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Recap – autodifferentiation
Many (scientific) programs can be thought of as 
vector functions composed of many primitive 
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)
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Recap – autodifferentiation
Many (scientific) programs can be thought of as 
vector functions composed of many primitive 
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)

Autodifferentiation allows us to efficiently 
compute:

• The vector-Jacobian product (vjp) 

𝒗$
𝜕𝒚
𝜕𝒙

• The Jacobian-vector product (jvp)

𝜕𝒚
𝜕𝒙 𝒗
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Recap – autodifferentiation
Many (scientific) programs can be thought of as 
vector functions composed of many primitive 
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)

Autodifferentiation allows us to efficiently 
compute:

• The vector-Jacobian product (vjp) 

𝒗$
𝜕𝒚
𝜕𝒙

• The Jacobian-vector product (jvp)

𝜕𝒚
𝜕𝒙 𝒗Computes vector-Jacobian product, 1 %&

%𝜽
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Recap - vector-Jacobian product
vjp:
 

𝒗$
𝜕𝒚
𝜕𝒙 = 𝒗$

𝜕𝒇!
𝜕𝒇!(#

, … ,
𝜕𝒇"
𝜕𝒇#

𝜕𝒇#
𝜕𝒙

We can compute 𝒗$ %𝒚
%𝒙
	by iteratively computing vector-Jacobian products, from left to 

right (reverse-mode):

Starting with 𝒗$,

𝒗$ ← 𝒗$
𝜕𝒇!
𝜕𝒇!(#

𝒗$ ← 𝒗$
𝜕𝒇!(#
𝜕𝒇!("

…

𝒗$ ← 𝒗$
𝜕𝒇#
𝜕𝒙

• We only need to define the vjp 
for each primitive operation to 
compute 𝒗$ %𝒚

%𝒙

• Usually, we do not need to 
explicitly compute the full 
intermediate Jacobians %𝒇!

%𝒇!"#
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Autodiff in practice

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! =  incoming message

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! =  incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! =  incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃#𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒗 =  incoming message

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝑊# 𝒃#

𝒗 =  incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 =  incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 =  incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

• How does required memory scale with depth of forward computation for vjp vs jvp?
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 =  incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its 
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by 
applying the chain rule (=message 
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

• How does required memory scale with depth of forward computation for vjp vs jvp?
• vjp: memory scales linearly with depth (need to store forward computations)
• jvp: memory independent of depth (can compute jvp alongside forward pass)

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! =  incoming message
= 1

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃#𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

loss.backward()

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! =  incoming message
= 1

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

loss.backward()

Note autodiff is not
- Symbolic differentiation
- Finite differences
It is a way of efficiently computing exact 
gradients!

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"
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Recap – ways to incorporate scientific principles into machine 
learning

ArchitectureLoss function Hybrid approaches

Data 
loss

Physics 
loss

Example: 
Physics-informed neural networks
(add governing equations to loss 

function)

Example: 
Encoding symmetries / conservation laws 

(e.g. energy conservation, rotational 
invariance), operator learning

Example:
Neural differential equations

(incorporating neural networks into PDE 
models)
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Recap – hybrid approaches

Key idea: directly incorporate DNNs into a traditional algorithm
= hybrid approach

Advantages of DNNs

• Usually very fast (once trained)
• Can represent highly non-linear 

functions

Limitations of DNNs

• Often lots of training data required
• Can be hard to optimise
• Can be hard to interpret
• Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good 
idea!
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Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable 
physics to interact with iterative PDE-solvers, NeurIPS (2020)

Low fidelity FD solver High fidelity FD solver

128 x 128 x 256 cells
~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~10 seconds / 100 timesteps

Hybrid approach

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps
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Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable 
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction, 
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity 
step

Low fidelity 
step

t=1

t=2
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Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable 
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction, 
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity 
step

Low fidelity 
step

t=1

t=2
𝐿 𝜃 =-

.

/

-
+

0

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟+ 𝒖1!; 𝜃 − 𝒖+2(𝒖1!)
3
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Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable 
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction, 
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity 
step

Low fidelity 
step

t=1

t=2
𝐿 𝜃 =-

.

/

-
+

0

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟+ 𝒖1!; 𝜃 − 𝒖+2(𝒖1!)
3

Key idea: Differentiable physics = using 
autodifferentiation to differentiate and learn 
physical algorithms
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an 
autodifferentiation framework (e.g. PyTorch/JAX)
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an 
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it, 
or to improve accuracy)
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an 
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it, 
or to improve accuracy)

Step 3: get some training examples of what you want the 
input/output of the algorithm to be
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an 
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it, 
or to improve accuracy)

Step 3: get some training examples of what you want the 
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and 
using gradient descent
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an 
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it, 
or to improve accuracy)

Step 3: get some training examples of what you want the 
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and 
using gradient descent

Bonus: your code now runs on the GPU!
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Summary

• Hybrid approaches insert learnable components inside traditional algorithms

• Autodifferentiation is the key enabler for SciML

• Allows hybrid approaches to be trained end-to-end

• Is an incredibly general and powerful tool
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Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02.    Introduction to PyTorch

04.03.    Simple DNNs in PyTorch

11.03.    Implementing PINNs I

18.03.    Implementing PINNs II

25.03.    Operator learning I

01.04. 

08.04.    Operator learning II

15.04. 

22.04.    GNNs

29.04.    Transformers

06.05.    Diffusion models

13.05.    Coding autodiff from scratch

20.05.    

27.05.    Intro to JAX / Neural ODEs

Wed 08:15-10:00 ML H 44

21.02.    Course introduction

28.02.    Introduction to deep learning II

06.03.    Physics-informed neural networks – introduction

13.03.    Physics-informed neural networks – extensions

20.03.    Physics-informed neural networks – theory II

27.03.    Supervised learning for PDEs II

03.04. 

10.04.    Introduction to operator learning I

17.04.    Convolutional neural operators

24.04.    Large-scale neural operators

01.05. 

08.05.    Introduction to hybrid workflows I

15.05.    Neural differential equations

22.05.    Symbolic regression and model discovery

29.05.    Guest lecture: AlphaFold

Fri 12:15-13:00 ML H 44

23.02.    Introduction to deep learning I

01.03.    Introduction to PDEs

08.03.    Physics-informed neural networks - limitations

15.03.    Physics-informed neural networks – theory I

22.03.    Supervised learning for PDEs I

29.03. 

05.04. 

12.04.    Introduction to operator learning II

19.04.    Time-dependent neural operators

26.04.   Attention as a neural operator

03.05.    Windowed attention and scaling laws

10.05.    Introduction to hybrid workflows II

17.05.    Introduction to JAX

24.05.    Course summary

31.05.    Guest lecture: AlphaFold

Tutorials Lectures
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Lecture overview
• Coding a simple hybrid approach in PyTorch

• Hybrid workflows for solving inverse problems
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Lecture overview
• Coding a simple hybrid approach in PyTorch

• Hybrid workflows for solving inverse problems

Learning objectives
• Be able to code a simple hybrid approach in 

PyTorch

• Understand more advanced hybrid 
workflows
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Coding a simple hybrid approach in PyTorch
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Computed tomography

Ground truth computed 
tomography image

Resulting tomographic 
data (sinogram)

𝑙!,#

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
# ∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

Image source: Wikipedia

Adler et al, Solving ill-posed inverse problems using 
iterative deep neural networks, Inverse Problems (2017)
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Computed tomography – inverse problem

Ground truth computed 
tomography image

Resulting tomographic 
data (sinogram)

Image source: Wikipedia

Result of inverse 
algorithm

Observed sinogram

.𝑎

𝑏 = 𝐹(𝑎)
𝑎 = set of input conditions

𝐹 = physical model of the system

𝑏 = resulting properties given 𝐹 and 𝑎 

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
# ∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

𝑏
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Solving the inverse problem

Ground truth computed 
tomography image

Resulting tomographic 
data (sinogram)

Result of inverse 
algorithm

Observed sinogram

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
# ∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

This problem can be framed as an 
optimisation problem:

min
,-

𝑏 − 𝐹(:𝑎) "

Assuming 𝐹 is a differentiable, we can use 
gradient descent to learn :𝑎:

Loss function:

𝐿(:𝑎) = 𝑏 − 𝐹 :𝑎 "

Gradient descent:

:𝑎 ← :𝑎 − 𝛾
𝜕𝐿(:𝑎)
𝜕 :𝑎

.𝑎 𝑏
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Solving the inverse problem

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎
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Challenges of inverse problems

𝑙!,#

min
,-

𝑏 − 𝐹(:𝑎) "

In general, inverse algorithms usually suffer 
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a 
unique solution):

• Not enough measurements

• Noisy measurements

Result of inverse 
algorithm

Observed sinogram

.𝑎 𝑏
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Challenges of inverse problems

Result of inverse 
algorithm

Observed sinogram

In general, inverse algorithms usually suffer 
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a 
unique solution):

• Not enough measurements

• Noisy measurements.𝑎 𝑏

To improve, we need to incorporate prior information 
about the solution, for example by adding regularization:

𝐿 <𝑎 = 𝑏 − 𝐹 <𝑎 3 + 𝜆	𝑅(<𝑎)

Where, for example

𝑅 <𝑎 = ∇<𝑎

Which asserts that the output image should be “smooth” 
(= total variation regularization)
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Challenges of inverse problems

Result of inverse 
algorithm

Observed sinogram

In general, inverse algorithms usually suffer 
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a 
unique solution):

• Not enough measurements

• Noisy measurements

2. Extremely computationally expensive, 
because forward modelling must be 
carried out thousands of times

.𝑎 𝑏

To improve, we need to incorporate prior information 
about the solution, for example by adding regularization:

𝐿 <𝑎 = 𝑏 − 𝐹 <𝑎 3 + 𝜆	𝑅(<𝑎)

Where, for example

𝑅 <𝑎 = ∇<𝑎

Which asserts that the output image should be “smooth” 
(= total variation regularization)
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Solving the inverse problem

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

Where can we insert a neural 
network in this workflow to 
1) improve accuracy and/or 
2) improve efficiency?
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Hybrid computed tomography

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

Where can we insert a neural 
network in this workflow to 
1) improve accuracy and/or 
2) improve efficiency?

Idea: learn a “better” direction to step in the 
parameter space

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃
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Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./( -%)
. -%

2. Take gradient descent step,

.𝑎 ← .𝑎 − 𝛾
𝜕𝐿 .𝑎
𝜕 .𝑎
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Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./( -%)
. -%

2. Take gradient descent step,

.𝑎 ← .𝑎 − 𝛾
𝜕𝐿 .𝑎
𝜕 .𝑎

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./( -%)
. -%

2. Take learned gradient descent step,

.𝑎 ← .𝑎 − 𝛾	𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃
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Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./( -%)
. -%

2. Take learned gradient descent step,

.𝑎 ← .𝑎 − 𝛾	𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

• How do we train this hybrid approach (learn 𝜃)?
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Hybrid computed tomography
Input to function:

Output: 

:𝑎. 𝑏

:𝑎
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Hybrid computed tomography
Input to function:

Output: 

We train this hybrid approach using lots of examples 
of inputs ( <𝑎1, 𝑏) and outputs (𝑎) and the loss function 

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎
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Hybrid computed tomography
Input to function:

Output: 

We train this hybrid approach using lots of examples 
of inputs ( <𝑎1, 𝑏) and outputs (𝑎) and the loss function 

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎
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Hybrid computed tomography
Input to function:

Output: 

We train this hybrid approach using lots of examples 
of inputs ( <𝑎1, 𝑏) and outputs (𝑎) and the loss function 

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎

“Gradient descent on gradient descent”
“Learned gradient descent”
“Learning to learn”
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Hybrid computed tomography

Ground truth Traditional inversion Learned gradient descent

Adler et al, Solving ill-posed inverse problems using 
iterative deep neural networks, Inverse Problems (2017)
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Adding even more flexibility

• We can use more than one learnable component 
if we want!

• Where else would it be useful to add another?
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Adding even more flexibility

Idea 1: learn a “better” direction to step in the 
parameter space

Idea 2: learn regularisation hyperparameter too
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Adding even more flexibility

Key idea:
Traditional algorithms can be made as 
learnable (flexible) or as unlearnable 
(rigid) as you like

This allows you to balance the pros/cons of 
using NNs!
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃) 
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃) 

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃) 

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃) 

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

𝑅 = 𝑁𝑁(.𝑎; 𝜃)

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)
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We can add learnable components everywhere!

Starting 
model
.𝑎

Real data
𝑏

Forward 
modelling
𝐹(.𝑎)

Synthetic 
data

Loss function 
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated 
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃) 

𝑅 = 𝑁𝑁(.𝑎; 𝜃)

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)
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Lecture summary

• Traditional algorithms can be made as learnable (flexible) or as 

unlearnable (rigid) as you like

• Inside hybrid inverse algorithms, neural networks can be very 

effective at learning priors and improving efficiency


