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What you learnt so far

I PINNs to Solve PDEs.

I Great for some PDEs, particularly with low amount of training
data.

I Have several negatives.

I We need alternatives !!

I When more data is available:

I The next several lectures: Use of Supervised Deep Learning
for PDEs
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What does solving a PDE mean ?

I Example 1: Consider Darcy PDEs:

−div(a∇u) = f ,

I Quantities of interest are:
I u is temperature or pressure.
I a is conductance or permeability.
I f is the source.

a u

I Find the solution Operator G : a 7→ Ga = u.
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What does solving a PDE mean ?

I Example 2: Consider the Compressible Euler equations:

ρt + div(ρv) = 0,

(ρv)t + div (ρv ⊗ v + pI) = 0,

Et + div ((E + p)v) = 0.,

u(x , 0) = (ρ, v,E )(x , 0) = a(x).

Initial Condition Solution at time T

I Find the solution Operator G : a 7→ Ga = u(T ).
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Setup

I X ,Y are Banach spaces and µ ∈ Prob(X )

I Abstract PDE: Da(u) = f

I Solution Operator: G : X 7→ Y with G(a, f ) = u

I Task: Learn Operators from data

I Core of Operator Learning

I A Problem: DNNs map finite dimensional inputs to outputs !!
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Solution I: Use Parametric PDEs instead :-)

I X ,Y are Banach spaces and µ ∈ Prob(X )

I Abstract PDE: Da(u) = f

I Solution Operator: G : X 7→ Y with G(a, f ) = u

I Simplified Setting: dim (Supp(µ)) = dy <∞
I Corresponds to Parametrized PDEs with finite parameters.

I Find Soln u(t, x , y) or Observable L(y) for y ∈ Y ⊂ Rdy .
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I Approximate Fields or observables with deep neural networks
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Supervised learning of target L with Deep Neural networks

X = Z0 Z1 Z2 Z3
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I L∗(z) = σo �CK � σ�CK−1 . . . . . . . . .� σ�C2 � σ�C1(z).

I At the k-th Hidden layer: zk+1 := σ(Ckz
k) = σ(Wkz

k + Bk)

I Tuning Parameters: θ = {Wk ,Bk} ∈ Θ,

I σ: scalar Activation function: ReLU, Tanh

I Random Training set: S = {zi}Ni=1 ∈ Z , with i.i.d zi
I Use SGD (ADAM) to find L ≈ L∗ = L∗θ∗

θ∗ := argmin
θ∈Θ

N∑
i=1

|L(zi )− L∗θ(zi )|p,
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Supervised learning for high-d Parametric PDEs

I Can we find DNN such that ‖L∗ − L‖ ∼ O(ε) ?

I YES: Universal Approximation Property of DNNs ⇒:

I Given any Continuous (measurable) L, exists a L̂:

‖L − L̂‖ < ε

I If L ∈W s,p, ∃ DNN L̂ with M parameters ( Yarotsky):

‖L − L̂‖p ∼ O
(
M−

s
d̄

)
.

I But in Scientific Computing (often):

I L is not be very Regular and d̄ >> 1

I If L ∈W 1,∞, d̄ = 6: 1% error, need network of size 1012 !!

I Curse of dimensionality: DNN Size M ∼ ε−
d̄
s
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Refined Error Estimates

I Error E := ‖L−L∗‖p Decomposition: E ≤ Eapp +Egen +Eopt .

I Approximation error Eapp = ‖L − L̂‖p,
I L̂ is best approximation of L in NN (M).
I One can prove that Eapp ∼ O

(
d̄σM−η

)
for,

I Linear Elliptic PDEs: (Schwab, Kutyniok et al).
I Semi-linear Parabolic PDEs: (E, Jentzen et al).
I Nonlinear Hyperbolic PDEs: (DeRyck, SM, 2021).

I Optimization Error Eopt ∼ Computable Training error:

I Generalization Error

Egen(θ) := ‖L − L∗θ‖pp −
1

N

∑
i

|L∗θ(yi )− L(yi )|p

I Using Concentration inequalities + Covering number bounds:

Egen ∼
C (M, log(‖W ‖)) log(

√
N)√

N
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Well-trained Networks

I Assume we can find DNN such that Eapp,ET << 1

I Still Overall Error behaves as

E ∼ C (M)

Nα
, α ≤ 1

2
.

I If C (M) ∼ O(1), error of 1% requires 104 training samples !!

I Challenge: learn maps of low regularity in a data poor regime

I Contrast with Big Data successes of machine learning.
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A Trick: Lye, SM, Ray, 2020

I Use Low discrepancy sequences {yi}Ni=1 ∈ Y as Training Set

I These sequences are Equidistributed (better spread out).

I Examples: Sobol, Halton, Owen, Niederreiter ++

I Basis of Quasi-Monte Carlo (QMC) integration.
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Training on Low-Discrepancy Sequences

I For L with Bounded Hardy-Krause variation and smooth σ.

I Generalization Error for Sobol sequences: (SM, Rusch, 2020),

E ≤ ET + C (VHK (L),VHK (L∗))
(logN)d

N
,
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Prediction

I Given Hicks-Henne parameter: Predict Drag, Lift, Flow

I DNN with 103 − 104 parameters and 128 training samples :

Run time (1 sample) Training Evaluation Error

Lift 2400 s 700 s 10−5 s 0.78%

Drag 2400 s 840 s 10−5 s 1.87%

Field 2400 s 1 hr 0.2 s 1.9%

• Errors with Random Training pts: Lift 8.2%, Drag: 23.4%
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Forward UQ

I DL-UQ algorithm of Lye,SM,Ray, 2020 is

L#µ ≈ 1

M

M∑
i=1

δL(yi ) ≈
1

M

M∑
i=1

δL∗(yi )

Sample Lift PDF Drag PDF

Observable Speedup (MC) Speedup (QMC)

Lift 246.02 6.64
Drag 179.54 8.56
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Application: PDE constrained Optimization

I Example: Shape optimization of airfoils

I Parametrize airfoil shape with Hicks-Henne basis functions:

S = Sref +
d∑

i=1

φi , φi = φ(yi ), y = {yi} ∈ Y ⊂ Rd̄ .
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I Change airfoil shape to Minimize Drag for constant Lift.
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Airfoil shape optimization

I Solve the minimization problem: Find y∗ = arg min
y∈Y

J(y),

J(y) = CD(y) + P1(CL(y)− C ref
L ) + P2(G (y)− G ref (y)).

I With penalization parameters P1,P2 >> 1

I Standard Shape optimization algorithms require Gradients
∇yJ(y) at each iteration.

I Multiple calls to PDE (and Adjoint) solvers.

I Can be very expensive, even infeasible for optimization under
uncertainty.
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A DNN based surrogate optimization algorithm

I Choose Training Set S ⊂ Y (Random, Sobol,...)

I Train Neural Networks to obtain C ∗D ≈ CD , C ∗L ≈ CL

I For each step of optimization algorithm:
I Evaluate objective function as J∗(y) = J(C∗

D(y),C∗
L (y)).

I Evaluate Gradients ∇yJ
∗, Hessians ∇2

yJ
∗.

I Run optimization algorithm till minimum is found.

I Significantly faster as DNNs are cheap to evaluate !

I Issue: Training points may not represent Extrema well.

I Addressed in ISMO algorithm of Lye et. al, 2020.
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Shape Optimization of airfoils: summary
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I Reference Drag: 0.0115, Mean optimized Drag: 0.0058

I Reference Lift: 0.876, Mean optimized Lift: 0.887

I Almost 50% Drag reduction on average.
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Comparison with Standard Optimizer
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Flow around optimized shapes

Reference Mean Best
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