
401-4656-21L AI in the Sciences and Engineering 2024

AI in the Sciences and
Engineering

Neural Differential Equations
Spring Semester 2024

Siddhartha Mishra
Ben Moseley

401-4656-21L AI in the Sciences and Engineering 2024 2

Recap - computed tomography

Ground truth computed
tomography image

Resulting tomographic
data (sinogram)

Image source: Wikipedia

Result of inverse
algorithm

!𝑎

𝑏 = 𝐹(𝑎)
𝑎 = set of input conditions

𝐹 = physical model of the system

𝑏 = resulting properties given 𝐹 and 𝑎

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼!𝑒
" ∫!",$

$(&,() *+𝑎(𝑥, 𝑦)

𝑙%,&

401-4656-21L AI in the Sciences and Engineering 2024 3

Recap - solving the inverse problem

Starting
model
!𝑎

Real data
𝑏

Forward
modelling
𝐹(!𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 &𝑎 !

+ 𝜆𝑅(&𝑎)

Updated
model

!𝑎 ← !𝑎 − 𝛾𝜕 ,$𝐿

Final model
!𝑎

401-4656-21L AI in the Sciences and Engineering 2024 4

Recap - hybrid computed tomography

Starting
model
!𝑎

Real data
𝑏

Forward
modelling
𝐹(!𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 &𝑎 !

+ 𝜆𝑅(&𝑎)

Updated
model

!𝑎 ← !𝑎 − 𝛾𝜕 ,$𝐿

Final model
!𝑎

Idea: learn a “better” direction to step in the
parameter space

𝜕𝐿 !𝑎
𝜕 !𝑎

← 𝑁𝑁
𝜕𝐿 !𝑎
𝜕 !𝑎

, !𝑎, 5𝑏, 𝑅(!𝑎); 𝜃

𝐿 𝜃 ='
-

.

𝐻)𝑎/	-, 𝑏-; 𝜃 − 𝑎- 1

401-4656-21L AI in the Sciences and Engineering 2024 5

Recap - hybrid computed tomography

Ground truth Traditional inversion Learned gradient descent

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

401-4656-21L AI in the Sciences and Engineering 2024 6

Recap - hybrid computed tomography

Starting
model
!𝑎

Real data
𝑏

Forward
modelling
𝐹(!𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 &𝑎 !

+ 𝜆𝑅(&𝑎)

Updated
model

!𝑎 ← !𝑎 − 𝛾𝜕 ,$𝐿

Final model
!𝑎

!𝑎 = 𝑁𝑁(𝑏; 𝜃)

𝑅 = 𝑁𝑁(!𝑎; 𝜃)

𝐿 𝜃 ='
-

.

𝐻)𝑎/	-, 𝑏-; 𝜃 − 𝑎- 1

𝜕𝐿 !𝑎
𝜕 !𝑎

← 𝑁𝑁
𝜕𝐿 !𝑎
𝜕 !𝑎

, !𝑎, 5𝑏, 𝑅(!𝑎); 𝜃

5𝑏 ≈ 𝑁𝑁(!𝑎; 𝜃)

Key idea:
Traditional algorithms can be
made as learnable (flexible) or
as unlearnable (rigid) as you like

401-4656-21L AI in the Sciences and Engineering 2024 7

Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02. Introduction to PyTorch

04.03. Simple DNNs in PyTorch

11.03. Implementing PINNs I

18.03. Implementing PINNs II

25.03. Operator learning I

01.04.

08.04. Operator learning II

15.04.

22.04. GNNs

29.04. Transformers

06.05. Diffusion models

13.05. Coding autodiff from scratch

20.05.

27.05. Intro to JAX / Neural ODEs

Wed 08:15-10:00 ML H 44

21.02. Course introduction

28.02. Introduction to deep learning II

06.03. Physics-informed neural networks – introduction

13.03. Physics-informed neural networks – extensions

20.03. Physics-informed neural networks – theory II

27.03. Supervised learning for PDEs II

03.04.

10.04. Introduction to operator learning I

17.04. Convolutional neural operators

24.04. Large-scale neural operators

01.05.

08.05. Introduction to hybrid workflows I

15.05. Neural differential equations
22.05. Symbolic regression and model discovery

29.05. Guest lecture: AlphaFold

Fri 12:15-13:00 ML H 44

23.02. Introduction to deep learning I

01.03. Introduction to PDEs

08.03. Physics-informed neural networks - limitations

15.03. Physics-informed neural networks – theory I

22.03. Supervised learning for PDEs I

29.03.

05.04.

12.04. Introduction to operator learning II

19.04. Time-dependent neural operators

26.04. Attention as a neural operator

03.05. Windowed attention and scaling laws

10.05. Introduction to hybrid workflows II

17.05. Introduction to JAX

24.05. Course summary

31.05. Guest lecture: AlphaFold

Tutorials Lectures

401-4656-21L AI in the Sciences and Engineering 2024 8

Lecture overview
• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 9

Lecture overview Learning objectives
• Be able to define an NDE

• Explain the connection between numerical
PDE solvers and neural network
architectures

• Be aware of state-of-the-art applications of
NDEs

• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 10

Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦
𝑑𝑦
𝑑𝑡 = 𝛾𝑥𝑦 − 𝛿𝑦

𝑥 = population density of prey
𝑦 = population density of predator
𝛼, 𝛽 = max prey birth rate, effect of predators on prey
growth rate
𝛿, 𝛾 = max predator death rate, effect of prey on
predator growth rate

Source: wikipedia

𝛼, 𝛽 = 1.1, 0.4
𝛿, 𝛾 = 0.4, 0.1
𝑥! = 𝑦! = 10

401-4656-21L AI in the Sciences and Engineering 2024 11

Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦
𝑑𝑦
𝑑𝑡 = 𝛾𝑥𝑦 − 𝛿𝑦

𝑥 = population density of prey
𝑦 = population density of predator
𝛼, 𝛽 = max prey birth rate, effect of predators on prey
growth rate
𝛿, 𝛾 = max predator death rate, effect of prey on
predator growth rate

• How can we solve this system of ODEs
(numerically)?

Source: wikipedia

𝛼, 𝛽 = 1.1, 0.4
𝛿, 𝛾 = 0.4, 0.1
𝑥! = 𝑦! = 10

401-4656-21L AI in the Sciences and Engineering 2024 12

Solving Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦
𝑑𝑦
𝑑𝑡 = 𝛾𝑥𝑦 − 𝛿𝑦

𝑥 = population density of prey
𝑦 = population density of predator
𝛼, 𝛽 = max prey birth rate, effect of predators on prey
growth rate
𝛿, 𝛾 = max predator death rate, effect of prey on
predator growth rate

We can solve numerically using the Euler
method:

𝑥"#$ − 𝑥"
𝑡"#$ − 𝑡"

≈ 𝛼𝑥" − 𝛽𝑥"𝑦"
𝑦"#$ − 𝑦"
𝑡"#$ − 𝑡"

≈ 𝛾𝑥"𝑦" − 𝛿𝑦"

Rearrange:

𝑥"#$ = 𝑥" + Δ𝑡 𝛼𝑥" − 𝛽𝑥"𝑦"
𝑦"#$ = 𝑦" + Δ𝑡(𝛾𝑥"𝑦" − 𝛿𝑦")

𝑡"#$ = 𝑡" + Δ𝑡

401-4656-21L AI in the Sciences and Engineering 2024 13

Assumptions of Lotka-Volterra system

Assumptions:

• The prey population always finds ample food.
• The food supply of the predator population

depends entirely on the size of the prey
population.

• The rate of change of population is
proportional to its size.

• Predators have limitless appetite.
• …

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦
𝑑𝑦
𝑑𝑡 = 𝛾𝑥𝑦 − 𝛿𝑦

𝑥 = population density of prey
𝑦 = population density of predator
𝛼, 𝛽 = max prey birth rate, effect of predators on prey
growth rate
𝛿, 𝛾 = max predator death rate, effect of prey on
predator growth rate

401-4656-21L AI in the Sciences and Engineering 2024 14

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦
𝑑𝑦
𝑑𝑡 = 𝛾𝑥𝑦 − 𝛿𝑦

𝑥 = population density of prey
𝑦 = population density of predator

• What if we are unsure of the RHS of the equation?
How could we “learn” the ODEs based on population
measurements?

⚫ 𝒙23456758

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

401-4656-21L AI in the Sciences and Engineering 2024 15

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝑥 = population density of prey
𝑦 = population density of predator

Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

⚫ 𝒙23456758

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

401-4656-21L AI in the Sciences and Engineering 2024 16

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝑥 = population density of prey
𝑦 = population density of predator

How can we solve this system of ODEs
(numerically)?

Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

401-4656-21L AI in the Sciences and Engineering 2024 17

Learning Lotka-Volterra system

The Lotka-Volterra system models predator-prey
dynamics:

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝑥 = population density of prey
𝑦 = population density of predator

We can solve numerically using the same
Euler method:

𝑥"#$ − 𝑥"
𝑡"#$ − 𝑡"

≈ 𝛼𝑥" − 𝑁𝑁$(𝑥" , 𝑦"; 𝜽$)
𝑦"#$ − 𝑦"
𝑡"#$ − 𝑡"

≈ 𝑁𝑁%(𝑥" , 𝑦"; 𝜽%) − 𝜃&𝑦"

Rearrange:

𝑥"#$ = 𝑥" + Δ𝑡 𝛼𝑥" − 𝑁𝑁$(𝑥" , 𝑦"; 𝜽$)
𝑦"#$ = 𝑦" + Δ𝑡 𝑁𝑁%(𝑥" , 𝑦"; 𝜽%) − 𝜃&𝑦"

𝑡"#$ = 𝑡" + Δ𝑡Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

401-4656-21L AI in the Sciences and Engineering 2024 18

Learning Lotka-Volterra system

We can solve numerically using the same
Euler method:

𝑥"#$ − 𝑥"
𝑡"#$ − 𝑡"

≈ 𝛼𝑥" − 𝑁𝑁$(𝑥" , 𝑦"; 𝜽$)
𝑦"#$ − 𝑦"
𝑡"#$ − 𝑡"

≈ 𝑁𝑁%(𝑥" , 𝑦"; 𝜽%) − 𝜃&𝑦"

Rearrange:

𝑥"#$ = 𝑥" + Δ𝑡 𝛼𝑥" − 𝑁𝑁$(𝑥" , 𝑦"; 𝜽$)
𝑦"#$ = 𝑦" + Δ𝑡 𝑁𝑁%(𝑥" , 𝑦"; 𝜽%) − 𝜃&𝑦"

𝑡"#$ = 𝑡" + Δ𝑡

Note this is an example of a hybrid simulation
workflow:

401-4656-21L AI in the Sciences and Engineering 2024 19

Learning Lotka-Volterra system

Note this is an example of a hybrid simulation
workflow:

Suppose we are given these population measurements:

• How can we train the neural networks using this
data?

⚫ 𝒙23456758

401-4656-21L AI in the Sciences and Engineering 2024 20

Learning Lotka-Volterra system

Suppose we are given these population measurements:

• How can we train the neural networks using this
data?

⚫ 𝒙23456758

Train the hybrid solver using loss function:

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

(Using autodifferentiation + gradient descent)

Note this is an example of a hybrid simulation
workflow:

401-4656-21L AI in the Sciences and Engineering 2024 21

Hybrid Lotka-Volterra solver
Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

401-4656-21L AI in the Sciences and Engineering 2024 22

Hybrid Lotka-Volterra solver

• Note, after training, we can do symbolic regression
on 𝑁𝑁$(𝑥, 𝑦; 𝜽$) and 𝑁𝑁%(𝑥, 𝑦; 𝜽%) to “discover” their
functional form, e.g. that 𝑁𝑁$(𝑥, 𝑦; 𝜽$) ≈ −𝛽𝑥𝑦

Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

401-4656-21L AI in the Sciences and Engineering 2024 23

Hybrid Lotka-Volterra solver
Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

• This model generalizes well!

401-4656-21L AI in the Sciences and Engineering 2024 24

Hybrid Lotka-Volterra solver
Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

𝒙 ≈ 𝑁𝑁 𝑡; 𝜽

𝐿 𝜽 =:
"

'

𝑁𝑁 𝑡"; 𝜽 − 𝒙./0+,1+2	" %

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

Red curve = comparison to training

401-4656-21L AI in the Sciences and Engineering 2024 25

Hybrid Lotka-Volterra solver
Rackauckas et al, Universal differential equations
for scientific machine learning, ArXiv (2021)

𝑑𝑥
𝑑𝑡 = 𝛼𝑥 + 𝑁𝑁$(𝑥, 𝑦; 𝜽$)
𝑑𝑦
𝑑𝑡 = 𝑁𝑁%(𝑥, 𝑦; 𝜽%) − 𝜃&𝑦

𝐿 𝜽 =:
"

'

𝒙()*+,	"(𝒙!, Δ𝑡, 𝜽) − 𝒙./0+,1+2	" %

• Model generalizes well
because neural networks see
entire phase space in their
inputs during training

401-4656-21L AI in the Sciences and Engineering 2024 26

Summary - neural differential equations

Key idea: use NNs to represent parts of
differential equations we don’t know

= neural differential equation (NDE)

• We can solve NDEs using numerical methods

• We can train NDEs using autodifferentiation

• They can be used to “discover” underlying dynamics

• They can be thought of as a hybrid technique

401-4656-21L AI in the Sciences and Engineering 2024 27

Lecture overview Learning objectives
• Be able to define an NDE

• Explain the connection between numerical
PDE solvers and neural network
architectures

• Be aware of state-of-the-art applications of
NDEs

• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 28

Neural ordinary differential equations
More generally, we define a neural ordinary differential
equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

Chen et al, Neural ordinary differential equations,
NeurIPS (2018)

401-4656-21L AI in the Sciences and Engineering 2024 29

Neural ordinary differential equations
More generally, we define a neural ordinary differential
equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

Solver using Euler method:

Given 𝒙! = 𝒙 𝑡 = 0 , Δ𝑡:

𝒙"#$ = 𝒙" + Δ𝑡𝒇 𝒙"; 𝜽

Chen et al, Neural ordinary differential equations,
NeurIPS (2018)

401-4656-21L AI in the Sciences and Engineering 2024 30

Neural ordinary differential equations
More generally, we define a neural ordinary differential
equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

Solver using Euler method:

Given 𝒙! = 𝒙 𝑡 = 0 , Δ𝑡:

𝒙"#$ = 𝒙" + Δ𝑡𝒇 𝒙"; 𝜽

+

𝒙"

𝒙"#$

𝒇(𝒙-; 𝜽)

Chen et al, Neural ordinary differential equations,
NeurIPS (2018)

401-4656-21L AI in the Sciences and Engineering 2024 31

Neural ordinary differential equations
More generally, we define a neural ordinary differential
equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

Solver using Euler method:

Given 𝒙! = 𝒙 𝑡 = 0 , Δ𝑡:

𝒙"#$ = 𝒙" + Δ𝑡𝒇 𝒙"; 𝜽

The Euler step is identical to a residual layer used in
standard residual networks (ResNets)!

+

𝒙"

𝒙"#$

𝒇(𝒙-; 𝜽)

401-4656-21L AI in the Sciences and Engineering 2024 32

ResNets are Euler solvers

ResNets ⟺ Euler ODE solvers

In the limit of infinite numbers of layers (i.e. as Δ𝑡 → 0),
ResNets solve the ODE

𝑑𝒙(𝑡)
𝑑𝑡

= 𝒇 𝒙 𝑡 ; 𝜽(𝑡)

Training a ResNet ⟺	learning the RHS of the ODE
+

𝒇(𝒙!; 𝜽!)

+

𝒇(𝒙-; 𝜽-)

+

𝒇(𝒙.; 𝜽.)

𝒙9

𝒙/

401-4656-21L AI in the Sciences and Engineering 2024 33

Neural ordinary differential equations
We define a neural ordinary differential equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

We are not limited to Euler solvers! What else could we
use to solve this ODE?

401-4656-21L AI in the Sciences and Engineering 2024 34

Higher-order solvers
We define a neural ordinary differential equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

Many other solvers could be used, for example higher-
order Runge-Kutta methods, e.g. RK4:

𝒙"#$ = 𝒙" +
Δ𝑡
6 𝒌$ + 2𝒌% + 2𝒌& + 𝒌3
𝒌$ = 𝒇 𝒙"; 𝜽

𝒌% = 𝒇 𝒙" +
Δ𝑡
2 𝒌$; 𝜽

𝒌& = 𝒇 𝒙" +
Δ𝑡
2
𝒌%; 𝜽

𝒌3 = 𝒇 𝒙" + Δ𝑡𝒌&; 𝜽
𝒙"

𝒙"#$

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)

+

401-4656-21L AI in the Sciences and Engineering 2024 35

Higher-order solvers
We define a neural ordinary differential equation as:

𝑑𝒙(𝑡)
𝑑𝑡 = 𝒇 𝒙; 𝜽

Where 𝒇 𝒙; 𝜽 is a learnable function (a neural network)

=> Other solvers define other NN architectures

“Custom” residual block

𝒙"

𝒙"#$

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)
+

𝒇(⋅	; 𝜽)

+

401-4656-21L AI in the Sciences and Engineering 2024 41

CNNs as PDE solvers
Consider a 1D convolutional layer:

𝒚-:; = 𝜽 ⋆ 𝒚-
= 𝜃; 𝜃1 𝜃9 ⋆ 𝒚-

Let us transform 𝜽 to a new vector 𝜷(𝜽) which is (uniquely) given by

1
4 −

1
2ℎ −

1
ℎ1

1
2 0

2
ℎ1

1
4

1
2ℎ

−
1
ℎ1

𝛽;
𝛽1
𝛽9

=
𝜃;
𝜃1
𝜃9

For some ℎ > 0.

Then we can re-write the convolutional layer as

𝒚-:; =
𝛽;(𝜽)
4 1 2 1 +

𝛽1(𝜽)
2ℎ −1 0 1 +

𝛽9(𝜽)
ℎ1

−1 2 −1 ⋆ 𝒚-

In the limit ℎ → 0,

𝑦-:; = 𝛽; 𝜽 𝑦- + 𝛽1 𝜽
𝜕𝑦-
𝜕𝑥

+ 𝛽9 𝜽
𝜕1𝑦-
𝜕𝑥1

Consider a residual CNN, then

𝑦-:; = 𝑦- + 𝛽; 𝜽 𝑦- + 𝛽1 𝜽
𝜕𝑦-
𝜕𝑥

+ 𝛽9 𝜽
𝜕1𝑦-
𝜕𝑥1

In the limit of infinite layers, the residual CNN solves

𝜕𝑦
𝜕𝑡

= 𝛽; 𝜽 𝑦 + 𝛽1 𝜽
𝜕𝑦
𝜕𝑥

+ 𝛽9 𝜽
𝜕1𝑦
𝜕𝑥1

𝜃;
𝜃1
𝜃9

𝒚-:;

𝒚-

ℎ

Ruthotto and Haber, Deep Neural Networks Motivated by Partial
Differential Equations, Journal of Mathematical Imaging and Vision (2019)

401-4656-21L AI in the Sciences and Engineering 2024 42

Summary – NDEs and NN architectures

Discretised NDE solvers ⟺ Neural network architectures

NDEs can help us interpret the dynamics of neural network
architectures

Understanding of PDEs / their solutions ⟺ Understanding of architectures / training algorithms

401-4656-21L AI in the Sciences and Engineering 2024 43

Lecture overview Learning objectives
• Be able to define an NDE

• Explain the connection between numerical
PDE solvers and neural network
architectures

• Be aware of state-of-the-art applications of
NDEs

• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 44

5 min break

401-4656-21L AI in the Sciences and Engineering 2024 45

Lecture overview Learning objectives
• Be able to define an NDE

• Explain the connection between numerical
PDE solvers and neural network
architectures

• Be aware of state-of-the-art applications of
NDEs

• What is a neural differential equation (NDE)?

• The link between NDEs and neural network
architectures

• State of the art NDEs

• Coupled oscillatory RNNs

• Diffusion models

401-4656-21L AI in the Sciences and Engineering 2024 46

Using NDEs for ML tasks

NDE solver with
learnable

parameters, 𝜽

Input
𝒙

Output
𝒚

𝑃(𝒙 = 7)

Key idea: discretised NDE solvers can be
thought of as “custom” NN architectures

• what if we use NDEs to model any
dataset (not just physical systems)?

401-4656-21L AI in the Sciences and Engineering 2024 47

Using NDEs for ML tasks

NDE solver with
learnable

parameters, 𝜽

Input
𝒙

Output
𝒚

𝑃(𝒙 = 7)

Performance on MNIST (digit
classification)

Chen et al, Neural ordinary differential equations,
NeurIPS (2018)

401-4656-21L AI in the Sciences and Engineering 2024 48

Human activity recognition
• Consider the task of human activity

recognition

Anguita et al. Human Activity Recognition on Smartphones using a
Multiclass Hardware-Friendly Support Vector Machine. 4th
International Workshop of Ambient Assisted Living (2012)

401-4656-21L AI in the Sciences and Engineering 2024 49

Human activity recognition

𝒂!

𝒉-

𝒂-

𝒉.

𝒂.

𝒉/

𝒂/

𝒉0 𝒉1 𝒉2

𝑐

𝒂0 𝒂1 𝒂2

𝒉!

• Consider the task of human activity
recognition

• One way to predict the class is to use a
recursive neural network (RNN)

• It is often hard to know what architecture to use
in the RNN cell: MLP? CNN? LSTM cell?

401-4656-21L AI in the Sciences and Engineering 2024 50

Human activity recognition

• One way to predict the class is to use a
recursive neural network (RNN)

• The data looks “oscillatory” – can we incorporate
this into the RNN design?

• Consider the task of human activity
recognition

𝒂!

𝒉-

𝒂-

𝒉.

𝒂.

𝒉/

𝒂/

𝒉0 𝒉1 𝒉2

𝑐

𝒂0 𝒂1 𝒂2

𝒉!

401-4656-21L AI in the Sciences and Engineering 2024 51

• From above: Discretised NDE solvers ⟺ Neural network architectures
• Idea: use coupled harmonic oscillators to design a neural network architecture

Coupled harmonic oscillators

401-4656-21L AI in the Sciences and Engineering 2024 52

• From above: Discretised NDE solvers ⟺ Neural network architectures
• Idea: use coupled harmonic oscillators to design a neural network architecture

• Coupled harmonic oscillators are found across physics, engineering and biology

Coupled harmonic oscillators

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

CO2
Tacoma Narrows suspension
bridge, 1940

EEG readings (source: Wikipedia)

401-4656-21L AI in the Sciences and Engineering 2024 53

Coupled harmonic oscillators
• 1D damped harmonic oscillator

𝑚
𝑑%𝑥
𝑑𝑡% = −𝜇

𝑑𝑥
𝑑𝑡 − 𝑘𝑥 + 𝑓

𝑥 =	displacement of oscillator
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant
𝑓 = external driving force

401-4656-21L AI in the Sciences and Engineering 2024 54

Coupled harmonic oscillators
• ND coupled, nonlinear, damped harmonic oscillator

𝑀
𝑑%𝒙
𝑑𝑡% = tanh −𝑊

𝑑𝒙
𝑑𝑡 − 𝑉𝒙 + 𝒇

where

𝑀 =
𝑚$ 0 0
0 … 0
0 0 𝑚4

and 𝑊,𝑉 are coefficient of friction and spring constant
matrices, where their off-diagonal elements represent
interactions between oscillators

• 1D damped harmonic oscillator

𝑚
𝑑%𝑥
𝑑𝑡% = −𝜇

𝑑𝑥
𝑑𝑡 − 𝑘𝑥 + 𝑓

𝑥 =	displacement of oscillator
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant
𝑓 = external driving force

401-4656-21L AI in the Sciences and Engineering 2024 55

Solving coupled harmonic oscillators
• How can we solve this system of ODEs?

(assuming 𝑀 = 1)
• ND coupled, nonlinear, damped harmonic oscillator

𝑀
𝑑%𝒙
𝑑𝑡% = tanh −𝑊

𝑑𝒙
𝑑𝑡 − 𝑉𝒙 + 𝒇

where

𝑀 =
𝑚$ 0 0
0 … 0
0 0 𝑚4

and 𝑊,𝑉 are coefficient of friction and spring constant
matrices, where their off-diagonal elements represent
interactions between oscillators

401-4656-21L AI in the Sciences and Engineering 2024 56

Solving coupled harmonic oscillators
Introduce velocity variable:

𝒗 =
𝑑𝒙
𝑑𝑡

Then
𝑀
𝑑𝒗
𝑑𝑡 = tanh −𝑊𝒗 − 𝑉𝒙 + 𝒇

Assume 𝑀 = 1, and discretise in time:

𝒙5#$ = 𝒙5 + ∆𝑡𝒗5#$
𝒗5#$ = 𝒗5 + ∆𝑡 tanh −𝑊𝒗5 − 𝑉𝒙5 + 𝒇5

• ND coupled, nonlinear, damped harmonic oscillator

𝑀
𝑑%𝒙
𝑑𝑡% = tanh −𝑊

𝑑𝒙
𝑑𝑡 − 𝑉𝒙 + 𝒇

where

𝑀 =
𝑚$ 0 0
0 … 0
0 0 𝑚4

and 𝑊,𝑉 are coefficient of friction and spring constant
matrices, where their off-diagonal elements represent
interactions between oscillators

401-4656-21L AI in the Sciences and Engineering 2024 57

Solving coupled harmonic oscillators

∆𝑡 tanh(
)

−𝑊𝒗3
− 𝑉𝒙3 + 𝒇3

∆𝑡	𝒗"#$

+

+

𝒗5

𝒇5

𝒗5#$

𝒙5#$ 𝒙5

Introduce velocity variable:

𝒗 =
𝑑𝒙
𝑑𝑡

Then
𝑀
𝑑𝒗
𝑑𝑡 = tanh −𝑊𝒗 − 𝑉𝒙 + 𝒇

Assume 𝑀 = 1, and discretise in time:

𝒙5#$ = 𝒙5 + ∆𝑡𝒗5#$
𝒗5#$ = 𝒗5 + ∆𝑡 tanh −𝑊𝒗5 − 𝑉𝒙5 + 𝒇5

401-4656-21L AI in the Sciences and Engineering 2024 58

Coupled oscillatory RNNs (CoRNNs)

𝒂!

𝒉-

𝒂-

𝒉.

𝒂.

𝒉/

𝒂/

𝒉0 𝒉1 𝒉2

𝑐

𝒂0 𝒂1 𝒂2

𝒉!

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

We can interpret the ODE solver as an
RNN, and treat 𝑊 and 𝑉 as learnable,
shared weight matrices

= Physics-inspired RNN design!∆𝑡 tanh(
)

−𝑊𝒗3
− 𝑉𝒙3 + 𝒇3

∆𝑡	𝒗"#$

+

+

𝒗5

𝒇5

𝒗5#$

𝒙5#$ 𝒙5

401-4656-21L AI in the Sciences and Engineering 2024 59

Coupled oscillatory RNNs (CoRNNs)

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

401-4656-21L AI in the Sciences and Engineering 2024 60

Interpreting network dynamics

𝑡

𝒙

• We can plot the evolution of the hidden
state of the CoRNN (= displacement of
the oscillators)

• Using the underlying ODE, it can be
shown that the energy of the system (and
therefore magnitude of the oscillations) is
bounded

• This leads to the result that CoRNNs do
not suffer from exploding gradients*

(*see paper for proof)

Rusch and Mishra, Coupled Oscillatory Recurrent Neural Network
(coRNN): An accurate and (gradient) stable architecture for learning
long time dependencies. ICLR (2021)

401-4656-21L AI in the Sciences and Engineering 2024 61

• A neural differential equation uses neural networks to represent
learnable parts of the equation

• A discretised NDE solver can be thought of as neural network
architecture with interpretable dynamics

• State of the art ML models, e.g. diffusion models, solve NDEs

Lecture summary

