AI in the Sciences and Engineering 2024: Lecture 11

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

4 0 1 1

 $2Q$

€

- \blacktriangleright Intro into Operator learning.
- Abstract PDE: $\mathcal{D}_a(u) = f$
- \triangleright Solution Operator: $G : \mathcal{X} \mapsto \mathcal{Y}$ with $G(a, f) = u$
- \triangleright Simplified Setting: dim $(\text{Supp}(\mu)) = d_{\nu} < \infty$
- \triangleright Corresponds to Parametrized PDEs with finite parameters.
- Find Soln $u(t, x, y)$ or Observable $\mathcal{L}(y)$ for $y \in Y \subset \mathbb{R}^{d_y}$.
- ► 1st Challenge: $\mathcal{E} \sim \sqrt{\frac{1}{\Lambda}}$ N
- \blacktriangleright We need lots of Data.

へのへ

▶ Use Low discrepancy sequences $\{y_i\}_{i=1}^N$ \in Y as Training Set

- \triangleright These sequences are Equidistributed (better spread out).
- Examples: Sobol, Halton, Owen, Niederreiter $++$
- \triangleright Basis of Quasi-Monte Carlo (QMC) integration.

For L with Bounded Hardy-Krause variation and smooth σ . Generalization Error for Sobol sequences: (SM, Rusch, 2020),

$$
\mathcal{E} \leq \mathcal{E}_{\mathcal{T}} + C\left(V_{HK}(\mathcal{L}), V_{HK}(\mathcal{L}^*)\right) \frac{(\log N)^d}{N},
$$

つへへ

Prediction

- ▶ Given Hicks-Henne parameter: Predict Drag, Lift, Flow
- ▶ DNN with $10^3 10^4$ parameters and 128 training samples :

• Errors with Random Training pts: Lift 8.2%, Drag: 23.4%

Forward UQ

 \triangleright DL-UQ algorithm of Lye, SM, Ray, 2020 is

 $2Q$

€

→ 唐→

Application: PDE constrained Optimization

- \blacktriangleright Example: Shape optimization of airfoils
- \blacktriangleright Parametrize airfoil shape with Hicks-Henne basis functions:

$$
S=S_{ref}+\sum_{i=1}^d\phi_i, \quad \phi_i=\phi(y_i), \ y=\{y_i\}\in Y\subset \mathbb{R}^{\bar{d}}.
$$

つへへ

 \triangleright Change airfoil shape to Minimize Drag for constant Lift.

Solve the minimization problem: Find $y^* = \arg \min_{y \in Y} J(y)$,

$$
J(y) = C_D(y) + P_1(C_L(y) - C_L^{\text{ref}}) + P_2(G(y) - G^{\text{ref}}(y)).
$$

- \triangleright With penalization parameters $P_1, P_2 >> 1$
- \triangleright Standard Shape optimization algorithms require Gradients $\nabla_{\mathbf{v}} J(\mathbf{y})$ at each iteration.
- \triangleright Multiple calls to PDE (and Adjoint) solvers.
- \triangleright Can be very expensive, even infeasible for optimization under uncertainty.

へのへ

A DNN based surrogate optimization algorithm

 \triangleright Choose Training Set $S \subset Y$ (Random, Sobol,...)

▶ Train Neural Networks to obtain $C_D^* \approx C_D$, $C_L^* \approx C_L$

- \blacktriangleright For each step of optimization algorithm:
	- ► Evaluate objective function as $J^*(y) = J(C_D^*(y), C_L^*(y)).$
	- Evaluate Gradients $\nabla_y J^*$, Hessians $\nabla_y^2 J^*$.
- \blacktriangleright Run optimization algorithm till minimum is found.
- \triangleright Significantly faster as DNNs are cheap to evaluate !
- \triangleright Issue: Training points may not represent Extrema well.
- Addressed in ISMO algorithm of Lye et. al, 2020.

へのへ

Shape Optimization of airfoils: summary

- Reference Drag: 0.0115, Mean optimized Drag: 0.0058
- ▶ Reference Lift: 0.876, Mean optimized Lift: 0.887
- \blacktriangleright Almost 50% Drag reduction on average.

つへへ

Comparison with Standard Optimizer

Kロト K倒下

目

B

È

 299

Flow around optimized shapes

メロメメ 御 メメ きょくきょ

È

 299

A Bigger Challenge with Parametrization

- \triangleright Difficult to come up with a suitable one.
- \blacktriangleright Not unique.

$$
\mathbf{P} \cdot f : x \in [0,1] \mapsto x^2 \text{ same as}
$$

$$
F : (y_1, y_2) \in [0,1]^2 \mapsto \frac{1}{2} \left[\left(\frac{y_1 - b_1}{a_1} \right)^2 + \left(\frac{y_2 - b_2}{a_2} \right)^2 \right]
$$

 \triangleright Does not Generalize well

 -1 -1 $+$

Back to Operator Learning

- Inderlying Solution Operator: $G(a) = u$ for PDE $Du = a$
- Task: Find a Surrogate (based on DNNs) $\mathcal{G}^* \approx \mathcal{G}$ from data.
- ▶ Inputs+Outputs for G^* are Functions.

つくい

Solution I: Just use $DNN +$ Interpolation

\triangleright Uniform Sampling \mapsto CNN \mapsto Interpolation

メロト メタト メミト メミト

 $2Q$

€

Does this work ?

 \triangleright Shear flow with Navier-Stokes with $Re >> 1$

 \triangleright CNN + Interpolation Results:

 \triangleright Consistent with Zhu, Zabaras, 2019.

IDesiderata for Operator Learning:

Input + Output are functions.

> Some notion of Continuous-Discrete Equivalence

E Learn underlying Operator, not just a discrete Representation

Why is this a challenge ?

 \blacktriangleright In principle, Operator maps functions to functions.

▶ A proper notion of Continuous-Discrete Equivalence (CDE)

つへへ

On Discrete-Continuous Equivalence

 \leftarrow \Box

重

≣

 299

Discrete-Continuous Equivalence (Contd...)

- **Following Bartolucci et al, Neurips 2023**
- Aliasing error: ε (\mathcal{G}, \mathcal{G}) = $\mathcal{G} \mathcal{R} \circ \mathcal{G} \circ \mathcal{E}$
- \triangleright Representation Equivalent Neural Operator alias ReNO:

$$
\varepsilon(\mathcal{G},\mathcal{G})\equiv 0.
$$

▶ Concept is instantiated Layerwise: $G = G_L \circ \cdots G_\ell \cdots G_1$:

$$
\mathcal{G}_\ell - \mathcal{R} \circ \textit{G}_\ell \circ \mathcal{E}
$$

∽≏ດ

A ReNO on different Grids

 \triangleright A Natural change of representation (Grid) Formula: As $\varepsilon(\mathcal{G}, G) \equiv 0 \equiv \varepsilon(\mathcal{G}, G')$. ▶ Aliasing \Rightarrow Discrepancies between Resolutions !!

つくい

A Concrete Example: 1-D on a Regular Grid

- \triangleright X, y are Bandlimited Functions: i.e., supp $\hat{u} \subset [-\Omega, \Omega]$
- Encoding is Pointwise evaluation: $\mathcal{E}(u) = {u(x_j)}_{j=1}^n$
- \blacktriangleright Reconstruction in terms of sinc basis:

$$
\mathcal{R}(v)(x) = \sum_{j=1}^n v_j \mathrm{sinc}\ (x - x_j)
$$

 Ω

- \triangleright Nyquist-Shannon \Rightarrow bijection between \mathfrak{X}, X on sufficiently dense grid.
- \blacktriangleright Classical Aliasing [E](#page-21-0)rror: ε (ς , ς) = ς \Re \Re \Re ο G ο ϵ

CNNs are not ReNOs !

▶ CNNs rely on Discrete Convolutions with fixed Kernel:

$$
K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]
$$

 \triangleright Pointwise evaluations with Sinc basis

 \blacktriangleright Easy to check that CNNs are Resolution dependent as:

$$
\mathcal{G}' \neq \mathcal{E}' \circ \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{R}'
$$