AI in the Sciences and Engineering

Introduction to Hybrid Workflows – Part 1

Spring Semester 2024

Siddhartha Mishra Ben Moseley

ETHzürich

401-4656-21L AI in the Sciences and Engineering 2024

Course timeline

401-4656-21L AI in the Sciences and Engineering 2024 3

Lecture overview

- Limitations of SciML approaches studied so far
- Hybrid SciML approaches
	- Residual modelling
	- Opening the "black-box"
	- How to train hybrid approaches
- Autodifferentiation
	- Autodifferentiation as a key enabler
	- What it is and how it works

- Limitations of SciML approaches studied so far
- Hybrid SciML approaches
	- Residual modelling
	- Opening the "black-box"
	- How to train hybrid approaches
- Autodifferentiation
	- Autodifferentiation as a key enabler
	- What it is and how it works

Lecture overview Learning objectives

• Be able to describe what a hybrid workflow

is

- Understand how autodifferentiation is used to train hybrid workflows
- Understand how autodifferentiation works

Course recap - PINNs

Course recap - PINNs

+

 N_p

 \sum

 \overline{m}

 $\frac{d}{dt^2} + \mu$

 $\frac{d}{dt} + k \left| NN(t_i; \theta) \right|$

 \overline{i}

Physics loss $L_p(\theta$

Advantages of PINNs

- **Mesh-free**
- Can jointly solve forward and inverse problems
- Often performs well on "**messy**" problems (where some observational data is available)
- Mostly **unsupervised**
- Can perform well for highdimensional PDEs

Limitations of PINNs

- **Computational cost** often high (especially for forwardonly problems)
- Can be hard to **optimise**
- Challenging to **scale** to highfrequency, multi-scale problems

ETHzürich

 \overline{c}

Course recap – Operator learning

 $\nabla \cdot (a(x) \nabla u(x)) = f(x)$

ETHzürich

401-4656-21L AI in the Sciences and Engineering 2024 8

Course recap – Operator learning

 $\nabla \cdot (a(x) \nabla u(x)) = f(x)$ Darcy PDE

Permeability, $a(x)$ Pressure, $u(x)$

Advantages of operator learning Limitations of operator learning

• Can be **orders of magnitude faster** than traditional simulation (once trained)

- Can require **lots** of training data, which can be expensive to obtain
- Can struggle to **generalise** to inputs outside of its training data
- Encoding / reconstruction steps require some **assumptions** about the regularity of $a(x)$ and $u(x)$

ETH zürich

401-4656-21L AI in the Sciences and Engineering 2024 9

When should I use deep neural networks for scientific problems?

Advantages of DNNs

- Usually very **fast** (once trained)
- Can represent highly **non-linear** functions

Limitations of DNNs

- Often lots of **training data required**
- Can be hard to **optimise**
- Can be hard to **interpret**
- Often struggle to **generalise**

When should I use deep neural networks for scientific problems?

Advantages of DNNs

- Usually very **fast** (once trained)
- Can represent highly **non-linear** functions

Limitations of DNNs

- Often lots of **training data required**
- Can be hard to **optimise**
- Can be hard to **interpret**
- Often struggle to **generalise**

General advice

Use DNNs to:

- **1) Accelerate** your workflow, or
- 2) Learn the **parts** you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may **not** be a good idea!

Hybrid SciML approaches

What if we **directly incorporate** DNNs into a traditional

algorithm instead? **= hybrid approach**

General advice

Use DNNs to:

- **1) Accelerate** your workflow, or
- 2) Learn the **parts** you are unsure of / have incomplete knowledge

Entirely replacing your existing workflow with a DNN may **not** be a good idea!

Ways to incorporate scientific principles into machine learning

Loss function **Architecture Architecture Hybrid approaches**

Example: Physics-informed neural networks (add governing equations to loss function)

Example: Encoding symmetries / conservation laws (e.g. energy conservation, rotational invariance), operator learning

Example: Neural differential equations (incorporating neural networks into PDE models)

A plethora of SciML techniques

Source: B Moseley, Physics-informed machine learning: from concepts to real-world applications, PhD thesis, 2022

A simple hybrid approach – residual modelling

i.e. neural network learns **residual** correction to physics

Trained using many examples of inputs/outputs

When is this useful?

A simple hybrid approach – residual modelling

$$
\Rightarrow \hat{y} = y_{\text{phys}}(x) + NN(x; \theta)
$$

i.e. neural network learns **residual** correction to physics

Trained using many examples of inputs/outputs

Useful when:

- We have incomplete understanding of physics
- More complex physical modeling is too expensive

Compared to naïve ML approach:

- **Easier** learning task: don't need to learn all the physics
- More **interpretable**

 $\boldsymbol{\chi}$

A simple hybrid approach – residual modelling

$$
\Rightarrow \hat{y} = y_{\text{phys}}(x) + NN(x; \theta)
$$

i.e. neural network learns **residual** correction to physics

Trained using many examples of inputs/outputs

$$
L(\theta) = \sum_{i}^{N} (\hat{y}(x_i; \theta) - y_i)^2
$$

=
$$
\sum_{i}^{N} (NN(x_i; \theta) - [y_i - y_{phys}(x_i)])^2
$$

$$
\equiv \sum_{i}^{N} (NN(x_i; \theta) - r(x_i))^2
$$

Note: can precompute $r(x_i)$ in advance

ETHzürich

401-4656-21L AI in the Sciences and Engineering 2024 17

Aerofoil shape (set of points), $\{x_i, y_i\}_{i=1}^N$

Simulation task:

Given $\{x_i, y_i\}_{i=1}^N$, Re and α Predict F

Pawar et al, Physics guided machine learning using simplified theories, Physics of Fluids (2021)

ETHzürich

401-4656-21L AI in the Sciences and Engineering 2024 18

Aerofoil shape (set of points), $\{x_i, y_i\}_{i=1}^N$

- Full CFD simulations are typically accurate, but very expensive
- Faster approximate methods exist, but are usually less accurate

Pawar et al, Physics guided machine learning using simplified theories, Physics of Fluids (2021)

Simulation task:

Given $\{x_i, y_i\}_{i=1}^N$, Re and α Predict F

Pawar et al, Physics guided machine learning using simplified theories, Physics of Fluids (2021)

Hess-Smith panel method: Fast **approximate** method for predicting lift force

Training data:

Many example inputs/outputs generated from (expensive) **high-fidelity** CFD modelling

Goal:

A model which is **faster** than CFD and more **accurate** than approximate physics model

ETHzürich

401-4656-21L AI in the Sciences and Engineering 2024 21

Opening the black-box

$$
\hat{y} = y_{\text{phys}}(x) + NN(x; \theta)
$$

Residual methods treat the physics model as a "**black-box**"

More complex hybrid methods open the box and insert ML **inside** the traditional algorithm

We insert ML where;

- 1) the algorithm is **slow**
- 2) we are **unsure** of our assumptions/ want to improve our modelling

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$
\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \nu \nabla^2 \boldsymbol{u} = -\frac{1}{\rho} \nabla p
$$

$$
\nabla \cdot \boldsymbol{u} = 0
$$

 $u(x, t)$ is the flow velocity $p(x, t)$ is the pressure $\rho(x)$ is the density ν is the viscosity

> Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$
\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \nu \nabla^2 \boldsymbol{u} = -\frac{1}{\rho} \nabla p
$$

$$
\nabla \cdot \boldsymbol{u} = 0
$$

 $u(x, t)$ is the flow velocity $p(x, t)$ is the pressure $\rho(x)$ is the density ν is the viscosity

"Operator splitting" numerical solver:

Discretise in time

$$
\boldsymbol{u}_{t+1} = \boldsymbol{u}_t - \delta t(\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, v \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_{t+1} \, (1)
$$

Let

$$
\boldsymbol{u}^* = \boldsymbol{u}_t - \delta t (\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, v \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_t \tag{2}
$$

Then

$$
\mathbf{u}_{t+1} = \mathbf{u}^* - \frac{\delta t}{\rho} \nabla (p_{t+1} - p_t)
$$

Asserting $\nabla \cdot \mathbf{u}_{t+1} = 0 \Rightarrow$

$$
0 = \nabla \cdot \mathbf{u}^* - \frac{\delta t}{\rho} \nabla^2 (p_{t+1} - p_t)
$$

$$
\nabla^2 (p_{t+1} - p_t) = \frac{\rho}{\delta t} \nabla \cdot \mathbf{u}^*
$$

Discretise in space

$$
L(p_{i,j,k,t+1} - p_{i,j,k,t}) = \frac{\rho_{i,j,k}}{\delta t} D u_{i,j,k}^* \quad (3)
$$

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Opening the black-box – finite difference solver

FD solver

Incompressible Navier-Stokes equation

$$
\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} - \nu \nabla^2 \boldsymbol{u} = -\frac{1}{\rho} \nabla p
$$

$$
\nabla \cdot \boldsymbol{u} = 0
$$

 $u(x, t)$ is the flow velocity $p(x, t)$ is the pressure $\rho(x)$ is the density ν is the viscosity

"Operator splitting" numerical solver:

Discretise in time

$$
\boldsymbol{u}_{t+1} = \boldsymbol{u}_t - \delta t (\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, v \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_{t+1} \, (1)
$$
Let

$$
\boldsymbol{u}^* = \boldsymbol{u}_t - \delta t(\boldsymbol{u}_t \cdot \nabla) \boldsymbol{u}_t + \delta t \, v \nabla^2 \boldsymbol{u}_t - \frac{\delta t}{\rho} \nabla p_t \quad (2)
$$

Then

$$
\mathbf{u}_{t+1} = \mathbf{u}^* - \frac{\delta t}{\rho} \nabla (p_{t+1} - p_t)
$$

Asserting $\nabla \cdot \mathbf{u}_{t+1} = 0 \Rightarrow$

$$
0 = \nabla \cdot \mathbf{u}^* - \frac{\delta t}{\rho} \nabla^2 (p_{t+1} - p_t)
$$

$$
\nabla^2 (p_{t+1} - p_t) = \frac{\rho}{\delta t} \nabla \cdot \mathbf{u}^*
$$

Discretise in space

$$
L(p_{i,j,k,t+1} - p_{i,j,k,t}) = \frac{\rho_{i,j,k}}{\delta t} D \boldsymbol{u}_{i,j,k}^* \quad (3)
$$

Basic algorithm: Discretise u, p and ρ Loop:

- 1. Compute $\mathbf{u}_{i,j,k}^*$ using (2)
- 2. Solve matrix equation (3) for $p_{i,j,k,t+1}$
- 3. Compute $u_{i,j,k,t+1}$ using (1)

```
def NS solver(u_0, p_0, rho, nu):
    "Pseudocode for solving NS equation"
    # u 0, p 0 have shape (NX, NY, NZ)
    u_t, p_t = u_0, p_0for t in range(0, T):
        u_{\text{star}} = f(u_t, p_t, rh_0, hu)p_t = matrix_solve(u_star, p_t, rho)
        u_t = g(u_t, p_t, rh_0, hu)return u_t, p_t
```
Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Computational cost / accuracy trade-off

Low fidelity FD solver No Contract The High fidelity FD solver

(32 x 32 x 64) cells ~10 seconds / 100 timesteps

(128 x 128 x 256) cells ~1000 seconds / 100 timesteps

- Discretisation induces **errors** in the solver
- But finer grids are much more computationally expensive
- Can we use ML improve the accuracy of the **low fidelity** solver?

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu): "Pseudocode for solving NS equation" # u_0, p_0 have shape (NX, NY, NZ) u_t , $p_t = u_0$, p_0 for t in range(0 , T): $u_{\text{star}} = f(u_t, p_t, rh_0, hu)$ $p_t = matrix_solve(u_star, p_t, rho)$ $u_t = g(u_t, p_t, rh_0, hu)$

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Traditional Navier-Stokes solver

def NS_solver(u_0, p_0, rho, nu): "Pseudocode for solving NS equation" # u_0, p_0 have shape (NX, NY, NZ) u_t , $p_t = u_0$, p_0 for t in range(0 , T): $u_{\text{star}} = f(u_t, p_t, rh_0, hu)$ $p_t = matrix_solve(u_star, p_t, rho)$ $u_t = g(u_t, p_t, rh_0, hu)$

return u_t, p_t

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

- How can we train $NN(\mathbf{u}_{t+1}, p_{t+1}; \theta)$?
- What training data do we need? (Hint: what inputs/labels do we need to train the network?)
- What loss function should we use?

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

def Hybrid_NS_solver(u_0, p_0, rho, nu, theta): "Pseudocode for solving NS equation, with NN correction"

```
# u_0, p_0 have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0for t in range(0, T):
    u_{\text{star}} = f(u_t, p_t, rh_0, hu)p_t = matrix_solve(u_star, p_t, rho)u_t = g(u_t, p_t, rh_0, hu)u_t, p_t = (u_t, p_t) + NN(u_t, p_t, t)return u_t, p_t
```


Option 1: use pairs of low fidelity / high fidelity timesteps as training data

Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train $NN(\mathbf{u}_{t+1}, p_{t+1}; \theta)$?

Option 1: use pairs of low fidelity / high fidelity timesteps as training data

During training, neural network only sees **exact** low fidelity timesteps as input

Problem:

- But during inference, neural network sees **different** inputs (low fidelity timesteps + previous NN corrections)
- Leads to a train/test distribution shift, and error accumulation over time

.

Note: can precompute residual in advance

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train $NN(\mathbf{u}_{t+1}, p_{t+1}; \theta)$?

Option 2: match outputs of hybrid solver to high-fidelity simulation directly

$$
L(\theta) = \sum_{i}^{N} \sum_{t}^{I} ||HybridSolver_t(\boldsymbol{u}_{0_i}; \theta) - \boldsymbol{u}_t^H(\boldsymbol{u}_{0_i})||^2
$$

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train $NN(\mathbf{u}_{t+1}, p_{t+1}; \theta)$?

Option 2: match outputs of hybrid solver to high-fidelity simulation directly

NN learns to correct its previous errors $\sqrt{ }$ Reduces distributional shift √

Requires *HybridSolver* to be **differentiable**!

$$
L(\theta) = \sum_{i}^{N} \sum_{t}^{T} ||HybridSolver_t(\boldsymbol{u}_{0_i}; \theta) - \boldsymbol{u}_t^H(\boldsymbol{u}_{0_i})||^2
$$

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

• How can we train $NN(\mathbf{u}_{t+1}, p_{t+1}; \theta)$?

Option 2: match outputs of hybrid solver to high-fidelity simulation directly

NN learns to correct its previous errors $\sqrt{ }$ Reduces distributional shift √

Requires $HvbridSolver$ to be **differentiable**!

.. we can just use autodifferentiation!

 def Hybrid_NS_solver(u_0, p_0, rho, nu, theta): "Pseudocode for solving NS equation, with NN correction"

```
\# u_0, p \theta have shape (NX, NY, NZ)
u_t, p_t = u_0, p_0for t in range(0, T):
    u_{\text{star}} = f(u_t, p_t, rh_0, hu)p_t = matrix_solve(u_star, p_t, rho)u_t = g(u_t, p_t, rh_0, hu)
```
 u_t , $p_t = (u_t, p_t) + NN(u_t, p_t)$, theta)

return u_t , p_t

```
theta.requires_grad_(True)
u<sub>1</sub>, = Hybrid_NS_solver(u_0, p_0, rho, nu, theta)
loss = loss fin(u T, u T true)dtheta = torch.autograd.qrad(loss, theta)# for learning theta (training NN)
```

$$
L(\theta) = \sum_{i}^{N} \sum_{t}^{T} \left\| HybridSolver_{t}(\boldsymbol{u}_{0_{i}}; \theta) - \boldsymbol{u}_{t}^{H}(\boldsymbol{u}_{0_{i}}) \right\|^{2}
$$

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

ETHzürich

 $def NN(x, theta)$:

return y

 $y = NN(x, \text{theta})$

"Defines a FCN"

theta.requires_grad_(True)

 $loss = loss fn(y, y true)$

401-4656-21L AI in the Sciences and Engineering 2024 36

Hybrid Navier-Stokes solver

 $y =$ torch.tanh(theta[0] $Qx +$ theta[1])

 $dtheta = torch.autograd.qrad(loss, theta)$

for learning theta (training NN)

 def Hybrid_NS_solver(u_0, p_0, rho, nu, theta): "Pseudocode for solving NS equation, with NN correction"

```
\# u_0, p 0 have shape (NX, NY, NZ)
u t, p t = u 0, p 0
for t in range(0, T):
    u_{\text{star}} = f(u_t, p_t, rh_0, hu)p_t = matrix_solve(u_star, p_t, rho)u_t = g(u_t, p_t, rh_0, hu)
```

```
u_t, p_t = (u_t, p_t) + NN(u_t, p_t), theta)
```
return u_t, p_t

```
theta.requires_grad_(True)
u<sub>1</sub>, = Hybrid_NS_solver(u_0, p_0, rho, nu, theta)
loss = loss_fn(u_T, u_T_t)dtheta = torch.autograd.qrad(loss, theta)# for learning theta (training NN)
```

$$
L(\theta) = \sum_{i}^{N} \sum_{t}^{T} || HybridSolver_{t}(\boldsymbol{u}_{0_{i}}; \theta) - \boldsymbol{u}_{t}^{H}(\boldsymbol{u}_{0_{i}})||^{2}
$$

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)
How do we train hybrid approaches?

Key idea: **autodifferentiation** allows us to differentiate and learn **arbitrary** algorithms, not just neural networks!

We train neural networks using **autodifferentiation**

But autodifferentiation = exact gradients of **arbitrary** programs

So, we can use it to differentiate (and learn) traditional algorithms too!

How do we train hybrid approaches?

Key idea: **autodifferentiation** allows us to differentiate and learn **arbitrary** algorithms, not just neural networks!

We train neural networks using **autodifferentiation**

But autodifferentiation = exact gradients of **arbitrary** programs

So, we can use it to differentiate (and learn) traditional algorithms too!

Differentiable physics = using autodifferentiation to differentiate physical algorithms

NS solver results

32 x 32 x 64 grid cells ~10 seconds / 100 timesteps

128 x 128 x 256 cells ~1000 seconds / 100 timesteps

32 x 32 x 64 grid cells ~15 seconds / 100 timesteps

> Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

NS solver results

Um et al, Solver-in-the-loop: Learning from differentiable physics to interact with iterative PDE-solvers, NeurIPS (2020)

- Limitations of SciML approaches studied so far
- Hybrid SciML approaches
	- Residual modelling
	- Opening the "black-box"
	- How to train hybrid approaches
- Autodifferentiation
	- Autodifferentiation as a key enabler
	- What it is and how it works

Lecture overview Learning objectives

• Be able to describe what a hybrid workflow

is

- Understand how autodifferentiation is used to train hybrid workflows
- Understand how autodifferentiation works

5 min break

- Limitations of SciML approaches studied so far
- Hybrid SciML approaches
	- Residual modelling
	- Opening the "black-box"
	- How to train hybrid approaches
- Autodifferentiation
	- Autodifferentiation as a key enabler
	- What it is and how it works

Lecture overview Learning objectives

• Be able to describe what a hybrid workflow

is

- Understand how autodifferentiation is used to train hybrid workflows
- Understand how autodifferentiation works

Autodifferentiation is a key enabler

Autodifferentiation is a **key enabler** of all the SciML techniques studied so far

It allows us to **efficiently** differentiate through complicated loss functions and get gradients of learnable parameters

$$
NN(t; \theta) \approx u(t)
$$
\n
$$
L(\theta) = \lambda_1 (NN(t = 0; \theta) - 1)^2
$$
\n
$$
+ \lambda_2 \left(\frac{dNN}{dt}(t = 0; \theta) - 0\right)^2
$$
\n
$$
= \frac{1}{N_p} \sum_{i}^{N_p} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] NN(t_i; \theta) \right)^2
$$
\n
$$
L(\theta) = \frac{1}{NM} \sum_{i}^{N} \sum_{j}^{M} \left\| u_i(x_j) - g_{\theta}^*[a_i](x_j) \right\|^2
$$
\n
$$
L(\theta) = \sum_{i}^{N} \sum_{t}^{T} \left\| HybridSolver_t(u_{0_i}; \theta) - u_t^H(u_{0_i}) \right\|^2
$$

Physics-informed neural network **Operator Containst Contains Contains**

Hybrid algorithms

Programs as vector functions

```
def Hybrid NS solver (u 0, p 0, rho, nu, theta):
    "Pseudocode for solving NS equation, with NN correction"
    # u_0, p_0 have shape (NX, NY, NZ)
    u_t, p_t = u_0, p_0for t in range(0, T):
        u_star = f(u_t, p_t, rh_0, nu)p_t = matrix_solve(u_star, p_t, rho)
        u_t = g(u_t, p_t, rh_0, hu)u_t, p_t = (u_t, p_t) + NN(u_t, p_t, t)return u_t, p_t
theta.requires_grad_(True)
u<sub>1</sub>, = Hybrid_NS_solver(u_0, p_0, rho, nu, theta)
loss = loss_fn(u_T, u_T_t)dtheta = torch.autograd.grad(loss, theta)# for learning theta (training NN)
```
Many (scientific) programs can be decomposed in the following way:

```
Program:
      Input: a vector x \in \mathbb{R}^n
```
Function: A series of primitive operations on the elements of add / multiply / trigonometric / …

Output: some transformed vector $v \in \mathbb{R}^m$

Mathematically, the program defines a vector function $y: \mathbb{R}^n \to \mathbb{R}^m$, composed of primitive operations:

$$
y(x) = f_N \circ, \dots, \circ f_2 \circ f_1(x)
$$

Chain rule for vector functions

Consider **any** vector function $y: \mathbb{R}^n \to \mathbb{R}^m$, composed from many other vector functions

 $y(x) = f_N \circ$, …,∘ $f_2 \circ f_1(x)$

Then we can use the **multivariate chain rule** (= matrix multiplication of Jacobians) to evaluate its derivatives

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \frac{\partial \mathbf{f}_N}{\partial \mathbf{f}_{N-1}}, \dots, \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}}
$$

where

$$
J_{y} \equiv \frac{\partial y}{\partial x} = \begin{pmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{pmatrix}
$$

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

or the Jacobian-vector product (jvp):

of **arbitrary** programs.

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

or the Jacobian-vector product (jvp):

of **arbitrary** programs.

Why is it useful to evaluate the vjp / jvp?

Autodifferentiation

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

or the Jacobian-vector product (jvp):

of **arbitrary** programs.

Why is it useful to evaluate the vjp / jvp?

Consider training a neural network:

ETHzürich

Chain rule

Modern autodifferentiation libraries allow us to efficiently compute:

The vector-Jacobian product (vjp):

or the Jacobian-vector product (jvp):

of **arbitrary** programs.

We can evaluate the vjp / jvp using the **chain rule**, for example:

$$
\boldsymbol{v}^T \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \boldsymbol{v}^T \frac{\partial \mathbf{f}_N}{\partial \mathbf{f}_{N-1}}, \dots, \frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}}
$$

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

$$
NN(x; \theta) = \frac{f}{W_2 \sigma (W_1 x + b_1) + b_2} = f \circ g(x; \theta)
$$

$$
\frac{\partial L}{\partial W_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial W_1} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial g} \frac{\partial g}{\partial W_1}
$$

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

 (1×1) = (1×100) (100 x 100) (100 x 1M)

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

 (1×1) = (1×100) (100 x 100) (100 x 1M)

1) From right to left (forward)

Consider evaluating the chain rule (RHS):

 (100×100) (100 x 1M) \rightarrow (100 x 1M) (1×100) (100 x 1M) \rightarrow (1 x 1M)

= lots of computation (large matrix-matrix multiply)

ETHzürich

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

 (1×1) = (1×100) (100 x 100) (100 x 1M)

Consider evaluating the chain rule (RHS):

1) From right to left (forward)

 (100×100) $(100 \times 1M)$ \rightarrow $(100 \times 1M)$ (1×100) (100 x 1M) \rightarrow (1 x 1M)

= lots of computation (large matrix-matrix multiply)

2) From left to right (reverse)

 (1×100) (100 x 100) \rightarrow (1 x 100) (1×100) (100 x 1M) \rightarrow (1 x 1M)

= much less computation (vector-matrix multiplies)

Then:

ETHzürich

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

 (1×1) = (1×100) (100 x 100) (100 x 1M)

Consider evaluating the chain rule (RHS):

1) From right to left (forward)

 (100×100) $(100 \times 1M)$ \rightarrow $(100 \times 1M)$ (1×100) (100 x 1M) \rightarrow (1 x 1M)

= lots of computation (large matrix-matrix multiply)

2) From left to right (reverse)

 (1×100) (100 x 100) \rightarrow (1 x 100) (1×100) (100 x 1M) \rightarrow (1 x 1M)

= much less computation (vector-matrix multiplies)

 $\frac{1}{2}$ => Order matters! Evaluating vjps in reverse mode is usually most efficient

ETH zürich

Then:

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

ETH zürich

Note:

$$
\frac{\partial g}{\partial W_1} = \frac{\partial (W_1 x + b_1)}{\partial W_1} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & x_1 & x_2 & \cdots & x_n \end{pmatrix}
$$

Then

$$
\frac{\partial L}{\partial W_1} = \frac{dL}{\partial g} \frac{\partial g}{\partial W_1} = \left(\frac{dL}{\partial g_1}(x_1, \cdots x_{10,000}), \cdots, \frac{dL}{\partial g_{100}}(x_1, \cdots, x_{10,000})\right)
$$

$$
= \frac{\partial L}{\partial g} \otimes x
$$

This is just the (flattened) **outer product** of two vectors (100 x 1) ⊗ (10,000 x 1)

 \Rightarrow We don't have to fully populate the last Jacobian $(\frac{\partial g}{\partial W_1})$ when computing its vector-Jacobian product \Rightarrow Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

Another example:

Consider:

 $y = \sin(x)$ ∂y $\frac{\partial}{\partial x} =$ $\cos(x_1) \quad \cdots \quad 0$ $\ddot{\mathbf{i}}$ 0 \cdots $\cos(x_n)$ $v^T \frac{\partial y}{\partial x}$ $\frac{\partial y}{\partial x}$ = (v_1 cos(x_1), ..., v_n cos(x_n) $= \mathbf{v} \cdot \cos(\mathbf{x})$

And

Then

Requires $O(n)$ operations

 \Rightarrow We don't have to fully populate the last Jacobian $(\frac{\partial g}{\partial W_1})$ when computing its vector-Jacobian product \Rightarrow Often, vjps (and jvps) can be computed efficiently without needing to populate the full Jacobian

Let's think about dimensionality. Consider a simple MLP with $m = 100$ outputs, $h = 100$ hidden units, and 10,000 inputs. Then W_1 has 100 x 10,000 = 1M elements.

= Efficient training code

Allows us to train neural networks with **billions** of parameters

= much less computation (vector-matrix multiplies)

 (1×100) (100 \times 1M) \rightarrow (1 \times 1M)

 (100×1) ⊗ $(10,000 \times 1)$ \rightarrow $(1 \times 1M)$

ETHzürich

Vector-Jacobian product

vjp:

$$
\boldsymbol{v}^T \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \boldsymbol{v}^T \frac{\partial \boldsymbol{f}_N}{\partial \boldsymbol{f}_{N-1}}, \dots, \frac{\partial \boldsymbol{f}_2}{\partial \boldsymbol{f}_1} \frac{\partial \boldsymbol{f}_1}{\partial \mathbf{x}}
$$

We can compute $v^T \frac{\partial y}{\partial x}$ by iteratively computing vector-Jacobian products, from left to right (reverse-mode):

Starting with v^T ,

$$
v^T \leftarrow v^T \frac{\partial f_N}{\partial f_{N-1}}
$$

$$
\frac{\partial f_{N-1}}{\partial f_{N-1}}
$$

 $v^T \leftarrow v^T \frac{\partial f_{N-1}}{\partial \bm{f}}$ $\partial \overline{f}_{N-2}$ …

 $\boldsymbol{v}^T \leftarrow \boldsymbol{v}^T \frac{\partial \boldsymbol{f}_1}{\partial \boldsymbol{\beta}}$ ∂x

- We only need to define the **vjp** for each **primitive operation** to compute $v^T \frac{\partial y}{\partial x}$ ∂x
- Usually, we do not need to explicitly compute the full intermediate Jacobians $\frac{\partial f_i}{\partial x_i}$ ∂f_{i-1}

Jacobian-vector product

jvp:

$$
\frac{\partial y}{\partial x}v = \frac{\partial f_N}{\partial f_{N-1}}, \dots, \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial x}v
$$

We can compute $\frac{\partial y}{\partial x}$ ∂x ν by iteratively computing Jacobian-vector products, from right to left (forward-mode):

Starting with v ,

$$
v \leftarrow \frac{\partial f_1}{\partial x} v
$$

$$
v \leftarrow \frac{\partial f_2}{\partial f_1} v
$$

$$
v \leftarrow \frac{\partial f_N}{\partial f_{N-1}} v
$$

- We only need to define the **jvp** for each **primitive operation** to compute $\frac{\partial y}{\partial y}$ ∂x $\boldsymbol{\mathcal{V}}$
- Usually, we do not need to explicitly compute the full intermediate Jacobians $\frac{\partial f_i}{\partial x_i}$ ∂f_{i-1}

Full Jacobian

• What if we want the full Jacobian? $J_y = \frac{\partial y}{\partial x}$ ∂x

Full Jacobian

- What if we want the full Jacobian? $J_y = \frac{\partial y}{\partial x}$ ∂x
- We can combine vips / jvps to compute the full Jacobian row by row / column by column if necessary

= First row of Jacobian

• Note jvps are usually more efficient for "tall" Jacobians, whilst vjps are more efficient for "wide" Jacobians

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

- 1) Decompose given function into its **primitive** operations
- 2) Build a **directed graph** of these operations

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

- 1) Decompose given function into its **primitive** operations
- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
	- 1) Forward operation
	- 2) vector-Jacobian product
	- 3) Jacobian-vector product

G PyTorch **TensorFlow**

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

- 1) Decompose given function into its **primitive** operations
- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
	- 1) Forward operation
	- 2) vector-Jacobian product
	- 3) Jacobian-vector product
- 4) Evaluate the vjp or jvp of the function by applying the **chain rule (=message passing)** through the graph
	- 1) Forwards for jvp
	- 2) Backwards for vjp

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

- 1) Decompose given function into its **primitive** operations
- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
	- 1) Forward operation
	- 2) vector-Jacobian product
	- 3) Jacobian-vector product
- 4) Evaluate the vjp or jvp of the function by applying the **chain rule (=message passing)** through the graph
	- 1) Forwards for jvp
	- 2) Backwards for vjp
- How does required memory scale with depth of computation for vjp vs jvp?

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

- 1) Decompose given function into its **primitive** operations
- 2) Build a **directed graph** of these operations
- 3) For each primitive operation, define
	- 1) Forward operation
	- vector-Jacobian product
	- 3) Jacobian-vector product
- 4) Evaluate the vjp or jvp of the function by applying the **chain rule (=message passing)** through the graph
	- 1) Forwards for jvp
	- 2) Backwards for vjp
- How does required memory scale with depth of computation for vjp vs jvp?
- vjp: memory scales linearly with depth (need to store forward computations)
- jvp: memory independent of depth (can compute jvp alongside forward pass)

 $y = W_2 \sigma (W_1 x + b_1) + b_2$

G PyTorch

torch.autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create graph=False, only inputs=True, allow unused=None, is grads batched=False, materialize_grads=False) [SOURCE]

Computes and returns the sum of gradients of outputs with respect to the inputs.

grad_outputs should be a sequence of length matching output containing the "vector" in vector-Jacobian product, usually the pre-computed gradients w.r.t. each of the outputs. If an output doesn't require_grad, then the gradient can be None).

Note autodiff is **not**

- Symbolic differentiation
- Finite differences

It is a way of efficiently computing exact gradients!

Hybrid workflows in practice

Step 1: **rewrite** your traditional scientific algorithm in an autodifferentiation framework (e.g. PyTorch/JAX)

Hybrid workflows in practice

Step 1: **rewrite** your traditional scientific algorithm in an autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm **learnable** (either to accelerate it, or to improve accuracy)

Hybrid workflows in practice

Step 1: **rewrite** your traditional scientific algorithm in an autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm **learnable** (either to accelerate it, or to improve accuracy)

Step 3: get some **training examples** of what you want the input/output of the algorithm to be

Hybrid workflows in practice

Step 1: **rewrite** your traditional scientific algorithm in an autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm **learnable** (either to accelerate it, or to improve accuracy)

Step 3: get some **training examples** of what you want the input/output of the algorithm to be

Step 4: train your algorithm by **(auto)differentiating** through it and using gradient descent

Hybrid workflows in practice

Step 1: **rewrite** your traditional scientific algorithm in an autodifferentiation framework (e.g. PyTorch/JAX)

Step 2: make parts of this algorithm **learnable** (either to accelerate it, or to improve accuracy)

Step 3: get some **training examples** of what you want the input/output of the algorithm to be

Step 4: train your algorithm by **(auto)differentiating** through it and using gradient descent

Bonus: your code now runs on the GPU!

Summary

- Hybrid approaches insert learnable components **inside** traditional algorithms
- Autodifferentiation is **the** key **enabler** for SciML
	- Allows hybrid approaches to be trained end-to-end
	- Is an incredibly general and powerful tool

