AI in the Sciences and Engineering 2024: Lecture 12

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

4 0 1 1

 $2Q$

€

What you learnt so far

- \triangleright Operator learning: Abstract PDE: $\mathcal{D}_a(u) = f$
- \triangleright Solution Operator: $G : \mathcal{X} \mapsto \mathcal{Y}$ with $\mathcal{G}(a, f) = u$
- \triangleright Parametrizations doesn't work in general.
- \triangleright Uniform Sampling \mapsto CNN \mapsto Interpolation

 \triangleright Need some notion of Continuous-Discrete Equivalence

► ReNO requires no Aliasing Error: ε (\mathcal{G}, \mathcal{G}) = $\mathcal{G} - \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \equiv 0$ \blacktriangleright Leads to a natural form of Resolution Invariance

A Concrete Example: 1-D on a Regular Grid

- \triangleright X, y are Bandlimited Functions: i.e., supp $\hat{u} \subset [-\Omega, \Omega]$
- Encoding is Pointwise evaluation: $\mathcal{E}(u) = {u(x_j)}_{j=1}^n$
- \blacktriangleright Reconstruction in terms of sinc basis:

$$
\mathcal{R}(v)(x) = \sum_{j=1}^n v_j \mathrm{sinc}\ (x - x_j)
$$

 Ω

- \triangleright Nyquist-Shannon \Rightarrow bijection between \mathfrak{X}, X on sufficiently dense grid.
- \blacktriangleright Classical Aliasing [E](#page-4-0)rror: ε (ς , ς) = ς \Re \Re \Re ο G ο ϵ

CNNs are not ReNOs !

▶ CNNs rely on Discrete Convolutions with fixed Kernel:

$$
K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]
$$

 \triangleright Pointwise evaluations with Sinc basis

 \blacktriangleright Easy to check that CNNs are Resolution dependent as:

$$
\mathcal{G}' \neq \mathcal{E}' \circ \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{R}'
$$

- \blacktriangleright Formalized in Kovachki et al. 2021.
- \triangleright Recall: DNNs are $\mathcal{L}_\theta = \sigma_K \odot \sigma_{K-1} \odot \ldots \ldots \sigma_1$
- Single hidden layer: $\sigma_k(y) = \sigma(A_k y + B_k)$
- \triangleright Neural Operators generalize DNNs to ∞ -dimensions:
- \triangleright NO: $\mathcal{N}_{\theta} = \mathcal{N}_{I} \odot \mathcal{N}_{I-1} \odot \ldots \ldots \mathcal{N}_{1}$
- Single hidden layer; $\mathcal{N}_{\ell} : \mathcal{X} \mapsto \mathcal{X}$
- \triangleright Need to find Function Space versions of
	- \blacktriangleright Bias Vector
	- \blacktriangleright Weight Matrix
	- \blacktriangleright Activation function

Neural Operators (Contd..)

- Replace Bias vector by Bias function $B_\ell(x)$
- **I** Replace Matrix-Vector multiply by Kernel Integral Operators:

$$
A_{\ell}y \to \int\limits_{D} K_{\ell}(x,y) v(y) dy
$$

 \blacktriangleright Pointwise activations results in:

$$
(\mathcal{N}_{\ell}v)(x) = \sigma \left(\int\limits_{D} K_{\ell}(x,y)v(y)dy + B_{\ell}(x) \right)
$$

つくい

Learning Parameters in B_ℓ, K_ℓ

▶ Caveat: Computational Complexity

▶ Different Kernels \Rightarrow Low-Rank NOs, Graph NOs, Multipole NOs,

 $4.17 \times$

重

격대

Fourier Neural Operators

- ▶ FNO proposed in Li et al, 2020.
- **►** Translation invariant Kernel $K(x, y) = K(x y)$
- ► Kernel Integral Operator is $\int K(x, y)v(y)dy = K * v$ D
- ▶ Key Trick: Perform Convolution in Fourier space
- ▶ Fourier Transform: $\mathcal{F}: L^2(D, \mathbb{C}^n) \mapsto l^2(\mathbb{Z}^d, \mathbb{C}^n)$

$$
(\mathcal{F}v_j)(k) = \int_D v_j(x)\Psi_k(x)dx, \quad \Psi_k(x) = Ce^{-2\pi i \langle k, x \rangle}
$$

▶ Inverse Fourier Transform: \mathcal{F}^{-1} : $l^2(\mathbb{Z}^d, \mathbb{C}^n) \mapsto L^2(D, \mathbb{C}^n)$

$$
(\mathcal{F}^{-1}w_k)(x)=\sum_{k\in\mathbb{Z}^d}w_k\Psi_k(x)
$$

∽≏ດ

 \triangleright Use Fourier and Inverse Fourier Transform to define the KIO:

$$
\int\limits_{D} K_{\ell}(x,y)v(y)dy = \mathcal{F}^{-1}(\mathcal{F}(K)\mathcal{F}(v))(x)
$$

Parametrize Kernel in Fourier space.

 \blacktriangleright Fast implementation through FFT

4 0 8

Further details on FNOs ?

Siddhartha Mishra [AISE2024](#page-0-0)

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶

目

 2990

- \triangleright FNOs are very widely used in practice !!
- \blacktriangleright but are FNOs ReNOs ?
- **In Convolution in Fourier space** \mathcal{K} **+ Nonlinearity** σ
- \triangleright K is ReNO wrt Periodic Bandlimited functions \mathcal{P}_K :

What about activations ?

I Nonlinear activation σ can break bandlimits: $\sigma(f) \notin \mathcal{P}_K$

FNOs are not necessarily ReNOs !!

メロメ メ御 メメ ミメメ ミメ

重

A Synthetic Example: Random Assignment

 \blacktriangleright The underlying Operator:

K ロ ▶ K 御 ▶ K 目

∢ 重→

 \sim

重

A Practical Example

\blacktriangleright FNO Results:

▶ Challenge: Design a ReNO

Kロト K倒下

目

 \mathcal{A} . × ∢ 重→

È

 299