Al in the Sciences and
Engineering

= Introduction to Hybrid
it U Workflows — Part 2

S\
\ NS vem——— '\\\,
NN \\

Spring Semester 2024 ' -

—— —— =
/s e
S A
[\ ‘Y" e

N Siddhartha Mishra /l)" X
) \ Ben Moseley I/?*‘\\\\
- ETH zirich LS

7/ AN AN N4 -
1270\ l/" Y ‘/ \\ 1 \ AW '\\\ DA %,
0///2'03'//,"1."//"0 TS T ."Q\\‘.'z\\s(“,{\\w Ko~
TR A ’ S/ VAT RN ~
s, LV A N
AT Y - : . VAN AR AN
l/ N ',;',:.:,vl;/,"{; 401-4656-21L Al in the Sciences and Engineering 2024 ‘E\l\\\l‘»"‘:o:\'\g‘\“\\ (A \\

Recap — autodifferentiation

Many (scientific) programs can be thought of as
vector functions composed of many primitive

def Hybrid_NS_solver(u_@, p_0, rho, nu, theta): operations:
"Pseudocode for solving NS equation, with NN correction"

u_0, p_0 have shape (NX, NY, NZ) J’(x) =fno .o fz0f1(x)
u_t, p_t =u_90, p_0
for t in range(0, T):

u_star = f(u_t, p_t, rho, nu)

p_t = matrix_solve(u_star, p_t, rho)

u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_@, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

for learning theta (training NN)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap — autodifferentiation

Many (scientific) programs can be thought of as
vector functions composed of many primitive

def Hybrid_NS_solver(u_@, p_0, rho, nu, theta): operations:
"Pseudocode for solving NS equation, with NN correction"

u 0, p0 have shape (NX, NY, NZ) y(x) = fyo, 0o frofi1(x)
u_t, p_t =u_90, p_0
for n range(@, T):

ti : - .

0 GiEr = G G, 5%, i,) Autodifferentiation allows us to efficiently

p_t = matrix_solve(u_star, p_t, rho) Compute:

u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta) » The vector-Jacobian product (vjp)

return u_t, p_t
r 9y

theta.requires_grad_(True) v ox

u_T,_ = Hybrid_NS_solver(u_@, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta) « The Jacobian-vector product (jvp)
for learning theta (training NN)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap — autodifferentiation

Many (scientific) programs can be thought of as
vector functions composed of many primitive

def Hybrid_NS_solver(u_@, p_0, rho, nu, theta): operations:
"Pseudocode for solving NS equation, with NN correction"

u 0, p0 have shape (NX, NY, NZ) y(x) = fyo, 0o frofi1(x)
u_t, p_t =u_90, p_0
for n range(@, T):

ti : - .

0 GiEr = G G, 5%, i,) Autodifferentiation allows us to efficiently

p_t = matrix_solve(u_star, p_t, rho) Compute:

u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta) » The vector-Jacobian product (vjp)

return u_t, p_t
r 9y

theta.requires_grad_(True) v ox

u_T,_ = Hybrid_NS_solver(u_@, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta) « The Jacobian-vector product (jvp)
for learning theta (traTng NN)

Computes vector-Jacobian product, 1 Z—Z 0x

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Recap - vector-dacobian product

Vjp:

Tay_ T afN afz afl
=7
ox U afy_. U f, 0x

We can compute v’ Z—Z by iteratively computing vector-dacobian products, from left to
right (reverse-mode):

Starting with v7, * We only ne_ed_t9 define th_e vjp
of n for each primitive operation to
T« T T dy
Of -1 compute v o
ST e T 0f n-1 « Usually, we do not need to
afN_z explicitly compute the full
intermediate Jacobians —2
afl afi—l
v« T —
0x

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

y=W,o(W;x+ b;) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
Wl b 1
\L/
h
Wz\.l‘/b 2
y

O PyTorch 1

TensorFlow
&
X

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

y=W,o(W;x+ b;) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

Wy b,
\L/ 3) For each primitive operation, define

1) Forward operation
2) vector-Jacobian product

W b
z\l‘/z 3) Jacobian-vector product

O PyTorch g

TensorFlow

y A

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

Yy = WzO-(Wlx + bl) + b2

X
{4 b,
\L/
h
Wz\l‘/bz
y
v’ = incoming message
O PyTorch g
TensorFlow

y A

1)

2)

3)

4)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation

2) vector-Jacobian product

3) Jacobian-vector product

Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp

2) Backwards for vjp

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

y=W,o(W;x+ b;) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

Wy b,
\L/ 3) For each primitive operation, define

1) Forward operation

w. h b 2) vector-Jacobian product
2 2 .
\j/ 3) Jacobian-vector product
r T'% 4; ,,Ta_y
vV aw ob: 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph

v’ = incoming message 1) Forwards for jvp

O PyTorch 1 2) Backwards for vjp

TensorFlow
&
X

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

ETHzurich

Autodiff in practice

Yy = WzO-(Wlx + bl) + b2

X
{4 b,
T a0k
VvV —7D 6_W1 h 6b1
W, T b,
ow, Yy 2
v’ = incoming message
O PyTorch g
TensorFlow

y A

1)

2)

3)

4)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp

2) Backwards for vjp

401-4656-21L Al in the Sciences and Engineering 2024

10

Autodiff in practice

y =W,o(W;x + b,) + b, 1) Decompose given function into its
, , primitive operations
i‘l} = Incoming message

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp

O PyTorch 1 2) Backwards for vjp
TensorFlow

&
V7 [4
-

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

ETHzurich

Autodiff in practice

Yy = WzO-(Wlx + bl) + bz

iv = incoming message
X
W1 i b1
Vé&——D

h ox

O PyTorch g

TensorFlow

&
V7 [4
-

1)

2)

3)

4)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation

2) vector-Jacobian product

3) Jacobian-vector product

Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp

2) Backwards for vjp

401-4656-21L Al in the Sciences and Engineering 2024

12

ETHzurich

Autodiff in practice

Yy = WzO-(Wlx + bl) + b2

iv = incoming message
X
Wy Li/lh
\ ol %v
h
W, i b,
\l‘/?y
Vé&——D

oh
y

O PyTorch 1

TensorFlow

y A

1)

2)

3)

4)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation

2) vector-Jacobian product

3) Jacobian-vector product

Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp

2) Backwards for vjp

401-4656-21L Al in the Sciences and Engineering 2024 13

Autodiff in practice

y =W,o(W;x + b,) + b, 1) Decompose given function into its
, , primitive operations
i‘l} = Incoming message

X 2) Build a directed graph of these operations

141 b,
\&/@h 3) For each primitive operation, define
Ve —vD

h ox 1) Forward operation
2) vector-Jacobian product

W, b, .
i 3) Jacobian-vector product
V — a—yv

oh
y 4) Evaluate the vjp or jvp of the function by

applying the chain rule (=message
passing) through the graph
1) Forwards for jvp

% PyTorch 1 2) Backwards for vjp
- TensorFlow * How does required memory scale with depth of forward computation for vjp vs jvp?
A%

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 14

Autodiff in practice

y =W,o(W;x + b,) + b, 1) Decompose given function into its
, , primitive operations
i‘l} = Incoming message

X 2) Build a directed graph of these operations

141 b,
\&/@h 3) For each primitive operation, define
Ve —vD

h ox 1) Forward operation
2) vector-Jacobian product

W. b
: i : 3) Jacobian-vector product
V — a—yv

oh
y 4) Evaluate the vjp or jvp of the function by

applying the chain rule (=message
passing) through the graph
1) Forwards for jvp

O PyTorch 1 2) Backwards for vjp
p TensorFlow * How does required memory scale with depth of forward computation for vjp vs jvp?
@‘g'x @ * vjp: memory scales linearly with depth (need to store forward computations)

=« jvp: memory independent of depth (can compute jvp alongside forward pass)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 15

Autodiff in practice

ETHzurich

Yy = Wzo-(Wlx + bl) + b2
O PyTorch

X
W b torch.autograd.grad (outputs, inputs, grad_outputs=None, retain_graph=None,
1\1/ 1 create_graph=False, only_inputs=True, allow_unused=None, is_grads_batched=False,
materialize_grads=False) [SOURCE
TR e . Oh g eiies

T T UV —7D
vV — v — h doby
[/Va Wy b Computes and returns the sum of gradients of outputs with respect to the inputs.
2 2
T grad_outputs should be a sequence of length matching output containing the “vector” in vector-Jacobian
'% 4(: T ay product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the
vl — T — ob gradient can be None).
2
ow, Yy
v’ = incoming message
=1

loss.backward()

401-4656-21L Al in the Sciences and Engineering 2024 16

Autodiff in practice

ETHzurich

Yy = Wzo-(Wlx + bl) + b2

v

T

w, b,

<—v

'\ vah

b,

\/viv

T

v’ = incoming message
=1

loss.backward()

F]
ab,

O PyTorch

torch.autograd.grad (outputs, inputs, grad_outputs=None, retain_graph=None,
create_graph=False, only_inputs=True, allow_unused=None, is_grads_batched=False,

materialize_grads=False) [SOURCE]

Computes and returns the sum of gradients of outputs with respect to the inputs.

grad_outputs should be a sequence of length matching output containing the “vector” in vector-Jacobian
product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the

gradient can be None).

Note autodiff is not

- Symbolic differentiation

- Finite differences

It is a way of efficiently computing exact
gradients!

401-4656-21L Al in the Sciences and Engineering 2024 17

Recap — ways to incorporate scientific principles into machine
learning

Loss function Architecture Hybrid approaches

Data
loss

Physics
loss
Example: Example: Example:
Physics-informed neural networks Encoding symmetries / conservation laws Neural differential equations
(add governing equations to loss (e.g. energy conservation, rotational (incorporating neural networks into PDE
function) invariance), operator learning models)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 18

Recap — hybrid approaches

Advantages of DNNs Limitations of DNNs

» Usually very fast (once trained) Often lots of training data required
» Can represent highly non-linear Can be hard to optimise
functions « Can be hard to interpret
« Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

@ Key idea: directly incorporate DNNs into a traditional algorithm
“=" | = hybrid approach

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

19

Recap — hybrid Navier-Stokes solver

Low fidelity FD solver Hybrid approach High fidelity FD solver

32 x 32 x 64 grid cells 128 x 128 x 256 cells
~10 seconds / 100 timesteps ~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 20

Recap — hybrid Navier-Stokes solver

ETHzurich

NN correction,
Low fidelity Urr1 = U1 + NN(Uer1, Pr41;0)

step l

step

tzz‘.

401-4656-21L Al in the Sciences and Engineering 2024 21

Low fidelity l

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

Recap — hybrid Navier-Stokes solver

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction" t

u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0
for n range(@ T):
ar = f(u_t, p_t, rho, nu)

NN correction,
U1 = U1 + NN(Uey1,Pet1; 0)

atr1x_solve(u_star, p_t, rho) Low fidelity
g(u_t, p_t, rho, nu) step l

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

ti
u_st
p_t
u_t

t=1
return u_t, p_t
theta.requires_grad_(True)
u_T,_ = Hybrid_NS_solver(u_@, p_0, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)
dtheta = torch.autograd.grad(loss, theta) ; i
for learning theta (training NN) Low flde“ty
step
N T t=2

L(§) = z Z”HybridSolvert(uOi; 9) — u}tq(‘uoi)”2
it

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 22

Recap — hybrid Navier-Stokes solver

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0
for t in range(0 T):

u_star = f(u_t, p_t, rho, nu)

p_t = atr1x_solve(u_star, p_t, rho)

u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_@, p_0, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

for learning theta (training NN)

N T

L(§) = z Z”HybridSolvert(uOi; 9) — u}tq(‘uoi)”2
it

_‘@' Key idea: Differentiable physics = using
NI autodifferentiation to differentiate and learn
physical algorithms

t

NN correction,
U1 = U1 + NN(Uey1,Pet1; 0)

Low fidelity

step l

Low fidelity
step

t=2

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 23

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

24

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

25

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

26

Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent

401-4656-21L Al in the Sciences and Engineering 2024

27

Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent

Bonus: your code now runs on the GPU!

401-4656-21L Al in the Sciences and Engineering 2024

28

Summary

 Hybrid approaches insert learnable components inside traditional algorithms

 Autodifferentiation is the key enabler for SciML
 Allows hybrid approaches to be trained end-to-end

* |s an incredibly general and powerful tool

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

29

Course timeline

Tutorials Lectures
Mon 12:15-14:00 HG E 5 Wed 08:15-10:00 ML H 44 Fri 12:15-13:00 ML H 44
21.02. Course introduction 23.02. Introduction to deep learning |
26.02. Introduction to PyTorch 28.02. Introduction to deep learning Il 01.03. Introduction to PDEs
04.03. Simple DNNs in PyTorch 06.03. Physics-informed neural networks — introduction 08.03. Physics-informed neural networks - limitations
11.03. Implementing PINNSs | 13.03. Physics-informed neural networks — extensions 15.03. Physics-informed neural networks — theory |
18.03. Implementing PINNSs Il 20.03. Physics-informed neural networks — theory Il 22.03. Supervised learning for PDEs |
25.03. Operator learning | 27.03. Supervised learning for PDEs Il
08.04. Operator learning Il 10.04. Introduction to operator learning | 12.04. Introduction to operator learning Il
17.04. Convolutional neural operators 19.04. Time-dependent neural operators
22.04. GNNs 24.04. Large-scale neural operators 26.04. Attention as a neural operator
29.04. Transformers 03.05. Windowed attention and scaling laws
06.05. Diffusion models 08.05. Introduction to hybrid workflows | 10.05. Introduction to hybrid workflows Il
13.05. Coding autodiff from scratch 15.05. Neural differential equations 17.05. Introduction to JAX
22.05. Symbolic regression and model discovery 24.05. Course summary
27.05. Intro to JAX / Neural ODEs 29.05. Guest lecture: AlphaFold 31.05. Guest lecture: AlphaFold

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 30

Lecture overview

« Coding a simple hybrid approach in PyTorch

« Hybrid workflows for solving inverse problems

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

31

Lecture overview

« Coding a simple hybrid approach in PyTorch

« Hybrid workflows for solving inverse problems

Learning objectives

» Be able to code a simple hybrid approach in
PyTorch

» Understand more advanced hybrid

workflows

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 32

Coding a simple hybrid approach in PyTorch

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

33

Computed tomography

Image source: Wikipedia

Ground truth computed Resulting tomographic
tomography image data (sinogram)
- a(x,y)ds
a(x,y) b(8,7) = F(a) = lye o= "®

N

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

34

Computed tomography — inverse problem

ETHzurich

Ground truth computed
tomography image

a(x,y)

Result of inverse
algorithm

A

a

Resulting tomographic
data (sinogram)

I

a(x,y)ds
0,t

b(6,7) = F(a) = Iye

a =

F =

Observed sinogram

b

401-4656-21L Al in the Sciences and Engineering 2024

| /

Image source: Wikipedia

b =F(a)
set of input conditions

physical model of the system

resulting properties given F and a

35

Solving the inverse problem

Ground truth computed Resulting tomographic
tomography image data (sinogram)
- a(x,y)ds
a(x,y) b(8,7) = F(a) = lye o= "®

Result of inverse Observed sinogram
algorithm
a b

This problem can be framed as an
optimisation problem:

min ||b — F(@)lI*
a

Assuming F is a differentiable, we can use
gradient descent to learn a:
Loss function:

L@ = |lb—F@l’

Gradient descent:

OL(4)
0a

a—a-—-vy

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

36

Solving the inverse problem

ETHzurich

Starting
model

Forward
modelling

Updated
model

Synthetic
data

Loss function
and gradients

Final model

Real data

401-4656-21L Al in the Sciences and Engineering 2024

Challenges of inverse problems

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

"m.’\
I
§
i
!
9§
i
1
E

Result of inverse Observed sinogram

algorithm * Not enough measurements
a b

g

* Noisy measurements

min ||b — F(@)]I*
a

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 38

Challenges of inverse problems

"m.’\

I
§
i
i

9 8
i
1
E

Result of inverse Observed sinogram
algorithm
a b

To improve, we need to incorporate prior information

about the solution, for example by adding regularization:

L(@) = |Ib = F@II* + 1 R(a)
Where, for example
R(a) = ||val

Which asserts that the output image should be “smooth”
(= total variation regularization)

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

* Not enough measurements

* Noisy measurements

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 39

Challenges of inverse problems

Result of inverse
algorithm

A

a

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

Observed sinogram

* Not enough measurements

b :
* Noisy measurements

To improve, we need to incorporate prior information
about the solution, for example by adding regularization:

L@ = ||b = F@)|IZ + 2 R(a) 2. Extremely computationally expensive,

Where, for example

because forward modelling must be
carried out thousands of times

R(a) = ||vall

Which asserts that the output image should be “smooth”

(= total variation regularization)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

40

Solving the inverse problem

Starting
model

Where can we insert a neural
network in this workflow to

1) improve accuracy and/or
2) improve efficiency?

ETHzurich

Real data

SEER Synthetic
modelling data

Loss function
Updated
rrr)lo?jeel and gradients

Final model

401-4656-21L Al in the Sciences and Engineering 2024

41

Hybrid computed tomography

Starting

model Real data

Forward

modelling Synthetic

data

Where can we insert a neural
network in this workflow to

1) improve accuracy and/or Updated ~eE TG
2) improve efficiency? model and gradients

oL(@) NN oL@ . b,R(&); 0
- oLt :
9a 55 L bR@);

Final model

@ Idea: learn a “better” direction to step in the

= parameter space

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

42

Hybrid Computed tomography

def X ray tomography(a_hat 0, b):
"Pseudocode for carrying out X ray tomography"

a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

lam = 1

for i in range(0, n_steps):
a_hat = a _hat.requires grad_ (True)
b_hat = numerical_ integrate(a_hat)
R = total variation(b_ hat)
loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a_hat)
a_hat -= gamma*da

return a hat
1. Start with initial guess a

2. Loop:

1. Compute gradient, aL(a)

2. Take gradient descent step,

a«<a-—

~<

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

43

Hybrid Computed tomography

def X ray tomography(a_hat 0, b): def Hybrld X ray tomography(a_hat 0, b, theta):

"Pseudocode for carrying out X ray tomography" "Pseudocode for carrying out X ray tomography, with NN correction"
a hat 0 is the initial image guess, of shape (NX, NY) # a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY) # b are the observed measurements, of shape (MX, MY)
a_hat = a_hat 0 a_hat = a_hat_0
lam = 1 lam = 1
for i in range(0, n_steps): for i in range(0, n steps):

a_hat = a_hat.requires grad (True) a_hat = a_hat.requires_grad (True)
b_hat = numerical_ integrate(a_hat) b_hat = numerical_ integrate(a_hat)

R = total variation(b_hat) R = total variation(b_hat)

loss = torch.mean((b-b_hat)**2) + lam*R loss = torch.mean((b-b _hat)**2) + lam*R
da = torch.autograd.grad(loss, a_hat) da = torch.autograd.grad(loss, a hat)
a_hat -= gamma*da da = NN(da, a_hat, b_hat, R, theta)

a_hat -= gamma*da
return a hat
return a_hat

1. Start with initial guess a 1. Start with initial guess a
2. Loop: 2. Loop:
1. Compute gradient, aL(a) 1. Compute gradient, %
2. Take gradient descent step, 2. Take learned gradient descent step,
L oL(a) o aL(a)
a—a-y 74 a<—a—yNN< FER R()9>

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 44

Hybrid Computed tomography

def X ray tomography(a_hat 0, b):
"Pseudocode for carrying out X ray tomography"

a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

lam = 1

for i in range(0, n_steps):
a_hat = a_hat.requires grad (True)
b_hat = numerical_ integrate(a_hat)
R = total variation(b_ hat)
loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a_hat)
a_hat -= gamma*da

return a hat

* How do we train this hybrid approach (learn ©)?

ETHzurich

def Hybrld X ray tomography(a_hat 0, b, theta):
"Pseudocode for carrying out X ray tomography, with NN correction"

a_

b

hat 0 is the initial image guess, of shape (NX, NY)
are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

lam
for

=1

i in range(0, n_steps):

a_hat = a_hat.requires_grad (True)

b hat = numerical integrate(a_hat)

R = total variation(b_hat)

loss = torch.mean((b-b _hat)**2) + lam*R
da = torch.autograd.grad(loss, a hat)
da NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

return a_hat

1.

2.

Start with initial guess a
Loop:

1. Compute gradient, %
2. Take learned gradient descent step,

aL(a)
da ’ b,R(@); 6)

51(—&—)/NN<

401-4656-21L Al in the Sciences and Engineering 2024 45

Hybrid computed tomography

. def Hybrid X ray tomography(a_hat 0, b, theta):
Input to function: "Pseudocode for carrying out X ray tomography, with NN correction"

ab b # a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0
lam = 1
for i in range(0, n steps):

a_hat = a_hat.requires_grad (True)

b hat = numerical integrate(a_hat)

R = total variation(b_hat)
C)UtpLﬂ: loss = torch.mean((b-b _hat)**2) + lam*R

da = torch.autograd.grad(loss, a hat)

da NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

Q

return a hat

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

46

Hybrid computed tomography

. def Hybrid X ray tomography(a_hat 0, b, theta):
Input to function: "Pseudocode for carrying out X ray tomography, with NN correction"

ab b # a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0
lam = 1
for i in range(0, n steps):

a_hat = a_hat.requires_grad (True)

b hat = numerical integrate(a_hat)

R = total variation(b_hat)
C)UtpLﬂ: loss = torch.mean((b-b _hat)**2) + lam*R

da = torch.autograd.grad(loss, a hat)

da = NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

return a hat

We train this hybrid approach using lots of examples
of inputs (@, b) and outputs (a) and the loss function

N
L©O) =) IIH(@o b 0) — il
i

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

47

Hybrid computed tomography

Input to function:

a, b

Output:

We train this hybrid approach using lots of examples
of inputs (@, b) and outputs (a) and the loss function

N
L©O) =) IIH(@o b 0) — il
i
ETH ziirich

def Hybrid X ray tomography(a_hat 0, b, theta):

"Pseudocode for carrying out X ray tomography, with NN correction"

a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

lam = 1

for i in range(0, n steps):
a_hat = a_hat.requires_grad (True)
b hat = numerical integrate(a_hat)
R = total variation(b_hat)
loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a hat)
da NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

return a hat

~ # learn NN parameters
theta.requires_grad (True)
for i in range(0, n steps2):

a, b = # train NN using many example inverse problems
a_hat = Hybrid X ray tomography(a_hat 0, b, theta)
loss = loss_fn(a, a_hat)

dtheta = torch.autograd.grad(loss, theta)

theta -= gamma*dtheta

401-4656-21L Al in the Sciences and Engineering 2024

48

Hybrid computed tomography

Input to function:

a, b

Output:

We train this hybrid approach using lots of examples
of inputs (@, b) and outputs (a) and the loss function

N
L©O) =) IIH(@o b 0) — il
i
ETH ziirich

def Hybrid X ray tomography(a_hat 0, b, theta):

"Pseudocode for carrying out X ray tomography, with NN correction"

a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

lam = 1

for i in range(0, n steps):
a_hat = a_hat.requires_grad (True)
b hat = numerical integrate(a_hat)
R = total variation(b_hat)
loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a hat)
da NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

return a hat

~ # learn NN parameters
theta.requires_grad (True)
for i in range(0, n steps2):

a, b = # train NN using many example inverse problems
a_hat = Hybrid X ray tomography(a_hat 0, b, theta)
loss = loss_fn(a, a_hat)

dtheta = torch.autograd.grad(loss, theta)

theta -= gamma*dtheta

“Gradient descent on gradient descent”
“Learned gradient descent”
“Learning to learn”

401-4656-21L Al in the Sciences and Engineering 2024

49

Hybrid computed tomography

Ground truth Traditional inversion Learned gradient descent

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024

50

Adding even more flexibility

« We can use more than one learnable component
if we want!

Where else would it be useful to add another?

ETHzurich

def Hybrid X ray tomography(a hat 0, b, theta):

"Pseudocode for carrying out X ray tomography, with NN correction"

a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY)

a _hat = a hat 0

lam = 1

for i in range(0, n_steps):
a _hat = a_hat.requires grad (True)
b hat = numerical_ integrate(a_hat)
R = total variation(b_hat)
loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a hat)
da = NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da

return a hat

learn NN parameters
theta.requires grad (True)
for i in range(0, n_steps2):

a, b = # train NN using many example inverse problems
a_hat = Hybrid X ray tomography(a hat 0, b, theta)
loss = loss_fn(a, a_hat)

dtheta = torch.autograd.grad(loss, theta)

theta -= gamma*dtheta

401-4656-21L Al in the Sciences and Engineering 2024 51

Adding even more flexibility

def Hybrid2 X ray tomography(a_hat 0, b, theta): def Hybrid X ray tomography(a hat 0, b, theta):
"Pseudocode for carrying out X ray tomography, with NN correction" "Pseudocode for carrying out X ray tomography, with NN correction"
a hat 0 is the initial image guess, of shape (NX, NY) # a hat 0 is the initial image guess, of shape (NX, NY)
b are the observed measurements, of shape (MX, MY) # b are the observed measurements, of shape (MX, MY)
a_hat = a_hat 0 a_hat = a_hat_0
lam = 1
for i in range(0, n_steps): for i in range(0, n_steps):
a _hat = a _hat.requires grad (True) a _hat = a_hat.requires grad (True)
b hat = numerical integrate(a_hat) b hat = numerical_ integrate(a_hat)
R = total variation(b hat) R = total variation(b_hat)
loss = torch.mean((b-b_hat)**2) loss = torch.mean((b-b_hat)**2) + lam*R
da = torch.autograd.grad(loss, a_ha da = torch.autograd.grad(loss, a_hat)
da = NN(da, a hat, b _hat, R, theta[l]) da = NN(da, a_hat, b_hat, R, theta)
a_hat -= gamma*da a_hat -= gamma*da
return a_ hat return a hat
learn NN parameters # learn NN parameters
theta.requires grad (True) theta.requires grad (True)
for i in range(0, n_steps2): for i in range(0, n_steps2):
a, b = # train NN using many example inverse problems a, b = # train NN using many example inverse problems
a_hat = Hybrid2 X ray tomography(a_hat 0, b, theta) a_hat = Hybrid X ray tomography(a hat 0, b, theta)
loss = loss_fn(a, a_hat) loss = loss_fn(a, a_hat)
dtheta = torch.autograd.grad(loss, theta) dtheta = torch.autograd.grad(loss, theta)
theta -= gamma*dtheta theta -= gamma*dtheta
|ldea 2: learn regularisation hyperparameter too |ldea 1: learn a “better” direction to step in the

parameter space

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 52

Adding even more flexibility

def Hybrid2 X ray tomography(a_hat 0, b, theta):

"Pseudocode for carrying out X ray tomography, with NN correction"

a hat 0 is the initial image guess, of shape (NX, NY)

b are the observed measurements, of shape (MX, MY)

a_hat = a_hat 0

for i in range(0, n_steps):
a _hat = a _hat.requires grad (True)
b _hat numerical integrate(a_ hat)
R = total variation(b hat)

loss = torch.mean((b-b_hat)**2) + theta[0]*R

da = torch.autograd.grad(loss, a_ hat)
da NN(da, a_hat, b_hat, R, theta[l])
a_hat -= gamma*da

return a_ hat

learn NN parameters
theta.requires grad (True)
for i in range(0, n_steps2):

-(@)- | Key idea:

- | Traditional algorithms can be made as
learnable (flexible) or as unlearnable
(rigid) as you like

This allows you to balance the pros/cons of
using NNs!

a, b = # train NN using many example inverse problems

a_hat = Hybrid2 X ray tomography(a_hat 0, b,

loss = loss_fn(a, a_hat)
dtheta = torch.autograd.grad(loss, theta)
theta -= gamma*dtheta

ETHzurich

theta)

401-4656-21L Al in the Sciences and Engineering 2024

53

We can add learnable components everywhere!

Starting
model

Forward
modelling _

Synthetic
data

Loss function
Updated
iy and gradients

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

54

We can add learnable components everywhere!

Starting

Forward
modelling _

Synthetic
data

Loss function
Updated
iy and gradients

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

95

We can add learnable components everywhere!

Starting

Forward
modelling _

Synthetic
data

Loss function
Updated
iy and gradients

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

56

We can add learnable components everywhere!

Starting

Forward

modelling _ Synthetic

data

Loss function
Updated
iy and gradients

oa da '

oL(a) o NN <6L(€l)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

57

We can add learnable components everywhere!

Starting

Forward

modelling _ Synthetic

data

Updated Loss function

model and gradients

L(a)
&
oa

NN aL(a) ’\BR a): 0
~oa &P R@;

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

58

We can add learnable components everywhere!

Real data

Starting

Forward

modelling _ Synthetic

data

Loss function
Updated
iy and gradients

.. R =NN(;6)

oL(a) N <6L(€l)
da '

N|——=,4,b,R(d);
74 ab, (a),9>

N
L©O) =) IH(@o b 0) — il
i

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 59

Lecture summary

 Traditional algorithms can be made as learnable (flexible) or as

unlearnable (rigid) as you like

* Inside hybrid inverse algorithms, neural networks can be very

effective at learning priors and improving efficiency

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

60

