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What you learnt so far

I Operator learning: Given Abstract PDE: Da(u) = f

I Learn Solution Operator: G : X 7→ Y with G(a, f ) = u

I Enforce Continuous-Discrete Equivalence via ReNO:

I Neither CNN nor FNO are ReNOs.

I SNO/DeepONet can be ReNOs but perform poorly !!

I Challenge: Design a ReNO that works
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Can Convolutions be back in the reckoning ?

I Advantages of Convolution based models:
I Variety of SOTA models in Vision etc.
I Locality + Computational efficiency
I CNNs closely linked with Finite difference Methods 1

I Issue: Inconsistency in Function Space

I Plain vanilla CNNs and variants are not ReNOs

1Haber, Rutthoto, 2017
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Convolutions Strike Back !!

I Convolutional Neural Operators (CNOs) of Raonic et al, 2023.

I Operator between Band-Limited Functions

I Building Blocks:

I Lifting operator: P

I Projection operator: Q
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CNO Key Building Block I

I Use Continuous Convolutions on Bandlimited functions

I Convolution Kernel is still Discrete !!

I Convolution operator is a ReNO.
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Contrast with CNNs

I CNNs rely on Discrete Convolutions with fixed Kernel:

Kc [m] =
s∑

i=−s
kic[m − i ]

I Pointwise evaluations with Sinc basis

I Easy to check that CNNs are Resolution dependent as:

G′ 6= E′ ◦ R ◦ G ◦ E ◦ R′
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CNO Key Building Block II: Activation Function ?
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I Apply Activation as Σ : Bw 7→ Bw with Σ = Dw̄ ,w ◦ σ ◦ Uw ,w̄

I Upsampling: Uw ,w̄ f = f with w < w̄

I Downsampling: Dw̄ ,w f (x) =
(
w̄
w

)d ∫
D

sinc(2w̄(x − y))f (y)dy

I Activation is a ReNO if w̄ >> w :
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CNO Architecture in Practice

I CNO instantiated as a modified Operator UNet

I Built for multiscale information processing
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CNO properties

I CNO is a ReNO by construction.

I Universal Approximation Theorem:

I CNOs approximate any Continuous + operators G : H r 7→ Hs

I Proof relies on building G ≈ G∗ : Bw 7→ Bw ′

I Efficient PyTorch implementation with CUDA kernels.

I Code available on
https://github.com/bogdanraonic3/ConvolutionalNeuralOperator.git
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A Synthetic Example: Random Assignment

I The underlying Operator:

I Errors:
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Ex 1: Navier-Stokes Eqns.

I Operator:

I Comparison:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO
Error 8.05% 3.54% 11.64% 3.93% 3.01%
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Further Results

I Resolution Dependence:

I Spectral Behavior: log spectra
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Out-of-Distribution Generalization or Zero-shot Learning

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 8.05% 3.54% 11.64% 3.93% 3.01%
Out 16.12% 10.93% 15.05% 13.45% 7.06%

I RunTime: 10−1s on 1002 grid for AzeBan vs 10−4s for CNO
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Success is a histogram, not a point !!
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On the Choice of Benchmarks

I Often used benchmark:

I Errors: 1.15% for FNO vs. 0.96% for CNO !!

I Spectral Structure is Not Rich Enough:

I Fast approximation with AzeBan: < 10−3 sec
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Ex 2: Poisson Eqn

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 5.74% 0.71% 12.92% 4.78% 0.23%
Out 5.35% 1.27% 9.15% 8.89% 0.27%
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Further Results

I Resolution Dependence:

I Spectral Behavior: log spectra
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Ex 3: Wave Eqn

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 2.51% 1.51% 2.26% 1.10% 0.83%
Out 3.01% 2.03% 2.83% 1.61% 1.48%
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Ex 4: Allen-Cahn Eqn

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 18.27% 0.82% 13.63% 0.57% 0.83%
Out 46.93% 2.18% 19.86% 2.36% 3.67%
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Ex 5: Transport

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 7.09% 0.49% 1.14% 0.40% 0.30%
Out 650.57% 1.28% 157.22% 13.83% 0.47%

FFNN DeepONet

Siddhartha Mishra AISE2024



Ex 6: Compressible Euler Eqns

I Results for In-Distribution Testing:

I Results for Out-of-Distribution Testing:

I Test Errors:
Model FFNN UNet DeepONet FNO CNO

In 0.78% 0.38% 1.93% 0.47% 0.35%
Out 1.34% 0.76% 2.88% 0.85% 0.62%

I RunTime: 102s for NuwTun vs 10−4s for CNO
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Similar Performance across the board !!

I Extensive Empirical evaluation on RPB benchmarks.
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Computational Efficiency of CNO
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