AI in the Sciences and Engineering 2024

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

(□) (@)

 $2Q$

€

K 로)

- **D** Operator learning: Given Abstract PDE: $\mathcal{D}_a(u) = f$
- ► Learn Solution Operator: $G : \mathcal{X} \mapsto \mathcal{Y}$ with $\mathcal{G}(a, f) = u$
- \blacktriangleright Enforce Continuous-Discrete Equivalence via ReNO:

へのへ

■ Activations breaking Band limits ⇒ FNO is not a ReNO !!

メロメメ 倒 トメ 君 トメ 君 トー

È

 299

A Practical Example

\blacktriangleright FNO Results:

▶ Challenge: Design a ReNO

Kロト K倒下

目

 \mathcal{A} . × ∢ 重→

È

 299

Traditional Numerical Methods

y

z

Finite Element Spectral Method

K ロ ▶ K (倒 ▶ K)

∢ 重→

重

Revisiting Numerical Methods

 \triangleright Can be reinterpreted in the following abstract Paradigm:

Finite Element Node Values Scheme Galerkin Basis

Scheme Encoder Approximator Reconstructor Finite Difference Point values Scheme Poly. Interpolant Finite Volume Cell Averages Scheme Poly. Interpolant Spectral Fourier Coeffs. Scheme Fourier Interpolant

- \blacktriangleright A general structure Architecture Encoder Approximator Reconstructor SNO Basis Coeffs DNNs Basis Functions
- ▶ A particular Instantiation: Fanaskov and Oseledets, 2022.
- \triangleright \mathcal{P}_K : Periodic, bandlimited functions, Fourier basis Ψ.
- SNO: $T_{\Psi_{K'}} \circ \mathcal{N} \circ T_{\Psi_K} : \mathcal{P}_K \to \mathcal{P}_{K'}, \mathcal{N} : \mathbb{C}^{2K+1} \mapsto \mathbb{C}^{2K'+1}$ \triangleright SNO is a ReNO:

$$
\begin{array}{ccc}\mathcal{P}_K & \xrightarrow{T_{\Psi_K}^*} \mathbb{C}^{2K+1} & \xrightarrow{\mathcal{N}} \mathbb{C}^{2K'+1} & \xrightarrow{T_{\Psi_{K'}}} \mathcal{P}_{K'}\\ T_{\Psi_K} \Bigg[T_{\Psi_K}^* & \Bigg] \mathrm{Id} & \Bigg] \mathrm{Id} & T_{\Psi_{K'}} \Bigg[T_{\Psi_{K'}}^* \\ & \xrightarrow{\mathbb{C}^{2K+1}} & \xrightarrow{\mathrm{Id}} \mathbb{C}^{2K+1} & \xrightarrow{\mathcal{N}} \mathbb{C}^{2K'+1} & \xrightarrow{\mathrm{Id}} \mathbb{C}^{2K'+1} \end{array}
$$

へのへ

▶ DeepONets: Chen, Chen 1995, Lu et al, 2020:

$$
\mathcal{N}(a)(y) = \sum_{k=1} \beta_k(a)\tau_k(y) \approx \mathcal{G}(a)(y)
$$

Architecture Encoder Approximator Reconstructor DeepOnet Sensor Evals. DNNs DNNs PCA-Net¹ Input PCA DNNs Output PCA

¹Bhattacharya et al, 2020

Siddhartha Mishra [AISE2024](#page-0-0)

a mille

 $2Q$

扂

Are DeepONets ReNOs ?

- \blacktriangleright YES (if)
	- ▶ Bandlimited Functions \mapsto span(TrunkNets)
	- \triangleright Non-Uniform input sampling can lead to aliasing errors ²
	- \blacktriangleright Trunk Nets need not be Basis for Function spaces.

²Observed in Lanthaler, SM, Karniadakis, 2022 メロトメ 伊 トメ ミトメ ミト $2Q$ Siddhartha Mishra [AISE2024](#page-0-0)

 \blacktriangleright Yes, in some cases.

 \blacktriangleright However, Error of 30% for Burgers' equation with GRF initial data !!

4日 8

DeepONet vs. FNO

▶ Theory of (Lanthaler, Molinaro, Hadorn, SM, 2022):

 \blacktriangleright For Linear Advection Equation with Discontinuities:

 \blacktriangleright Thm: To obtain ϵ error:

► Size(DeepOnet) ~
$$
\mathcal{O}(\epsilon^{-2})
$$

- ► Size(FNO) \sim $\mathcal{O}(\log(\epsilon^{-1}))$!!
- **IN Results:** Architecture ResNet FCNN DONet FNO Error 14.8% 23.3% 7.9% 0.7%
- ▶ Analogous theorem for Burgers' equation.

Poor performance of DeepONets

• Challenge: Design a ReNO that works

4. 端 トー 重

(□) (@)

 299