Al in the Sciences and Engineering 2024: Lecture 15

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

∢ ≣⇒

What you learnt so far

- Operator learning: Given Abstract PDE: $\mathcal{D}_a(u) = f$
- ▶ Learn Solution Operator: $\mathcal{G} : \mathcal{X} \mapsto \mathcal{Y}$ with $\mathcal{G}(a, f) = u$
- Enforce Continuous-Discrete Equivalence via ReNO:

 $g = \mathcal{K} \circ \mathsf{G} \circ \mathsf{C}$

- Neither CNN nor FNO are ReNOs.
- SNO/DeepONet can be ReNOs but perform poorly !!
- CNO is ReNO that works

- CNO instantiated as a modified Operator UNet
- Built for multiscale information processing

Image: A mathematical states and a mathem

< ∃⇒

Extensive Empirical evaluation on RPB benchmarks.

	In/Out	FFNN	GT	UNet	ResNet	DON	FNO	CNO
Poisson	In	5.74%	2.77%	0.71%	0.43%	12.92%	4.98%	0.21%
Equation	Out	5.35%	2.84%	1.27%	1.10%	9.15%	7.05%	0.27%
Wave	In	2.51%	1,44%	1.51%	0.79%	2.26%	1.02%	0.63%
Equation	Out	3.01%	1.79%	2.03%	1.36%	2.83%	1.77%	1.17%
Smooth	In	7.09%	0.98%	0.49%	0.39%	1.14%	0.28%	0.24 <i>%</i>
Transport	Out	650.6%	875.4%	1.28%	0.96%	157.2%	3.90%	0.46 <i>%</i>
Discontinuous	In	13.0%	1.55%	1.31%	1.01%	5.78%	1.15%	1.01%
Transport	Out	257.3%	22691.1%	1.35%	1.16%	117.1%	2.89%	1.09%
Allen-Cahn	In	18.27%	0.77%	0.82%	1.40%	13.63%	0.28%	0.54%
Equation	Out	46.93%	2.90%	2.18%	3.74%	19.86%	1.10%	2.23%
Navier-Stokes	In	8.05%	4.14%	3.54%	3.69%	11.64%	3.57%	2.76%
Equations	Out	16.12%	11.09%	10.93%	9.68%	15.05%	9.58%	7.04%
Darcy	In	2.14%	0.86%	0.54%	0.42%	1.13%	0.80%	0.38%
Flow	Out	2.23%	1.17%	0.64%	0.60%	1.61%	1.11%	0.50%
Compressible	In	0.78%	2.09%	0.38%	1.70%	1.93%	0.44%	0.35%
Euler	Out	1.34%	2.94%	0.76%	2.06%	2.88%	0.69%	0.59%

イロト イヨト イヨト イヨト

臣

Data on Non-uniform Grids.

- Time-dependent problems
- Scaling with data

ヘロト 人間 とくほとう ほとう

æ

Of the Abstract form:

$$u_t + \mathcal{L}(t, x, u) = 0, \quad u(0) = \overline{u}.$$

- Solution operator: $S : (0, T) \times \mathfrak{X} \mapsto \mathfrak{X}; S(t, \overline{u}) = u(t)$
- Fo any time increment: $S(\Delta t, u(t)) = u(t + \Delta t)$.

Generated data is the form of Trajectories:

$$(u(0), u(t_1), u(t_2), \dots, u(T)) = (\bar{u}, S(t_1, \bar{u}), S(t_2, \bar{u}), \dots, u(T))$$

= $(\bar{u}, S(t_1, \bar{u}), S(t_2 - t_1, u(t_1)), \dots, u(T))$

Learning Task:

► Given u
+ BC: generate the solution trajectory u(t), for all t ∈ (0, T]

- Direct Evaluation with FNO/CNO.
- $\blacktriangleright \operatorname{NO}_k : \bar{u} \mapsto \operatorname{NO}_k(\bar{u}) \approx \operatorname{S}(k\Delta t, \bar{u})$
- Lot of compute as K-different NOs need to be trained.
- Only evaluation at discrete time levels

Assume Trajectory data on uniformly spaced timepoints: u(t_k) = u(k∆t).

- Define $NO_{\Delta t}(u(t_{\ell})) \approx u(t_{\ell} + \Delta t)$
- Then Autoregressive Rollout is

$$u(t_k) \approx \underbrace{\mathrm{NO}_{\Delta t} \circ \ldots \mathrm{NO}_{\Delta t} \circ \mathrm{NO}_{\Delta t}}_{k \text{ times}} \bar{u}.$$

Issues:

- Needs uniform spacing.
- Long rollouts lead to training issues.
- Error Accumulation
- Only evaluation at discrete time levels

Time Conditioning

Lead Time as an Input Channel

- CNO $(\overline{t}, u(t)) \approx S(\overline{t}, u(t)) = u(t + \overline{t}).$
- Add Conditional Normalizations after each layer !!

$$\mathcal{N}(w) = g_N(t) \odot rac{w - \mathbb{E}(w)}{\sqrt{\mathrm{Var}(w) + \epsilon}} + h_N(t) \cdot$$

• g_N, h_N are MLPs in general.

Instance, Batch, Layer Normalizations.

One at a Time training based on:

- Input-Target Pairs: $\bar{u}, S(t_k, \bar{u}) = u(t_k)$
- For $t_K = T$, K training samples per trajectory.
- all2all training based on:
- ▶ Input-Target Pairs: $u(t_i), S(t_j t_i, u(t_i)) = u(t_j), \forall i < j$
- $\frac{K^2 + K}{2}$ training samples per trajectory !!
- Inference is Direct or Autoregressive
- Multiple possibilities for Autoregressive Rollouts
- Evaluation at any time t > 0 including Out-of-distribution times.

Results for Shear Layer

Siddhartha Mishra AISE2024

<ロ> <同> <同> < 同> < 同>

æ

・ロト ・回ト ・ヨト ・ヨト 三日

Results at OOD time levels.

ヘロア 人間 アメヨア 人間 アー

æ

Results for Different Strategies I.

Results for Different Strategies II.

• • • • • • • •

∢ ≣⇒