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What you learnt so far

I Operator learning: Given Abstract PDE: Da(u) = f

I Learn Solution Operator: G : X 7→ Y with G(a, f ) = u

I Enforce Continuous-Discrete Equivalence via ReNO:

I Neither CNN nor FNO are ReNOs.

I SNO/DeepONet can be ReNOs but perform poorly !!

I CNO is ReNO that works
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CNO

I CNO instantiated as a modified Operator UNet

I Built for multiscale information processing
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Empirical Results

I Extensive Empirical evaluation on RPB benchmarks.
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CNO/FNO: Issues

I Data on Non-uniform Grids.

I Time-dependent problems

I Scaling with data
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Time-dependent PDEs

I Of the Abstract form:

ut + L(t, x , u) = 0, u(0) = ū.

I Solution operator: S : (0,T )× X 7→ X; S(t, ū) = u(t)

I Fo any time increment: S(∆t, u(t)) = u(t + ∆t).

I Generated data is the form of Trajectories:

(u(0), u(t1), u(t2), . . . , u(T )) = (ū, S(t1, ū), S(t2, ū), . . . , u(T ))

= (ū, S(t1, ū), S(t2 − t1, u(t1)), . . . , u(T ))

I Learning Task:

I Given ū + BC: generate the solution trajectory u(t), for all
t ∈ (0,T ]
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Neural Operators for Time-dependent PDEs

I Direct Evaluation with FNO/CNO.

I NOk : ū 7→ NOk(ū) ≈ S(k∆t, ū)

I Lot of compute as K -different NOs need to be trained.

I Only evaluation at discrete time levels
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Autoregressive Evaluation

I Assume Trajectory data on uniformly spaced timepoints:
u(tk) = u(k∆t).

I Define NO∆t(u(t`)) ≈ u(t` + ∆t)

I Then Autoregressive Rollout is

u(tk) ≈ NO∆t ◦ . . .NO∆t ◦NO∆t︸ ︷︷ ︸
k times

ū.

I Issues:
I Needs uniform spacing.
I Long rollouts lead to training issues.
I Error Accumulation
I Only evaluation at discrete time levels

Siddhartha Mishra AISE2024



Time Conditioning

I Lead Time as an Input Channel

I CNO (t̄, u(t)) ≈ S(t̄, u(t)) = u(t + t̄).

I Add Conditional Normalizations after each layer !!

N(w) = gN(t)� w − E(w)√
Var (w) + ε

+ hN(t),

I gN , hN are MLPs in general.

I Instance,Batch,Layer Normalizations.
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Training Strategies

I One at a Time training based on:

I Input-Target Pairs: ū, S(tk , ū) = u(tk)

I For tK = T , K training samples per trajectory.

I all2all training based on:

I Input-Target Pairs: u(ti ), S(tj − ti , u(ti )) = u(tj), ∀i < j

I K2+K
2 training samples per trajectory !!

I Inference is Direct or Autoregressive

I Multiple possibilities for Autoregressive Rollouts

I Evaluation at any time t > 0 including Out-of-distribution
times.
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Results for Shear Layer
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Error vs. Time
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Results at OOD time levels.
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Results for Different Strategies I.
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Results for Different Strategies II.
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