AI in the Sciences and Engineering 2024: Lecture 10

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

4 0 1 1

 $2Q$

€

- PINNs to Solve PDEs.
- \triangleright Great for some PDEs, particularly with low amount of training data.
- \blacktriangleright Have several negatives.
- \triangleright We need alternatives \blacksquare
- \triangleright When more data is available:
- \triangleright The next several lectures: Use of Supervised Deep Learning for PDEs

What does solving a PDE mean ?

Example 1: Consider Darcy PDEs:

 $-\text{div}(a\nabla u) = f,$

- \blacktriangleright Quantities of interest are:
	- \blacktriangleright u is temperature or pressure.
	- \blacktriangleright a is conductance or permeability.
	- \blacktriangleright f is the source.

a u

Find the solution Operator $G : a \mapsto Ga = u$.

つくい

What does solving a PDE mean ?

 \triangleright Example 2: Consider the Compressible Euler equations:

$$
\rho_t + \text{div}(\rho \mathbf{v}) = 0,
$$

\n
$$
(\rho \mathbf{v})_t + \text{div}(\rho \mathbf{v} \otimes \mathbf{v} + \rho \mathbf{I}) = 0,
$$

\n
$$
E_t + \text{div}((E + \rho)\mathbf{v}) = 0.,
$$

\n
$$
u(x, 0) = (\rho, \mathbf{v}, E)(x, 0) = a(x).
$$

∽≏ດ

- \blacktriangleright X, Y are Banach spaces and $\mu \in \mathrm{Prob}(X)$
- Abstract PDE: $\mathcal{D}_a(u) = f$
- \triangleright Solution Operator: $G : X \mapsto Y$ with $G(a, f) = u$
- ▶ Task: Learn Operators from data
- ▶ Core of Operator Learning
- \triangleright A Problem: DNNs map finite dimensional inputs to outputs !!

つくい

Solution I: Use Parametric PDEs instead :-)

- ► X, Y are Banach spaces and $\mu \in \mathrm{Prob}(X)$
- Abstract PDE: $\mathcal{D}_a(u) = f$
- ▶ Solution Operator: $G : X \mapsto Y$ with $G(a, f) = u$
- ► Simplified Setting: dim $(\text{Supp}(\mu)) = d_{\nu} < \infty$
- \triangleright Corresponds to Parametrized PDEs with finite parameters.
- Find Soln $u(t, x, y)$ or Observable $\mathcal{L}(y)$ for $y \in Y \subset \mathbb{R}^{d_y}$.

Approximate Fields or observables with deep neural networks

Supervised learning of target $\mathcal L$ with Deep Neural networks

- ► $\mathcal{L}^*(z) = \sigma_o \odot C_K \odot \sigma \odot C_{K-1}$ $\odot \sigma \odot C_2 \odot \sigma \odot C_1(z)$.
- At the k-th Hidden layer: $z^{k+1} := \sigma(C_k z^k) = \sigma(W_k z^k + B_k)$
- \triangleright Tuning Parameters: $\theta = \{W_k, B_k\} \in \Theta$,
- \triangleright σ : scalar Activation function: ReLU, Tanh
- ▶ Random Training set: $S = \{z_i\}_{i=1}^N \in Z$, with i.i.d z_i
- ► Use SGD (ADAM) to find $\mathcal{L} \approx \mathcal{L}^* = \mathcal{L}_{\theta^*}^*$

$$
\theta^* := \arg\min_{\theta \in \Theta} \sum_{i=1}^N |\mathcal{L}(z_i) - \mathcal{L}^*_{\theta}(z_i)|^p,
$$

∽≏ດ

Supervised learning for high-d Parametric PDEs

- ► Can we find DNN such that $\|\mathcal{L}^* \mathcal{L}\| \sim \mathcal{O}(\epsilon)$?
- ▶ YES: Universal Approximation Property of DNNs \Rightarrow :
- \triangleright Given any Continuous (measurable) \mathcal{L} , exists a $\hat{\mathcal{L}}$:

$$
\|\mathcal{L} - \mathcal{\hat{L}}\| < \epsilon
$$

If $\mathcal{L} \in W^{s,p}$, \exists DNN $\hat{\mathcal{L}}$ with M parameters (Yarotsky):

$$
\|\mathcal{L}-\hat{\mathcal{L}}\|_p \sim \mathcal{O}\left(M^{-\frac{s}{d}}\right).
$$

- \triangleright But in Scientific Computing (often):
- \triangleright $\mathcal L$ is not be very Regular and $\overline{d} >> 1$
- ► If $\mathcal{L} \in W^{1,\infty}$, $\bar{d} = 6$: 1% error, need network of size 10¹² !!

► Curse of dimensionality: DNN Size $M \sim \epsilon^{-\frac{d}{s}}$

Refined Error Estimates

Frror $E := ||\mathcal{L} - \mathcal{L}^*||_p$ Decomposition: $E \leq \mathcal{E}_{app} + \mathcal{E}_{gen} + \mathcal{E}_{opt}$. Approximation error $\mathcal{E}_{app} = \|\mathcal{L} - \hat{\mathcal{L}}\|_p$, \triangleright $\hat{\mathcal{L}}$ is best approximation of \mathcal{L} in $\mathcal{NN}(M)$. ▶ One can prove that $\mathcal{E}_{app} \sim \mathcal{O}\left(\bar{d}^{\sigma}M^{-\eta}\right)$ for, ▶ Linear Elliptic PDEs: (Schwab, Kutyniok et al). ▶ Semi-linear Parabolic PDEs: (E, Jentzen et al). **Nonlinear Hyperbolic PDEs: (DeRyck, SM, 2021).** \triangleright Optimization Error \mathcal{E}_{opt} ~ Computable Training error:

 \blacktriangleright Generalization Error

$$
\mathcal{E}_{gen}(\theta) := \| \mathcal{L} - \mathcal{L}_\theta^\ast \|^p_p - \frac{1}{N} \sum_i |\mathcal{L}_\theta^\ast(y_i) - \mathcal{L}(y_i)|^p
$$

 \triangleright Using Concentration inequalities $+$ Covering number bounds:

$$
\mathcal{E}_{gen} \sim \frac{C\left(M, \log(\|W\|)\right) \log(\sqrt{N})}{\sqrt{N}}
$$

- Assume we can find DNN such that $\mathcal{E}_{\text{app}}, \mathcal{E}_{\mathcal{T}} << 1$
- \triangleright Still Overall Error behaves as

$$
\varepsilon \sim \frac{C(M)}{N^{\alpha}}, \quad \alpha \leq \frac{1}{2}.
$$

- ► If $C(M) \sim O(1)$, error of 1% requires 10⁴ training samples !!
- \triangleright Challenge: learn maps of low regularity in a data poor regime
- \triangleright Contrast with Big Data successes of machine learning.

つへへ

▶ Use Low discrepancy sequences $\{y_i\}_{i=1}^N$ \in Y as Training Set

- \triangleright These sequences are Equidistributed (better spread out).
- Examples: Sobol, Halton, Owen, Niederreiter $++$
- \triangleright Basis of Quasi-Monte Carlo (QMC) integration.

 $2Q$

For L with Bounded Hardy-Krause variation and smooth σ . Generalization Error for Sobol sequences: (SM, Rusch, 2020),

$$
\mathcal{E} \leq \mathcal{E}_{\mathcal{T}} + C\left(V_{HK}(\mathcal{L}), V_{HK}(\mathcal{L}^*)\right) \frac{(\log N)^d}{N},
$$

つへへ

Prediction

- ▶ Given Hicks-Henne parameter: Predict Drag, Lift, Flow
- ▶ DNN with $10^3 10^4$ parameters and 128 training samples :

• Errors with Random Training pts: Lift 8.2%, Drag: 23.4%

 $2Q$

Forward UQ

 \triangleright DL-UQ algorithm of Lye, SM, Ray, 2020 is

 $2Q$

€

→ 唐→

Application: PDE constrained Optimization

- \blacktriangleright Example: Shape optimization of airfoils
- \blacktriangleright Parametrize airfoil shape with Hicks-Henne basis functions:

$$
S=S_{ref}+\sum_{i=1}^d\phi_i, \quad \phi_i=\phi(y_i), \ y=\{y_i\}\in Y\subset \mathbb{R}^{\bar{d}}.
$$

つへへ

 \triangleright Change airfoil shape to Minimize Drag for constant Lift.

Solve the minimization problem: Find $y^* = \arg \min_{y \in Y} J(y)$,

$$
J(y) = C_D(y) + P_1(C_L(y) - C_L^{ref}) + P_2(G(y) - G^{ref}(y)).
$$

- \triangleright With penalization parameters $P_1, P_2 >> 1$
- \triangleright Standard Shape optimization algorithms require Gradients $\nabla_{\mathbf{v}} J(\mathbf{y})$ at each iteration.
- \triangleright Multiple calls to PDE (and Adjoint) solvers.
- \triangleright Can be very expensive, even infeasible for optimization under uncertainty.

A DNN based surrogate optimization algorithm

- \triangleright Choose Training Set $S \subset Y$ (Random, Sobol,...)
- ▶ Train Neural Networks to obtain $C_D^* \approx C_D$, $C_L^* \approx C_L$
- \blacktriangleright For each step of optimization algorithm:
	- ► Evaluate objective function as $J^*(y) = J(C_D^*(y), C_L^*(y)).$
	- Evaluate Gradients $\nabla_y J^*$, Hessians $\nabla_y^2 J^*$.
- \blacktriangleright Run optimization algorithm till minimum is found.
- \triangleright Significantly faster as DNNs are cheap to evaluate !
- \blacktriangleright Issue: Training points may not represent Extrema well.
- Addressed in ISMO algorithm of Lye et. al, 2020.

Shape Optimization of airfoils: summary

- Reference Drag: 0.0115, Mean optimized Drag: 0.0058
- ▶ Reference Lift: 0.876, Mean optimized Lift: 0.887
- \blacktriangleright Almost 50% Drag reduction on average.

つへへ

Comparison with Standard Optimizer

Kロト K倒下

目

B

È

 299

Flow around optimized shapes

メロメメ 御 メメ きょくきょ

È

 299

Siddhartha Mishra [AISE2024](#page-0-0)