; 0)
T T
L(H) = lexEuler i(xo: At: 9) — Xobserved i”2 L(G) = EHNN(ti; 9) - xobservedillz
i i

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 24

Hybrid Lotka-Volterra solver

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

Aan

@ xdata

O ydata

——— Estimated x(t)
Estimated y(t)
............. True x(t)
True y(t)

) LT

T
L(B) = Z”xEuler i(x0,At,) — Xopserved i”2 01
i

ETHzurich

dt

dt

X
= ax + NNl(x,y, 91)

dy
= NN;(x,y;0;) — 0y

Phase space

4_

2_

401-4656-21L Al in the Sciences and Engineering 2024

40 50

Model generalizes well
because neural networks see
entire phase space in their
inputs during training

25

Summary - neural differential equations

ETHzurich

@ Key idea: use NNs to represent parts of
- differential equations we don’t know

= neural differential equation (NDE)

We can solve NDEs using numerical methods
We can train NDEs using autodifferentiation
They can be used to “discover” underlying dynamics

They can be thought of as a hybrid technique

401-4656-21L Al in the Sciences and Engineering 2024

26

Lecture overview

Learning objectives

« What is a neural differential equation (NDE)? * Be able to define an NDE

* The link between NDEs and neural network « Explain the connection between numerical

architectures

« State of the art NDEs
* Coupled oscillatory RNNs

e Diffusion models

ETHzurich

PDE solvers and neural network

architectures

« Be aware of state-of-the-art applications of
NDEs

401-4656-21L Al in the Sciences and Engineering 2024

27

Neural ordinary differential equations

More generally, we define a neural ordinary differential
equation as:

dx(t)
at

f(x;0)

Where f(x; @) is a learnable function (a neural network)

Chen et al, Neural ordinary differential equations,
NeurlPS (2018)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

28

Neural ordinary differential equations

More generally, we define a neural ordinary differential
equation as:

dx(t)
at

f(x;0)

Where f(x; @) is a learnable function (a neural network)

Solver using Euler method:
Given x, = x(t = 0), At:
Xiy1 = X; + Atf(x;; 0)

Chen et al, Neural ordinary differential equations,
NeurlPS (2018)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

29

Neural ordinary differential equations

More generally, we define a neural ordinary differential

equation as:

dx(t)

dt

f(x;0)

Where f(x; @) is a learnable function (a neural network)

Solver using Euler method:

Given x, = x(t = 0), At:

X1 = X; + Atf(x;; 0)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

f(x;;0)

Chen et al, Neural ordinary differential equations,
NeurlPS (2018)

30

Neural ordinary differential equations

More generally, we define a neural ordinary differential

equation as:

dx(t)

dt

Where f(x; @) is a learnable function (a neural network)

Solver using Euler method:

Given x, = x(t = 0), At:

f(x;0) (+)-

f(x;;0)

Xi

X1 = X; + Atf(x;; 0)

ETHzurich

. The Euler step is identical to a residual layer used in
"= standard residual networks (ResNets)!

401-4656-21L Al in the Sciences and Engineering 2024

31

ETHzurich

ResNets are Euler solvers

@ ResNets < Euler ODE solvers

In the limit of infinite numbers of layers (i.e. as At — 0),
ResNets solve the ODE

dx(t) .
= Fx(;6(0)

Training a ResNet < learning the RHS of the ODE

401-4656-21L Al in the Sciences and Engineering 2024

;02)

;600)

32

Neural ordinary differential equations

We define a neural ordinary differential equation as:

dx(t)
at

f(x;0)

Where f(x; @) is a learnable function (a neural network)

We are not limited to Euler solvers! What else could we
use to solve this ODE?

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

33

Higher-order solvers

We define a neural ordinary differential equation as: Xi+1
dx(t) ‘%
— = f(x:6)
‘ f(;0)
Where f(x; @) is a learnable function (a neural network)) @
Many other solvers could be used, for example higher- f('f_e)
order Runge-Kutta methods, e.g. RK4: : ®-
At f(;0)
xl‘+1 = xl' + Z (kl + Zkz + 2k3 + k4)) 7'y
ki, = f(x;;0) ®-
At .
k, :f(xi+7k1;9) fC;9)
At
ks = f(xl- + Sk, 9)
2 x;

k, = f(x; + Atks; 0)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

34

Higher-order solvers

We define a neural ordinary differential equation as:

dx(t) .
dt - f(x; 0)

Where f(x; @) is a learnable function (a neural network)

“Custom” residual block —

A

A

=> Other solvers define other NN architectures

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

CNNs as PDE solvers

Consider a 1D convolutional layer:

Yit1 =0 xYy;
=0, 0, 03)*y;

Let us transform 6 to a new vector (@) which is (uniquely) given by

1 1 1
A4 92n Rh2
HEEL O /N
5 0 nZ B2 |=106-
1 1 1 :83 93
4 2n h2

For some h > 0.

Then we can re-write the convolutional layer as

4 2h h?

ym:(ﬁl(e)(l RPN -1C) PR O P _1)>*yi

ETHzurich

Yi+1

Yi

h

In the limit h - 0,

0%y;
dx2

dyi
Yier = Br(O)yi + Bo(6) = + 5(6)

Consider a residual CNN, then

0%y;
dx2

dy;
Vier = Vi + Pr(O)y; + B2(8) = + B3(6)
In the limit of infinite layers, the residual CNN solves

0 0 ik
= = B1(O)y + 2(8) 5 + f3(6) 5

Ruthotto and Haber, Deep Neural Networks Motivated by Partial
Differential Equations, Journal of Mathematical Imaging and Vision (2019)

401-4656-21L Al in the Sciences and Engineering 2024 41

Summary — NDEs and NN architectures

Discretised NDE solvers < Neural network architectures

Understanding of PDEs / their solutions < Understanding of architectures / training algorithms

NDEs can help us interpret the dynamics of neural network
architectures

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

42

Lecture overview

Learning objectives

« What is a neural differential equation (NDE)? * Be able to define an NDE

* The link between NDEs and neural network « Explain the connection between numerical

architectures

« State of the art NDEs
* Coupled oscillatory RNNs

e Diffusion models

ETHzurich

PDE solvers and neural network

architectures

« Be aware of state-of-the-art applications of
NDEs

401-4656-21L Al in the Sciences and Engineering 2024

43

5 min break

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

44

Lecture overview

Learning objectives

« What is a neural differential equation (NDE)? * Be able to define an NDE

* The link between NDEs and neural network « Explain the connection between numerical

architectures

« State of the art NDEs
* Coupled oscillatory RNNs

e Diffusion models

ETHzurich

PDE solvers and neural network

architectures

« Be aware of state-of-the-art applications of
NDEs

401-4656-21L Al in the Sciences and Engineering 2024

45

Using NDEs for ML tasks

Input NDE solver with
x —> learnable
parameters,

—

Output
y

P(x=17)

Key idea: discretised NDE solvers can be

thought of as “custom” NN architectures

» what if we use NDEs to model any
dataset (not just physical systems)?

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

46

Using NDEs for ML tasks

ETHzurich

Input
X

NDE solver with
—_—> learnable

parameters,

—

Test Error

1-Layer MLPT 1.60%

ResNet 0.41%
RK-Net 0.47%

Performance on MNIST (digit

classification)

NeurlPS (2018)

Output
y

P(x=17)

Chen et al, Neural ordinary differential equations,

401-4656-21L Al in the Sciences and Engineering 2024

47

Human activity recognition

» Consider the task of human activity

recognition

Walking upstairs

X 0.4 1
[=
S
s
Y]
o 0.2
[v)
&
0 25 50 75 100 125 150 175 200
>
5 00-
S
o
o
8
£ -0.1
0 25 50 75 100 125 150 175 200
N
5 001
S
o
o
8 -0.2
&
0 25 50 75 100 125 150 175 200
Time (s)

Anguita et al. Human Activity Recognition on Smartphones using a
Multiclass Hardware-Friendly Support Vector Machine. 4th
International Workshop of Ambient Assisted Living (2012)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

48

Human activity recognition

Walking upstairs

» Consider the task of human activity
recognition £ 02
&
(') 2|5 5‘0 7I5 1(')0 12|5 150 17‘5 2(I)0
% 0.0 1
g -0.1
(') 2'5 5‘0 7I5 160 12'5 150 17‘5 Z(I)O
g 0.0
é -0.2
'O 2'5 5'0 7I5 160 12'5 150 17l5 260
Time (s)
C
» One way to predict the class is to use a h, h, h, h, h, he hy
recursive neural network (RNN) T T T T T T
« ltis often hard to know what architecture to use %o ! a a3 A4 s s

in the RNN cell: MLP? CNN? LSTM cell?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

49

Human activity recognition

Walking upstairs

» Consider the task of human activity
recognition £ 02
s
(') 2|5 5‘0 7I5 1(')0 12|5 150 17‘5 2(I)0
% 0.0 1
g -0.1
(') 2'5 5‘0 7I5 160 12'5 150 17‘5 2(I)0
g 0.0
é -0.2
'O 2'5 5'0 7I5 160 12'5 150 17l5 260
Time (s)
c
» One way to predict the class is to use a h, h, h, h, h, he hy
recursive neural network (RNN) T T T T T T
a, a, a, as a, ac ag

« The data looks “oscillatory” — can we incorporate
this into the RNN design?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

50

Coupled harmonic oscillators

 From above: Discretised NDE solvers < Neural network architectures
* |dea: use coupled harmonic oscillators to design a neural network architecture

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

51

Coupled harmonic oscillators

 From above: Discretised NDE solvers < Neural network architectures
* |dea: use coupled harmonic oscillators to design a neural network architecture

Coupled harmonic oscillators are found across physics, engineering and biology

b e R S N\ I f Mﬁ?\ IR !{tﬂ;’:\
e o e ~ }ﬂ H\\ \/ 11 \ J. ‘:\/i \!d:,J \
R e et M\/U w/f Vi 4
P A N e 1\/ »\/"i S | M M N/"‘./

A
TAVAYZ
96 A A e AN /\{ \
AN\ | \‘\,/\ﬂ”\b W y/fWA{\, W
I NSV RVav i B AVAYA
J N RAVAUA t" ‘A/\v,\\f
YAV \/\/f\lﬁ A ‘»P\ "/\ Vi AVA
A n \:\\‘/”\ A\ “p‘ W ‘\ \ N\ "\\’ ; J ‘\"’
A\ /\/ VAU yf\ﬂ VIV
FRPNGY SNB. BES AV YN Y Aoty
B Y (N | N0 | I I/ N N
A BN NN Y

}

A

P A Wv& A A A Ay ,,n/
~ NN S RN IOV VAW N .
g 0 AR Tacoma Narrows suspension

N YR bridge, 1940

Ve R \
i W W W ‘J{Vf\'\{‘\w

. AR . Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
EEG readings (source: Wikipedia) (coRNN): An accurate and (gradient) stable architecture for learning

long time dependencies. ICLR (2021)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 52

Coupled harmonic oscillators

ETHzurich

« 1D damped harmonic oscillator

d?x dx
Mo = THo kx + f
x = displacement of oscillator
m = mass of oscillator
u = coefficient of friction
k = spring constant
f = external driving force

401-4656-21L Al in the Sciences and Engineering 2024 53

Coupled harmonic oscillators

* ND coupled, nonlinear, damped harmonic oscillator * 1D damped harmonic oscillator
M X tann (W vx) L
acz o ac ' r / Maez = g =™ /

where x = displacement of oscillator

m; 0 O :

M = (0 . 0) m = mass of oscillator
0 0 m, u = coefficient of friction
k = spring constant

and W,V are coefficient of friction and spring constant f = external driving force

matrices, where their off-diagonal elements represent

interactions between oscillators

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

54

Solving coupled harmonic oscillators

* ND coupled, nonlinear, damped harmonic oscillator =+ How can we solve this system of ODEs?
(assuming M = 1)
dx

Mo =t h(w V+)
T a VxS

my 0 O
M:(o 0)
0 0 m,

and W,V are coefficient of friction and spring constant

matrices, where their off-diagonal elements represent
interactions between oscillators

where

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

95

Solving coupled harmonic oscillators

* ND coupled, nonlinear, damped harmonic oscillator Introduce velocity variable:

y d*x (w dx v . dx
E—tan <— E— x+f) _dt
Then
dv

where M — = tanh(—Wv —Vx + f)

m;, 0 0 dt

M = (0 . o)
0 0 my Assume M = 1, and discretise in time:

and W,V are coefficient of friction and spring constant Xtr1 = X¢ + AtV
matrices, where their off-diagonal elements represent Viy1 = Up + Attanh(—Wv, — Vx, + f;)

interactions between oscillators

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 56

Solving coupled harmonic oscillators

Introduce velocity variable:

dx

L ‘U:E

Xy —
\ At tanh (=W v,

/ —Vxy + fe)

X
t+1 Then

dv
M pri tanh(—Wv —Vx + f)

Assume M = 1, and discretise in time:

Xpy1 = X¢ + Atvyg
Vipq = vy + Attanh(—Wv, — Vx; + f;)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 57

Coupled oscillatory RNNs (CoRNNSs)

We can interpret the ODE solver as an
RNN, and treat IV and I/ as learnable,
shared weight matrices

Xt Xt+1
\ At tanh(—= 1/ v, At vy = Physics-inspired RNN design!
/ —Vxe + fe)
‘Dt +
A ammsmamsmmm s nan s n s a AN AN AR AN AN AR AR R NANAEEEEAEAEAEAEAEEEEEEEEAEEEEEEEEE C
ft h, h; h, hs hs
a, a, a, a; a, as ag

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 58

Coupled oscillatory RNNs (CoRNNSs)

Table 3: Test accuracies on HAR-2.

Walking upstairs Model test accuracy #units # params
x i
£ GRU (Kusupati et al., 2018) 93.6% 75 19k
g s | LSTM (Kag et al., 2020) 93.7% 64 16k
g ’ FastRNN (Kusupati et al., 2018) 94.5% 80 7k
FastGRNN (Kusupati et al., 2018) 95.6% 80 7k
0 25 50 75 100 125 150 175 200 anti.sym. RNN (Kag et al., 2020) 93.2% 120 8k
. incremental RNN (Kag et al., 2020) 96.3% 64 4k
S 007 coRNN 97.2% 64 9k
g -0.1
' ' ' . ' ' ' ' ' Table 4: Test accuracies on IMDB.
0 25 50 75 100 125 150 175 200
N oo Model test accuracy # units # params
3 LSTM (Campos et al., 2018) 86.8% 128 220k
§7%] Skip LSTM(Campos et al., 2018) 86.6% 128 220k
(') 2'5 5'0 7'5 1(|)0 12'5 1:'30 1_}5 2(')0 GRU (Campos et al., 2018) 86.2% 128 164k
Time () Skip GRU (Campos et al., 2018) 86.6% 128 164k
ReLU GRU (Dey & Salemt, 2017) 84.8% 128 99k
coRNN 87.4% 128 46k

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 59

Interpreting network dynamics

* We can plot the evolution of the hidden
state of the CoRNN (= displacement of
the oscillators)

0.8
0.6

0.4

» Using the underlying ODE, it can be

02 shown that the energy of the system (and
0 therefore magnitude of the oscillations) is
0.2 bounded
. * This leads to the result that CoRNNs do

not suffer from exploding gradients™

(*see paper for proof)

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 60

Lecture summary

* A neural differential equation uses neural networks to represent
learnable parts of the equation

» Adiscretised NDE solver can be thought of as neural network
architecture with interpretable dynamics

« State of the art ML models, e.g. diffusion models, solve NDEs

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

61

