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What you learnt so far

Intro into Operator learning.

Abstract PDE: D,(u) = f

Solution Operator: G : X — Y with §(a,f) =u

Simplified Setting: dim (Supp(u)) = dy < o0

Corresponds to Parametrized PDEs with finite parameters.
Find Soln u(t, x, y) or Observable L(y) for y € Y C R%.

1st Challenge: € ~ \/%
We need lots of Data.
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Distribution of integration points
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A Trick: , 2020

» Use Low discrepancy sequences {y;}¥, € Y as Training Set

. © Monte Carlo
Sobol

. x
o « . X Halton

00 02 04 06 08 10

» These sequences are Equidistributed (better spread out).
» Examples: Sobol, Halton, Owen, Niederreiter ++
» Basis of Quasi-Monte Carlo (QMC) integration.
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Training on Low-Discrepancy Sequences

» For £ with Bounded Hardy-Krause variation and smooth o.
» Generalization Error for Sobol sequences: (SM, Rusch, 2020),

€< &1+ C(Vuk(L), Vuk(LY)) (log/\:v)d,
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» Given Hicks-Henne parameter: Predict Drag, Lift, Flow
» DNN with 103 — 10* parameters and 128 training samples :

Run time (1 sample) | Training | Evaluation | Error

Lift 2400 s 700 s 107°s | 0.78%

Drag 2400 s 840 s 10> s 1.87%

Field 2400 s 1 hr 02s 1.9%
Exact Density Predicted Density

e Errors with Random Training pts: Lift 8.2%, Drag: 23.4%
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Forward UQ

» DL-UQ algorithm of Lye,SM,Ray, 2020 is

M
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Litnm~ 21 OL(y) ® 1 Zl Ocx(y;)
1= 1=
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Sample Lift PDF Drag PDF

Observable | Speedup (MC) | Speedup (QMC)
Lift 246.02 6.64
Drag 179.54 8.56
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Application: PDE constrained Optimization

» Example: Shape optimization of airfoils

» Parametrize airfoil shape with Hicks-Henne basis functions:

d -
S =Spr+ Z(ﬁi, ¢i = o(yi), y={yi} € Y CR%
im1

» Change airfoil shape to Minimize Drag for constant Lift.
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Airfoil shape optimization

» Solve the minimization problem: Find y* = arg mig J(y),
ye

J(y) = Coly) + Pi(Cily) — C[F) + Pa(G(y) — G (y)).

» With penalization parameters P, P, >>1

» Standard Shape optimization algorithms require Gradients
V,J(y) at each iteration.

» Multiple calls to PDE (and Adjoint) solvers.

» Can be very expensive, even infeasible for optimization under
uncertainty.
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A DNN based surrogate optimization algorithm

» Choose Training Set S C Y (Random, Soboal,...)

» Train Neural Networks to obtain C5 ~ Cp, ([ = C;
For each step of optimization algorithm:

> Evaluate objective function as J*(y) = J(C5(y), C/(y)).
> Evaluate Gradients V,J*, Hessians V3 J*.

Run optimization algorithm till minimum is found.

v

Significantly faster as DNNs are cheap to evaluate !
Issue: Training points may not represent Extrema well.
Addressed in ISMO algorithm of Lye et. al, 2020.

Liftidrag(SOBOL)

=
2048
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Shape Optimization of airfoils: summary

> Reference Drag: 0.0115, Mean optimized Drag: 0.0058
» Reference Lift: 0.876, Mean optimized Lift: 0.887

» Almost 50% Drag reduction on average.
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Comparison with Standard Optimizer

—— ISMO
—— TNC

Minimum value

T T T T T T
26 27 28 29 210 211 212
Number of evaluations of the simulator
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Flow around optimized shapes

Reference Mean Best
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A Bigger Challenge with Parametrization

» Difficult to come up with a suitable one.
» Not unique.
> f:x¢€[0,1] — x? same as

Fi(yy) €01 3 [(yla_lbl)z * (yza_zbz)z]

» Does not Generalize well

input 1o Output o input B
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d=20 d=30
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Back to Operator Learning

X1 X2 X3 e Xy Vi Y2 -

» Underlying Solution Operator: G(a) = u for PDE Du = a
» Task: Find a Surrogate (based on DNNs) §* ~ G from data.
» Inputs+Outputs for §* are Functions.
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Solution |: Just use DNN + Interpolation

» Uniform Sampling — CNN — Interpolation
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Does this work ?

» Consistent with Zhu,Zabaras, 2019.
» Desiderata for Operator Learning:

» Input + Output are functions.
» Some notion of Continuous-Discrete Equivalence

» Learn underlying Operator, not just a discrete Representation
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Why is this a challenge ?

» In principle, Operator maps functions to functions.

_

Input Output

» In practice, both inputs and outputs are Discrete

Input Output Input Output
» Multiple Discrete Representations !l
» Only discrete operations on Digital Computers.
» A proper notion of Continuous-Discrete Equivalence (CDE)
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On Discrete-Continuous Equivalence
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Discrete-Continuous Equivalence (Contd...)

» Following Bartolucci et al, Neurips 2023
» Aliasing error: €(3,G) =G —RoGo&
» Representation Equivalent Neural Operator alias ReNO:

e(9,G) =0.
» Concept is instantiated Layerwise: G =G, 0---Gy---91:
Gy —RoGpoél
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A ReNO on different Grids
S Ly

X —Y

/ TN / N /!

R e R g R

. . . 1
X Y e oy
g= G = G

» A Natural change of representation (Grid) Formula

> Ase(G,G)=0=¢(G,G).

> Aliasing = Discrepancies between Resolutions !!
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A Concrete Example: 1-D on a Regular Grid

x—9 ,y
/ N\
R &
\ /
X %

» X,Y are Bandlimited Functions: i.e., supp 0 C [, Q)]
> Encoding is Pointwise evaluation: €(u) = {u(x;)}/4
» Reconstruction in terms of sinc basis:

R(v)(x Zvjsmc (x — xj)

» Nyquist-Shannon = bijection between X, X on sufficiently
dense grid.

» Classical Aliasing Error: €(9,6) =G —RoGo &



CNNs are not ReNOs !

> CNNs rely on Discrete Convolutions with fixed Kernel:

K[m] = Z kic[m — i]

I=—S§

» Pointwise evaluations with Sinc basis

S: 7'\ °k
lﬂeinc-l
ooy
\\E\
%
(N = S

» Easy to check that CNNs are Resolution dependent as:
G #£Eo0R0GoEOR
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