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Recap - what is a PINN?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse 
problems involving nonlinear partial differential equations, JCP (2018)
Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

Damped harmonic oscillator:

𝑚
𝑑!𝑢
𝑑𝑡! + 𝜇

𝑑𝑢
𝑑𝑡 + 𝑘𝑢 = 0

Initial conditions:

𝑢 𝑡 = 0 = 1
𝑢" 𝑡 = 0 = 0

𝑢 =	displacement
𝑚 =	mass of oscillator
𝜇 =	coefficient of friction
𝑘 =	spring constant

Key idea: use a neural network to 
directly approximate the solution

𝑁𝑁 𝑡; 𝜃 ≈ 𝑢(𝑡)

𝑡 𝑁𝑁 𝑡; 𝜃 ≈ 𝑢(𝑡)

Train the network using the loss function:

𝐿 𝜃 = 𝜆# 𝑁𝑁 𝑡 = 0; 𝜃 − 1 !

+	𝜆!
𝑑𝑁𝑁
𝑑𝑡

𝑡 = 0; 𝜃 − 0
!

+
1
𝑁$

5
%

&!

𝑚
𝑑!

𝑑𝑡! + 𝜇
𝑑
𝑑𝑡 + 𝑘 𝑁𝑁 𝑡%; 𝜃

!
Physics loss

𝐿$ 𝜃
(aka PDE residual)

Boundary loss
𝐿' 𝜃
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Raissi et al, Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential 
equations, JCP (2018)

Recap – PINNs for solving Burgers’ equation
𝜕𝑢
𝜕𝑡
+ 𝑢

𝜕𝑢
𝜕𝑥

− 𝜈
𝜕!𝑢
𝜕𝑥!

= 0

𝑢 𝑥, 0 = − sin 𝜋𝑥
𝑢 −1, 𝑡 = 𝑢 +1, 𝑡 = 0

𝐿 𝜃 = 𝐿' 𝜃 + 𝐿$ 𝜃

𝐿' 𝜃 =
𝜆#
𝑁'#

5
(

&"#

𝑁𝑁 𝑥(, 0; 𝜃 + sin(𝜋𝑥()
!

+
𝜆!
𝑁'!

5
)

&"$

𝑁𝑁 −1, 𝑡); 𝜃 − 0 !

+
𝜆*
𝑁'*

5
+

&"%

𝑁𝑁 +1, 𝑡+; 𝜃 − 0 !

𝐿$ 𝜃 =
1
𝑁$

5
%

&!
𝜕𝑁𝑁
𝜕𝑡

+ 𝑁𝑁
𝜕𝑁𝑁
𝜕𝑥

− 𝜈
𝜕!𝑁𝑁
𝜕𝑥!

𝑥%, 𝑡%; 𝜃
!
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Recap – PINN applications
PINNs for solving forward simulation:

𝐿 𝜃 = 𝐿' 𝜃 + 𝐿$ 𝜃

𝐿' 𝜃 =5
)

𝜆)
𝑁')

5
(

&"&

ℬ) 𝑁𝑁(𝑥)(; 𝜃) − 𝑔)(𝑥)()
!

𝐿$ 𝜃 =
1
𝑁$

5
%

&!

𝒟 𝑁𝑁 𝑥%; 𝜃 − 𝑓 𝑥% !

PINNs for solving inverse problems:

𝐿 𝜃, 𝜙 = 𝐿$ 𝜃, 𝜙 + 𝐿, 𝜃

𝐿$ 𝜃, 𝜙 =
1
𝑁$

5
%

&!

𝒟 𝑁𝑁 𝑥%; 𝜃 ; 𝜙 − 𝑓 𝑥% !

𝐿, 𝜃 =
𝜆
𝑁,

5
+

&'

𝑁𝑁 𝑥+; 𝜃 − 𝑢+ !

PINNs for equation discovery:

𝐿 𝜃, Λ = 𝐿$ 𝜃, Λ + 𝐿, 𝜃

𝐿$ 𝜃, Λ =
1
𝑁$

5
%

&!

Λ𝜙 𝑁𝑁 𝑥%; 𝜃 ! + Λ !

𝐿, 𝜃 =
𝜆
𝑁,

5
+

&'

𝑁𝑁 𝑥+; 𝜃 − 𝑢+ !
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Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02.    Introduction to PyTorch

04.03.    CNNs and surrogate modelling

11.03.    Implementing PINNs I

18.03.    Implementing PINNs II

25.03.    Operator learning I

01.04. 

08.04.    Operator learning II

15.04. 

22.04.    GNNs

29.04.    Transformers

06.05.    Diffusion models

13.05.    Coding autodiff from scratch

20.05.    

27.05.    Introduction to JAX / NDEs

Wed 08:15-10:00 ML H 44

21.02.    Course introduction

28.02.    Introduction to deep learning II

06.03.    Introduction to physics-informed neural networks

13.03.    PINNs – extensions and theory

20.03.    Introduction to operator learning

27.03.    Fourier- and convolutional- neural operators

03.04. 

10.04.    Operator learning – limitations and extensions

17.04.    Foundational models for operator learning

24.04.    GNNs for PDEs / introduction to diffusion models

01.05. 

08.05.    Introduction to differentiable physics

15.05.    Neural differential equations

22.05.    Symbolic regression and equation discovery

29.05.    Guest lecture: ML in chemistry and biology

Fri 12:15-13:00 ML H 44

23.02.    Introduction to deep learning I

01.03.    Importance of PDEs in science

08.03.    PINNs – limitations and extensions
15.03.    PINNs – theory

22.03.    DeepONets and spectral neural operators

29.03. 

05.04. 

12.04.    Introduction to transformers 

19.04.    Graph neural networks for PDEs

26.04.    Introduction to diffusion models 

03.05.    Diffusion models - applications

10.05.    Hybrid workflows

17.05.    Introduction to JAX

24.05.    Course summary and future trends

31.05.    Guest lecture: ML in chemistry and biology

Tutorials Lectures
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Overview of lectures
• PINN limitations

• PINN extensions for improving:
• Computational cost

• Convergence / accuracy

• Scalability to more complex problems

• Summary: when should I use PINNs?

Part 1

Part 2
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• PINN limitations

• PINN extensions for improving:
• Computational cost

• Convergence / accuracy

• Scalability to more complex problems

• Summary: when should I use PINNs?

Learning objectives
• Explain the advantages and disadvantages 

of PINNs

• Understand current research directions on 
improving their performance

Part 1

Part 2

Overview of lectures
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Advantages / limitations of PINNs
Limitations

• ?

Advantages

• Mesh-free
• Can jointly solve forward and inverse 

problems
• Often performs well on “messy” problems 

(where some observational data is 
available)

• Tractable, analytical solution gradients 
(e.g. for sensitivity analysis)

• Mostly unsupervised
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PINN limitation 1) – computational cost
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PINNs for solving wave equation
Velocity model, 𝑐(𝑥) 

PINN

“Naïve” NN

Ground truth FD

Difference (NN)

Difference (PINN)

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Mini-batch size 𝑁' = 𝑁$ = 500 (random 
sampling)
Fully connected network with 10 layers, 
1024 hidden units
Softplus activation
Adam optimiser

Training time: ~1 hour

Ground truth FD 
simulation
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PINNs for solving wave equation
Velocity model, 𝑐(𝑥) 

PINN

“Naïve” NN

Ground truth FD

Difference (NN)

Difference (PINN)

Moseley et al, Solving the wave equation with physics-
informed deep learning, ArXiv (2020)

Mini-batch size 𝑁' = 𝑁$ = 500 (random 
sampling)
Fully connected network with 10 layers, 
1024 hidden units
Softplus activation
Adam optimiser

Training time: ~1 hour

PINNs need to be retrained for each new 
I/BC !

Ground truth FD 
simulation
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PINN limitation 2) – poor convergence
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Competing loss terms

Raissi et al, Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential 
equations, JCP (2018)

𝐿' 𝜃 =
𝜆#
𝑁'#

5
(

&"#

𝑁𝑁 𝑥(, 0; 𝜃 + sin(𝜋𝑥()
!

+
𝜆!
𝑁'!

5
)

&"$

𝑁𝑁 −1, 𝑡); 𝜃 − 0 !

+
𝜆*
𝑁'*

5
+

&"%

𝑁𝑁 +1, 𝑡+; 𝜃 − 0 !

𝐿$ 𝜃 =
1
𝑁$

5
%

&! 𝜕𝑁𝑁
𝜕𝑡

+ 𝑁𝑁
𝜕𝑁𝑁
𝜕𝑥

− 𝜈
𝜕!𝑁𝑁
𝜕𝑥!

𝑥%, 𝑡%; 𝜃
!
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Competing loss terms

Raissi et al, Physics-informed neural networks: A deep learning framework for 
solving forward and inverse problems involving nonlinear partial differential 
equations, JCP (2018)

𝐿' 𝜃 =
𝜆#
𝑁'#

5
(

&"#

𝑁𝑁 𝑥(, 0; 𝜃 + sin(𝜋𝑥()
!

+
𝜆!
𝑁'!

5
)

&"$

𝑁𝑁 −1, 𝑡); 𝜃 − 0 !

+
𝜆*
𝑁'*

5
+

&"%

𝑁𝑁 +1, 𝑡+; 𝜃 − 0 !

𝐿$ 𝜃 =
1
𝑁$

5
%

&! 𝜕𝑁𝑁
𝜕𝑡

+ 𝑁𝑁
𝜕𝑁𝑁
𝜕𝑥

− 𝜈
𝜕!𝑁𝑁
𝜕𝑥!

𝑥%, 𝑡%; 𝜃
!

How do we choose 𝜆#, 𝜆!, and 𝜆*?

𝜆 too small => doesn’t learn unique solution
𝜆 too large => only learns boundary condition

Thus, there can be competing terms in the loss function
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PINN solution “thrashing”

Moseley et al, Finite Basis Physics-Informed Neural 
Networks (FBPINNs): a scalable domain decomposition 
approach for solving differential equations, ACM (2023)
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PINN limitation 3) – scaling to more complex problems
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Scaling to more complex problems

Majority of PINN research focuses on toy/simplified problems, 
as proof-of-principle studies

Image credits: Lawrence Berkeley National 
Laboratory / NOAA / NWS / Pacific Tsunami 

Warning Center 
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Scaling to more complex problems

Majority of PINN research focuses on toy/simplified problems, 
as proof-of-principle studies

It is often challenging to scale 
traditional scientific algorithms to:

• More complex phenomena 
(multi-scale, multi-physics)

• Large domains / higher 
frequency solutions

• Incorporate real, noisy and 
sparse data

How do PINNs cope in this setting?

Image credits: Lawrence Berkeley National 
Laboratory / NOAA / NWS / Pacific Tsunami 

Warning Center 
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Scaling PINNs to higher frequencies
321 free 
parameters

66,433 free 
parameters

PINN solving:

𝑑𝑢
𝑑𝑥 = cos 𝜔𝑥

𝑢 0 = 0

Moseley et al, Finite Basis Physics-Informed Neural Networks (FBPINNs): 
a scalable domain decomposition approach for solving differential 
equations, ACM (2023)

Problem: PINNs struggle to solve 
high-frequency / multiscale 
problems
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Scaling PINNs to higher frequencies

Damped harmonic oscillator

Network size: 2 hidden layers, 64 hidden units

Problem: PINNs struggle to solve 
high-frequency / multiscale 
problems
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Advantages / limitations of PINNs
Limitations

• Computational cost often high 
(especially for forward-only problems)

• Can be hard to optimise (and 
convergence properties less well 
understood)

• Challenging to scale to larger domains, 
multi-scale, multi-physics problems

But.. many PINN extensions exist!

Advantages

• Mesh-free
• Can jointly solve forward and inverse 

problems
• Often performs well on “messy” problems 

(where some observational data is 
available)

• Tractable, analytical solution gradients 
(e.g. for sensitivity analysis)

• Mostly unsupervised



401-4656-21L AI in the Sciences and Engineering 2024 22

PINNs – an entire research field

Source: Scopus keyword search (Feb 2024)

100-1000s of PINN applications / extensions!
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• PINN limitations

• PINN extensions for improving:
• Computational cost

• Convergence / accuracy

• Scalability to more complex problems

• Summary: when should I use PINNs?

Learning objectives
• Explain the advantages and disadvantages 

of PINNs

• Understand current research directions on 
improving their performance

Part 1

Part 2

Overview of lectures
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Limitation 1) – computational cost
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Conditioned PINNs
Idea: add I/BCs / other PDE parameters as additional network input parameters

Velocity model, 𝑐(𝑥) 

Ground truth FD 
simulation

𝑥! 𝑁𝑁(𝑥, 𝑡, 𝜃)

𝑡

𝑥"

PINN

𝑠
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Conditioned PINNs
Idea: add I/BCs / other PDE parameters as additional network input parameters

Velocity model, 𝑐(𝑥) 

Ground truth FD 
simulation

𝑥! 𝑁𝑁(𝑥, 𝑡, 𝜃)

𝑡

𝑥" 𝑥!
𝑁𝑁(𝑥, 𝑡, 𝑠; 𝜃)𝑡

𝑥"

𝑠!

𝑠"

PINN Conditioned PINN

𝑠
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Conditioned PINNs
Idea: add I/BCs / other PDE parameters as additional network input parameters

Velocity model, 𝑐(𝑥) 

Ground truth FD 
simulation

PINN

𝑠

𝐿( 𝜃 =
𝜆
𝑁(
&
)

*!

𝑁𝑁 𝑥) , 𝑡); 𝜃 − 𝑢+, 𝑥) , 𝑡)
-

𝐿. 𝜃 =
1
𝑁.

&
/

*"

∇- −
1

𝑐 𝑥/ -
𝜕-

𝜕𝑡-
𝑁𝑁 𝑥/ , 𝑡/; 𝜃

-
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Conditioned PINNs
Idea: add I/BCs / other PDE parameters as additional network input parameters

Velocity model, 𝑐(𝑥) 

Ground truth FD 
simulation

PINN Conditioned PINN

𝑠

𝐿( 𝜃 =
𝜆
𝑁(
&
)

*!

𝑁𝑁 𝑥) , 𝑡); 𝜃 − 𝑢+, 𝑥) , 𝑡)
-

𝐿. 𝜃 =
1
𝑁.

&
/

*"

∇- −
1

𝑐 𝑥/ -
𝜕-

𝜕𝑡-
𝑁𝑁 𝑥/ , 𝑡/; 𝜃

-

𝐿( 𝜃 =
𝜆
𝑁(
&
)

*!

𝑁𝑁 𝑥) , 𝑡) , 𝑠); 𝜃 − 𝑢+, 𝑥) , 𝑡) , 𝑠)
-

𝐿. 𝜃 =
1
𝑁.

&
/

*"

∇- −
1

𝑐 𝑥/ -
𝜕-

𝜕𝑡-
𝑁𝑁 𝑥/ , 𝑡/ , 𝑠/; 𝜃

-

Boundary examples from many 
different source locations

Randomly sampled input 
coordinates and source locations
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Conditioned PINNs

PINN

Ground truth FD

PINN

Ground truth FD

PINN

Ground truth FD

Velocity model, 𝑐(𝑥) 

Means the network does not need to be 
retrained for each simulation => much faster!

Aka a surrogate model

𝑥!
𝑁𝑁(𝑥, 𝑡, 𝑠; 𝜃)𝑡

𝑥"

𝑠!

𝑠"

White = random source 
locations used for training

Red = source locations 
used for testing

Moseley et al, Solving the wave 
equation with physics-informed 
deep learning, ArXiv (2020)
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Physics-informed deep operator networks (DeepONets)

Wang et al, Learning the solution operator of parametric partial 
differential equations with physics-informed DeepONets, Science 
Advances (2021)

Lu et al, Learning nonlinear operators via DeepONet based on the 
universal approximation theorem of operators, Nature Machine 
Intelligence (2021)

Conditioned PINN for solving 
reaction-diffusion equation:

𝜕𝑢
𝜕𝑡 = 𝐷

𝜕!𝑢
𝜕𝑥! + 𝑘𝑢

! + 𝑓(𝑥)

Input:
𝑛 discretised values of 𝑓(𝑥)

Output:
𝑁𝑁 𝑥, 𝑡, 𝒇; 𝜃 ≈ 𝑢(𝑥, 𝑡)

Trained using many examples of 
𝑓(𝑥)

DeepONet

𝑥, 𝑡

𝐺(𝒖)(𝑥, 𝑡)𝑁𝑁 𝑥, 𝑡, 𝒇; 𝜃
≈ 𝑢(𝑥, 𝑡)

𝑓 𝑥!
𝑓(𝑥")
…

𝑓(𝑥#)

𝑓
𝑥

𝑓
𝑥

𝑓
𝑥

Exact 𝑢 𝑥, 𝑡 Exact 𝑢 𝑥, 𝑡 Exact 𝑢 𝑥, 𝑡

Predicted 𝑢 𝑥, 𝑡 Predicted 𝑢 𝑥, 𝑡 Predicted 𝑢 𝑥, 𝑡

𝑓
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Discretised PINNs
Idea: discretise solution and use e.g. convolutional network to learn spatial/temporal correlations

Input: 0
(fixed value)

Architecture:
(Transposed) convolutional layers

Output: discretised solution
(a matrix of values)

e.g. 128 x 256

𝑁𝑁 𝜃 %( ≈ 𝑢(𝑥 = 𝑥%, 𝑡 = 𝑡()

Instead of: 𝑁𝑁(𝑥, 𝑡; 𝜃) ≈ 𝑢(𝑥, 𝑡)
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Discretised PINNs
Idea: discretise solution and use e.g. convolutional network to learn spatial/temporal correlations

Input: 0
(fixed value)

𝑁𝑁 𝜃 %( ≈ 𝑢(𝑥 = 𝑥%, 𝑡 = 𝑡()

𝐿$ 𝜃 =
1
𝑁$

5
%

&!
𝜕𝑁𝑁
𝜕𝑡

+ 𝑁𝑁
𝜕𝑁𝑁
𝜕𝑥

− 𝜈
𝜕!𝑁𝑁
𝜕𝑥!

𝑥%, 𝑡%; 𝜃
!

PINN Discretised PINN

𝐿$ 𝜃 =
1

𝑁2𝑁"
5
%

&0

5
(

&1 𝛿𝑁𝑁(𝜃)%(
𝛿𝑡 + 𝑁𝑁(𝜃)%(

𝛿𝑁𝑁(𝜃)%(
𝛿𝑥 − 𝜈

𝛿!𝑁𝑁(𝜃)%(
𝛿𝑥!

!

𝑁𝑁(𝑥, 𝑡; 𝜃) ≈ 𝑢(𝑥, 𝑡)
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Discretised PINNs
Idea: discretise solution and use e.g. convolutional network to learn spatial/temporal correlations

Input: 0
(fixed value)

𝑁𝑁 𝜃 %( ≈ 𝑢(𝑥 = 𝑥%, 𝑡 = 𝑡()

Discretised PINN

𝐿$ 𝜃 =
1

𝑁2𝑁"
5
%

&0

5
(

&1 𝛿𝑁𝑁(𝜃)%(
𝛿𝑡 + 𝑁𝑁(𝜃)%(

𝛿𝑁𝑁(𝜃)%(
𝛿𝑥 − 𝜈

𝛿!𝑁𝑁(𝜃)%(
𝛿𝑥!

!

Derivatives in loss function are approximated 
using finite difference filters, e.g.

𝛿𝑁𝑁(𝜃)%(
𝛿𝑡 =

𝑁𝑁(𝜃)%( − 𝑁𝑁(𝜃)%	(4#
𝑡( − 𝑡(4#

Autodiff is still used to update 𝜃
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Discretised PINNs
Idea: discretise solution and use e.g. convolutional network to learn spatial/temporal correlations

Input: 0
(fixed value)

𝑁𝑁 𝜃 %( ≈ 𝑢(𝑥 = 𝑥%, 𝑡 = 𝑡()

Discretised PINN

𝐿$ 𝜃 =
1

𝑁2𝑁"
5
%

&0

5
(

&1 𝛿𝑁𝑁(𝜃)%(
𝛿𝑡 + 𝑁𝑁(𝜃)%(

𝛿𝑁𝑁(𝜃)%(
𝛿𝑥 − 𝜈

𝛿!𝑁𝑁(𝜃)%(
𝛿𝑥!

!

Initial/boundary conditions are asserted by padding 
the edges of the output solution with appropriate 
values (=hard constraint), e.g.

𝑁𝑁 𝜃 %	(56 = −sin 𝜋𝑥%
𝑁𝑁 𝜃 %56	( = 𝑁𝑁 𝜃 %5#!7	( = 0
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Conditioned discretised PINNs
Idea: discretise solution and use e.g. convolutional network to learn spatial/temporal correlations
And condition on I/BCs / other PDE parameters

Input: (discretised) I/BCs / other PDE 
parameters 𝑁𝑁 𝜙; 𝜃 %( ≈ 𝑢(𝑥 = 𝑥%, 𝑡 = 𝑡()

Conditioned discretised PINN

𝐿$ 𝜃 =
1

𝑁2𝑁"𝑁8
5
)

&2

5
%

&0

5
(

&1 𝛿𝑁𝑁(𝜙); 𝜃)%(
𝛿𝑡

+ 𝑁𝑁(𝜙); 𝜃)%(
𝛿𝑁𝑁(𝜙); 𝜃)%(

𝛿𝑥
− 𝜙)6

𝛿!𝑁𝑁(𝜙); 𝜃)%(
𝛿𝑥!

!

𝜈

𝜙
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Conditioned discretised PINNs

Zhu, Y et al, Physics-constrained deep learning for high-dimensional surrogate modeling and 
uncertainty quantification without labeled data. Journal of Computational Physics (2019)

Input: 
permeability field

PDE: steady-state flow in 
heterogeneous media (Darcy 

flow)

Output: fluid pressure 
and flux field

• Fully unsupervised training (no 
simulation data required)

• Only requires many input examples 
to train
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Conditioned discretised PINNs

Zhu, Y et al, Physics-constrained deep learning for high-dimensional surrogate modeling and 
uncertainty quantification without labeled data. Journal of Computational Physics (2019)

Physics-informed vs fully 
data-driven CNN

Generalisation to different 
input distributions
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Advantages / limitations of discretised PINNs

Advantages

• Allows the use of CNNs to exploit spatial 
correlations between inputs/outputs of 
PDE

• Can be extended to:
• Irregular geometries (Graph NNs)
• Explicit time dependence (RNNs)
• Mixed continuous/discrete input 

coordinates

Limitations

• Relies on approximate FD gradients
• Only outputs discretised solution; needs 

to be retrained to output on larger 
domains / finer grids

Geneva et al, Modeling the dynamics of PDE systems with physics-constrained deep 
auto-regressive networks, JCP (2020)

Gao et al, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural 
networks for solving parameterized steady-state PDEs on irregular domain, JCP (2021)
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Training PINNs with finite differences

Most time is spent computing gradients, not the forward pass, 
when training PINNs

𝐿$ 𝜃 =
1
𝑁$

5
%

&!

𝒟 𝑁𝑁 𝑥%; 𝜃 − 𝑓 𝑥% !

Idea: instead of using exact gradients from autodifferentiation, use 
approximate gradients from finite differences

𝑁𝑁 𝑥%; 𝜃

𝑥% − 𝑎  𝑥%  𝑥% + 𝑎

𝜕𝑁𝑁 𝑥%; 𝜃
𝜕𝑥

≈
𝑁𝑁 𝑥% + 𝑎; 𝜃 − 𝑁𝑁 𝑥% − 𝑎; 𝜃

2𝑎

Sharma et al, Accelerated Training of Physics-Informed Neural Networks (PINNs) using 
Meshless Discretizations, NeurIPS (2022)
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Training PINNs with finite differences

Most time is spent computing gradients, not the forward pass, 
when training PINNs

𝐿$ 𝜃 =
1
𝑁$

5
%

&!

𝒟 𝑁𝑁 𝑥%; 𝜃 − 𝑓 𝑥% !

Idea: instead of using exact gradients from autodifferentiation, use 
approximate gradients from finite differences

For each collocation point 𝑥%:
1. Sample a stencil of input points around 𝑥%
2. Run forward pass of network with all these points
3. Approximate derivatives in	𝒟 using finite differences
4. Compute loss function using these derivatives

Autodiff is still used to update 𝜃

𝑁𝑁 𝑥%; 𝜃

𝑥% − 𝑎  𝑥%  𝑥% + 𝑎

𝜕𝑁𝑁 𝑥%; 𝜃
𝜕𝑥

≈
𝑁𝑁 𝑥% + 𝑎; 𝜃 − 𝑁𝑁 𝑥% − 𝑎; 𝜃

2𝑎

Can offer 2-4x speedups 
depending on PDE

But choosing a suitable value of 𝑎 
is critical

Sharma et al, Accelerated Training of Physics-Informed Neural Networks (PINNs) using 
Meshless Discretizations, NeurIPS (2022)
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• PINN limitations

• PINN extensions for improving:
• Computational cost

• Convergence / accuracy

• Scalability to more complex problems

• Summary: when should I use PINNs?

Learning objectives
• Explain the advantages and disadvantages 

of PINNs

• Understand current research directions on 
improving their performance

Part 1

Part 2

Overview of lectures
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Lecture summary
• Standard PINNs suffer from some major limitations:

• Computational cost
• Poor convergence
• Scaling to more complex problems

• We can improve their computational cost by:
• Conditioning them on additional inputs
• Discretising them
• Using finite differences to train them


