Al in the Sciences and
Engineering

= Introduction to Hybrid
it U Workflows — Part 1

S\
\ NS vem——— '\\\,
NN \\

Spring Semester 2024 ' -

—— —— =
/s e
S A
[\ ‘Y" e

N Siddhartha Mishra /l)" X
) \ Ben Moseley I/?*‘\\\\
- ETH zirich LS

7/ AN AN N4 -
1270\ l/" Y ‘/ \\ 1 \ AW '\\\ DA %,
0///2'03'//,"1."//"0 TS T ."Q\\‘.'z\\s(“,{\\w Ko~
TR A ’ S/ VAT RN ~
s, LV A N
AT Y - : . VAN AR AN
l/ N ',;',:.:,vl;/,"{; 401-4656-21L Al in the Sciences and Engineering 2024 ‘E\l\\\l‘»"‘:o:\'\g‘\“\\ (A \\

Course timeline

Tutorials

Mon 12:15-14:00 HG E 5

26.02.
04.03.
11.03.
18.03.
25.03.

08.04.

22.04.

29.04.

06.05.

13.05.

27.05.

Introduction to PyTorch
Simple DNNs in PyTorch
Implementing PINNSs |
Implementing PINNSs Il

Operator learning |

Operator learning |l

GNNs
Transformers
Diffusion models

Coding autodiff from scratch

Intro to JAX / Neural ODEs

ETHzurich

Wed 08:15-10:00 ML H 44
21.02.
28.02.
06.03.
13.03.
20.03.
27.03.

10.04.
17.04.
24.04.

08.05.
15.05.
22.05.
29.05.

Lectures

Course introduction 23.02.
Introduction to deep learning Il 01.03.
Physics-informed neural networks — introduction 08.03.
Physics-informed neural networks — extensions 15.03.

Physics-informed neural networks — theory |l 22.03.

Supervised learning for PDEs Il

Introduction to operator learning | 12.04.
Convolutional neural operators 19.04.
Large-scale neural operators 26.04.

03.05.
Introduction to hybrid workflows | 10.05.
Neural differential equations 17.05.
Symbolic regression and model discovery 24.05.
Guest lecture: AlphaFold 31.05.

401-4656-21L Al in the Sciences and Engineering 2024

Fri 12:15-13:00 ML H 44

Introduction to deep learning |

Introduction to PDEs

Physics-informed neural networks - limitations
Physics-informed neural networks — theory |

Supervised learning for PDEs |

Introduction to operator learning Il
Time-dependent neural operators
Attention as a neural operator
Windowed attention and scaling laws
Introduction to hybrid workflows |l
Introduction to JAX

Course summary

Guest lecture: AlphaFold

Course overview

Course
introduction

H

Introduction to
deep learning

H

Physics-informed
neural networks

Operator
learning

-

\ 4

Transformers and their
applications in science

~

4)

Hybrid workflows,
neural differential

ETHzurich

\ 4

-

equations, and equation

discovery

\ 4

o

Guest lectures: ML in
chemistry and biology

~

J

401-4656-21L Al in the Sciences and Engineering 2024

Lecture overview

 Limitations of SciML approaches studied so far

« Hybrid SciML approaches
» Residual modelling
« Opening the “black-box”

* How to train hybrid approaches

 Autodifferentiation
 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Lecture overview Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow
« Hybrid SciML approaches 'S
- Residual modelling « Understand how autodifferentiation is used
o Opening the “black-box” tO train hybnd WorkﬂOWS
* How to train hybrid approaches - Understand how autodifferentiation works

 Autodifferentiation
 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Course recap - PINNs

——— Exact solution

==ms Neural network prediction
Boundary loss training locations
Physics loss training locations

dzu

dtz +,uE+ku—0

NN(t; 0) = u(t)

— — - _ 2
Boundary loss { L(6) = A, (NN(t = 0;6) — 1)

Lp(6) +/12<dd (t=0;6)—0)2

p 2
Physics loss LZ
L,(6) { TN <[acz "M o k] NN(E; 9)>

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Course recap - PINNs

Advantages of PINNs Limitations of PINNs

 Mesh-free « Computational cost often
« Can jointly solve forward and high (especially for forward-
inverse problems only problems)

——— Exact solution

==ms Neural network prediction
Boundary loss training locations
Physics loss training locations

dzu_l_
dt2 “dt

NN(t; 0) = u(t)

+ku=20

« Often performs well on « Can be hard to optimise

“‘messy” problems (where
some observational data is
available)

Challenging to scale to high-
frequency, multi-scale
problems

* Mostly unsupervised
Can perform well for high-
2 dimensional PDEs

Boundary loss
Ly (6)

{ L(8) = 1;(NN(t = 0;6) — 1)?
dN
+/12<d (t = 0;6) -)

Physics loss
e 1

1 & ’
N_z <[dt2+“d +k] NN(tl,9)>

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024 7

Course recap — Operator learning

Darcy PDE
V- (a()Vu(x)) = f(x)

-

Permeability, a(x) Pressure, u(x)

a(x) X G .y 1(x)

Fourier Fourier
coeffs. & i .) D P f } R interpolation Golal
R s RV (A \

A a(x) - {a ity » NN({ai}; 0) - {udPe, = 2(x)

N M
1
L©®) =) (i) - Galaid)’
A |

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Course recap — Operator learning

Darcy PDE

V- (a()Vu()) = f(x) Advantages of operator learning Limitations of operator learning

« Can be orders of magnitude « Can require lots of training data,
faster than traditional which can be expensive to
simulation (once trained) obtain

» Can struggle to generalise to
inputs outside of its training data
» Encoding / reconstruction steps

-

Permeability, a(x) Pressure, u(x)

a(x) X 6 >Y a(x) require some assumptions
Fourier ¢ . - w Fourier at()o)ut the regularity of a(x) and
coeffs. interpolation Gslal ulx

A

A a(x) - {a ity » NN({ai}; 0) - {udPe, = 2(x)

N M
1
L©®) =) (i) - Galaid)’
A |

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 9

When should | use deep neural networks for scientific
problems?

Advantages of DNNs Limitations of DNNs
* Usually very fast (once trained) « Often lots of training data required
» Can represent highly non-linear « Can be hard to optimise

functions « Can be hard to interpret

« Often struggle to generalise

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

10

When should | use deep neural networks for scientific
problems?

Advantages of DNNs Limitations of DNNs

» Usually very fast (once trained) Often lots of training data required
» Can represent highly non-linear Can be hard to optimise
functions « Can be hard to interpret
« Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 11

Hybrid SciML approaches

ETHzurich

What if we directly incorporate DNNs into a traditional

\ 4

algorithm instead?
= hybrid approach

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

401-4656-21L Al in the Sciences and Engineering 2024

12

Ways to incorporate scientific principles into machine learning

Loss function Architecture Hybrid approaches

Data
loss

Physics
loss
Example: Example: Example:
Physics-informed neural networks Encoding symmetries / conservation laws Neural differential equations
(add governing equations to loss (e.g. energy conservation, rotational (incorporating neural networks into PDE
function) invariance), operator learning models)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 13

A plethora of SciML techniques

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks
Encoding governing equations
1 0ss function Residual modelling
Differentiable physics
Neural differential equations
In-the-loop methods Traditional

Naive ML i
Adding physical variables WOrKIOWS
Encoding symmetries

Physics-inspired NAS

Fully learned No learning

ML inspired by Koopman theory

) Physically constrained GPs)
Fully data-driven No data required

Architecture
Hard physics

No physics constraints constraints

Source: B Moseley, Physics-informed machine learning:
from concepts to real-world applications, PhD thesis, 2022

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 14

A simple hybrid approach — residual modelling

Phvsi Yphys
SICS 5 — .
x ——>[B J—)@——) Y = Yphys(X) + NN(x;6)

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

When is this useful?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

15

A simple hybrid approach — residual modelling

. Yphys
Physics 9 = Ypnys(®) + NN (x;0)
model

ETHzurich

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

Useful when:
- We have incomplete understanding of physics
- More complex physical modeling is too expensive

Compared to naive ML approach:

NN(x; 0) - Easier learning task: don’t need to learn all the physics
- More interpretable

401-4656-21L Al in the Sciences and Engineering 2024

16

A simple hybrid approach — residual modelling

Phvsi Yphys
SICS 5 — .
x ——>[B J—)@——) Y = Yphys(X) + NN(x;6)

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

N
L(©O) =) (i 0) - y)?
N

— Z(NN(xi; 0) — lyi — yphys(xi)])2

l

N
Note: can precompute r(x;) in advance = Z(NN(xi; 0) —r(x))?
i

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024 17

Residual modelling — aerofoil example

Lift force, F
Reynolds number, Re

e
C ——

Aerofoil shape (set of points), {x;, y;}}_,

Simulation task:
Given {x;,y;})_;, Re and «
Predict F

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

18

Residual modelling — aerofoil example

Lift force, F
Reynolds number, Re

e
C ——

Aerofoil shape (set of points), {x;, y;}}_,

» Full CFD simulations are typically accurate,

but very expensive Simulation task:
« Faster approximate methods exist, but are Given {x;,y;})_;, Re and «
usually less accurate Predict F

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

19

Residual modelling — aerofoil example

T

Hidden layer 1
Hidden layer 2

TN
Aerofoil shape

(set of points)
Y1

@
AN

s () ()
K NEE NS N
2009 |

Hess-Smith panel method:
Fast approximate method for predicting

lift force

Hidden layer 3
Hidden layer 4

Lift force,
F Training data:
Many example inputs/outputs generated

UN Physical parameters

of the flow

Prediction from the !
Hess-Smith panel method

from (expensive) high-fidelity CFD
modelling

()
Wiz

Goal:

A model which is faster than CFD and
more accurate than approximate physics
model

Pawar et al, Physics guided machine learning using

simplified theories, Physics of Fluids (2021)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

20

Residual modelling — aerofoil example

5 NACA23012
- o ® N 15 — True
2 2 > 2 ==+ ML
kS IS IS kS 1.0 ,
5 § § § . os Naive NN
= 2 2 2 2 S o (no physics
() (2 () () S inputs)
'//»4“\4“\4% a B
O O oY 2 1o
Aerofoil shape o 'vi \ \' \///, Lift force, o
(setof points) 1‘\ /‘\ /‘\ /%?/% ; F ~1.5-
24
\ ///////‘\. 20, ~10 0 10 20
O Wiz a
UN Physical parameters 20
of the flow 1.51
L 1.0 NN +
Prediction from the d LT*“ 0.5 phySiCS
Hess-Smith panel method ! g Bitis model
2 s (hybrid
— _1o] approach)
Pawar et al, Physics guided machine learning using —L.57
simplified theories, Physics of Fluids (2021) 9041 | | . .
—20 T 0 10 20
«
21

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Opening the black-box

y= yphys(x) + NN(x; 0)

Residual methods treat the physics model as a “black-box”

More complex hybrid methods open the box and insert ML
inside the traditional algorithm

We insert ML where;
1) the algorithm is slow

2) we are unsure of our assumptions/ want to improve
our modelling

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

22

Opening the black-box — finite difference solver

FD solver

Incompressible Navier-Stokes
equation

6u+(Vu —vVu = 'y
Py u-V)u—vvu = pp

V-u=90

u(x, t) is the flow velocity
p(x,t) is the pressure
p(x) is the density

v is the viscosity

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 23

Opening the black-box — finite difference solver

FD solver

“Operator splitting” numerical solver:

Discretise in time
U = Up — St(ug - Vug + 5t vViu, — %th+1 (D)
Let
. 5 ot
u' =u; — ot(u - Vyuy + St vveu, — ? Vp: (2)

Incompressible Navier-Stokes

equation Then 5
t
ou 1 Urpp = U ——V(Pry1 — Pt)
— . —vwWiy=--V p
o T (- Vu—vvu= » P Asserting V-ugyq =0 :6
_ t
V-u=0 0=V'u*—?V2(Pt+1_pt)
u(x, t) is the flow velocity V2(Dpyq — Pp) = Py u
ot

p(x,t) is the pressure
p(x) is the density
v is the viscosity L(’Pi, jkt+1 — pi,j,k,t) =

Discretise in space
Pijk .
5t DWijk (3)

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 24

Opening the black-box — finite difference solver

FD solver

Basic algorithm:
Discretise u,p and p
Loop:
, st 1. Compute u; ; , using (2)
Upyq = U — Ot (U - Vug + 5t vV up — ;th+1 (1) 2. Solve matrix equation (3) for

Let 5 Pi,j k,t+1
t N |
u* = U — St(ut . V)ut + Ot szut — ? th (2) 3. ComPUte ul,];k,t+1 using (1)

“Operator splitting” numerical solver:

Discretise in time

Incompressible Navier-Stokes

equation Then
. ot def NS_solver(u_@, p_0, rho, nu):
ou 1 U1 = U _?V(pﬁl — D¢) "Pseudocode for solving NS equation"
— . — 2 —_ —— .
ot + (u V)u vWou pvp Asser’ung V-upp 1 =0 # u_0, p_0 have shape (NX, NY, NZ)
V-u=0 ot 5 u_t, p_t =u_90, p_»o
U= O0=V-u"——V — for t in range(Q, T):
p (pt+1 pt) u_star = f(u_t, p_t, rho, nu)
) . . p_t = matrix_solve(u_star, p_t, rho)
u(x, t) is the flow velocity V2(ppyq — pp) = %V ‘U u_t = g(u_t, p_t, rho, nu)
p(x,t) is the pressure . o
o(x) is the density Discretise in space b return u_t, p_t
v is the viscosity L(Pijjeer1 = Pijaet) = 5 Dijpe (3)

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 25

Computational cost / accuracy trade-off

Low fidelity FD solver High fidelity FD solver

(32 x 32 x 64) cells (128 x 128 x 256) cells
~10 seconds / 100 timesteps ~1000 seconds / 100 timesteps

* Discretisation induces errors in the solver

« But finer grids are much more computationally
expensive

« Can we use ML improve the accuracy of the low
fidelity solver?

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 26

Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

u_0, p_0 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_o

for t in range(0, T):

tar = f(u_t, p_t, rho, nu)

= matrix_solve(u_star, p_t, rho)

s
t =
t = g(u_t, p_t, rho, nu)

t

u_
P_
u_

return u_t, p_t

ETHzurich

Low fidelity

step l

Low fidelity

step l

t=2

401-4656-21L Al in the Sciences and Engineering 2024

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

27

Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

u_0, p_0 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_o

for t in range(0, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

return u_t, p_t

* Where could we insert ML inside this workflow to
improve accuracy / efficiency?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Low fidelity

step l

Low fidelity

step l

t=2

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

28

Hybrid Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_o

NN correction,

for t in range(0, T): o _
u_star = f(u_t, p_t, rho, nu) Low fidelity Urp1 = Uppq + NN(ULs1, D415 0)
p_t = matrix_solve(u_star, p_t, rho) step l
u_t = g(u_t, p_t, rho, nu)

return u_t, p_t

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

u_0, p_0 have shape (NX, NY, NZ) . .
u_t, p_t = u_o, p_o Low fldellty
for t in range(0, T): step

u_star = f(u_t, p_t, rho, nu)

p_t = matrix_solve(u_star, p_t, rho)

u_t = g(u_t, p_t, rho, nu) t=2

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 29

Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

« What training data do we need? (Hint: what
inputs/labels do we need to train the network?)

NN correction,
U1 = U1 + NN(Uey1,Pet1; 0)

Low fidelity
« What loss function should we use? step l

t=1

def Hybrid_NS_solver(u_0, p_0, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

u_0, p_0 have shape (NX, NY, NZ) .]

u_t, p_t = u_o, p_o Low fidelity

for t in range(0, T): step
tar = f(u_t, p_t, rho, nu)

matrix_solve(u_star, p_t, rho)

g(u_t, p_t, rho, nu) t=2

u_s
p_t
u_t

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 30

Hybrid Navier-Stokes solver High ity

simulation at time t

t
 How can we train NN (u¢yq, pt41; 60)7?
Option 1: use pairs of low fidelity / high fidelity Low fidelity High fidelity
timesteps as training data step step
\ 4 \
t+1 t+1

N
L(O) =) [lubes + NN (b, s 0) = ufla |
t

N
_ L L . H L 2
= Z||NN(ut+1»Pt+1: 0) — (Ui — ut+1)”
t
Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 31

Hybrid Navier-Stokes solver High ity

simulation at time t

t
 How can we train NN (u¢yq, pt41; 60)7?
Option 1: use pairs of low fidelity / high fidelity Low fidelity High fidelity
timesteps as training data step step
\ 4 \
t+1 t+1

During training, neural network only sees exact low
fidelity timesteps as input
Problem: N
 But during inference, neural network sees L I 1 H o2

different inputs (low fidelity timesteps + previous 4\ L(®) = Z|lut+1 + NN (utsy, ptra; 0) — i

NN corrections)

t
N
* Leads to a train/test distribution shift, and error _ ZHNN) — (ul , — ub)”z
accumulation over time - ‘ t t
Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 32

Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

ETHzurich

Low fidelity High fidelity
step step
|

Low fidelity High fidelity

= "o
“ V@%»- <

N T
L(O) = z Z”HybridSolvert(uOi; 9) — u’tq(‘uol.)”2
it

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

401-4656-21L Al in the Sciences and Engineering 2024 33

Hybrid Navier-Stokes solver

t=0
 How can we train NN (u¢yq, pt41; 60)7? q

Low fidelity High fidelity
step step

Option 2: match outputs of hybrid solver to

t=1
high-fidelity simulation directly q ‘ %» q ‘q

Low fldel|ty High fidelity

NN learns to correct its previous errors v step @ step l

Reduces distributional shift v/ =0

N T
L(O) = z Z”HybridSolvert(uOi; 9) — u’tq(‘uol.)”2
it

Requires HybridSolver to be differentiable!

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 34

ETHzurich

Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

NN learns to correct its previous errors v
Reduces distributional shift v

Requires HybridSolver to be differentiable!

.. we can just use autodifferentiation!

def Hybrid_NS_solver(u_@0, p_0, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

u_0, p_9 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_»0

for t in range(Q, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_0, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

for learning theta (training NN)

N T
L(O) = Z Z”HybridSolvert(uoi; 0) — u{l(uoi)“z
T T

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

401-4656-21L Al in the Sciences and Engineering 2024 35

ETHzurich

Hybrid Navier-Stokes solver

def NN(x, theta):
"Defines a FCN"
y = torch.tanh(theta[0]l@x + thetal1])
return y

theta.requires_grad_(True)

y = NN(x, theta)

loss = loss_fn(y, y_true)

dtheta = torch.autograd.grad(loss, theta)

for learning theta (training NN)

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

u_0, p_9 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_»0

for t in range(Q, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_0, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

for learning theta (training NN)

N T
L(O) = Z Z”HybridSolvert(uoi; 0) — uf(uoi)“z
T T

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

401-4656-21L Al in the Sciences and Engineering 2024 36

How do we train hybrid approaches?

®- Key idea: autodifferentiation allows us to differentiate and learn
"= | arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation
But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

37

How do we train hybrid approaches?

@ Key idea: autodifferentiation allows us to differentiate and learn
"= | arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation
But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

©@- Differentiable physics = using autodifferentiation
"= | to differentiate physical algorithms

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

38

NS solver results

Low fidelity FD solver Hybrid approach High fidelity FD solver

32 x 32 x 64 grid cells 128 x 128 x 256 cells
~10 seconds / 100 timesteps ~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 39

NS solver results

0.20- Low fidelity solver

— Option 1 (low-high res pairs)

— Option 2 (end-to-end training)
0.15- D solver
0.10-
0.05 - '56 cells

' 00 timesteps

0.00 -

0 100 200 300

Step

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 40

Lecture overview

Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow

« Hybrid SciML approaches
» Residual modelling

« Opening the “black-box”

IS
 Understand how autodifferentiation is used

to train hybrid workflows

* How to train hybrid approaches « Understand how autodifferentiation works

« Autodifferentiation

 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

41

5 min break

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

42

Lecture overview

Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow

« Hybrid SciML approaches
» Residual modelling

« Opening the “black-box”

IS
 Understand how autodifferentiation is used

to train hybrid workflows

* How to train hybrid approaches « Understand how autodifferentiation works

« Autodifferentiation

 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

43

Autodifferentiation is a key enabler

@ Autodifferentiation is a key enabler of all the SciML techniques studied so far

pr—

It allows us to efficiently differentiate through complicated loss functions and get
gradients of learnable parameters

NN(t; 0) = u(t) Golal
A
L(B) = A, (NN(t = 0;0) — 1)? [\
1 (dNN()) a(x) = {a s - NN({ak 6) - (e, — 200) ,
+ 2, t=0;6) - |)
L(®) = |HybridSolver,(uo;) — uf (uo,)|
Z Z t\ 0 t 0

Y (et Ty L0 = 370, o) - itad)l

Physics-informed neural network Operator learning Hybrid algorithms

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 44

Programs as vector functions

@ Many (scientific) programs can be decomposed
"= in the following way:
def Hybrid_NS_solver(u_@, p_0, rho, nu, theta):

"Pseudocode for solving NS equation, with NN correction" Program:

u 0, p_0 have shape (NX, NY, NZ) Input: a vector x € R™

u_t, p_t =u_0, p_»o

for t in range(0, T): . . . ags .
u_star = f(u_t, p_t, rho, nu) Function: A series of primitive operations
p_t = matrix_solve(u_star, p_t, rho) on the elements of x
u_t = g(u_t, p_t, rho, nu)

add / multiply / trigonometric / ...
u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

Output: some transformed vector y € R™
return u_t, p_t

theta.requires_grad_(True)
u_T,_ = Hybrid_NS_solver(u_@, p_@, rho, nu, theta) . .
leEe = 'Lo)s,s_fn(u_T' u_T_true) P Mathematically, the program defines a vector

dtheta = torch.autograd.grad(loss, theta) function y: R™ - R™, composed of primitive
for learning theta (training NN) .]
operations:

y(x) :fN °:---»°f2°f1(x)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 45

Chain rule for vector functions

Consider any vector function y: R" —» R™, composed from many other vector functions
y(x) :fN °, "'ron Ofl(X)

Then we can use the multivariate chain rule (= matrix multiplication of Jacobians) to
evaluate its derivatives

oy ofy of,0f

o0x Ofy_, " of 0x
where
91 [
gy | 9% %X
]y = a— = : :
o\ m Oym
0x, 0xy,

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

46

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
v = m =
0x
or the Jacobian-vector product (jvp): -
oy —
axv m n =

of arbitrary programs.

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

47

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
v = m =
0x
or the Jacobian-vector product (jvp): -
oy —
axv m n =

of arbitrary programs.

Why is it useful to evaluate the vjp / jvp?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

48

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
VvV — m =
0x
or the Jacobian-vector product (jvp): -
ay —
ax " m n =
of arbitrary programs.
Why is it useful to evaluate the vjp / jvp? N
Consider training a neural network:
L(0):RP - R? m p
L |
oL 0L ONN "
30 ONN 00

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

m = total number of network outputs
p = total number of parameters

We need to compute a vjp!

49

Chain rule

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n

or the Jacobian-vector product (jvp):

of arbitrary programs.

We can evaluate the vjp / jvp using the chain rule, for example:

Tay_ T afN afz afl
V —=7D
ox U afy_, ' Of, 0x

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

50

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
NN(x;0) = Woo(Wyx + by) + b, = fo g(x;60)
g
dL 0L of OdLof ag

ow, ofow, of agow,

Then:

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

51

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

oW, ofow, ofadgow,

Then:

p m h p

(1x1M) = (1x100) (100 x 100) (100 x 1M)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

52

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow, ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

1) From right to left (forward)

(100 x 100) (100 x 1M) = (100 x 1M)
(1x100) (100 x M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

53

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow, ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

1) From right to left (forward) 2) From left to right (reverse)

(100 x 100) (100 x 1M) - (100 x 1M) (1 x100) (100 x 100) -> (1 x 100)

(1 x100) (100 x 1M) > (1 x 1M) (1 x100) (100 x 1M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply) = much less computation (vector-matrix multiplies)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

54

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.

Then W, has 100 x 10,000 = 1M elements.

f

Then:

g
oL 9L of L Of ag

ow, ofow, of agow,

m h p

Consider evaluating the chain rule (RHS):

1) From right to left (forward)

(100 x 100) (100 x 1M) = (100 x 1M)
(1x100) (100 x M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply)

(1x1M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

(1 x 100) (100 x 100) = (1 x 100)
(1 x 100) (100 x 1M) = (1 x 1M)

= much less computation (vector-matrix multiplies)

@ => Order matters! Evaluating vjps in reverse mode is usually most efficient

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

95

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow, ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

But what about the last computation (Z—; aa—w‘q/l)? (1 x 100) (100 x 100) = (1 x 100)

> (1x100) (100 x 1IM) > (1 x 1M)

This is still expensive! (:Tg has 100M
elements, or ~0.5 GB)

1
'y ’

= much less computation (vector-matrix multiplies)

@ => Order matters! Evaluating vjps in reverse mode is usually most efficient

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

56

Dimensionality

Note:
09 _0(Wix+by) (o T .0)
6W1 an 0 0 0 xl xz xn
Then
oL dL dg dL dL
ow, - @awl - <0g1 (xl’"'xlo'OOO)""'m(xl'"'»x1o,ooo))
oL’ .
T x

This is just the (flattened) outer product of two vectors (100 x 1) ® (10,000 x 1)

. = We don’t have to fully populate the last Jacobian (aavi) when computing its vector-Jacobian product
- - 1

= Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

57

Dimensionality

Another example:

Consider:
y = sin(x)
Then
dy (cos(xl) 0)
ox 0 -+ cos(xy,)
And
r 9y
Vo= (v1 cos(xy), ..., vy cos(xy,))
= v - cos(x)
Requires O(n) operations
dg

., = We don'’t have to fully populate the last Jacobian (aw) when computing its vector-Jacobian product

RSN Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

58

Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.

Then W, has 100 x 10,000 = 1M elements.

f

Then: g

oL 9L of L Of ag

ow, af ow,

of 0g oW,

m

h p

Consider evaluating the chain rule (RHS):

= Efficient training code

Allows us to train neural networks with billions of
parameters

ETHzurich

(1x1M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

(1 x 100) (100 x 100) = (1 x 100)

JERVIET \WET: Y IVEETVINSWZRVET V.
(100 x 1) ® (10,000 x 1) > (1 x 1M)

= much less computation (vector-matrix multiplies)

401-4656-21L Al in the Sciences and Engineering 2024

59

Vector-Jdacobian product

Vjp:

Tay_ T afN afz afl
=7
ox U afy_. U f, 0x

We can compute v’ Z—Z by iteratively computing vector-dacobian products, from left to

right (reverse-mode):

Starting with v7,

T T Of n
0f n-1

T - vT aI:N—l
afN—z

afl

v« pT —
0x

v

v

We only need to define the vjp

for each primitive operation to

]
T %Y
compute v ™

Usually, we do not need to
explicitly compute the full

intermediate Jacobians —2L
i—1

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Jacobian-vector product

jvp:

Oy, _ w0
ox Ofn_i " Of, Ox

We can compute Z—Zv by iteratively computing Jacobian-vector products, from right to

left (forward-mode):

Starting with v,

ETHzurich

« We only need to define the jvp

9 for each primitive operation to
— L dy
VeV compute =>v
v %v « Usually, we do not need to
af1 explicitly compute the full
i ' - of i
of intermediate Jacobians i
vV« v
0f n-1

401-4656-21L Al in the Sciences and Engineering 2024

61

Full Jacobian

« What if we want the full Jacobian? J,, = P

ETHzurich

dy
X

401-4656-21L Al in the Sciences and Engineering 2024

62

Full Jacobian

« What if we want the full Jacobian? J,, = oy

ox

« We can combine vjps / jvps to compute the full Jacobian row by row / column by column if necessary

Let

vl =(1,0,...,0)
Then

Tay_(% OL)

Viox T ox,; ~~0x,

= First row of Jacobian

* Note jvps are usually more efficient for “tall” Jacobians, whilst vjps are more efficient for “wide” Jacobians

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024

ETHzurich

Autodiff in practice

Yy = Wza-(Wlx + bl) + bZ

X
Wy b4
\L/
h
Wz\l‘/bz
y

O PyTorch 1

TensorFlow
&
X

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

401-4656-21L Al in the Sciences and Engineering 2024

64

ETHzurich

Autodiff in practice

Yy = Wza-(Wlx + bl) + bZ

X
Wi b,
\L/
h
Wz\l‘/bz
y

O PyTorch 1

TensorFlow

y A

1)

2)

3)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation

2) vector-Jacobian product

3) Jacobian-vector product

401-4656-21L Al in the Sciences and Engineering 2024

65

Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
3) For each primitive operation, define
o7 ,,T'a_"\A =t VT;—,:II 1) Forward operation
VI%Wl h b, 2) vector-Jacobian product
T 3) Jacobian-vector product
N
vV aw obz 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
vT = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
TensorFlow

y A

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
Wy b4
3) For each primitive operation, define
oh
T ,,T'a_h\‘h s v b, 1) Forward operation
o 2) vector-Jacobian product
Wz bz .
3) Jacobian-vector product
- ;% 4; vTa_y
vV aw obz 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
v’ = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
- TensorFlow » How does required memory scale with depth of computation for vjp vs jvp?
oS

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
Wy b4
3) For each primitive operation, define
o7 ,,T'a_"\A =t VT;—,:II 1) Forward operation
VI%Wl h b, 2) vector-Jacobian product
T 3) Jacobian-vector product
T o
VT aw, Y 2 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
vT = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
P TensorFlow » How does required memory scale with depth of computation for vjp vs jvp?
@‘g'x @ * vjp: memory scales linearly with depth (need to store forward computations)

"=« jvp: memory independent of depth (can compute jvp alongside forward pass)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 68

Autodiff in practice

ETHzurich

Yy = Wza-(Wlx + bl) + bZ

v

T

X

w, b,

<—v

'\ oh

on v — T b,
2

T

v’ = incoming message
=1

loss.backward()

O PyTorch

torch.autograd.grad (outputs, inputs, grad_outputs=None, retain_graph=None,
create_graph=False, only_inputs=True, allow_unused=None, is_grads_batched=False,

materialize_grads=False) [SOURCE]

Computes and returns the sum of gradients of outputs with respect to the inputs.

grad_outputs should be a sequence of length matching output containing the “vector” in vector-Jacobian
product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the
gradient can be None).

Note autodiff is not

- Symbolic differentiation

- Finite differences

It is a way of efficiently computing exact
gradients!

401-4656-21L Al in the Sciences and Engineering 2024 69

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

70

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

71

Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

72

Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent

401-4656-21L Al in the Sciences and Engineering 2024

73

Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent

Bonus: your code now runs on the GPU!

401-4656-21L Al in the Sciences and Engineering 2024

74

Summary

 Hybrid approaches insert learnable components inside traditional algorithms

 Autodifferentiation is the key enabler for SciML
 Allows hybrid approaches to be trained end-to-end

* |s an incredibly general and powerful tool

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

75

