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Course timeline

Tutorials

Mon 12:15-14:00 HG E 5

26.02.
04.03.
11.03.
18.03.
25.03.

08.04.

22.04.

29.04.

06.05.

13.05.

27.05.

Introduction to PyTorch
Simple DNNs in PyTorch
Implementing PINNSs |
Implementing PINNSs Il

Operator learning |

Operator learning |l

GNNs
Transformers
Diffusion models

Coding autodiff from scratch

Intro to JAX / Neural ODEs

ETHzurich

Wed 08:15-10:00 ML H 44
21.02.
28.02.
06.03.
13.03.
20.03.
27.03.

10.04.
17.04.
24.04.

08.05.
15.05.
22.05.
29.05.

Lectures

Course introduction 23.02.
Introduction to deep learning Il 01.03.
Physics-informed neural networks — introduction 08.03.
Physics-informed neural networks — extensions  15.03.

Physics-informed neural networks — theory |l 22.03.

Supervised learning for PDEs Il

Introduction to operator learning | 12.04.
Convolutional neural operators 19.04.
Large-scale neural operators 26.04.

03.05.
Introduction to hybrid workflows | 10.05.
Neural differential equations 17.05.
Symbolic regression and model discovery 24.05.
Guest lecture: AlphaFold 31.05.
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Fri 12:15-13:00 ML H 44

Introduction to deep learning |

Introduction to PDEs

Physics-informed neural networks - limitations
Physics-informed neural networks — theory |

Supervised learning for PDEs |

Introduction to operator learning Il
Time-dependent neural operators
Attention as a neural operator
Windowed attention and scaling laws
Introduction to hybrid workflows |l
Introduction to JAX

Course summary

Guest lecture: AlphaFold
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Lecture overview

 Limitations of SciML approaches studied so far

« Hybrid SciML approaches
» Residual modelling
« Opening the “black-box”

* How to train hybrid approaches

 Autodifferentiation
 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Lecture overview Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow
« Hybrid SciML approaches 'S
- Residual modelling « Understand how autodifferentiation is used
o Opening the “black-box” tO train hybnd WorkﬂOWS
* How to train hybrid approaches - Understand how autodifferentiation works

 Autodifferentiation
 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Course recap - PINNs

——— Exact solution

==ms Neural network prediction
Boundary loss training locations
Physics loss training locations

dzu

dtz +,uE+ku—0

NN(t; 0) = u(t)

— — - _ 2
Boundary loss { L(6) = A, (NN(t = 0;6) — 1)

Lp(6) +/12<dd (t=0;6)—0 )2

p 2
Physics loss LZ
L,(6) { TN <[ acz "M o k] NN(E; 9)>
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Course recap - PINNs

Advantages of PINNs Limitations of PINNs

 Mesh-free « Computational cost often
« Can jointly solve forward and high (especially for forward-
inverse problems only problems)

——— Exact solution

==ms Neural network prediction
Boundary loss training locations
Physics loss training locations

dzu_l_
dt2 “dt

NN(t; 0) = u(t)

+ku=20

« Often performs well on « Can be hard to optimise

“‘messy” problems (where
some observational data is
available)

Challenging to scale to high-
frequency, multi-scale
problems

* Mostly unsupervised
Can perform well for high-
2 dimensional PDEs

Boundary loss
Ly (6)

{ L(8) = 1;(NN(t = 0;6) — 1)?
dN
+/12<d (t = 0;6) - )

Physics loss
e 1

1 & ’
N_z <[ dt2+“d +k] NN(tl,9)>

ETHzurich
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Course recap — Operator learning

Darcy PDE
V- (a()Vu(x)) = f(x)

-

Permeability, a(x) Pressure, u(x)

a(x) X G .y 1(x)

Fourier Fourier
coeffs. & i .) D P f } R interpolation Golal
R s RV ( A \

A a(x) - {a ity » NN({ai}; 0) - {udPe, = 2(x)

N M
1
L©®) = ) (i) - Galaid )’
A |
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Course recap — Operator learning

Darcy PDE

V- (a()Vu()) = f(x) Advantages of operator learning Limitations of operator learning

« Can be orders of magnitude « Can require lots of training data,
faster than traditional which can be expensive to
simulation (once trained) obtain

» Can struggle to generalise to
inputs outside of its training data
» Encoding / reconstruction steps

-

Permeability, a(x) Pressure, u(x)

a(x) X 6 >Y a(x) require some assumptions
Fourier ¢ . - w Fourier at()o)ut the regularity of a(x) and
coeffs. interpolation Gslal ulx

A

A a(x) - {a ity » NN({ai}; 0) - {udPe, = 2(x)

N M
1
L©®) = ) (i) - Galaid )’
A |
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When should | use deep neural networks for scientific
problems?

Advantages of DNNs Limitations of DNNs
* Usually very fast (once trained) « Often lots of training data required
» Can represent highly non-linear « Can be hard to optimise

functions « Can be hard to interpret

« Often struggle to generalise

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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When should | use deep neural networks for scientific
problems?

Advantages of DNNs Limitations of DNNs

» Usually very fast (once trained) Often lots of training data required
» Can represent highly non-linear Can be hard to optimise
functions « Can be hard to interpret
« Often struggle to generalise

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 11



Hybrid SciML approaches

ETHzurich

What if we directly incorporate DNNs into a traditional

\ 4

algorithm instead?
= hybrid approach

General advice

Use DNNs to:
1) Accelerate your workflow, or
2) Learn the parts you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may not be a good
idea!

401-4656-21L Al in the Sciences and Engineering 2024
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Ways to incorporate scientific principles into machine learning

Loss function Architecture Hybrid approaches

Data
loss

Physics
loss
Example: Example: Example:
Physics-informed neural networks Encoding symmetries / conservation laws Neural differential equations
(add governing equations to loss (e.g. energy conservation, rotational (incorporating neural networks into PDE
function) invariance), operator learning models)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 13



A plethora of SciML techniques

Constraining physical quantities
Encoding conservation laws
Auxiliary tasks
Encoding governing equations
1 0ss function Residual modelling
Differentiable physics
Neural differential equations
In-the-loop methods Traditional

Naive ML i
Adding physical variables WOrKIOWS
Encoding symmetries

Physics-inspired NAS

Fully learned No learning

ML inspired by Koopman theory

) Physically constrained GPs )
Fully data-driven No data required

Architecture
Hard physics

No physics constraints constraints

Source: B Moseley, Physics-informed machine learning:
from concepts to real-world applications, PhD thesis, 2022

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 14



A simple hybrid approach — residual modelling

Phvsi Yphys
SICS 5 — .
x ——>[ B J—)@——) Y = Yphys(X) + NN(x;6)

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

When is this useful?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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A simple hybrid approach — residual modelling

. Yphys
Physics 9 = Ypnys(®) + NN (x;0)
model

ETHzurich

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

Useful when:
- We have incomplete understanding of physics
- More complex physical modeling is too expensive

Compared to naive ML approach:

NN(x; 0) - Easier learning task: don’t need to learn all the physics
- More interpretable

401-4656-21L Al in the Sciences and Engineering 2024
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A simple hybrid approach — residual modelling

Phvsi Yphys
SICS 5 — .
x ——>[ B J—)@——) Y = Yphys(X) + NN(x;6)

i.e. neural network learns residual correction to physics
model

Trained using many examples of inputs/outputs

N
L(©O) = ) (i 0) - y)?
N

— Z(NN(xi; 0) — lyi — yphys(xi)])2

l

N
Note: can precompute r(x;) in advance = Z(NN(xi; 0) —r(x))?
i

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024 17



Residual modelling — aerofoil example

Lift force, F
Reynolds number, Re

e
C ——

Aerofoil shape (set of points), {x;, y;}}_,

Simulation task:
Given {x;,y;})_;, Re and «
Predict F

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Residual modelling — aerofoil example

Lift force, F
Reynolds number, Re

e
C ——

Aerofoil shape (set of points), {x;, y;}}_,

» Full CFD simulations are typically accurate,

but very expensive Simulation task:
« Faster approximate methods exist, but are Given {x;,y;})_;, Re and «
usually less accurate Predict F

Pawar et al, Physics guided machine learning using
simplified theories, Physics of Fluids (2021)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Residual modelling — aerofoil example

T

Hidden layer 1
Hidden layer 2

TN
Aerofoil shape

(set of points)
Y1

@
AN

s () ()
K NEE NS N
2009 |

Hess-Smith panel method:
Fast approximate method for predicting

lift force

Hidden layer 3
Hidden layer 4

Lift force,
F Training data:
Many example inputs/outputs generated

UN Physical parameters

of the flow

Prediction from the !
Hess-Smith panel method

from (expensive) high-fidelity CFD
modelling

()
Wiz

Goal:

A model which is faster than CFD and
more accurate than approximate physics
model

Pawar et al, Physics guided machine learning using

simplified theories, Physics of Fluids (2021)

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024
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Residual modelling — aerofoil example

5 NACA23012
- o ® N 15 — True
2 2 > 2 ==+ ML
kS IS IS kS 1.0 ,
5 § § § . os Naive NN
= 2 2 2 2 S o (no physics
() (2 () () S inputs)
'//»4“\4“\4% a B
O O oY 2 1o
Aerofoil shape o 'vi \ \' \///, Lift force, o
(setof points) 1‘\ /‘\ /‘\ /%?/% ; F ~1.5-
24
\ ///////‘\. 20, ~10 0 10 20
O Wiz a
UN Physical parameters 20
of the flow 1.51
L 1.0 NN +
Prediction from the d LT*“ 0.5 phySiCS
Hess-Smith panel method ! g Bitis model
2 s (hybrid
— _1o] approach)
Pawar et al, Physics guided machine learning using —L.57
simplified theories, Physics of Fluids (2021) 9041 | | . .
—20 T 0 10 20
«
21
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Opening the black-box

y= yphys(x) + NN(x; 0)

Residual methods treat the physics model as a “black-box”

More complex hybrid methods open the box and insert ML
inside the traditional algorithm

We insert ML where;
1) the algorithm is slow

2) we are unsure of our assumptions/ want to improve
our modelling

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024
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Opening the black-box — finite difference solver

FD solver

Incompressible Navier-Stokes
equation

6u+( Vu —vVu = 'y
Py u-V)u—vvu = pp

V-u=90

u(x, t) is the flow velocity
p(x,t) is the pressure
p(x) is the density

v is the viscosity

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 23



Opening the black-box — finite difference solver

FD solver

“Operator splitting” numerical solver:

Discretise in time
U = Up — St(ug - Vug + 5t vViu, — %th+1 (D)
Let
. 5 ot
u' =u; — ot(u - Vyuy + St vveu, — ? Vp: (2)

Incompressible Navier-Stokes

equation Then 5
t
ou 1 Urpp = U ——V(Pry1 — Pt)
— . —vwWiy=--V p
o T (- Vu—vvu= » P Asserting V-ugyq =0 :6
_ t
V-u=0 0=V'u*—?V2(Pt+1_pt)
u(x, t) is the flow velocity V2(Dpyq — Pp) = Py u
ot

p(x,t) is the pressure
p(x) is the density
v is the viscosity L(’Pi, jkt+1 — pi,j,k,t) =

Discretise in space
Pijk .
5t DWijk (3)

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 24



Opening the black-box — finite difference solver

FD solver

Basic algorithm:
Discretise u,p and p
Loop:
, st 1. Compute u; ; , using (2)
Upyq = U — Ot (U - Vug + 5t vV up — ;th+1 (1) 2. Solve matrix equation (3) for

Let 5 Pi,j k,t+1
t N |
u* = U — St(ut . V)ut + Ot szut — ? th (2) 3. ComPUte ul,];k,t+1 using (1)

“Operator splitting” numerical solver:

Discretise in time

Incompressible Navier-Stokes

equation Then
. ot def NS_solver(u_@, p_0, rho, nu):
ou 1 U1 = U _?V(pﬁl — D¢) "Pseudocode for solving NS equation"
— . — 2 —_ —— .
ot + (u V)u vWou pvp Asser’ung V-upp 1 =0 # u_0, p_0 have shape (NX, NY, NZ)
V-u=0 ot 5 u_t, p_t =u_90, p_»o
U= O0=V-u"——V — for t in range(Q, T):
p (pt+1 pt) u_star = f(u_t, p_t, rho, nu)
) . . p_t = matrix_solve(u_star, p_t, rho)
u(x, t) is the flow velocity V2(ppyq — pp) = %V ‘U u_t = g(u_t, p_t, rho, nu)
p(x,t) is the pressure . o
o(x) is the density Discretise in space b return u_t, p_t
v is the viscosity L(Pijjeer1 = Pijaet) = 5 Dijpe (3)

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 25



Computational cost / accuracy trade-off

Low fidelity FD solver High fidelity FD solver

(32 x 32 x 64) cells (128 x 128 x 256) cells
~10 seconds / 100 timesteps ~1000 seconds / 100 timesteps

* Discretisation induces errors in the solver

« But finer grids are much more computationally
expensive

« Can we use ML improve the accuracy of the low
fidelity solver?

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 26



Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_o

for t in range(0, T):

tar = f(u_t, p_t, rho, nu)

= matrix_solve(u_star, p_t, rho)

s
t =
t = g(u_t, p_t, rho, nu)

t

u_
P_
u_

return u_t, p_t

ETHzurich

Low fidelity

step l

Low fidelity

step l

t=2

401-4656-21L Al in the Sciences and Engineering 2024

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_o

for t in range(0, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

return u_t, p_t

* Where could we insert ML inside this workflow to
improve accuracy / efficiency?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

Low fidelity

step l

Low fidelity

step l

t=2

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Hybrid Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu):
"Pseudocode for solving NS equation"

# u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_o

NN correction,

for t in range(0, T): o _
u_star = f(u_t, p_t, rho, nu) Low fidelity Urp1 = Uppq + NN(ULs1, D415 0)
p_t = matrix_solve(u_star, p_t, rho) step l
u_t = g(u_t, p_t, rho, nu)

return u_t, p_t

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

# u_0, p_0 have shape (NX, NY, NZ) . .
u_t, p_t = u_o, p_o Low fldellty
for t in range(0, T): step

u_star = f(u_t, p_t, rho, nu)

p_t = matrix_solve(u_star, p_t, rho)

u_t = g(u_t, p_t, rho, nu) t=2

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 29



Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

« What training data do we need? (Hint: what
inputs/labels do we need to train the network?)

NN correction,
U1 = U1 + NN(Uey1,Pet1; 0)

Low fidelity
« What loss function should we use? step l

t=1

def Hybrid_NS_solver(u_0, p_0, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

# u_0, p_0 have shape (NX, NY, NZ) . ]

u_t, p_t = u_o, p_o Low fidelity

for t in range(0, T): step
tar = f(u_t, p_t, rho, nu)

matrix_solve(u_star, p_t, rho)

g(u_t, p_t, rho, nu) t=2

u_s
p_t
u_t

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETH:zurich 401-4656-21L Al in the Sciences and Engineering 2024 30



Hybrid Navier-Stokes solver High ity

simulation at time t

t
 How can we train NN (u¢yq, pt41; 60)7?
Option 1: use pairs of low fidelity / high fidelity Low fidelity High fidelity
timesteps as training data step step
\ 4 \
t+1 t+1

N
L(O) = ) [lubes + NN (b, s 0) = ufla |
t

N
_ L L . H L 2
= Z||NN(ut+1»Pt+1: 0) — (Ui — ut+1)”
t
Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 31



Hybrid Navier-Stokes solver High ity

simulation at time t

t
 How can we train NN (u¢yq, pt41; 60)7?
Option 1: use pairs of low fidelity / high fidelity Low fidelity High fidelity
timesteps as training data step step
\ 4 \
t+1 t+1

During training, neural network only sees exact low
fidelity timesteps as input
Problem: N
 But during inference, neural network sees L I 1 H o2

different inputs (low fidelity timesteps + previous 4\ L(®) = Z|lut+1 + NN (utsy, ptra; 0) — i

NN corrections)

t
N
* Leads to a train/test distribution shift, and error _ ZHNN ) — (ul , — ub )”z
accumulation over time - ‘ t t
Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 32



Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

ETHzurich

Low fidelity High fidelity
step step
|

Low fidelity High fidelity

= "o
“ V@%»- <

N T
L(O) = z Z”HybridSolvert(uOi; 9) — u’tq(‘uol.)”2
it

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Hybrid Navier-Stokes solver

t=0
 How can we train NN (u¢yq, pt41; 60)7? q

Low fidelity High fidelity
step step

Option 2: match outputs of hybrid solver to

t=1
high-fidelity simulation directly q ‘ %» q ‘q

Low fldel|ty High fidelity

NN learns to correct its previous errors v step @ step l

Reduces distributional shift v/ =0

N T
L(O) = z Z”HybridSolvert(uOi; 9) — u’tq(‘uol.)”2
it

Requires HybridSolver to be differentiable!

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Hybrid Navier-Stokes solver

 How can we train NN (u¢yq, pt41; 60)7?

Option 2: match outputs of hybrid solver to
high-fidelity simulation directly

NN learns to correct its previous errors v
Reduces distributional shift v

Requires HybridSolver to be differentiable!

.. we can just use autodifferentiation!

def Hybrid_NS_solver(u_@0, p_0, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

# u_0, p_9 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_»0

for t in range(Q, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_0, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

# for learning theta (training NN)

N T
L(O) = Z Z”HybridSolvert(uoi; 0) — u{l(uoi)“z
T T

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Hybrid Navier-Stokes solver

def NN(x, theta):
"Defines a FCN"
y = torch.tanh(theta[0]l@x + thetal1])
return y

theta.requires_grad_(True)

y = NN(x, theta)

loss = loss_fn(y, y_true)

dtheta = torch.autograd.grad(loss, theta)

# for learning theta (training NN)

def Hybrid_NS_solver(u_0, p_@, rho, nu, theta):
"Pseudocode for solving NS equation, with NN correction"

# u_0, p_9 have shape (NX, NY, NZ)

u_t, p_t = u_0, p_»0

for t in range(Q, T):
u_star = f(u_t, p_t, rho, nu)
p_t = matrix_solve(u_star, p_t, rho)
u_t = g(u_t, p_t, rho, nu)

u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)
return u_t, p_t

theta.requires_grad_(True)

u_T,_ = Hybrid_NS_solver(u_0, p_@, rho, nu, theta)
loss = loss_fn(u_T, u_T_true)

dtheta = torch.autograd.grad(loss, theta)

# for learning theta (training NN)

N T
L(O) = Z Z”HybridSolvert(uoi; 0) — uf(uoi)“z
T T

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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How do we train hybrid approaches?

®- Key idea: autodifferentiation allows us to differentiate and learn
"= | arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation
But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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How do we train hybrid approaches?

@ Key idea: autodifferentiation allows us to differentiate and learn
"= | arbitrary algorithms, not just neural networks!

We train neural networks using autodifferentiation
But autodifferentiation = exact gradients of arbitrary programs

So, we can use it to differentiate (and learn) traditional algorithms too!

©@- Differentiable physics = using autodifferentiation
"= | to differentiate physical algorithms

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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NS solver results

Low fidelity FD solver Hybrid approach High fidelity FD solver

32 x 32 x 64 grid cells 128 x 128 x 256 cells
~10 seconds / 100 timesteps ~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells
~15 seconds / 100 timesteps

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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NS solver results

0.20- Low fidelity solver

— Option 1 (low-high res pairs)

— Option 2 (end-to-end training)
0.15- D solver
0.10-
0.05 - '56 cells

' 00 timesteps

0.00 -

0 100 200 300

Step

Um et al, Solver-in-the-loop: Learning from differentiable
physics to interact with iterative PDE-solvers, NeurlPS (2020)
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Lecture overview

Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow

« Hybrid SciML approaches
» Residual modelling

« Opening the “black-box”

IS
 Understand how autodifferentiation is used

to train hybrid workflows

* How to train hybrid approaches « Understand how autodifferentiation works

« Autodifferentiation

 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich

401-4656-21L Al in the Sciences and Engineering 2024
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5 min break

ETHzurich
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Lecture overview

Learning objectives

 Limitations of SciML approaches studied so far « Be able to describe what a hybrid workflow

« Hybrid SciML approaches
» Residual modelling

« Opening the “black-box”

IS
 Understand how autodifferentiation is used

to train hybrid workflows

* How to train hybrid approaches « Understand how autodifferentiation works

« Autodifferentiation

 Autodifferentiation as a key enabler

 What it is and how it works

ETHzurich
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Autodifferentiation is a key enabler

@ Autodifferentiation is a key enabler of all the SciML techniques studied so far

pr—

It allows us to efficiently differentiate through complicated loss functions and get
gradients of learnable parameters

NN(t; 0) = u(t) Golal
A
L(B) = A, (NN(t = 0;0) — 1)? [ \
1 (dNN( ) ) a(x) = {a s - NN({ak 6) - (e, — 200) ,
+ 2, t=0;6) - | )
L(®) = |HybridSolver,(uo; ) — uf (uo,)|
Z Z t\ 0 t 0

Y (et Ty L0 = 370, o) - itad)l

Physics-informed neural network Operator learning Hybrid algorithms
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Programs as vector functions

@ Many (scientific) programs can be decomposed
"= in the following way:
def Hybrid_NS_solver(u_@, p_0, rho, nu, theta):

"Pseudocode for solving NS equation, with NN correction" Program:

# u 0, p_0 have shape (NX, NY, NZ) Input: a vector x € R™

u_t, p_t =u_0, p_»o

for t in range(0, T): . . . ags .
u_star = f(u_t, p_t, rho, nu) Function: A series of primitive operations
p_t = matrix_solve(u_star, p_t, rho) on the elements of x
u_t = g(u_t, p_t, rho, nu)

add / multiply / trigonometric / ...
u_t, p_t = (u_t, p_t) + NN(u_t, p_t, theta)

Output: some transformed vector y € R™
return u_t, p_t

theta.requires_grad_(True)
u_T,_ = Hybrid_NS_solver(u_@, p_@, rho, nu, theta) . .
leEe = 'Lo)s,s_fn(u_T' u_T_true) P Mathematically, the program defines a vector

dtheta = torch.autograd.grad(loss, theta) function y: R™ - R™, composed of primitive
# for learning theta (training NN) . ]
operations:

y(x) :fN °:---»°f2°f1(x)
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Chain rule for vector functions

Consider any vector function y: R" —» R™, composed from many other vector functions
y(x) :fN °, "'ron Ofl(X)

Then we can use the multivariate chain rule (= matrix multiplication of Jacobians) to
evaluate its derivatives

oy ofy  of,0f

o0x  Ofy_, " of 0x
where
91 [
gy | 9% %X
]y = a— = : :
o\ m Oym
0x, 0xy,

ETHzurich
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Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
v = m =
0x
or the Jacobian-vector product (jvp): -
oy —
axv m n =

of arbitrary programs.

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
v = m =
0x
or the Jacobian-vector product (jvp): -
oy —
axv m n =

of arbitrary programs.

Why is it useful to evaluate the vjp / jvp?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n
F0y [
VvV — m =
0x
or the Jacobian-vector product (jvp): -
ay —
ax " m n =
of arbitrary programs.
Why is it useful to evaluate the vjp / jvp? N
Consider training a neural network:
L(0):RP - R? m p
L |
oL 0L ONN "
30 ONN 00

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024

m = total number of network outputs
p = total number of parameters

We need to compute a vjp!
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Chain rule

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp): m n

or the Jacobian-vector product (jvp):

of arbitrary programs.

We can evaluate the vjp / jvp using the chain rule, for example:

Tay_ T afN afz afl
V —=7D
ox U afy_, ' Of, 0x

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
NN(x;0) = Woo(Wyx + by) + b, = fo g(x;60)
g
dL 0L of OdLof ag

ow,  ofow, of agow,

Then:

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

oW,  ofow, ofadgow,

Then:

p m h p

(1x1M) = (1x100) (100 x 100) (100 x 1M)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow,  ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

1) From right to left (forward)

(100 x 100) (100 x 1M) = (100 x 1M)
(1x100) (100 x M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow,  ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

1) From right to left (forward) 2) From left to right (reverse)

(100 x 100) (100 x 1M) - (100 x 1M) (1 x100) (100 x 100) -> (1 x 100)

(1 x100) (100 x 1M) > (1 x 1M) (1 x100) (100 x 1M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply) = much less computation (vector-matrix multiplies)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.

Then W, has 100 x 10,000 = 1M elements.

f

Then:

g
oL 9L of L Of ag

ow,  ofow, of agow,

m h p

Consider evaluating the chain rule (RHS):

1) From right to left (forward)

(100 x 100) (100 x 1M) = (100 x 1M)
(1x100) (100 x M) = (1 x 1M)

= lots of computation (large matrix-matrix multiply)

(1x1M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

(1 x 100) (100 x 100) = (1 x 100)
(1 x 100) (100 x 1M) = (1 x 1M)

= much less computation (vector-matrix multiplies)

@ => Order matters! Evaluating vjps in reverse mode is usually most efficient

ETHzurich
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.
Then W, has 100 x 10,000 = 1M elements.

f
)
oL oL of 0Lof og

ow,  ofow, of agow,

Then:

p m h p

Consider evaluating the chain rule (RHS): (Tx M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

But what about the last computation (Z—; aa—w‘q/l)? (1 x 100) (100 x 100) = (1 x 100)

> (1x100) (100 x 1IM) > (1 x 1M)

This is still expensive! (:Tg has 100M
elements, or ~0.5 GB)

1
'y ’

= much less computation (vector-matrix multiplies)

@ => Order matters! Evaluating vjps in reverse mode is usually most efficient

ETHzurich
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Dimensionality

Note:
09 _0(Wix+by) ( o T .0)
6W1 an 0 0 0 xl xz xn
Then
oL  dL dg dL dL
ow, - @awl - <0g1 (xl’"'xlo'OOO)""'m(xl'"'»x1o,ooo))
oL’ .
T x

This is just the (flattened) outer product of two vectors (100 x 1) ® (10,000 x 1)

. = We don’t have to fully populate the last Jacobian (aavi ) when computing its vector-Jacobian product
- - 1

= Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

ETHzurich
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Dimensionality

Another example:

Consider:
y = sin(x)
Then
dy (cos(xl) 0 )
ox 0 -+ cos(xy,)
And
r 9y
Vo= (v1 cos(xy), ..., vy cos(xy,))
= v - cos(x)
Requires O(n) operations
dg

., = We don'’t have to fully populate the last Jacobian (aw ) when computing its vector-Jacobian product

RSN Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Dimensionality

Let’s think about dimensionality. Consider a simple MLP with m = 100 outputs, h = 100 hidden units, and 10,000 inputs.

Then W, has 100 x 10,000 = 1M elements.

f

Then: g

oL 9L of L Of ag

ow,  af ow,

of 0g oW,

m

h p

Consider evaluating the chain rule (RHS):

= Efficient training code

Allows us to train neural networks with billions of
parameters

ETHzurich

(1x1M) = (1x100) (100 x 100) (100 x 1M)

2) From left to right (reverse)

(1 x 100) (100 x 100) = (1 x 100)

JERVIET  \WET: Y IVEETVINSWZRVET V.
(100 x 1) ® (10,000 x 1) > (1 x 1M)

= much less computation (vector-matrix multiplies)

401-4656-21L Al in the Sciences and Engineering 2024
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Vector-Jdacobian product

Vjp:

Tay_ T afN afz afl
=7
ox U afy_. U f, 0x

We can compute v’ Z—Z by iteratively computing vector-dacobian products, from left to

right (reverse-mode):

Starting with v7,

T T Of n
0f n-1

T - vT aI:N—l
afN—z

afl

v« pT —
0x

v

v

We only need to define the vjp

for each primitive operation to

]
T %Y
compute v ™

Usually, we do not need to
explicitly compute the full

intermediate Jacobians —2L
i—1
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Jacobian-vector product

jvp:

Oy, _ w0
ox  Ofn_i " Of, Ox

We can compute Z—Zv by iteratively computing Jacobian-vector products, from right to

left (forward-mode):

Starting with v,

ETHzurich

« We only need to define the jvp

9 for each primitive operation to
— L dy
VeV compute =>v
v %v « Usually, we do not need to
af1 explicitly compute the full
i ' - of i
of intermediate Jacobians i
vV« v
0f n-1

401-4656-21L Al in the Sciences and Engineering 2024
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Full Jacobian

« What if we want the full Jacobian? J,, = P

ETHzurich

dy
X
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Full Jacobian

« What if we want the full Jacobian? J,, = oy

ox

« We can combine vjps / jvps to compute the full Jacobian row by row / column by column if necessary

Let

vl =(1,0,...,0)
Then

Tay_(% OL)

Viox T ox,; ~~0x,

= First row of Jacobian

* Note jvps are usually more efficient for “tall” Jacobians, whilst vjps are more efficient for “wide” Jacobians

ETHzurich
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ETHzurich

Autodiff in practice

Yy = Wza-(Wlx + bl) + bZ

X
Wy b4
\L/
h
Wz\l‘/bz
y

O PyTorch 1

TensorFlow
&
X

1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations
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ETHzurich

Autodiff in practice

Yy = Wza-(Wlx + bl) + bZ

X
Wi b,
\L/
h
Wz\l‘/bz
y

O PyTorch 1

TensorFlow

y A

1)

2)

3)

Decompose given function into its
primitive operations

Build a directed graph of these operations

For each primitive operation, define
1) Forward operation

2) vector-Jacobian product

3) Jacobian-vector product

401-4656-21L Al in the Sciences and Engineering 2024
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Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
3) For each primitive operation, define
o7 ,,T'a_"\A =t VT;—,:II 1) Forward operation
VI%Wl h b, 2) vector-Jacobian product
T 3) Jacobian-vector product
N
vV aw obz 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
vT = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
TensorFlow

y A
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Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
Wy b4
3) For each primitive operation, define
oh
T ,,T'a_h\‘h s v b, 1) Forward operation
o 2) vector-Jacobian product
Wz bz .
3) Jacobian-vector product
- ;% 4; vTa_y
vV aw obz 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
v’ = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
- TensorFlow » How does required memory scale with depth of computation for vjp vs jvp?
oS
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Autodiff in practice

y=W,o(W;x+ by) + b, 1) Decompose given function into its
primitive operations

2) Build a directed graph of these operations

X
Wy b4
3) For each primitive operation, define
o7 ,,T'a_"\A =t VT;—,:II 1) Forward operation
VI%Wl h b, 2) vector-Jacobian product
T 3) Jacobian-vector product
T o
VT aw, Y 2 4) Evaluate the vjp or jvp of the function by
T applying the chain rule (=message
passing) through the graph
vT = incoming message 1) Forwards for jvp
O PyTorch 1 2) Backwards for vjp
P TensorFlow » How does required memory scale with depth of computation for vjp vs jvp?
@‘g'x @ * vjp: memory scales linearly with depth (need to store forward computations)

"=« jvp: memory independent of depth (can compute jvp alongside forward pass)
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Autodiff in practice

ETHzurich

Yy = Wza-(Wlx + bl) + bZ

v

T

X

w, b,

<—v

'\ oh

on v — T b,
2

T

v’ = incoming message
=1

loss.backward()

O PyTorch

torch.autograd.grad (outputs, inputs, grad_outputs=None, retain_graph=None,
create_graph=False, only_inputs=True, allow_unused=None, is_grads_batched=False,

materialize_grads=False) [SOURCE]

Computes and returns the sum of gradients of outputs with respect to the inputs.

grad_outputs should be a sequence of length matching output containing the “vector” in vector-Jacobian
product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn’t require_grad, then the
gradient can be None).

Note autodiff is not

- Symbolic differentiation

- Finite differences

It is a way of efficiently computing exact
gradients!
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)
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Hybrid workflows in practice

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be
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Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent
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Hybrid workflows in practice

ETHzurich

Step 1: rewrite your traditional scientific algorithm in an
autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm learnable (either to accelerate it,
or to improve accuracy)

Step 3: get some training examples of what you want the
input/output of the algorithm to be

Step 4. train your algorithm by (auto)differentiating through it and
using gradient descent

Bonus: your code now runs on the GPU!
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Summary

 Hybrid approaches insert learnable components inside traditional algorithms

 Autodifferentiation is the key enabler for SciML
 Allows hybrid approaches to be trained end-to-end

* |s an incredibly general and powerful tool
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