Al in the Sciences and Engineering 2024:

Lecture 10

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and),
ETH Al Center,
ETH Zirich, Switzerland.

Siddhartha Mishra AISE2024



What you learnt so far

v

PINNs to Solve PDEs.

Great for some PDEs, particularly with low amount of training
data.

v

Have several negatives.
We need alternatives !!

When more data is available:

vvyyypy

The next several lectures: Use of Supervised Deep Learning
for PDEs

Siddhartha Mishra AISE2024



What does solving a PDE mean 7

» Example 1: Consider Darcy PDEs:
—div(aVu) = f,

» Quantities of interest are:
» 1 is temperature or pressure.
» ais conductance or permeability.
» f is the source.

» Find the solution Operator §: a+— Ga = wu.
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What does solving a PDE mean 7

» Example 2: Consider the Compressible Euler equations:

0,
0,

pt + div(pv
(pv)e +div (pv @ v + pl

)=
)=
E: + div ((E + p)v) = 0.,
u(x,0) = (p,v, E)(x,0) =

a(x).

Initial Condition Solution at time T

» Find the solution Operator §:a+ Ga=u(T).
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X, Y are Banach spaces and i € Prob(X)
Abstract PDE: D,(u) = f

Solution Operator: §: X — Y with §(a,f) =u
Task: Learn Operators from data

Core of Operator Learning

vVvYvYyVvYyvyy

A Problem: DNNs map finite dimensional inputs to outputs !!
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Solution I: Use Parametric PDEs instead :-)

| 2
>
>
>
>
>

X, Y are Banach spaces and p € Prob(X)

Abstract PDE: D,(u) = f

Solution Operator: §: X — Y with §(a,f) = u
Simplified Setting: dim (Supp(p)) = dy < o0

Corresponds to Parametrized PDEs with finite parameters.
Find Soln u(t, x, y) or Observable L(y) for y € Y C R%.

» Approximate Fields or observables with deep neural networks
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Supervised learning of target £ with Deep Neural networks
% et

Hidden Lay

HH&

LN(2)=00CKOTOCK_g oueun... oo GO G(2).
At the k-th Hidden layer: zKt1 := o(Cez¥) = (Wi zX 4 By)
Tuning Parameters: = { W, By} € ©,

o scalar Activation function: ReLU, Tanh

Random Training set: S = {z}N, € Z, with i.i.d z

Use SGD (ADAM) to find £ ~ £* = L},

vVvvyVvVvyypy

N
0" = argmin >~ |L(z) = Li(2)|”,
i=1
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Supervised learning for high-d Parametric PDEs

» Can we find DNN such that ||[£* — L] ~ O(e) ?
YES: Universal Approximation Property of DNNs =

v

> Given any Continuous (measurable) £, exists a £
I~ Ll < e
> If £ € W=P, 3 DNN £ with M parameters ( Yarotsky):
Ie=Llp~0 (M),

But in Scientific Computing (often):

If L€ WL, d=6: 1% error, need network of size 1012 11

>

» L is not be very Regular and d >> 1

>

» Curse of dimensionality: DNN Size M ~ s
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Refined Error Estimates

» Error & :=||£ — L*||, Decomposition: € < E,pp + Egen + Eopt-
> Approximation error €,5p = [|£ — L],

» L[ is best approximation of £ in NA/(M).

» One can prove that E,pp ~ O (J"M*”) for,

» Linear Elliptic PDEs: (Schwab, Kutyniok et al).

» Semi-linear Parabolic PDEs: (E, Jentzen et al).

» Nonlinear Hyperbolic PDEs: (DeRyck, SM, 2021).

» Optimization Error €gp: ~ Computable Training error:
» Generalization Error

* 1 *
Egen(0) = I1£. = L5ll5 — 7 D 1£500) — L)l

» Using Concentration inequalities + Covering number bounds:

e . C(M,log(||W]])) log(v'IV)
gen \/N
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Well-trained Networks

» Assume we can find DNN such that €,,p, &7 << 1

v

Still Overall Error behaves as

ooy 1

& Ne y [0 5
> If C(M) ~ O(1), error of 1% requires 10* training samples !!
» Challenge: learn maps of low regularity in a data poor regime

v

Contrast with Big Data successes of machine learning.
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Distribution of integration points

.
°x

Py

A Trick: , 2020

» Use Low discrepancy sequences {y;}¥, € Y as Training Set

. © Monte Carlo
Sobol

. x
o « . X Halton

00 02 04 06 08 10

» These sequences are Equidistributed (better spread out).
» Examples: Sobol, Halton, Owen, Niederreiter ++
» Basis of Quasi-Monte Carlo (QMC) integration.
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Training on Low-Discrepancy Sequences

» For £ with Bounded Hardy-Krause variation and smooth o.
» Generalization Error for Sobol sequences: (SM, Rusch, 2020),

€< &1+ C(Vuk(L), Vuk(LY)) (log/\:v)d,
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» Given Hicks-Henne parameter: Predict Drag, Lift, Flow
» DNN with 103 — 10* parameters and 128 training samples :

Run time (1 sample) | Training | Evaluation | Error

Lift 2400 s 700 s 107°s | 0.78%

Drag 2400 s 840 s 10> s 1.87%

Field 2400 s 1 hr 02s 1.9%
Exact Density Predicted Density

e Errors with Random Training pts: Lift 8.2%, Drag: 23.4%
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Forward UQ

» DL-UQ algorithm of Lye,SM,Ray, 2020 is

M

M

1 1

Litnm~ 21 OL(y) ® 1 Zl Ocx(y;)
1= 1=

006 o008

Sample Lift PDF Drag PDF

Observable | Speedup (MC) | Speedup (QMC)
Lift 246.02 6.64
Drag 179.54 8.56
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Application: PDE constrained Optimization

» Example: Shape optimization of airfoils

» Parametrize airfoil shape with Hicks-Henne basis functions:

d -
S =Spr+ Z(ﬁi, ¢i = o(yi), y={yi} € Y CR%
im1

» Change airfoil shape to Minimize Drag for constant Lift.
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Airfoil shape optimization

» Solve the minimization problem: Find y* = arg mig J(y),
ye

J(y) = Coly) + Pi(Cily) — C[F) + Pa(G(y) — G (y)).

» With penalization parameters P, P, >>1

» Standard Shape optimization algorithms require Gradients
V,J(y) at each iteration.

» Multiple calls to PDE (and Adjoint) solvers.

» Can be very expensive, even infeasible for optimization under
uncertainty.
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A DNN based surrogate optimization algorithm

» Choose Training Set S C Y (Random, Sobol,...)
» Train Neural Networks to obtain Cj ~ Cp, ([ = (;
For each step of optimization algorithm:

> Evaluate objective function as J*(y) = J(C5(y), C/(y)).
> Evaluate Gradients V, J*, Hessians V2 J*.

Run optimization algorithm till minimum is found.

v

Significantly faster as DNNs are cheap to evaluate !
Issue: Training points may not represent Extrema well.
Addressed in ISMO algorithm of Lye et. al, 2020.

vvvyYyy
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Shape Optimization of airfoils: summary

> Reference Drag: 0.0115, Mean optimized Drag: 0.0058
» Reference Lift: 0.876, Mean optimized Lift: 0.887

» Almost 50% Drag reduction on average.
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Comparison with Standard Optimizer

—— ISMO
—— TNC

Minimum value

T T T T T T
26 27 28 29 210 211 212
Number of evaluations of the simulator

Siddhartha Mishra AISE2024



Flow around optimized shapes

Reference Mean Best
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