
401-4656-21L AI in the Sciences and Engineering 2024

AI in the Sciences and
Engineering

Introduction to Hybrid
Workflows – Part 2

Spring Semester 2024

Siddhartha Mishra
Ben Moseley

401-4656-21L AI in the Sciences and Engineering 2024 2

Recap – autodifferentiation
Many (scientific) programs can be thought of as
vector functions composed of many primitive
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 3

Recap – autodifferentiation
Many (scientific) programs can be thought of as
vector functions composed of many primitive
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)

Autodifferentiation allows us to efficiently
compute:

• The vector-Jacobian product (vjp)

𝒗$
𝜕𝒚
𝜕𝒙

• The Jacobian-vector product (jvp)

𝜕𝒚
𝜕𝒙 𝒗

401-4656-21L AI in the Sciences and Engineering 2024 4

Recap – autodifferentiation
Many (scientific) programs can be thought of as
vector functions composed of many primitive
operations:

𝒚 𝒙 = 𝒇! ∘, … ,∘ 𝒇" ∘ 𝒇#(𝒙)

Autodifferentiation allows us to efficiently
compute:

• The vector-Jacobian product (vjp)

𝒗$
𝜕𝒚
𝜕𝒙

• The Jacobian-vector product (jvp)

𝜕𝒚
𝜕𝒙 𝒗Computes vector-Jacobian product, 1 %&

%𝜽

401-4656-21L AI in the Sciences and Engineering 2024 5

Recap - vector-Jacobian product
vjp:

𝒗$
𝜕𝒚
𝜕𝒙 = 𝒗$

𝜕𝒇!
𝜕𝒇!(#

, … ,
𝜕𝒇"
𝜕𝒇#

𝜕𝒇#
𝜕𝒙

We can compute 𝒗$ %𝒚
%𝒙
	by iteratively computing vector-Jacobian products, from left to

right (reverse-mode):

Starting with 𝒗$,

𝒗$ ← 𝒗$
𝜕𝒇!
𝜕𝒇!(#

𝒗$ ← 𝒗$
𝜕𝒇!(#
𝜕𝒇!("

…

𝒗$ ← 𝒗$
𝜕𝒇#
𝜕𝒙

• We only need to define the vjp
for each primitive operation to
compute 𝒗$ %𝒚

%𝒙

• Usually, we do not need to
explicitly compute the full
intermediate Jacobians %𝒇!

%𝒇!"#

401-4656-21L AI in the Sciences and Engineering 2024 6

Autodiff in practice

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

401-4656-21L AI in the Sciences and Engineering 2024 7

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 8

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! = incoming message

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 9

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! = incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 10

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! = incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃#𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 11

Autodiff in practice

𝒗 = incoming message

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 12

Autodiff in practice

𝒙

𝒉

𝑊# 𝒃#

𝒗 = incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 13

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 = incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 14

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 = incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

• How does required memory scale with depth of forward computation for vjp vs jvp?

401-4656-21L AI in the Sciences and Engineering 2024 15

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗 = incoming message

𝒗 ⟵
𝜕𝒉
𝜕𝒙 𝒗

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

𝒗 ⟵
𝜕𝒚
𝜕𝒉𝒗

• How does required memory scale with depth of forward computation for vjp vs jvp?
• vjp: memory scales linearly with depth (need to store forward computations)
• jvp: memory independent of depth (can compute jvp alongside forward pass)

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 16

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! = incoming message
= 1

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃"𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃#𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

loss.backward()

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 17

Autodiff in practice

𝒙

𝒉

𝒚

𝑊# 𝒃#

𝑊" 𝒃"

𝒗! = incoming message
= 1

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊"

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊#

loss.backward()

Note autodiff is not
- Symbolic differentiation
- Finite differences
It is a way of efficiently computing exact
gradients!

𝒚 = 𝑊"𝜎 𝑊#𝒙 + 𝒃# + 𝒃"

401-4656-21L AI in the Sciences and Engineering 2024 18

Recap – ways to incorporate scientific principles into machine
learning

ArchitectureLoss function Hybrid approaches

Data
loss

Physics
loss

Example:
Physics-informed neural networks
(add governing equations to loss

function)

Example:
Encoding symmetries / conservation laws

(e.g. energy conservation, rotational
invariance), operator learning

Example:
Neural differential equations

(incorporating neural networks into PDE
models)

401-4656-21L AI in the Sciences and Engineering 2024 19

Recap – hybrid approaches

Key idea: directly incorporate DNNs into a traditional algorithm
= hybrid approach

Advantages of DNNs

• Usually very fast (once trained)
• Can represent highly non-linear

functions

Limitations of DNNs

• Often lots of training data required
• Can be hard to optimise
• Can be hard to interpret
• Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

401-4656-21L AI in the Sciences and Engineering 2024 20

Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

Low fidelity FD solver High fidelity FD solver

128 x 128 x 256 cells
~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~10 seconds / 100 timesteps

Hybrid approach

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

401-4656-21L AI in the Sciences and Engineering 2024 21

Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction,
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2

401-4656-21L AI in the Sciences and Engineering 2024 22

Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction,
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2
𝐿 𝜃 =-

.

/

-
+

0

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟+ 𝒖1!; 𝜃 − 𝒖+2(𝒖1!)
3

401-4656-21L AI in the Sciences and Engineering 2024 23

Recap – hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction,
!𝒖+,- = 𝒖+,- + 𝑁𝑁(𝒖+,-, 𝑝+,-; 𝜃)

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2
𝐿 𝜃 =-

.

/

-
+

0

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟+ 𝒖1!; 𝜃 − 𝒖+2(𝒖1!)
3

Key idea: Differentiable physics = using
autodifferentiation to differentiate and learn
physical algorithms

401-4656-21L AI in the Sciences and Engineering 2024 24

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

401-4656-21L AI in the Sciences and Engineering 2024 25

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

401-4656-21L AI in the Sciences and Engineering 2024 26

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

401-4656-21L AI in the Sciences and Engineering 2024 27

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and
using gradient descent

401-4656-21L AI in the Sciences and Engineering 2024 28

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and
using gradient descent

Bonus: your code now runs on the GPU!

401-4656-21L AI in the Sciences and Engineering 2024 29

Summary

• Hybrid approaches insert learnable components inside traditional algorithms

• Autodifferentiation is the key enabler for SciML

• Allows hybrid approaches to be trained end-to-end

• Is an incredibly general and powerful tool

401-4656-21L AI in the Sciences and Engineering 2024 30

Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02. Introduction to PyTorch

04.03. Simple DNNs in PyTorch

11.03. Implementing PINNs I

18.03. Implementing PINNs II

25.03. Operator learning I

01.04.

08.04. Operator learning II

15.04.

22.04. GNNs

29.04. Transformers

06.05. Diffusion models

13.05. Coding autodiff from scratch

20.05.

27.05. Intro to JAX / Neural ODEs

Wed 08:15-10:00 ML H 44

21.02. Course introduction

28.02. Introduction to deep learning II

06.03. Physics-informed neural networks – introduction

13.03. Physics-informed neural networks – extensions

20.03. Physics-informed neural networks – theory II

27.03. Supervised learning for PDEs II

03.04.

10.04. Introduction to operator learning I

17.04. Convolutional neural operators

24.04. Large-scale neural operators

01.05.

08.05. Introduction to hybrid workflows I

15.05. Neural differential equations

22.05. Symbolic regression and model discovery

29.05. Guest lecture: AlphaFold

Fri 12:15-13:00 ML H 44

23.02. Introduction to deep learning I

01.03. Introduction to PDEs

08.03. Physics-informed neural networks - limitations

15.03. Physics-informed neural networks – theory I

22.03. Supervised learning for PDEs I

29.03.

05.04.

12.04. Introduction to operator learning II

19.04. Time-dependent neural operators

26.04. Attention as a neural operator

03.05. Windowed attention and scaling laws

10.05. Introduction to hybrid workflows II

17.05. Introduction to JAX

24.05. Course summary

31.05. Guest lecture: AlphaFold

Tutorials Lectures

401-4656-21L AI in the Sciences and Engineering 2024 31

Lecture overview
• Coding a simple hybrid approach in PyTorch

• Hybrid workflows for solving inverse problems

401-4656-21L AI in the Sciences and Engineering 2024 32

Lecture overview
• Coding a simple hybrid approach in PyTorch

• Hybrid workflows for solving inverse problems

Learning objectives
• Be able to code a simple hybrid approach in

PyTorch

• Understand more advanced hybrid
workflows

401-4656-21L AI in the Sciences and Engineering 2024 33

Coding a simple hybrid approach in PyTorch

401-4656-21L AI in the Sciences and Engineering 2024 34

Computed tomography

Ground truth computed
tomography image

Resulting tomographic
data (sinogram)

𝑙!,#

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

Image source: Wikipedia

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

401-4656-21L AI in the Sciences and Engineering 2024 35

Computed tomography – inverse problem

Ground truth computed
tomography image

Resulting tomographic
data (sinogram)

Image source: Wikipedia

Result of inverse
algorithm

Observed sinogram

.𝑎

𝑏 = 𝐹(𝑎)
𝑎 = set of input conditions

𝐹 = physical model of the system

𝑏 = resulting properties given 𝐹 and 𝑎

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

𝑏

401-4656-21L AI in the Sciences and Engineering 2024 36

Solving the inverse problem

Ground truth computed
tomography image

Resulting tomographic
data (sinogram)

Result of inverse
algorithm

Observed sinogram

𝑏 𝜃, 𝜏 = 𝐹(𝑎) = 𝐼"𝑒
∫$%,&

%(',)) +,𝑎(𝑥, 𝑦)

This problem can be framed as an
optimisation problem:

min
,-

𝑏 − 𝐹(:𝑎) "

Assuming 𝐹 is a differentiable, we can use
gradient descent to learn :𝑎:

Loss function:

𝐿(:𝑎) = 𝑏 − 𝐹 :𝑎 "

Gradient descent:

:𝑎 ← :𝑎 − 𝛾
𝜕𝐿(:𝑎)
𝜕 :𝑎

.𝑎 𝑏

401-4656-21L AI in the Sciences and Engineering 2024 37

Solving the inverse problem

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

401-4656-21L AI in the Sciences and Engineering 2024 38

Challenges of inverse problems

𝑙!,#

min
,-

𝑏 − 𝐹(:𝑎) "

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

• Not enough measurements

• Noisy measurements

Result of inverse
algorithm

Observed sinogram

.𝑎 𝑏

401-4656-21L AI in the Sciences and Engineering 2024 39

Challenges of inverse problems

Result of inverse
algorithm

Observed sinogram

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

• Not enough measurements

• Noisy measurements.𝑎 𝑏

To improve, we need to incorporate prior information
about the solution, for example by adding regularization:

𝐿 <𝑎 = 𝑏 − 𝐹 <𝑎 3 + 𝜆	𝑅(<𝑎)

Where, for example

𝑅 <𝑎 = ∇<𝑎

Which asserts that the output image should be “smooth”
(= total variation regularization)

401-4656-21L AI in the Sciences and Engineering 2024 40

Challenges of inverse problems

Result of inverse
algorithm

Observed sinogram

In general, inverse algorithms usually suffer
from two major challenges:

1. Poor accuracy, because they are ill-
posed (not enough information for a
unique solution):

• Not enough measurements

• Noisy measurements

2. Extremely computationally expensive,
because forward modelling must be
carried out thousands of times

.𝑎 𝑏

To improve, we need to incorporate prior information
about the solution, for example by adding regularization:

𝐿 <𝑎 = 𝑏 − 𝐹 <𝑎 3 + 𝜆	𝑅(<𝑎)

Where, for example

𝑅 <𝑎 = ∇<𝑎

Which asserts that the output image should be “smooth”
(= total variation regularization)

401-4656-21L AI in the Sciences and Engineering 2024 41

Solving the inverse problem

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

Where can we insert a neural
network in this workflow to
1) improve accuracy and/or
2) improve efficiency?

401-4656-21L AI in the Sciences and Engineering 2024 42

Hybrid computed tomography

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

Where can we insert a neural
network in this workflow to
1) improve accuracy and/or
2) improve efficiency?

Idea: learn a “better” direction to step in the
parameter space

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

401-4656-21L AI in the Sciences and Engineering 2024 43

Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./(-%)
. -%

2. Take gradient descent step,

.𝑎 ← .𝑎 − 𝛾
𝜕𝐿 .𝑎
𝜕 .𝑎

401-4656-21L AI in the Sciences and Engineering 2024 44

Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./(-%)
. -%

2. Take gradient descent step,

.𝑎 ← .𝑎 − 𝛾
𝜕𝐿 .𝑎
𝜕 .𝑎

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./(-%)
. -%

2. Take learned gradient descent step,

.𝑎 ← .𝑎 − 𝛾	𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

401-4656-21L AI in the Sciences and Engineering 2024 45

Hybrid computed tomography

1. Start with initial guess .𝑎

2. Loop:

1. Compute gradient, ./(-%)
. -%

2. Take learned gradient descent step,

.𝑎 ← .𝑎 − 𝛾	𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

• How do we train this hybrid approach (learn 𝜃)?

401-4656-21L AI in the Sciences and Engineering 2024 46

Hybrid computed tomography
Input to function:

Output:

:𝑎. 𝑏

:𝑎

401-4656-21L AI in the Sciences and Engineering 2024 47

Hybrid computed tomography
Input to function:

Output:

We train this hybrid approach using lots of examples
of inputs (<𝑎1, 𝑏) and outputs (𝑎) and the loss function

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎

401-4656-21L AI in the Sciences and Engineering 2024 48

Hybrid computed tomography
Input to function:

Output:

We train this hybrid approach using lots of examples
of inputs (<𝑎1, 𝑏) and outputs (𝑎) and the loss function

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎

401-4656-21L AI in the Sciences and Engineering 2024 49

Hybrid computed tomography
Input to function:

Output:

We train this hybrid approach using lots of examples
of inputs (<𝑎1, 𝑏) and outputs (𝑎) and the loss function

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

:𝑎. 𝑏

:𝑎

“Gradient descent on gradient descent”
“Learned gradient descent”
“Learning to learn”

401-4656-21L AI in the Sciences and Engineering 2024 50

Hybrid computed tomography

Ground truth Traditional inversion Learned gradient descent

Adler et al, Solving ill-posed inverse problems using
iterative deep neural networks, Inverse Problems (2017)

401-4656-21L AI in the Sciences and Engineering 2024 51

Adding even more flexibility

• We can use more than one learnable component
if we want!

• Where else would it be useful to add another?

401-4656-21L AI in the Sciences and Engineering 2024 52

Adding even more flexibility

Idea 1: learn a “better” direction to step in the
parameter space

Idea 2: learn regularisation hyperparameter too

401-4656-21L AI in the Sciences and Engineering 2024 53

Adding even more flexibility

Key idea:
Traditional algorithms can be made as
learnable (flexible) or as unlearnable
(rigid) as you like

This allows you to balance the pros/cons of
using NNs!

401-4656-21L AI in the Sciences and Engineering 2024 54

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

401-4656-21L AI in the Sciences and Engineering 2024 55

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 56

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃)

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 57

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃)

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 58

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃)

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

𝑅 = 𝑁𝑁(.𝑎; 𝜃)

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 59

We can add learnable components everywhere!

Starting
model
.𝑎

Real data
𝑏

Forward
modelling
𝐹(.𝑎)

Synthetic
data

Loss function
and gradients
𝐿 = 𝑏 − 𝐹 8𝑎 "

+ 𝜆𝑅(8𝑎)

Updated
model

.𝑎 ← .𝑎 − 𝛾𝜕 -%𝐿

Final model
.𝑎

.𝑎 = 𝑁𝑁(𝑏; 𝜃)

𝑅 = 𝑁𝑁(.𝑎; 𝜃)

𝐿 𝜃 =-
.

/

𝐻 <𝑎1	., 𝑏.; 𝜃 − 𝑎. 3

𝜕𝐿 .𝑎
𝜕 .𝑎

← 𝑁𝑁
𝜕𝐿 .𝑎
𝜕 .𝑎

, .𝑎, 5𝑏, 𝑅(.𝑎); 𝜃

5𝑏 ≈ 𝑁𝑁(.𝑎; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 60

Lecture summary

• Traditional algorithms can be made as learnable (flexible) or as

unlearnable (rigid) as you like

• Inside hybrid inverse algorithms, neural networks can be very

effective at learning priors and improving efficiency

