Al in the Sciences and Engineering 2024: Lecture 11

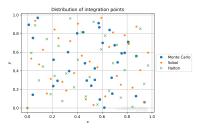
Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

∢ ≣⇒

- Intro into Operator learning.
- Abstract PDE: $\mathcal{D}_a(u) = f$
- Solution Operator: $\mathcal{G} : \mathcal{X} \mapsto \mathcal{Y}$ with $\mathcal{G}(a, f) = u$
- ▶ Simplified Setting: dim $(\text{Supp}(\mu)) = d_y < \infty$
- Corresponds to Parametrized PDEs with finite parameters.
- Find Soln u(t, x, y) or Observable $\mathcal{L}(y)$ for $y \in Y \subset \mathbb{R}^{d_y}$.
- 1st Challenge: $\mathcal{E} \sim \sqrt{\frac{1}{N}}$
- We need lots of Data.

▶ Use Low discrepancy sequences $\{y_i\}_{i=1}^N \in Y$ as Training Set



- These sequences are Equidistributed (better spread out).
- Examples: Sobol, Halton, Owen, Niederreiter ++
- Basis of Quasi-Monte Carlo (QMC) integration.

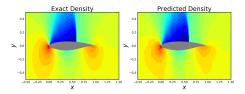
- For \mathcal{L} with Bounded Hardy-Krause variation and smooth σ .
 - Generalization Error for Sobol sequences: (SM, Rusch, 2020),

$$\mathcal{E} \leq \mathcal{E}_T + C(V_{HK}(\mathcal{L}), V_{HK}(\mathcal{L}^*)) \frac{(\log N)^d}{N},$$

Prediction

- Given Hicks-Henne parameter: Predict Drag, Lift, Flow
- **>** DNN with $10^3 10^4$ parameters and 128 training samples :

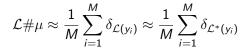
	Run time (1 sample)	Training	Evaluation	Error
Lift	2400 s	700 s	10 ⁻⁵ s	0.78%
Drag	2400 s	840 s	10 ⁻⁵ s	1.87%
Field	2400 s	1 hr	0.2 s	1.9%

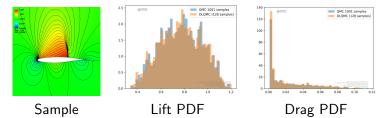


• Errors with Random Training pts: Lift 8.2%, Drag: 23.4%

Forward UQ

DL-UQ algorithm of Lye,SM,Ray, 2020 is





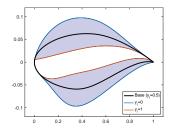
Observable	Speedup (MC)	Speedup (QMC)
Lift	246.02	6.64
Drag	179.54	8.56

イロト イヨト イヨト イヨト

Application: PDE constrained Optimization

- Example: Shape optimization of airfoils
- ▶ Parametrize airfoil shape with Hicks-Henne basis functions:

$$S = S_{ref} + \sum_{i=1}^{d} \phi_i, \quad \phi_i = \phi(y_i), \ y = \{y_i\} \in Y \subset \mathbb{R}^{\overline{d}}.$$



Change airfoil shape to Minimize Drag for constant Lift.

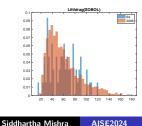
Solve the minimization problem: Find $y^* = \arg \min_{y \in Y} J(y)$,

$$J(y) = C_D(y) + P_1(C_L(y) - C_L^{ref}) + P_2(G(y) - G^{ref}(y)).$$

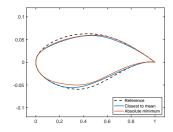
- With penalization parameters $P_1, P_2 >> 1$
- Standard Shape optimization algorithms require Gradients \(\nabla_y J(y)\) at each iteration.
- Multiple calls to PDE (and Adjoint) solvers.
- Can be very expensive, even infeasible for optimization under uncertainty.

A DNN based surrogate optimization algorithm

- ► Choose Training Set S ⊂ Y (Random, Sobol,...)
- ▶ Train Neural Networks to obtain $C_D^* \approx C_D$, $C_L^* \approx C_L$
- For each step of optimization algorithm:
 - Evaluate objective function as $J^*(y) = J(C^*_D(y), C^*_L(y))$.
 - Evaluate Gradients $\nabla_y J^*$, Hessians $\nabla_y^2 J^*$.
- Run optimization algorithm till minimum is found.
- Significantly faster as DNNs are cheap to evaluate !
- Issue: Training points may not represent Extrema well.
- Addressed in ISMO algorithm of Lye et. al, 2020.



Shape Optimization of airfoils: summary



- Reference Drag: 0.0115, Mean optimized Drag: 0.0058
- Reference Lift: 0.876, Mean optimized Lift: 0.887
- Almost 50% Drag reduction on average.

Comparison with Standard Optimizer

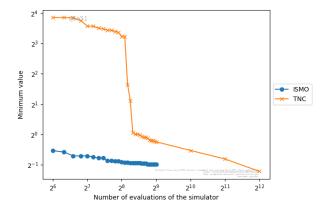
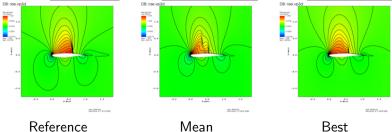


Image: A mathematical states and a mathem

< ∃⇒

э

Flow around optimized shapes



Best

ヘロト 人間 とくほど 人間とう

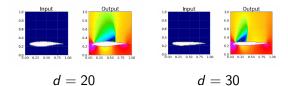
æ

A Bigger Challenge with Parametrization

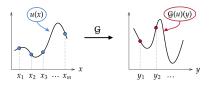
- Difficult to come up with a suitable one.
- Not unique.

►
$$f: x \in [0,1] \mapsto x^2$$
 same as
 $F: (y_1, y_2) \in [0,1]^2 \mapsto \frac{1}{2} \left[\left(\frac{y_1 - b_1}{a_1} \right)^2 + \left(\frac{y_2 - b_2}{a_2} \right)^2 \right]$

Does not Generalize well

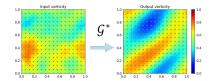


Back to Operator Learning



- Underlying Solution Operator: G(a) = u for PDE Du = a
- ▶ Task: Find a Surrogate (based on DNNs) $G^* \approx G$ from data.
- ► Inputs+Outputs for G^* are Functions.

Solution I: Just use DNN + Interpolation



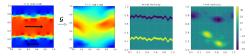
► Uniform Sampling → CNN → Interpolation

イロト イヨト イヨト イヨト

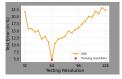
3

Does this work ?

Shear flow with Navier-Stokes with Re >> 1



CNN + Interpolation Results:



Consistent with Zhu, Zabaras, 2019.

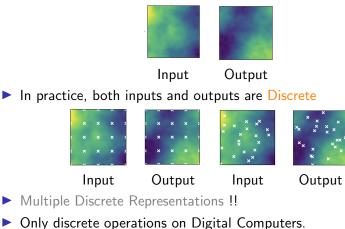
Desiderata for Operator Learning:

- Input + Output are functions.
- Some notion of Continuous-Discrete Equivalence

Learn underlying Operator, not just a discrete Representation

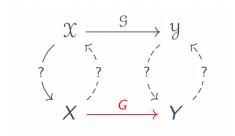
Why is this a challenge ?

▶ In principle, Operator maps functions to functions.

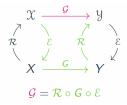


► A proper notion of Continuous-Discrete Equivalence (CDE)

On Discrete-Continuous Equivalence



Discrete-Continuous Equivalence (Contd...)



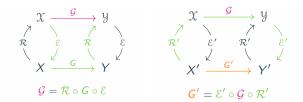
- Following Bartolucci et al, Neurips 2023
- Aliasing error: $\varepsilon(\mathfrak{G}, \mathfrak{G}) = \mathfrak{G} \mathfrak{R} \circ \mathfrak{G} \circ \mathfrak{E}$
- Representation Equivalent Neural Operator alias ReNO:

$$\varepsilon(\mathfrak{G}, G) \equiv 0.$$

• Concept is instantiated Layerwise: $\mathcal{G} = \mathcal{G}_L \circ \cdots \mathcal{G}_\ell \cdots \mathcal{G}_1$:

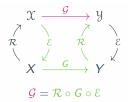
$$\mathfrak{G}_{\ell} - \mathfrak{R} \circ \mathbf{G}_{\ell} \circ \mathfrak{E}$$

A ReNO on different Grids



- A Natural change of representation (Grid) Formula:
- As $\varepsilon(\mathfrak{G}, G) \equiv 0 \equiv \varepsilon(\mathfrak{G}, G')$.
- ► Aliasing ⇒ Discrepancies between Resolutions !!

A Concrete Example: 1-D on a Regular Grid



- $\mathfrak{X}, \mathfrak{Y}$ are Bandlimited Functions: i.e., supp $\hat{u} \subset [-\Omega, \Omega]$
- Encoding is Pointwise evaluation: $\mathcal{E}(u) = \{u(x_j)\}_{j=1}^n$
- Reconstruction in terms of sinc basis:

$$\Re(v)(x) = \sum_{j=1}^{n} v_j \text{sinc } (x - x_j)$$

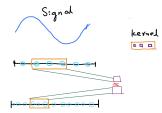
- ► Nyquist-Shannon ⇒ bijection between X, X on sufficiently dense grid.
- Classical Aliasing Error: $\varepsilon(\mathfrak{G}, \mathfrak{G}) = \mathfrak{G} \mathfrak{R} \circ \mathfrak{G} \circ \mathfrak{E}$

CNNs are not ReNOs !

CNNs rely on Discrete Convolutions with fixed Kernel:

$$\mathcal{K}_{c}[m] = \sum_{i=-s}^{s} k_{i} c[m-i]$$

Pointwise evaluations with Sinc basis



Easy to check that CNNs are Resolution dependent as:

$$\mathfrak{G}' \neq \mathfrak{E}' \circ \mathfrak{R} \circ \mathfrak{G} \circ \mathfrak{E} \circ \mathfrak{R}'$$