AI in the Sciences and Engineering 2024: Lecture 8

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

∢ ≣⇒

Introduction to Deep Learning.

Physics-Informed Neural Networks (PINNs) for solving PDEs.

- Algorithms
- Successes
- Limitations
- Goal for the Today's Lecture:

Theoretical insights into why PINNs work and why they don't

- Let X, Y be Function spaces with $Y = L^p(\mathbb{D}; \mathbb{R}^m)$.
- $\mathbb{D} = D$ or $\mathbb{D} = D imes (0, T)$, with $D \subset \mathbb{R}^d$
- Generic Abstract PDE:

$$\mathcal{D}(u) = f,$$

- $\mathcal{D}: X \mapsto Y$ is the Differential operator, with input $f \in Y$
- Boundary (Initial) conditions are implicit.
- Example: Heat Equation

$$\blacktriangleright \mathcal{D} := \partial_t - \Delta$$

Deep Neural networks

- $\blacktriangleright u^*(y) = \sigma_o \odot C_K \odot \sigma \odot C_{K-1} \ldots \odot \sigma \odot C_2 \odot \sigma \odot C_1(y).$
- At the k-th Hidden layer: $y^{k+1} := \sigma(C_k y^k) = \sigma(W^k y^k + B^k)$
- Parameters: $\theta = \{W_k, B_k\} \in \Theta$.
- Scalar Activation function σ
- Sigmoid, Tanh

PINNs for the PDE

- ▶ For Parameters $\theta \in \Theta$, $u_{\theta} : \mathbb{D} \mapsto \mathbb{R}^{m}$ is a DNN, with $u_{\theta} \in X^{*}$
- Aim: Find $\theta \in \Theta$ such that $u_{\theta} \approx u$ (in suitable sense).
- Compute PDE Residual by Automatic Differentiation:

$$\mathfrak{R} := \mathfrak{R}_{ heta}(y) = \mathcal{D}\left(\mathsf{u}_{ heta}(y)
ight) - \mathsf{f}(y), \; y \in \mathbb{D} \quad \mathfrak{R}_{ heta} \in Y^*, \quad orall heta \in \Theta$$

- PINNs are minimizers of $\|\mathcal{R}_{\theta}\|_{Y}^{p} \sim \int_{\mathbb{D}} |\mathcal{R}_{\theta}(y)|^{p} dy$
- Replace Integral by Quadrature !
- Let $S = \{y_i\}_{1 \le i \le N}$ be quadrature points in \mathbb{D} , with weights w_i
- ▶ PINN for approximating PDE is defined as $u^* = u_{\theta^*}$ such that

$$\theta^* = \arg\min_{\theta \in \Theta} \sum_{i=1}^N w_i |\mathcal{R}_{\theta}(y_i)|^p$$

Minimize Very high-d Non-Convex loss with ADAM_L-BFGS

Multi-D Heat Equation

 PINN with Depth 4, Width 20, Interior training points 2¹⁶, Boundary points 2¹⁵

Dimension	Training Error	Generalization error
1	$2.8 imes10^{-5}$	0.0035%
5	0.0002	0.016%
10	0.0003	0.03%
20	0.006	0.79%
50	0.006	1.5%
100	0.004	2.6%

► No Curse of dimensionality !!

When and Why do PINNs work for a PDE D(u) = f?

- ▶ PDE solution u, DNN u_{θ} with parameters $\theta \in \Theta$
- ► AIM is to ensure small Total Error:

$$\mathcal{E}(\theta) := \|\mathbf{u} - \mathbf{u}_{\theta}\|_{p}$$

PINNs may not have access to samples from Exact Solution u
 On the other hand, PINNs minimize PDE Residual;

$$\mathcal{E}_{G}(\theta) = \|\mathcal{R}_{\theta}\|_{p} = \|\mathcal{D}(u_{\theta}) - f\|_{p}$$

In practice, we only have access to Training Error:

$$\mathcal{E}_{T}(\theta) = \left(\sum_{i=1}^{N} w_{i} |\mathcal{R}_{\theta}(y_{i})|^{p}\right)^{\frac{1}{p}}$$

Key Theoretical Questions

Is the PDE Residual small in the class of Neural Networks that approximate the exact solution u ? i.e.

Does
$$\exists \hat{\theta}, \tilde{\theta} \in \Theta$$
, $\mathcal{E}_{G}(\hat{\theta}), \mathcal{E}_{T}(\tilde{\theta}) < \epsilon$, and $\mathcal{E} \sim \mathcal{O}(\epsilon)$?.

- ▶ Does small PINN Residual ⇒ small Total Error ? i.e.,
- Can we derive a bound of the form:

$$\mathcal{E}(\theta) \leq C\mathcal{E}_{G}(\theta), \quad \forall \theta \in \Theta$$

► Does small Training Loss ⇒ small PINN Residual ? i.e.,

Can we derive a bound of the form ?

$$\mathcal{E}_{\mathcal{G}}(heta) \leq \overline{\mathcal{C}}\left(\mathcal{E}_{\mathcal{T}}(heta), \mathcal{N}
ight) \sim o\left(\mathcal{N}^{-1}
ight) \quad orall heta \in \Theta$$

On the smallness of PDE Residuals

▶ For sufficiently smooth u solving D(u) = f observe that

 $\mathcal{E}_{G}(\theta) = \|\mathcal{D}(\mathsf{u}_{\theta}) - \mathsf{f}\|_{p} = \|\mathcal{D}(\mathsf{u}_{\theta}) - \mathcal{D}(\mathsf{u})\|_{p} \leq C(\mathsf{u},\mathsf{u}_{\theta}) \, \|\mathsf{u} - \mathsf{u}_{\theta}\|_{W^{s,p}}$

- Here s depends on the number of derivatives in the Differential Operator D.
- Universal Approximation Theorems for DNNs:

$$\exists \hat{\theta} \in \Theta, \quad \|\mathbf{u} - \mathbf{u}_{\hat{\theta}}\|_{L^p} < \epsilon$$

Extensions of (DeRyck,Lanthaler,SM, 2021): ||u − u_θ||_{W^{s,p}} < ε
 smoothness of u ⇒ small PINN Residuals: ε_G(θ) ≤ ε
 Smooth Activations + Sufficient Quadrature points:

$$\min_{\theta} \mathcal{E}_{T}(\theta) \leq \epsilon + o\left(N^{-1}\right)$$

On bounds on total error in terms of Residuals

- Sufficient Conditions of SM, Molinaro, 2021:
- Coercivity of the PDE $\mathcal{D}u = f$: for any $u, \bar{u} \in X$:

$$\|\mathbf{u} - \bar{\mathbf{u}}\|_{p} \leq C_{pde}(\bar{\mathbf{u}}, \mathbf{u}) \|\mathcal{D}(\bar{\mathbf{u}}) - \mathcal{D}(\mathbf{u})\|_{p}$$

• Coercivity \Rightarrow Bounds in terms of Residuals as,

$$\begin{split} \mathcal{E}(\theta) &= \|\mathbf{u}_{\theta} - \mathbf{u}\|_{\rho}, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \|\mathcal{D}(\mathbf{u}_{\theta}) - \mathcal{D}(\mathbf{u})\|_{\rho} \quad \text{(Coercivity)}, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \|\mathcal{D}(\mathbf{u}_{\theta}) - f\|_{\rho} \quad \text{as } \mathcal{D}(\mathbf{u}) = f, \\ &\leq C_{pde}(\mathbf{u}, \mathbf{u}_{\theta}) \mathcal{E}_{G}(\theta) \quad \text{(Definition of } \mathcal{E}_{G}) \end{split}$$

Training Error $\mathcal{E}_{\mathcal{T}}$ is Quadrature Approximation of $\mathcal{E}_{\mathcal{G}}$:

$$\mathcal{E}_G \leq \mathcal{E}_T + C_{quad}(u_{\theta^*})^{\frac{1}{p}} N^{-\frac{\alpha}{p}}$$
 quadrature error,

A Strategy for PINN Error Bounds SM, Molinaro, 2021

- Use smoothness of exact solution to u of PDE $\mathcal{D}(u) = f$
- And DNN approximation results in high-order Sobolev spaces to show that:

$$\exists \theta \in \Theta: \quad \mathcal{E}_{G}(\theta), \mathcal{E}_{T}(\theta) \leq \underline{C}(\mathsf{u}, \mathsf{u}_{\theta}) \|\mathsf{u} - \mathsf{u}_{\theta}\|_{W^{s,p}}.$$

Use Coercivity of a given PDE to show that

$$\|\mathbf{u}-\mathbf{u}_{\theta}\|_{p} \leq \overline{C}(\mathbf{u},\mathbf{u}_{\theta})\mathcal{E}_{G}(\theta), \quad \forall \theta \in \Theta.$$

Use Quadrature bounds to show that,

$$\mathcal{E}_{G} \leq \mathcal{E}_{T} + C_{quad}(u_{\theta^{*}})^{\frac{1}{p}} N^{-\frac{\alpha}{p}}$$

Prove explicit growth bounds on the constants <u>C</u>, <u>C</u>, C_{quad} in terms of Neural Network architecture and number of collocation points.

Kolmogorov PDEs

Linear Parabolic PDEs of form:

$$\partial_t u = \sum_{i=1}^d \mu_i(x) \partial_{x_i} u + \frac{1}{2} \sum_{i,j,k=1}^d \sigma_{ik}(x) \sigma_{kj}(x) \partial_{x_i x_j} u,$$
$$u|_{\partial D \times (0,T)} = \Psi(x,t), \quad u(x,0) = \varphi(x)$$

Examples:

- Heat Equation: $\mu = 0$, $\sigma = ID$
- Black-Scholes Equation for Option Pricing:
- Interest rate μ , Stock Volatilities β and correlations ρ

$$u_t = \sum_{i,j=1}^d \beta_i \beta_j \rho_{ij} x_i x_j u_{x_i x_j} + \sum_{j=1}^d \mu x_j u_{x_j}$$

Note that d >> 1 (Very high-dimensional)

Error Bounds: De Ryck, SM, 2021.

- ► \exists Tanh PINN \hat{u} of size $\mathcal{O}(\epsilon^{-\alpha(d)})$: $\mathcal{E}_{G,T}(\hat{\theta}) \sim \epsilon$,
- Uses Dynkin's formula to overcome curse of dimensionality.
- ► Stability of PDE: $||u u_{\theta}||_2 \le C \left(||\mathcal{R}_{int,\theta}|| + ||\mathcal{R}_{sb,\theta}||^{\frac{1}{2}} \right)$

• Use Hoeffding's inequality + Lipschitz bounds on u_{θ} :

$$\mathcal{E}_{G}^{2}(\theta) \sim \mathcal{O}\left(\mathcal{E}_{T}^{2}(\theta) + \frac{C\left(M, \log(\|W\|)\right)\log(\sqrt{N})}{\sqrt{N}}\right)$$

Numerical Results: (SM, Molinaro, Tanios, 2021)

► Heat Equation:

Dimension	Training Error	Total error
20	0.006	0.79%
50	0.006	1.5%
100	0.004	2.6%

Black-Scholes type PDE with Uncorrelated Noise:

Dimension	Training Error	Total error
20	0.0016	1.0%
50	0.0031	1.5%
100	0.0031	1.8%

Heston option-pricing PDE

Dimension	Training Error	Total error
20	0.0064	1.0%
50	0.0037	1.3%
100	0.0032	1.4%

▶ 2d + 1-dim Integro-Differential PDE for Intensity

$$\frac{1}{c}u_t + \omega \cdot \nabla u + (k(x,\nu) + \sigma(x,\nu)) u \\ - \frac{\sigma(x,\nu)}{s_d} \int_{R_+} \int_{S} \Phi(\omega,\omega',\nu,\nu') u d\omega' d\nu' = f(x,t,n,\nu).$$

- High-dimensional, non-local, mixed-type, multiphysics
- PINNs applied and bound derived in SM, Molinaro 2020.

Numerical Results

'문▶ '문

2-D, Intensity 2-D, Boundary 6-D, Inc. Radiation 6-D, Radial flux

Dimension	Network Size	Error	Training Time
2	24 imes 8	0.3%	57 min
6	20 × 8	2.1%	66 min

Navier-Stokes Eqns: $u_t + (u \cdot \nabla)u + \nabla p = \nu \Delta u$, div u = 0

- ► Theory in DeRyck, Jagtap, SM, 2022.
- ► Smooth $u \in H^k$: PINN with size $(\hat{u}) \sim \mathcal{O}(M^{d+1})$: $\mathcal{E}_G(\hat{\theta}) \leq \mathcal{O}(M^{1-k}\log(M))$
- Use PDE theory to prove for $C = C(\|\operatorname{curl} u\|_{L^{\infty}})$

$$\|u - u_{\theta}\|_{2} \leq C \left(\|\mathcal{R}_{int,\theta}\| + \|\mathcal{R}_{tb,\theta}\| + \|\mathcal{R}_{sb,\theta}\|^{\frac{1}{2}} + \|\mathcal{R}_{div,\theta}\|^{\frac{1}{2}} \right)$$

► Use Quadrature bounds: $\mathcal{E}_{G}^{2}(\theta) \sim \mathcal{O}\left(\mathcal{E}_{T}^{2}(\theta) + N^{-\alpha}\right)$

Results for 2-D Double Shear Layer

・ロト ・回ト ・ヨト ・ヨト

æ

Viscous Burgers': $u_t + \operatorname{div} f(u) = \nu \Delta u$

► Error & ≤ Ce^{CT} (&_T + C_qN^{-α}), C = C (||∇u^ν||_{L[∞]})
 ► ||∇u^ν||_{L[∞]} ~ 1/√ν ⇒ Error can blow up near shocks !!

ν	E (Shock)	& (Rarefaction)
10 ⁻³	1.0%	2.2%
10 ⁻⁴	11.2%	1.6%
0	23.1%	1.2%

• Alternatives: wPINNs of De Ryck, Molinaro, SM, 2023.

- For generic PDE: $\mathcal{D}(u) = f$
- Rigorous Error estimate for PINNs:

$$\left\|\boldsymbol{u}-\boldsymbol{u}_{\boldsymbol{\theta}}\right\|\sim \textit{C}_{\mathrm{pde}}\left(\boldsymbol{u},\boldsymbol{u}_{\boldsymbol{\theta}}\right)\left[\textit{\mathcal{E}}_{\textit{T}}(\boldsymbol{\theta})+\textit{C}_{\mathrm{quad}}(\boldsymbol{u}_{\boldsymbol{\theta}})\textit{N}^{-\alpha}\right]$$

- Training Error is a blackbox
- We have that $\min_{\theta} \mathcal{E}_{\mathcal{T}}(\theta) \leq \epsilon$
- But can we train to reach close to the global minimum ?

Theoretical Framework of De Ryck et al 2023

Gradient Descent with Physics-Informed Loss:

$$heta_{k+1} = heta_k - \eta
abla_{ heta} L, \quad L = rac{1}{2} \int\limits_D |\mathcal{D}(\mathbf{u}(x, \theta) - f(x))|^2 dx.$$

 $\mathsf{u}(x,\theta_k) = \mathsf{u}(x,\theta_0) + \nabla_{\theta} \mathsf{u}(x,\theta_0)(\theta_k - \theta_0) + \langle H_k \theta_k - \theta_0, \theta_k - \theta_0 \rangle$

- Rewritten GD: $\theta_{k+1} = (I \eta A)\theta_k + \eta (A\theta_0 + C) + \eta \epsilon_k$
- Gram Matrix: $\mathcal{A}_{i,j} = \langle \mathcal{D}\varphi_i, \mathcal{D}\varphi_j \rangle_{L^2}, \ \varphi_i = \partial_{\theta_i} u(x, \theta_0)$
- Bias vector: $\mathfrak{C}_i = \langle \mathcal{D}\mathfrak{u}(\theta_0) f, \mathcal{D}\varphi_i \rangle$

Dynamics of simplified GD

• if $\epsilon_k \sim \mathcal{O}(\epsilon)$, then *GD* can be approximated by simpGD:

$$\theta_{k+1} = (I - \eta \mathcal{A})\theta_k + \eta(\mathcal{A}\theta_0 + \mathcal{C})$$

Small error terms correspond to the NTK regime for u_{θ} , $\mathcal{D}u_{\theta}$:

$$TKf_{\theta}(x, y) = \nabla_{\theta}f_{\theta}(x)^{\top}\nabla_{\theta}f(y).$$

For simpGD, easy to show that

$$\| heta_k - heta^*\|_2 \le \left(1 - rac{c}{\kappa(\mathcal{A})}
ight)^k \| heta_0 - heta^*\|_2, \quad N(\delta) \sim \mathcal{O}(\kappa(\mathcal{A})\log(1/\delta))$$

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Key role played by Condition Number: $\kappa(\mathcal{A}) = \frac{\lambda_{\max}(\mathcal{A})}{\lambda_{\min}(\mathcal{A})}$

More on Simp GD

- Introduce $\mathcal{A} = \mathcal{D}^* \mathcal{D}$, the Hermitian-Square of \mathcal{D} .
- Under suitable assumptions, $\kappa(\mathcal{A}) = \kappa(\mathcal{A} \odot TT^*)$,
- $T: v \mapsto \sum_{k} v_k \varphi_k$ connects the vector and function spaces.
- Ex: if $\mathcal{D} = -\Delta$, then $\mathcal{A} = \Delta^2$
- in general $\kappa(\mathcal{A})$ can be very high.
- Key difference in Supervised Learning and Physics-Informed learning
- ▶ Need to precondition $\mathcal{D}^*\mathcal{D}$.
- Most techniques to accelerate PINNs training can be viewed as Preconditioning

1-D Possion:
$$-u'' = -k^2 \sin(kx)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

1-D Advection: $u_t + \beta u_x = 0$

(日)

<ロ> <四> <四> <四> <三</td>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1-D Advection: $u_t + \beta u_x = 0$

ヘロア 人間 アメヨア 人間 アー

E.