
401-4656-21L AI in the Sciences and Engineering 2024

AI in the Sciences and
Engineering

Introduction to Hybrid
Workflows – Part 1

Spring Semester 2024

Siddhartha Mishra
Ben Moseley

401-4656-21L AI in the Sciences and Engineering 2024 2

Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02. Introduction to PyTorch

04.03. Simple DNNs in PyTorch

11.03. Implementing PINNs I

18.03. Implementing PINNs II

25.03. Operator learning I

01.04.

08.04. Operator learning II

15.04.

22.04. GNNs

29.04. Transformers

06.05. Diffusion models

13.05. Coding autodiff from scratch

20.05.

27.05. Intro to JAX / Neural ODEs

Wed 08:15-10:00 ML H 44

21.02. Course introduction

28.02. Introduction to deep learning II

06.03. Physics-informed neural networks – introduction

13.03. Physics-informed neural networks – extensions

20.03. Physics-informed neural networks – theory II

27.03. Supervised learning for PDEs II

03.04.

10.04. Introduction to operator learning I

17.04. Convolutional neural operators

24.04. Large-scale neural operators

01.05.

08.05. Introduction to hybrid workflows I

15.05. Neural differential equations

22.05. Symbolic regression and model discovery

29.05. Guest lecture: AlphaFold

Fri 12:15-13:00 ML H 44

23.02. Introduction to deep learning I

01.03. Introduction to PDEs

08.03. Physics-informed neural networks - limitations

15.03. Physics-informed neural networks – theory I

22.03. Supervised learning for PDEs I

29.03.

05.04.

12.04. Introduction to operator learning II

19.04. Time-dependent neural operators

26.04. Attention as a neural operator

03.05. Windowed attention and scaling laws

10.05. Introduction to hybrid workflows II

17.05. Introduction to JAX

24.05. Course summary

31.05. Guest lecture: AlphaFold

Tutorials Lectures

401-4656-21L AI in the Sciences and Engineering 2024 3

Course overview

Introduction to
deep learning

Physics-informed
neural networks

Operator
learning

Transformers and their
applications in science

Hybrid workflows,
neural differential

equations, and equation
discovery

Course
introduction

Guest lectures: ML in
chemistry and biology

Data
loss

Physics
loss

401-4656-21L AI in the Sciences and Engineering 2024 4

Lecture overview
• Limitations of SciML approaches studied so far

• Hybrid SciML approaches

• Residual modelling

• Opening the “black-box”

• How to train hybrid approaches

• Autodifferentiation

• Autodifferentiation as a key enabler

• What it is and how it works

401-4656-21L AI in the Sciences and Engineering 2024 5

Lecture overview Learning objectives
• Be able to describe what a hybrid workflow

is

• Understand how autodifferentiation is used
to train hybrid workflows

• Understand how autodifferentiation works

• Limitations of SciML approaches studied so far

• Hybrid SciML approaches

• Residual modelling

• Opening the “black-box”

• How to train hybrid approaches

• Autodifferentiation

• Autodifferentiation as a key enabler

• What it is and how it works

401-4656-21L AI in the Sciences and Engineering 2024 6

Course recap - PINNs

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

𝑁𝑁 𝑡; 𝜃 ≈ 𝑢(𝑡)

𝐿 𝜃 = 𝜆" 𝑁𝑁 𝑡 = 0; 𝜃 − 1 !

+	𝜆!
𝑑𝑁𝑁
𝑑𝑡

𝑡 = 0; 𝜃 − 0
!

+
1
𝑁#

5
$

%!

𝑚
𝑑!

𝑑𝑡! + 𝜇
𝑑
𝑑𝑡 + 𝑘 𝑁𝑁 𝑡$; 𝜃

!
Physics loss

𝐿# 𝜃

Boundary loss
𝐿& 𝜃

401-4656-21L AI in the Sciences and Engineering 2024 7

Course recap - PINNs

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

𝑁𝑁 𝑡; 𝜃 ≈ 𝑢(𝑡)

𝐿 𝜃 = 𝜆" 𝑁𝑁 𝑡 = 0; 𝜃 − 1 !

+	𝜆!
𝑑𝑁𝑁
𝑑𝑡

𝑡 = 0; 𝜃 − 0
!

+
1
𝑁#

5
$

%!

𝑚
𝑑!

𝑑𝑡! + 𝜇
𝑑
𝑑𝑡 + 𝑘 𝑁𝑁 𝑡$; 𝜃

!
Physics loss

𝐿# 𝜃

Boundary loss
𝐿& 𝜃

Advantages of PINNs

• Mesh-free
• Can jointly solve forward and

inverse problems
• Often performs well on

“messy” problems (where
some observational data is
available)

• Mostly unsupervised
• Can perform well for high-

dimensional PDEs

Limitations of PINNs

• Computational cost often
high (especially for forward-
only problems)

• Can be hard to optimise
• Challenging to scale to high-

frequency, multi-scale
problems

401-4656-21L AI in the Sciences and Engineering 2024 8

Course recap – Operator learning

∇ ⋅ 𝑎 𝒙 ∇𝑢 𝒙 = 𝑓(𝒙)

Darcy PDE

Permeability, 𝑎 𝑥 Pressure, 𝑢 𝑥

!𝑢(𝑥)𝑎 𝑥

Fourier
interpolation

Fourier
coeffs.

𝑎 𝑥 → 𝑎' '("
) → 𝑁𝑁({𝑎'}; 𝜃) → 𝑢' '("

→ ?𝑢(𝑥)

𝐿 𝜃 =
1
𝑁𝑀5

$

%

5
*

+

𝑢$(𝑥*) − 𝒢,∗[𝑎$](𝑥*)
!

𝒢,∗ 𝑎

401-4656-21L AI in the Sciences and Engineering 2024 9

Course recap – Operator learning

Advantages of operator learning

• Can be orders of magnitude
faster than traditional
simulation (once trained)

Limitations of operator learning

• Can require lots of training data,
which can be expensive to
obtain

• Can struggle to generalise to
inputs outside of its training data

• Encoding / reconstruction steps
require some assumptions
about the regularity of 𝑎 𝑥 and
𝑢 𝑥

∇ ⋅ 𝑎 𝒙 ∇𝑢 𝒙 = 𝑓(𝒙)

Darcy PDE

Permeability, 𝑎 𝑥 Pressure, 𝑢 𝑥

!𝑢(𝑥)𝑎 𝑥

Fourier
interpolation

Fourier
coeffs.

𝑎 𝑥 → 𝑎' '("
) → 𝑁𝑁({𝑎'}; 𝜃) → 𝑢' '("

→ ?𝑢(𝑥)

𝐿 𝜃 =
1
𝑁𝑀5

$

%

5
*

+

𝑢$(𝑥*) − 𝒢,∗[𝑎$](𝑥*)
!

𝒢,∗ 𝑎

401-4656-21L AI in the Sciences and Engineering 2024 10

When should I use deep neural networks for scientific
problems?

Advantages of DNNs

• Usually very fast (once trained)
• Can represent highly non-linear

functions

Limitations of DNNs

• Often lots of training data required
• Can be hard to optimise
• Can be hard to interpret
• Often struggle to generalise

401-4656-21L AI in the Sciences and Engineering 2024 11

When should I use deep neural networks for scientific
problems?

Advantages of DNNs

• Usually very fast (once trained)
• Can represent highly non-linear

functions

Limitations of DNNs

• Often lots of training data required
• Can be hard to optimise
• Can be hard to interpret
• Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

401-4656-21L AI in the Sciences and Engineering 2024 12

Hybrid SciML approaches

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

What if we directly incorporate DNNs into a traditional
algorithm instead?
= hybrid approach

401-4656-21L AI in the Sciences and Engineering 2024 13

Ways to incorporate scientific principles into machine learning

ArchitectureLoss function Hybrid approaches

Data
loss

Physics
loss

Example:
Physics-informed neural networks
(add governing equations to loss

function)

Example:
Encoding symmetries / conservation laws

(e.g. energy conservation, rotational
invariance), operator learning

Example:
Neural differential equations

(incorporating neural networks into PDE
models)

401-4656-21L AI in the Sciences and Engineering 2024 14

A plethora of SciML techniques

Traditional
workflowsNaive ML

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks

Encoding governing equations

Architecture

Loss function

Hybrid approachesAdding physical variables
Encoding symmetries

Physics-inspired NAS
ML inspired by Koopman theory
Physically constrained GPs

Residual modelling
Differentiable physics

Neural differential equations
In-the-loop methods

Source: B Moseley, Physics-informed machine learning:
from concepts to real-world applications, PhD thesis, 2022

Fully learned

Fully data-driven

No physics constraints

No learning

No data required

Hard physics
constraints

401-4656-21L AI in the Sciences and Engineering 2024 15

A simple hybrid approach – residual modelling

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

When is this useful?

Physics
model

𝑁𝑁

!𝑦 = 𝑦!"#$(𝒙) + 𝑁𝑁(𝒙; 𝜃)𝒙
𝑦!"#$

+

401-4656-21L AI in the Sciences and Engineering 2024 16

A simple hybrid approach – residual modelling

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

Useful when:
- We have incomplete understanding of physics
- More complex physical modeling is too expensive

Compared to naïve ML approach:
- Easier learning task: don’t need to learn all the physics
- More interpretable

Physics
model

𝑁𝑁

!𝑦 = 𝑦!"#$(𝒙) + 𝑁𝑁(𝒙; 𝜃)𝒙
𝑦!"#$

+

𝒙
𝑁𝑁

!𝑦 = 𝑁𝑁(𝒙; 𝜃)

401-4656-21L AI in the Sciences and Engineering 2024 17

A simple hybrid approach – residual modelling

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

𝐿 𝜃 =/
%

&

!𝑦 𝒙%; 𝜃 − 𝑦% '

=/
%

&

𝑁𝑁 𝒙%; 𝜃 − [𝑦% − 𝑦!"#$ 𝒙%]
'

≡/
%

&

𝑁𝑁 𝒙%; 𝜃 − 𝑟(𝒙%) '

Physics
model

𝑁𝑁

!𝑦 = 𝑦!"#$(𝒙) + 𝑁𝑁(𝒙; 𝜃)𝒙
𝑦!"#$

+

Note: can precompute 𝑟(𝒙%) in advance

401-4656-21L AI in the Sciences and Engineering 2024 18

Residual modelling – aerofoil example

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

Lift force, 𝐹

Aerofoil shape (set of points), 𝑥% , 𝑦% %()&

Reynolds number, 𝑅𝑒

Angle of attack, 𝛼

Simulation task:
 Given 𝑥% , 𝑦% %()& , 𝑅𝑒 and 𝛼
 Predict 𝐹

401-4656-21L AI in the Sciences and Engineering 2024 19

Residual modelling – aerofoil example

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

Lift force, 𝐹

Aerofoil shape (set of points), 𝑥% , 𝑦% %()&

Reynolds number, 𝑅𝑒

Angle of attack, 𝛼

Simulation task:
 Given 𝑥% , 𝑦% %()& , 𝑅𝑒 and 𝛼
 Predict 𝐹

• Full CFD simulations are typically accurate,
but very expensive

• Faster approximate methods exist, but are
usually less accurate

401-4656-21L AI in the Sciences and Engineering 2024 20

Residual modelling – aerofoil example

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

Aerofoil shape
(set of points)

Lift force,
𝐹

Hess-Smith panel method:
Fast approximate method for predicting
lift force

Training data:
Many example inputs/outputs generated
from (expensive) high-fidelity CFD
modelling

Goal:
A model which is faster than CFD and
more accurate than approximate physics
model

401-4656-21L AI in the Sciences and Engineering 2024 21

Residual modelling – aerofoil example

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

Aerofoil shape
(set of points)

Lift force,
𝐹

Li
ft

fo
rc

e,
 𝐹

Li
ft

fo
rc

e,
 𝐹

Naive NN
(no physics
inputs)

NN +
physics
model
(hybrid
approach)

401-4656-21L AI in the Sciences and Engineering 2024 22

Opening the black-box

Residual methods treat the physics model as a “black-box”

More complex hybrid methods open the box and insert ML
inside the traditional algorithm

We insert ML where;
1) the algorithm is slow
2) we are unsure of our assumptions/ want to improve

our modelling

Physics
model

𝑁𝑁

!𝑦 = 𝑦!"#$(𝒙) + 𝑁𝑁(𝒙; 𝜃)𝒙
𝑦!"#$

+

401-4656-21L AI in the Sciences and Engineering 2024 23

Opening the black-box – finite difference solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

FD solver

Incompressible Navier-Stokes
equation

𝜕𝒖
𝜕𝑡
+ 𝒖 ⋅ ∇ 𝒖 − 𝜈∇!𝒖 = −

𝟏
𝜌
∇𝑝

∇ ⋅ 𝒖 = 0

𝒖 𝒙, 𝑡 is the flow velocity
𝑝 𝒙, 𝑡 is the pressure
𝜌 𝒙 is the density
𝜈 is the viscosity

401-4656-21L AI in the Sciences and Engineering 2024 24

Opening the black-box – finite difference solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

FD solver

Incompressible Navier-Stokes
equation

𝜕𝒖
𝜕𝑡
+ 𝒖 ⋅ ∇ 𝒖 − 𝜈∇!𝒖 = −

𝟏
𝜌
∇𝑝

∇ ⋅ 𝒖 = 0

𝒖 𝒙, 𝑡 is the flow velocity
𝑝 𝒙, 𝑡 is the pressure
𝜌 𝒙 is the density
𝜈 is the viscosity

“Operator splitting” numerical solver:

Discretise in time
𝒖./" = 𝒖. − 𝛿𝑡 𝒖. ⋅ ∇ 𝒖. + 𝛿𝑡	𝜈∇!𝒖. −

0.
1 ∇𝑝./"	(1)

Let

𝒖∗ = 𝒖. − 𝛿𝑡 𝒖. ⋅ ∇ 𝒖. + 𝛿𝑡	𝜈∇!𝒖. −
𝛿𝑡
𝜌 ∇𝑝.	 (2)

Then

𝒖./" = 𝒖∗ −
𝛿𝑡
𝜌 ∇ 𝑝./" − 𝑝.

Asserting ∇ ⋅ 𝒖./" = 0 ⇒	

0 = ∇ ⋅ 𝒖∗ −
𝛿𝑡
𝜌
∇!(𝑝./" − 𝑝.)

∇! 𝑝./" − 𝑝. =
𝜌
𝛿𝑡
∇ ⋅ 𝒖∗

Discretise in space
𝐿 𝑝$,*,',./" − 𝑝$,*,',. =

𝜌$,*,'
𝛿𝑡

𝐷𝒖$,*,'∗ 	 (3)

401-4656-21L AI in the Sciences and Engineering 2024 25

Opening the black-box – finite difference solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

FD solver

Incompressible Navier-Stokes
equation

𝜕𝒖
𝜕𝑡
+ 𝒖 ⋅ ∇ 𝒖 − 𝜈∇!𝒖 = −

𝟏
𝜌
∇𝑝

∇ ⋅ 𝒖 = 0

𝒖 𝒙, 𝑡 is the flow velocity
𝑝 𝒙, 𝑡 is the pressure
𝜌 𝒙 is the density
𝜈 is the viscosity

“Operator splitting” numerical solver:

Discretise in time
𝒖./" = 𝒖. − 𝛿𝑡 𝒖. ⋅ ∇ 𝒖. + 𝛿𝑡	𝜈∇!𝒖. −

0.
1 ∇𝑝./"	(1)

Let

𝒖∗ = 𝒖. − 𝛿𝑡 𝒖. ⋅ ∇ 𝒖. + 𝛿𝑡	𝜈∇!𝒖. −
𝛿𝑡
𝜌 ∇𝑝.	 (2)

Then

𝒖./" = 𝒖∗ −
𝛿𝑡
𝜌 ∇ 𝑝./" − 𝑝.

Asserting ∇ ⋅ 𝒖./" = 0 ⇒	

0 = ∇ ⋅ 𝒖∗ −
𝛿𝑡
𝜌
∇!(𝑝./" − 𝑝.)

∇! 𝑝./" − 𝑝. =
𝜌
𝛿𝑡
∇ ⋅ 𝒖∗

Discretise in space
𝐿 𝑝$,*,',./" − 𝑝$,*,',. =

𝜌$,*,'
𝛿𝑡

𝐷𝒖$,*,'∗ 	 (3)

Basic algorithm:
Discretise 𝒖, 𝑝 and 𝜌
Loop:
1. Compute 𝒖$,*,'∗ using (2)
2. Solve matrix equation (3) for

𝑝$,*,',./"
3. Compute 𝒖$,*,',./" using (1)

401-4656-21L AI in the Sciences and Engineering 2024 26

Computational cost / accuracy trade-off

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

Low fidelity FD solver High fidelity FD solver

(128 x 128 x 256) cells
~1000 seconds / 100 timesteps

(32 x 32 x 64) cells
~10 seconds / 100 timesteps

• Discretisation induces errors in the solver

• But finer grids are much more computationally
expensive

• Can we use ML improve the accuracy of the low
fidelity solver?

401-4656-21L AI in the Sciences and Engineering 2024 27

Traditional Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

Low fidelity
step

Low fidelity
step

401-4656-21L AI in the Sciences and Engineering 2024 28

Traditional Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

Low fidelity
step

Low fidelity
step

• Where could we insert ML inside this workflow to
improve accuracy / efficiency?

401-4656-21L AI in the Sciences and Engineering 2024 29

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction,
P𝒖./" = 𝒖./" + 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2

401-4656-21L AI in the Sciences and Engineering 2024 30

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

t=0

t=1

t=2

NN correction,
P𝒖./" = 𝒖./" + 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

• What training data do we need? (Hint: what
inputs/labels do we need to train the network?)

• What loss function should we use?

401-4656-21L AI in the Sciences and Engineering 2024 31

High fidelity
step

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

Option 1: use pairs of low fidelity / high fidelity
timesteps as training data

t

t+1

Low fidelity
step

t+1

+

𝐿 𝜃 =5
.

%

𝒖./"3 + 𝑁𝑁(𝒖./"3 , 𝑝./"3 ; 𝜃) − 𝒖./"4 !

=5
.

%

𝑁𝑁 𝒖./"3 , 𝑝./"3 ; 𝜃 − 𝒖./"4 − 𝒖./"3 !

High fidelity
simulation at time t

Note: can precompute residual in advance

401-4656-21L AI in the Sciences and Engineering 2024 32

High fidelity
step

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

Option 1: use pairs of low fidelity / high fidelity
timesteps as training data

During training, neural network only sees exact low
fidelity timesteps as input

Problem:
• But during inference, neural network sees

different inputs (low fidelity timesteps + previous
NN corrections)

• Leads to a train/test distribution shift, and error
accumulation over time

t

t+1

Low fidelity
step

t+1

+

High fidelity
simulation at time t

Note: can precompute residual in advance

𝐿 𝜃 =5
.

%

𝒖./"3 + 𝑁𝑁(𝒖./"3 , 𝑝./"3 ; 𝜃) − 𝒖./"4 !

=5
.

%

𝑁𝑁 𝒖./"3 , 𝑝./"3 ; 𝜃 − 𝒖./"4 − 𝒖./"3 !

401-4656-21L AI in the Sciences and Engineering 2024 33

High fidelity
step

High fidelity
step

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

𝐿 𝜃 =5
$

%

5
.

5

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟. 𝒖6"; 𝜃 − 𝒖.4(𝒖6")
!

t=0

t=1

t=2

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2

t=1

t=2

401-4656-21L AI in the Sciences and Engineering 2024 34

High fidelity
step

High fidelity
step

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

NN learns to correct its previous errors ✓
Reduces distributional shift ✓

Requires 𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟 to be differentiable!

t=0

t=1

t=2

+

+

Low fidelity
step

Low fidelity
step

t=1

t=2

t=1

t=2

𝐿 𝜃 =5
$

%

5
.

5

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟. 𝒖6"; 𝜃 − 𝒖.4(𝒖6")
!

401-4656-21L AI in the Sciences and Engineering 2024 35

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train 𝑁𝑁(𝒖./", 𝑝./"; 𝜃)?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

NN learns to correct its previous errors ✓
Reduces distributional shift ✓

Requires 𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟 to be differentiable!

.. we can just use autodifferentiation!

𝐿 𝜃 =5
$

%

5
.

5

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟. 𝒖6"; 𝜃 − 𝒖.4(𝒖6")
!

401-4656-21L AI in the Sciences and Engineering 2024 36

Hybrid Navier-Stokes solver

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

𝐿 𝜃 =5
$

%

5
.

5

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟. 𝒖6"; 𝜃 − 𝒖.4(𝒖6")
!

401-4656-21L AI in the Sciences and Engineering 2024 37

How do we train hybrid approaches?

Key idea: autodifferentiation allows us to differentiate and learn
arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation

But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

401-4656-21L AI in the Sciences and Engineering 2024 38

How do we train hybrid approaches?

Key idea: autodifferentiation allows us to differentiate and learn
arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation

But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

Differentiable physics = using autodifferentiation
to differentiate physical algorithms

401-4656-21L AI in the Sciences and Engineering 2024 39

NS solver results

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

Low fidelity FD solver High fidelity FD solver

128 x 128 x 256 cells
~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~10 seconds / 100 timesteps

Hybrid approach

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

401-4656-21L AI in the Sciences and Engineering 2024 40

NS solver results

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurIPS (2020)

Low fidelity FD solver High fidelity FD solver

128 x 128 x 256 cells
~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~10 seconds / 100 timesteps

Hybrid approach

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

Low fidelity solver
Option 1 (low-high res pairs)
Option 2 (end-to-end training)

401-4656-21L AI in the Sciences and Engineering 2024 41

Lecture overview Learning objectives
• Be able to describe what a hybrid workflow

is

• Understand how autodifferentiation is used
to train hybrid workflows

• Understand how autodifferentiation works

• Limitations of SciML approaches studied so far

• Hybrid SciML approaches

• Residual modelling

• Opening the “black-box”

• How to train hybrid approaches

• Autodifferentiation

• Autodifferentiation as a key enabler

• What it is and how it works

401-4656-21L AI in the Sciences and Engineering 2024 42

5 min break

401-4656-21L AI in the Sciences and Engineering 2024 43

Lecture overview Learning objectives
• Be able to describe what a hybrid workflow

is

• Understand how autodifferentiation is used
to train hybrid workflows

• Understand how autodifferentiation works

• Limitations of SciML approaches studied so far

• Hybrid SciML approaches

• Residual modelling

• Opening the “black-box”

• How to train hybrid approaches

• Autodifferentiation

• Autodifferentiation as a key enabler

• What it is and how it works

401-4656-21L AI in the Sciences and Engineering 2024 44

Autodifferentiation is a key enabler

Autodifferentiation is a key enabler of all the SciML techniques studied so far

It allows us to efficiently differentiate through complicated loss functions and get
gradients of learnable parameters

𝑁𝑁 𝑡; 𝜃 ≈ 𝑢 𝑡

𝐿 𝜃 = 𝜆# 𝑁𝑁 𝑡 = 0; 𝜃 − 1 $

+	𝜆$
𝑑𝑁𝑁
𝑑𝑡

𝑡 = 0; 𝜃 − 0
$

+
1
𝑁%

1
&

'!

𝑚
𝑑$

𝑑𝑡$
+ 𝜇

𝑑
𝑑𝑡
+ 𝑘 𝑁𝑁 𝑡&; 𝜃

$

Physics-informed neural network Operator learning

𝑎 𝑥 → 𝑎(()#
* → 𝑁𝑁({𝑎(}; 𝜃) → 𝑢(()#

% → <𝑢(𝑥)

𝐿 𝜃 =
1
𝑁𝑀

1
&

'

1
+

,

𝑢&(𝑥+) − 𝒢-
∗[𝑎&](𝑥+)

$

𝒢-
∗ 𝑎

Hybrid algorithms

𝐿 𝜃 =1
&

'

1
/

0

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑜𝑙𝑣𝑒𝑟/ 𝑢1" ; 𝜃 − 𝑢/2(𝑢1")
$

401-4656-21L AI in the Sciences and Engineering 2024 45

Programs as vector functions
Many (scientific) programs can be decomposed
in the following way:

Program:
Input: a vector 𝒙 ∈ ℝ*

Function: A series of primitive operations
on the elements of 𝒙
 add / multiply / trigonometric / …

Output: some transformed vector 𝒚 ∈ ℝ+

Mathematically, the program defines a vector
function 𝒚:	ℝ* → ℝ+, composed of primitive
operations:

𝒚 𝒙 = 𝒇& ∘, … ,∘ 𝒇' ∘ 𝒇)(𝒙)

401-4656-21L AI in the Sciences and Engineering 2024 46

Chain rule for vector functions
Consider any vector function 𝒚:	ℝ* → ℝ+, composed from many other vector functions

𝒚 𝒙 = 𝒇& ∘, … ,∘ 𝒇' ∘ 𝒇)(𝒙)

Then we can use the multivariate chain rule (= matrix multiplication of Jacobians) to
evaluate its derivatives

𝜕𝒚
𝜕𝒙 =

𝜕𝒇&
𝜕𝒇&,)

, … ,
𝜕𝒇'
𝜕𝒇)

𝜕𝒇)
𝜕𝒙

where

𝐽- ≡
𝜕𝒚
𝜕𝒙 =

𝜕𝑦)
𝜕𝑥)

⋯
𝜕𝑦)
𝜕𝑥*

⋮ ⋱ ⋮
𝜕𝑦+
𝜕𝑥)

⋯
𝜕𝑦+
𝜕𝑥*

401-4656-21L AI in the Sciences and Engineering 2024 47

Autodifferentiation
Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

𝒗.
𝜕𝒚
𝜕𝒙

or the Jacobian-vector product (jvp):
𝜕𝒚
𝜕𝒙 𝒗

of arbitrary programs.

=

=

𝑚

𝑛 𝑛𝑚

𝑚

𝑛

𝑛 𝑚

401-4656-21L AI in the Sciences and Engineering 2024 48

Autodifferentiation
Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

𝒗.
𝜕𝒚
𝜕𝒙

or the Jacobian-vector product (jvp):
𝜕𝒚
𝜕𝒙 𝒗

of arbitrary programs.

Why is it useful to evaluate the vjp / jvp?

=

=

𝑚

𝑛 𝑛𝑚

𝑚

𝑛

𝑛 𝑚

401-4656-21L AI in the Sciences and Engineering 2024 49

Autodifferentiation
Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

𝒗.
𝜕𝒚
𝜕𝒙

or the Jacobian-vector product (jvp):
𝜕𝒚
𝜕𝒙 𝒗

of arbitrary programs.

Why is it useful to evaluate the vjp / jvp?

Consider training a neural network:

𝐿 𝜽 :ℝ/ → ℝ)

𝜕𝐿
𝜕𝜽 =

𝜕𝐿
𝜕𝑵𝑵

𝜕𝑵𝑵
𝜕𝜽

=

=

𝑚

𝑛 𝑛𝑚

𝑚

𝑛

𝑛 𝑚

𝑚

𝑝𝑚
𝑚 =	total number of network outputs
𝑝 = total number of parameters

We need to compute a vjp!

401-4656-21L AI in the Sciences and Engineering 2024 50

Chain rule
Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

𝒗.
𝜕𝒚
𝜕𝒙

or the Jacobian-vector product (jvp):
𝜕𝒚
𝜕𝒙 𝒗

of arbitrary programs.

We can evaluate the vjp / jvp using the chain rule, for example:

𝒗.
𝜕𝒚
𝜕𝒙 = 𝒗.

𝜕𝒇&
𝜕𝒇&,)

, … ,
𝜕𝒇'
𝜕𝒇)

𝜕𝒇)
𝜕𝒙

=

=

𝑚

𝑛 𝑛𝑚

𝑚

𝑛

𝑛 𝑚

401-4656-21L AI in the Sciences and Engineering 2024 51

Dimensionality
Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

𝒇

𝒈

401-4656-21L AI in the Sciences and Engineering 2024 52

Dimensionality
Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 53

Dimensionality

1) From right to left (forward)

(100 x 100) (100 x 1M) à (100 x 1M)
(1 x 100) (100 x 1M) à (1 x 1M)

= lots of computation (large matrix-matrix multiply)

Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

Consider evaluating the chain rule (RHS):

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 54

Dimensionality

1) From right to left (forward)

(100 x 100) (100 x 1M) à (100 x 1M)
(1 x 100) (100 x 1M) à (1 x 1M)

= lots of computation (large matrix-matrix multiply)

2) From left to right (reverse)

(1 x 100) (100 x 100) à (1 x 100)
(1 x 100) (100 x 1M) à (1 x 1M)

= much less computation (vector-matrix multiplies)

Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

Consider evaluating the chain rule (RHS):

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 55

Dimensionality

1) From right to left (forward)

(100 x 100) (100 x 1M) à (100 x 1M)
(1 x 100) (100 x 1M) à (1 x 1M)

= lots of computation (large matrix-matrix multiply)

2) From left to right (reverse)

(1 x 100) (100 x 100) à (1 x 100)
(1 x 100) (100 x 1M) à (1 x 1M)

= much less computation (vector-matrix multiplies)

=> Order matters! Evaluating vjps in reverse mode is usually most efficient

Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

Consider evaluating the chain rule (RHS):

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 56

Dimensionality

But what about the last computation (34
3𝒈

3𝒈
36#

)?

This is still expensive! (3𝒈
36#

 has 100M
elements, or ~0.5 GB)

2) From left to right (reverse)

(1 x 100) (100 x 100) à (1 x 100)
(1 x 100) (100 x 1M) à (1 x 1M)

= much less computation (vector-matrix multiplies)

=> Order matters! Evaluating vjps in reverse mode is usually most efficient

Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

Consider evaluating the chain rule (RHS):

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 57

Dimensionality

Note:

𝜕𝒈
𝜕𝑊#

=
𝜕(𝑊#𝒙 + 𝒃#)

𝜕𝑊#
=

𝑥# 𝑥$ ⋯ 𝑥7 0 0 ⋯ 0
⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 ⋯ 0 𝑥# 𝑥$ ⋯ 𝑥7

Then
𝜕𝐿
𝜕𝑊#

=
𝑑𝐿
𝜕𝒈

𝜕𝒈
𝜕𝑊#

=
𝑑𝐿
𝜕𝑔#

(𝑥#, ⋯ 𝑥#1,111),⋯ ,
𝑑𝐿
𝜕𝑔#11

(𝑥#, ⋯ , 𝑥#1,111)

=
𝜕𝐿
𝜕𝒈

𝑻

⊗𝒙

This is just the (flattened) outer product of two vectors (100 x 1) ⊗ (10,000 x 1)

Þ We don’t have to fully populate the last Jacobian (3𝒈
36#

) when computing its vector-Jacobian product
Þ Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

401-4656-21L AI in the Sciences and Engineering 2024 58

Dimensionality

Another example:

Consider:
𝒚 = sin(𝒙)

Then
𝜕𝒚
𝜕𝒙

=
cos(𝑥#) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ cos(𝑥7)

And

𝒗0
𝜕𝒚
𝜕𝒙

= 𝑣# cos(𝑥#) , … , 𝑣7 cos(𝑥7)
= 𝒗 ⋅ cos(𝒙)

Requires 𝒪(𝑛) operations

Þ We don’t have to fully populate the last Jacobian (3𝒈
36#

) when computing its vector-Jacobian product
Þ Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

401-4656-21L AI in the Sciences and Engineering 2024 59

Dimensionality

2) From left to right (reverse)

(1 x 100) (100 x 100) à (1 x 100)
(1 x 100) (100 x 1M) à (1 x 1M)
(100 x 1) ⊗ (10,000 x 1) à (1 x 1M)

= much less computation (vector-matrix multiplies)

= Efficient training code

Allows us to train neural networks with billions of
parameters

Let’s think about dimensionality. Consider a simple MLP with 𝑚 = 100 outputs, ℎ = 100 hidden units, and 10,000 inputs.
Then 𝑊# has 100 x 10,000 = 1M elements.

𝑁𝑁 𝒙; 𝜃 = 𝑊$𝜎 𝑊#𝒙 + 𝒃# + 𝒃$ = 𝒇 ∘ 𝒈(𝒙; 𝜃)

Then:
𝜕𝐿
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝑊#

=
𝜕𝐿
𝜕𝒇

𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝑊#

Consider evaluating the chain rule (RHS):

𝒇

𝒈

𝑚 𝑝𝑝 ℎ

(1 x 1M) = (1 x 100) (100 x 100) (100 x 1M)

=
𝑚 ℎ

401-4656-21L AI in the Sciences and Engineering 2024 60

Vector-Jacobian product
vjp:

𝒗.
𝜕𝒚
𝜕𝒙 = 𝒗.

𝜕𝒇&
𝜕𝒇&,)

, … ,
𝜕𝒇'
𝜕𝒇)

𝜕𝒇)
𝜕𝒙

We can compute 𝒗. 0𝒚
0𝒙
	by iteratively computing vector-Jacobian products, from left to

right (reverse-mode):

Starting with 𝒗.,

𝒗. ← 𝒗.
𝜕𝒇&
𝜕𝒇&,)

𝒗. ← 𝒗.
𝜕𝒇&,)
𝜕𝒇&,'

…

𝒗. ← 𝒗.
𝜕𝒇)
𝜕𝒙

• We only need to define the vjp
for each primitive operation to
compute 𝒗. 0𝒚

0𝒙

• Usually, we do not need to
explicitly compute the full
intermediate Jacobians 0𝒇!

0𝒇!"#

401-4656-21L AI in the Sciences and Engineering 2024 61

Jacobian-vector product
jvp:

𝜕𝒚
𝜕𝒙 𝒗 =

𝜕𝒇&
𝜕𝒇&,)

, … ,
𝜕𝒇'
𝜕𝒇)

𝜕𝒇)
𝜕𝒙 𝒗

We can compute 0𝒚
0𝒙
𝒗	by iteratively computing Jacobian-vector products, from right to

left (forward-mode):

Starting with 𝒗,

𝒗 ←
𝜕𝒇)
𝜕𝒙 𝒗	

𝒗 ←
𝜕𝒇'
𝜕𝒇)

𝒗

…

𝒗 ←
𝜕𝒇&
𝜕𝒇&,)

𝒗

• We only need to define the jvp
for each primitive operation to
compute 0𝒚

0𝒙
𝒗

• Usually, we do not need to
explicitly compute the full
intermediate Jacobians 0𝒇!

0𝒇!"#

401-4656-21L AI in the Sciences and Engineering 2024 62

• What if we want the full Jacobian? 𝐽- =
0𝒚
0𝒙

Full Jacobian

401-4656-21L AI in the Sciences and Engineering 2024 63

• What if we want the full Jacobian? 𝐽- =
0𝒚
0𝒙

• We can combine vjps / jvps to compute the full Jacobian row by row / column by column if necessary

• Note jvps are usually more efficient for “tall” Jacobians, whilst vjps are more efficient for “wide” Jacobians

Full Jacobian

Let
𝒗. = 1,0, … , 0

Then

𝒗.
𝜕𝒚
𝜕𝒙 =

𝜕𝑦)
𝜕𝑥)

, … ,
𝜕𝑦)
𝜕𝑥*

= First row of Jacobian

401-4656-21L AI in the Sciences and Engineering 2024 64

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

401-4656-21L AI in the Sciences and Engineering 2024 65

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

401-4656-21L AI in the Sciences and Engineering 2024 66

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

𝒗! = incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊#

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊%

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

401-4656-21L AI in the Sciences and Engineering 2024 67

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

𝒗! = incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊#

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊%

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

• How does required memory scale with depth of computation for vjp vs jvp?

401-4656-21L AI in the Sciences and Engineering 2024 68

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

𝒗! = incoming message

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊#

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊%

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

3) For each primitive operation, define
1) Forward operation
2) vector-Jacobian product
3) Jacobian-vector product

4) Evaluate the vjp or jvp of the function by
applying the chain rule (=message
passing) through the graph

1) Forwards for jvp
2) Backwards for vjp

• How does required memory scale with depth of computation for vjp vs jvp?
• vjp: memory scales linearly with depth (need to store forward computations)
• jvp: memory independent of depth (can compute jvp alongside forward pass)

401-4656-21L AI in the Sciences and Engineering 2024 69

Autodiff in practice

𝒚 = 𝑊'𝜎 𝑊)𝒙 + 𝒃𝟏 + 𝒃𝟐

𝒙

𝒉

𝒚

𝑊) 𝒃𝟏

𝑊' 𝒃𝟐

𝒗! = incoming message
= 1

𝒗! ⟵ 𝒗!
𝜕𝒚
𝜕𝒃𝟐𝒗! ⟵ 𝒗!

𝜕𝒚
𝜕𝑊#

𝒗! ⟵ 𝒗!
𝜕𝒉
𝜕𝒃𝟏𝒗! ⟵ 𝒗!

𝜕𝒉
𝜕𝑊%

loss.backward()

Note autodiff is not
- Symbolic differentiation
- Finite differences
It is a way of efficiently computing exact
gradients!

401-4656-21L AI in the Sciences and Engineering 2024 70

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

401-4656-21L AI in the Sciences and Engineering 2024 71

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

401-4656-21L AI in the Sciences and Engineering 2024 72

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

401-4656-21L AI in the Sciences and Engineering 2024 73

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and
using gradient descent

401-4656-21L AI in the Sciences and Engineering 2024 74

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4: train your algorithm by (auto)differentiating through it and
using gradient descent

Bonus: your code now runs on the GPU!

401-4656-21L AI in the Sciences and Engineering 2024 75

Summary

• Hybrid approaches insert learnable components inside traditional algorithms

• Autodifferentiation is the key enabler for SciML

• Allows hybrid approaches to be trained end-to-end

• Is an incredibly general and powerful tool

