AI in the Sciences and Engineering

PINNs – Limitations and Extensions – Part 1

Spring Semester 2024

Siddhartha Mishra Ben Moseley

ETHzürich

Recap - what is a PINN?

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

Lagaris et al, Artificial neural networks for solving ordinary and partial differential equations, IEEE (1998)

ETHzürich

Recap - PINNs for solving Burgers' equation

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} = 0
$$

u(x, 0) = -\sin(\pi x)
u(-1, t) = u(+1, t) = 0

 $L(\theta) = L_b(\theta) + L_n(\theta)$

Recap – PINN applications

PINNs for solving **forward** simulation:

$$
L(\theta) = L_b(\theta) + L_p(\theta)
$$

$$
L_b(\theta) = \sum_{k} \frac{\lambda_k}{N_{bk}} \sum_{j}^{N_{bk}} \left\| \mathcal{B}_k \left[NN(x_{kj}; \theta) \right] - g_k(x_{kj}) \right\|^2
$$

$$
L_p(\theta) = \frac{1}{N_p} \sum_{i}^{N_p} \left\| \mathcal{D} \left[NN(x_i; \theta) \right] - f(x_i) \right\|^2
$$

PINNs for solving **inverse** problems:

$$
L(\theta, \phi) = L_p(\theta, \phi) + L_d(\theta)
$$

$$
L_p(\theta, \phi) = \frac{1}{N_p} \sum_{i}^{N_p} ||\mathcal{D}[NN(x_i; \theta); \phi] - f(x_i)||^2
$$

$$
L_d(\theta) = \frac{\lambda}{N_d} \sum_{l}^{N_d} ||NN(x_l; \theta) - u_l||^2
$$

PINNs for **equation discovery**:

$$
L(\theta, \Lambda) = L_p(\theta, \Lambda) + L_d(\theta)
$$

$$
L_p(\theta, \Lambda) = \frac{1}{N_p} \sum_{i}^{N_p} ||\Lambda \phi[NN(x_i; \theta)]||^2 + ||\Lambda||^2
$$

$$
L_d(\theta) = \frac{\lambda}{N_d} \sum_{l}^{N_d} ||NN(x_l; \theta) - u_l||^2
$$

Course timeline

ETHzürich

Overview of lectures

- PINN limitations
- PINN extensions for improving:
	- Computational cost
	- Convergence / accuracy
	- Scalability to more complex problems

• Summary: when should I use PINNs?

Part 1

Part 2

Overview of lectures

- PINN limitations
- PINN extensions for improving:
	- Computational cost
	- Convergence / accuracy
	- Scalability to more complex problems
- Summary: when should I use PINNs?

Learning objectives

- Explain the advantages and disadvantages of PINNs
- Understand current research directions on improving their performance

Part 1

Part 2

Advantages / limitations of PINNs

Advantages

Limitations

• **Mesh-free**

• **?**

- Can jointly solve **forward** and **inverse** problems
- Often performs well on "messy" problems (where some observational data is available)
- Tractable, analytical solution gradients (e.g. for sensitivity analysis)
- Mostly **unsupervised**

PINN limitation 1) – computational cost

PINNs for solving wave equation

ETHzürich

Velocity model, $c(x)$

Moseley et al, Solving the wave equation with physicsinformed deep learning, ArXiv (2020)

Mini-batch size $N_b = N_p = 500$ (random sampling) Fully connected network with 10 layers, 1024 hidden units Softplus activation Adam optimiser

Training time: ~**1 hour**

401-4656-21L AI in the Sciences and Engineering 2024 10

PINNs for solving wave equation

PINN limitation 2) - poor convergence

Competing loss terms

 $\sum_{i=1}^{N_{b1}} (NN(x_j, 0; \theta) + \sin(\pi x_j))^2$ $L_b(\theta) = \frac{\lambda_1}{N_{b1}}$ $(NN(-1, t_k; \theta) - 0)^2$ N_{b2} $(NN(+1, t_l; \theta) - 0)^2$ N_{b3} $L_p(\theta) = \frac{1}{N_n} \sum^{N_p} \left(\left(\frac{\partial NN}{\partial t} + NN \frac{\partial NN}{\partial x} - \nu \frac{\partial^2 NN}{\partial x^2} \right) \left(\underline{x_i, t_i} ; \theta \right) \right)^2$

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

Competing loss terms

Raissi et al, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, JCP (2018)

$$
L_b(\theta) = \frac{\lambda_1}{N_{b1}} \sum_{j}^{N_{b1}} (NN(x_j, 0; \theta) + \frac{\sin(\pi x_j)}{\sin(\pi x_j)})^2
$$

+
$$
\frac{\lambda_2}{N_{b2}} \sum_{k}^{N_{b2}} (NN(-1, \underline{t_k}; \theta) - 0)^2
$$

+
$$
\frac{\lambda_3}{N_{b3}} \sum_{l}^{N_{b3}} (NN(+1, \underline{t_l}; \theta) - 0)^2
$$

$$
L_p(\theta) = \frac{1}{N_p} \sum_{i}^{N_p} \left(\left(\frac{\partial NN}{\partial t} + NN \frac{\partial NN}{\partial x} - \nu \frac{\partial^2 NN}{\partial x^2} \right) (x_i, t_i; \theta) \right)^2
$$

How do we choose λ_1 , λ_2 , and λ_3 ?

 λ too small => doesn't learn unique solution λ too large => only learns boundary condition

PINN limitation 3) – scaling to more complex problems

Scaling to more complex problems

Majority of PINN research focuses on **toy/simplified** problems, as proof-of-principle studies

Scaling to more complex problems

It is often challenging to **scale** traditional scientific algorithms to:

- More complex phenomena (**multi-scale**, **multi-physics**)
- Large domains / higher frequency solutions
- Incorporate **real, noisy** and **sparse** data

How do PINNs cope in this setting?

Image credits: Lawrence Berkeley National Laboratory / NOAA / NWS / Pacific Tsunami

Warning Center

Majority of PINN research focuses on **toy/simplified** problems, as proof-of-principle studies

Scaling PINNs to higher frequencies

ETHzürich

Scaling PINNs to higher frequencies

Network size: 2 hidden layers, 64 hidden units

Damped harmonic oscillator

Problem: PINNs **struggle** to solve high-frequency / multiscale problems

Advantages / limitations of PINNs

Advantages

• **Mesh-free**

- Can jointly solve **forward** and **inverse** problems
- Often performs well on "messy" problems (where some observational data is available)
- Tractable, analytical solution gradients (e.g. for sensitivity analysis)
- Mostly **unsupervised**

Limitations

- **Computational cost** often high (especially for forward-only problems)
- Can be hard to **optimise** (and convergence properties less well understood)
- Challenging to **scale** to larger domains, multi-scale, multi-physics problems

But.. many PINN extensions exist!

PINNs – an entire research field

SPRINGER LINK

Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations, like Partial Differential Equations (PDE), as a component of the neural network itself. PINNs are nowadays used to solve PDEs, fractional equations, integral-differential equations, and stochastic PDEs. This novel methodology has arisen as a multi-task learning framework in which a NN must fit observed data while reducing a PDE residual. This article provides a comprehensive review of the literature on PINNs: while the primary because the study was to characterize these networks and their related addressed and

Source: Scopus keyword search (Feb 2024)

[HTML] Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis - Journal of Computational physics, 2019 - Elsevier ... We introduce **physics-informed neural networks – neural networks** that are trained to solve supervised learning tasks while respecting any given laws of physics described by general . Save 99 Cite Cited by 8017 Related articles All 7 versions

100-1000s of PINN applications / extensions!

Overview of lectures

- PINN limitations
- PINN extensions for improving:
	- Computational cost
	- Convergence / accuracy
	- Scalability to more complex problems
- Summary: when should I use PINNs?

Learning objectives

- Explain the advantages and disadvantages of PINNs
- Understand current research directions on improving their performance

Part 1

Part 2

Limitation 1) – computational cost

Idea: add I/BCs / other PDE parameters as **additional** network input parameters

Ground truth FD simulation

Velocity model, $c(x)$

PINN

Idea: add I/BCs / other PDE parameters as **additional** network input parameters

PINN Conditioned PINN

Idea: add I/BCs / other PDE parameters as additional network input parameters

Velocity model, $c(x)$

Ground truth FD simulation

$$
L_b(\theta) = \frac{\lambda}{N_b} \sum_{j}^{N_b} \left(NN(x_j, t_j; \theta) - u_{FD}(x_j, t_j) \right)^2
$$

$$
L_p(\theta) = \frac{1}{N_p} \sum_{i}^{N_p} \left(\left[\nabla^2 - \frac{1}{c(x_i)^2} \frac{\partial^2}{\partial t^2} \right] NN(x_i, t_i; \theta) \right)^2
$$

PINN

Idea: add I/BCs / other PDE parameters as **additional** network input parameters

Ground truth FD simulation

Ground truth FD

PINN

Ground truth FD

PINN

Ground truth FD

PINN

Velocity model, $c(x)$

Means the network **does not** need to be retrained for each simulation => much faster!

Aka a **surrogate** model

Moseley et al, Solving the wave equation with physics-informed deep learning, ArXiv (2020)

Physics-informed deep operator networks (DeepONets)

Conditioned PINN for solving reaction-diffusion equation:

Input: *n* discretised values of $f(x)$

```
Output:
```

$$
NN(x,t,\boldsymbol{f};\theta) \approx u(x,t)
$$

Trained using many examples of $f(x)$

Wang et al, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets, Science Advances (2021)

Lu et al, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence (2021)

Idea: **discretise** solution and use e.g. convolutional network to learn spatial/temporal correlations

Idea: **discretise** solution and use e.g. convolutional network to learn spatial/temporal correlations

ETHzürich

Idea: **discretise** solution and use e.g. convolutional network to learn spatial/temporal correlations

Discretised PINN

Autodiff is still used to update θ

Idea: **discretise** solution and use e.g. convolutional network to learn spatial/temporal correlations

Initial/boundary conditions are asserted by **padding** the edges of the output solution with **appropriate** values (=hard constraint), e.g.

$$
NN(\theta)_{i j=0} = -\sin(\pi x_i)
$$

$$
NN(\theta)_{i=0 j} = NN(\theta)_{i=128 j} = 0
$$

$$
NN(\theta)_{ij} \approx u(x = x_i, t = t_j)
$$

$$
L_p(\theta) = \frac{1}{N_x N_t} \sum_{i}^{N_x} \sum_{j}^{N_t} \left(\frac{\delta NN(\theta)_{ij}}{\delta t} + NN(\theta)_{ij} \frac{\delta NN(\theta)_{ij}}{\delta x} - \nu \frac{\delta^2 NN(\theta)_{ij}}{\delta x^2} \right)^2
$$

Discretised PINN

Conditioned discretised PINNs

Idea: **discretise** solution and use e.g. convolutional network to learn spatial/temporal correlations And condition on I/BCs / other PDE parameters

ETHzürich

Conditioned discretised PINNs

Zhu, Y et al, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics (2019)

Conditioned discretised PINNs

Physics-informed vs fully data-driven CNN

œ 0.00

GRF KLEIZB

Zhu, Y et al, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics (2019)

ETHzürich

Advantages / limitations of discretised PINNs

Advantages

- Allows the use of CNNs to exploit spatial correlations between inputs/outputs of **PDF**
- Can be extended to:
	- Irregular geometries (Graph NNs)
	- Explicit time dependence (RNNs)
	- Mixed continuous/discrete input coordinates

Limitations

- Relies on approximate FD gradients
- Only outputs discretised solution; needs to be retrained to output on larger domains / finer grids

Geneva et al, Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks, JCP (2020)

Gao et al, PhyGeoNet: Physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain, JCP (2021)

Training PINNs with finite differences

Most time is spent **computing gradients**, not the forward pass, when training PINNs

$$
L_p(\theta) = \frac{1}{N_p} \sum_{i}^{N_p} ||\mathcal{D}[NN(x_i; \theta)] - f(x_i)||^2
$$

Idea: instead of using exact gradients from autodifferentiation, use **approximate** gradients from **finite differences**

Sharma et al, Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations, NeurIPS (2022)

Training PINNs with finite differences

Most time is spent **computing gradients**, not the forward pass, when training PINNs

$$
L_p(\theta) = \frac{1}{N_p} \sum_{i}^{N_p} ||\mathcal{D}[NN(x_i; \theta)] - f(x_i)||^2
$$

Idea: instead of using exact gradients from autodifferentiation, use **approximate** gradients from **finite differences**

For each collocation point x_i :

- 1. Sample a stencil of input points around x_i
- 2. Run forward pass of network with all these points
- 3. Approximate derivatives in D using finite differences
- 4. Compute loss function using these derivatives

Autodiff is still used to update θ

Sharma et al, Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations, NeurIPS (2022)

Can offer 2-4x speedups depending on PDE

But choosing a suitable value of α is critical

ETHzürich

Overview of lectures

- PINN limitations
- PINN extensions for improving:
	- Computational cost
	- Convergence / accuracy
	- Scalability to more complex problems
- Summary: when should I use PINNs?

Learning objectives

- Explain the advantages and disadvantages of PINNs
- Understand current research directions on improving their performance

Part 1

Part 2

Lecture summary

- Standard PINNs suffer from some major limitations:
	- Computational cost
	- Poor convergence
	- Scaling to more complex problems
- We can improve their computational cost by:
	- Conditioning them on additional inputs
	- Discretising them
	- Using finite differences to train them

