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What you learnt so far

I Introduction to Deep Learning.
I Physics-Informed Neural Networks (PINNs) for solving PDEs.

I Algorithms
I Successes
I Limitations

I Goal for the Today’s Lecture:
I Theoretical insights into why PINNs work and why they don’t
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PDE forward problem

I Let X ,Y be Function spaces with Y = Lp(D;Rm).

I D = D or D = D × (0,T ), with D ⊂ Rd

I Generic Abstract PDE:

D(u) = f,

I D : X 7→ Y is the Differential operator, with input f ∈ Y

I Boundary (Initial) conditions are implicit.
I Example: Heat Equation

I D := ∂t −∆
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Deep Neural networks

X = Z0 Z1 Z2 Z3
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I u∗(y) = σo � CK � σ� CK−1 . . . . . . . . .� σ� C2 � σ� C1(y).

I At the k-th Hidden layer: yk+1 := σ(Cky
k) = σ(W kyk + Bk)

I Parameters: θ = {Wk ,Bk} ∈ Θ.

I Scalar Activation function σ

I Sigmoid, Tanh
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PINNs for the PDE

I For Parameters θ ∈ Θ, uθ : D 7→ Rm is a DNN, with uθ ∈ X ∗

I Aim: Find θ ∈ Θ such that uθ ≈ u (in suitable sense).

I Compute PDE Residual by Automatic Differentiation:

R := Rθ(y) = D (uθ(y))− f(y), y ∈ D Rθ ∈ Y ∗, ∀θ ∈ Θ

I PINNs are minimizers of ‖Rθ‖pY ∼
∫
D
|Rθ(y)|p dy

I Replace Integral by Quadrature !

I Let S = {yi}1≤i≤N be quadrature points in D, with weights wi

I PINN for approximating PDE is defined as u∗ = uθ∗ such that

θ∗ = arg min
θ∈Θ

N∑
i=1

wi |Rθ(yi )|p

I Minimize Very high-d Non-Convex loss with ADAM,L-BFGS
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Do PINNs work ?

I Multi-D Heat Equation

I PINN with Depth 4, Width 20, Interior training points 216,
Boundary points 215

Dimension Training Error Generalization error

1 2.8× 10−5 0.0035%

5 0.0002 0.016%

10 0.0003 0.03%

20 0.006 0.79%

50 0.006 1.5%

100 0.004 2.6%

I No Curse of dimensionality !!
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When and Why do PINNs work for a PDE D(u) = f?

I PDE solution u, DNN uθ with parameters θ ∈ Θ

I AIM is to ensure small Total Error:

E(θ) := ‖u− uθ‖p

I PINNs may not have access to samples from Exact Solution u

I On the other hand, PINNs minimize PDE Residual:

EG (θ) = ‖Rθ‖p = ‖D (uθ)− f‖p

I In practice, we only have access to Training Error:

ET (θ) =

(
N∑
i=1

wi |Rθ(yi )|p
) 1

p
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Key Theoretical Questions

I Is the PDE Residual small in the class of Neural Networks
that approximate the exact solution u ? i.e.

Does ∃θ̂, θ̃ ∈ Θ, EG (θ̂),ET (θ̃) < ε, and E ∼ O(ε) ?.

I Does small PINN Residual ⇒ small Total Error ? i.e.,

I Can we derive a bound of the form:

E(θ) ≤ CEG (θ), ∀θ ∈ Θ

I Does small Training Loss ⇒ small PINN Residual ? i.e.,

I Can we derive a bound of the form ?

EG (θ) ≤ C (ET (θ),N) ∼ o
(
N−1

)
∀θ ∈ Θ
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On the smallness of PDE Residuals

I For sufficiently smooth u solving D(u) = f observe that

EG (θ) = ‖D (uθ)−f‖p = ‖D (uθ)−D(u)‖p ≤ C (u, uθ) ‖u−uθ‖W s,p

I Here s depends on the number of derivatives in the
Differential Operator D.

I Universal Approximation Theorems for DNNs:

∃θ̂ ∈ Θ, ‖u− uθ̂‖Lp < ε

I Extensions of (DeRyck,Lanthaler,SM, 2021): ‖u− uθ̂‖W s,p < ε

I smoothness of u ⇒ small PINN Residuals: EG (θ) ≤ ε
I Smooth Activations + Sufficient Quadrature points:

min
θ

ET (θ) ≤ ε+ o
(
N−1

)
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On bounds on total error in terms of Residuals

I Sufficient Conditions of SM, Molinaro, 2021:

I Coercivity of the PDE Du = f : for any u, ū ∈ X :

‖u− ū‖p ≤ Cpde(ū, u)‖D(ū)−D(u)‖p

I Coercivity ⇒ Bounds in terms of Residuals as,

E(θ) = ‖uθ − u‖p,
≤ Cpde(u, uθ)‖D(uθ)−D(u)‖p (Coercivity),

≤ Cpde(u, uθ)‖D(uθ)− f ‖p as D(u) = f ,

≤ Cpde(u, uθ)EG (θ) (Definition of EG )

I Training Error ET is Quadrature Approximation of EG :

EG ≤ ET + Cquad(uθ∗)
1
pN−

α
p quadrature error,
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A Strategy for PINN Error Bounds SM, Molinaro, 2021

I Use smoothness of exact solution to u of PDE D(u) = f

I And DNN approximation results in high-order Sobolev spaces
to show that:

∃θ ∈ Θ : EG (θ),ET (θ) ≤ C (u, uθ)‖u− uθ‖W s,p .

I Use Coercivity of a given PDE to show that

‖u− uθ‖p ≤ C (u, uθ)EG (θ), ∀θ ∈ Θ.

I Use Quadrature bounds to show that,

EG ≤ ET + Cquad(uθ∗)
1
pN−

α
p

I Prove explicit growth bounds on the constants C ,C ,Cquad in
terms of Neural Network architecture and number of
collocation points.

Siddhartha Mishra AISE2024



Kolmogorov PDEs

I Linear Parabolic PDEs of form:

∂tu =
d∑

i=1

µi (x)∂xiu +
1

2

d∑
i ,j ,k=1

σik(x)σkj(x)∂xixju,

u|∂D×(0,T ) = Ψ(x , t), u(x , 0) = ϕ(x)

I µ, σ are Affine
I Examples:

I Heat Equation: µ = 0, σ = ID
I Black-Scholes Equation for Option Pricing:
I Interest rate µ, Stock Volatilities β and correlations ρ

ut =
d∑

i,j=1

βiβjρijxixjuxixj +
d∑

j=1

µxjuxj

I Note that d >> 1 (Very high-dimensional)
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Error Bounds: De Ryck, SM, 2021.

I ∃ Tanh PINN û of size O(ε−α(d)): EG ,T (θ̂) ∼ ε,
I Uses Dynkin’s formula to overcome curse of dimensionality.

I Stability of PDE: ‖u − uθ‖2 ≤ C
(
‖Rint,θ‖+ ‖Rsb,θ‖

1
2

)
I Use Hoeffding’s inequality + Lipschitz bounds on uθ:

E2
G (θ) ∼ O

(
E2
T (θ) +

C (M, log(‖W ‖)) log(
√
N)√

N

)
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Numerical Results: (SM, Molinaro, Tanios, 2021)

I Heat Equation:

Dimension Training Error Total error

20 0.006 0.79%

50 0.006 1.5%

100 0.004 2.6%

I Black-Scholes type PDE with Uncorrelated Noise:

Dimension Training Error Total error

20 0.0016 1.0%

50 0.0031 1.5%

100 0.0031 1.8%

I Heston option-pricing PDE

Dimension Training Error Total error

20 0.0064 1.0%

50 0.0037 1.3%

100 0.0032 1.4%
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Radiative Transfer Equations

I 2d + 1-dim Integro-Differential PDE for Intensity

1

c
ut + ω · ∇u + (k(x , ν) + σ(x , ν)) u

− σ(x , ν)

sd

∫
R+

∫
S

Φ(ω, ω′, ν, ν ′)udω′dν ′ = f (x , t, n, ν).

I High-dimensional, non-local, mixed-type, multiphysics

I PINNs applied and bound derived in SM, Molinaro 2020.
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Numerical Results

2-D, Intensity 2-D, Boundary 6-D, Inc. Radiation 6-D, Radial flux

Dimension Network Size Error Training Time

2 24× 8 0.3% 57 min

6 20× 8 2.1% 66 min
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Navier-Stokes Eqns: ut + (u · ∇)u +∇p = ν∆u, div u = 0

I Theory in DeRyck, Jagtap, SM, 2022.

I Smooth u ∈ Hk : PINN with size(û) ∼ O
(
Md+1

)
:

EG (θ̂) ≤ O
(
M1−k log(M)

)
I Use PDE theory to prove for C = C (‖curl u‖L∞)

‖u − uθ‖2 ≤ C
(
‖Rint,θ‖+ ‖Rtb,θ‖+ ‖Rsb,θ‖

1
2 + ‖Rdiv ,θ‖

1
2

)
I Use Quadrature bounds: E2

G (θ) ∼ O
(
E2
T (θ) + N−α

)
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Results for 2-D Double Shear Layer
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Viscous Burgers’: ut + div f (u) = ν∆u

I Error E ≤ CeCT (ET + CqN
−α), C = C (‖∇uν‖L∞)

I ‖∇uν‖L∞ ∼ 1√
ν
⇒ Error can blow up near shocks !!

ν = 10−3, Sh ν = 0, Sh ν = 10−3, RF ν = 0, RF

ν E (Shock) E (Rarefaction)

10−3 1.0% 2.2%

10−4 11.2% 1.6%

0 23.1% 1.2%

• Alternatives: wPINNs of De Ryck, Molinaro, SM, 2023.
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Summary (so far)

I For generic PDE: D(u) = f

I Rigorous Error estimate for PINNs:

‖u− uθ‖ ∼ Cpde (u, uθ)
[
ET (θ) + Cquad(uθ)N−α

]
I Training Error is a blackbox

I We have that min
θ

ET (θ) ≤ ε

I But can we train to reach close to the global minimum ?
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Theoretical Framework of De Ryck et al 2023

I Gradient Descent with Physics-Informed Loss:

θk+1 = θk − η∇θL, L =
1

2

∫
D

|D(u(x , θ)− f (x)|2dx .

I Taylor Expansion:

u(x , θk) = u(x , θ0)+∇θu(x , θ0)(θk−θ0)+ 〈Hkθk−θ0, θk−θ0〉

I Rewritten GD: θk+1 = (I − ηA)θk + η(Aθ0 + C) + ηεk
I Gram Matrix: Ai ,,j = 〈Dϕi ,Dϕj〉L2 , ϕi = ∂θi u(x , θ0)

I Bias vector: Ci = 〈Du(θ0)− f ,Dϕi 〉
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Dynamics of simplified GD

I if εk ∼ O(ε), then GD can be approximated by simpGD:

θk+1 = (I − ηA)θk + η(Aθ0 + C)

I Small error terms correspond to the NTK regime for uθ,Duθ:

TKfθ(x , y) = ∇θfθ(x)>∇θf (y).

I For simpGD, easy to show that

‖θk−θ∗‖2 ≤
(

1− c

κ(A)

)k

‖θ0−θ∗‖2, N(δ) ∼ O(κ(A) log(1/δ))

I Key role played by Condition Number: κ(A) = λmax(A)
λmin(A)
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More on Simp GD

I Introduce A = D∗D, the Hermitian-Square of D.

I Under suitable assumptions, κ(A) = κ (A� TT ∗),

I T : v 7→
∑

k vkϕk connects the vector and function spaces.

I Ex: if D = −∆, then A = ∆2

I in general κ(A) can be very high.

I Key difference in Supervised Learning and Physics-Informed
learning

I Need to precondition D∗D.

I Most techniques to accelerate PINNs training can be viewed
as Preconditioning
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1-D Possion: −u′′ = −k2 sin(kx)
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1-D Possion: −u′′ = −k2 sin(kx)
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1-D Advection: ut + βux = 0
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1-D Advection: ut + βux = 0
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1-D Advection: ut + βux = 0
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1-D Advection: ut + βux = 0
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