
401-4656-21L AI in the Sciences and Engineering 2024

AI in the Sciences and
Engineering

Introduction to Deep
Learning – Part 1

Spring Semester 2024

Siddhartha Mishra
Ben Moseley

401-4656-21L AI in the Sciences and Engineering 2024 2

Recap – AI for science

Pathak et al, FourCastNet: A Global Data-driven High-resolution
Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)

Degrave et al, Magnetic control of tokamak plasmas through deep
reinforcement learning, Nature (2022)

Jumper et al, Highly accurate protein structure
prediction with AlphaFold, Nature (2021)

401-4656-21L AI in the Sciences and Engineering 2024 3

Recap – key scientific tasks

Ground truth
computed
tomography
image

Resulting
tomographic
data
(sinogram)

Result of
inverse
algorithm
(filtered back-
projection)

Chen et al, Physics-informed learning of governing equations from
scarce data, Nature communications (2021)

Adler et al, Solving ill-posed inverse problems using iterative deep neural networks,
Inverse Problems (2017)

Simulation
𝑏 = 𝐹(𝑎)

Inverse problems
𝑏 = 𝐹(𝑎)

Equation discovery
𝑏 = 𝐹(𝑎)

Mesh for finite element method
Source: COMSOL

401-4656-21L AI in the Sciences and Engineering 2024 4

Recap – scientific machine learning

Machine
learning

Scientific
understanding

SciML

more powerful,
robust, interpretable

models

401-4656-21L AI in the Sciences and Engineering 2024 5

Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02. Introduction to PyTorch

04.03. CNNs and surrogate modelling

11.03. Implementing PINNs I

18.03. Implementing PINNs II

25.03. Operator learning I

01.04.

08.04. Operator learning II

15.04.

22.04. GNNs

29.04. Transformers

06.05. Diffusion models

13.05. Coding autodiff from scratch

20.05.

27.05. Introduction to JAX / NDEs

Wed 08:15-10:00 ML H 44

21.02. Course introduction

28.02. Introduction to deep learning II

06.03. Introduction to physics-informed neural networks

13.03. PINNs – extensions and theory

20.03. Introduction to operator learning

27.03. Fourier- and convolutional- neural operators

03.04.

10.04. Operator learning – limitations and extensions

17.04. Foundational models for operator learning

24.04. GNNs for PDEs / introduction to diffusion models

01.05.

08.05. Introduction to differentiable physics

15.05. Neural differential equations

22.05. Symbolic regression and equation discovery

29.05. Guest lecture: ML in chemistry and biology

Fri 12:15-13:00 ML H 44

23.02. Introduction to deep learning I
01.03. Importance of PDEs in science

08.03. PINNs – limitations and extensions

15.03. PINNs – theory

22.03. DeepONets and spectral neural operators

29.03.

05.04.

12.04. Introduction to transformers

19.04. Graph neural networks for PDEs

26.04. Introduction to diffusion models

03.05. Diffusion models - applications

10.05. Hybrid workflows

17.05. Introduction to JAX

24.05. Course summary and future trends

31.05. Guest lecture: ML in chemistry and biology

Tutorials Lectures

401-4656-21L AI in the Sciences and Engineering 2024 6

Lecture overview
• What is deep learning?

• Multilayer perceptrons

• Universal approximation

• Popular deep learning tasks
• Supervised learning

• Unsupervised learning

• Training deep neural networks

• Backpropagation & autodifferentiation

401-4656-21L AI in the Sciences and Engineering 2024 7

Lecture overview Learning objectives
• Be able to mathematically define a deep

neural network

• Understand the typical tasks neural
networks are used for

• Explain how neural networks are trained

• What is deep learning?

• Multilayer perceptrons

• Universal approximation

• Popular deep learning tasks
• Supervised learning

• Unsupervised learning

• Training deep neural networks

• Backpropagation & autodifferentiation

401-4656-21L AI in the Sciences and Engineering 2024 8

State-of-the-art
• Inside ChatGPT – by end of these two lectures, you will understand how this works!

Radford et al, Improving Language Understanding by Generative Pre-
Training, ArXiv (2018)
Brown et al, Language Models are Few-Shot Learners, NeurIPS (2020)

401-4656-21L AI in the Sciences and Engineering 2024 9

The rise of AI

Source: Machine Learning
for Autonomous Driving
Workshop, NeurIPS (2023)

Source: GitHub Copilot

“a photograph of an
astronaut riding a horse”

Source: Stable Diffusion
Rombach et al, High-
Resolution Image
Synthesis with Latent
Diffusion Models, CVPR
(2022)

Barrault et al., SeamlessM4T: Massively Multilingual
& Multimodal Machine Translation, ArXiv (2023)

Source: AI Index Report, Stanford University

Brown et al, Language Models are Few-Shot
Learners, NeurIPS (2020)

Reed et al., A
Generalist Agent,
TMLR (2022)

401-4656-21L AI in the Sciences and Engineering 2024 10

Why now?

Neural networks date back to the 1950’s – so why is deep learning so popular today?

Rapidly increasing
amounts of data

Hardware
improvements

Software
improvements

Source: Statista

Global data volume
(Zettabytes)

Source: NVIDIA

• Graphical processing units
(GPUs)

• Highly optimised for deep
learning (massively parallel)

• Mature deep learning
frameworks

• Better training algorithms
• Deeper and more sophisticated

architectures

401-4656-21L AI in the Sciences and Engineering 2024 11

Deep learning vs AI
Artificial intelligence
= Mimic human behaviour

Machine learning
= Learn about the world

Deep learning
= Extract patterns

using neural networks

Reasoning

Value alignmentLogic

Logistic regression

K-means
Decision trees

Principle
component
analysis

Gaussian processes

MCMC

CNNs

Transformers

GANs

RNNs

MLPs

VAEs

Diffusion models

Planning

Search

Theorem proving

ResNets

…

……

……

Knowledge representation

Symbolic learning

Support vector machines

Turing test

Memory

Bayesian
modelling

For a wide introduction to AI, see for example:
Russell & Norvig, Artificial Intelligence: A Modern Approach

401-4656-21L AI in the Sciences and Engineering 2024 12

What is a neural network?

Neural networks are
simply flexible functions
fit to data

Example dataset:

Goal: given training data, find a
function (with flexible parameters 𝜃)
which approximates the true
function,

"𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)

𝑥 (𝑦 = 𝑁𝑁 𝑥; 𝜃

401-4656-21L AI in the Sciences and Engineering 2024 13

Function fitting

Simple polynomial regression

!𝑦 𝑥; 𝜃 = 𝜃!𝑥" + 𝜃"𝑥# + 𝜃#𝑥 + 𝜃$

To fit, use least-squares:

𝜃∗ = min
&
∑'(!𝑦 𝑥'; 𝜃 − 𝑦' # (1)

Re-write using linear algebra:

!𝑦$
!𝑦#
…

=
1 𝑥$ 𝑥$# 𝑥$"

1 𝑥# 𝑥## 𝑥#"
… … … …

𝜃$
𝜃#
𝜃"
𝜃!

 or /𝑌 = Φ)𝜃

𝜃∗ = min
&

Φ)𝜃 − 𝑌 #

In this case, it can be shown (1) has an analytical
solution:

𝜃∗ = (Φ)Φ)*$Φ)𝑌

401-4656-21L AI in the Sciences and Engineering 2024 14

Function fitting

Neural network regression

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' # (2)

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss
function

Simple polynomial regression

!𝑦 𝑥; 𝜃 = 𝜃!𝑥" + 𝜃"𝑥# + 𝜃#𝑥 + 𝜃$

To fit, use least-squares:

𝜃∗ = min
&
∑'(!𝑦 𝑥'; 𝜃 − 𝑦' # (1)

Re-write using linear algebra:

!𝑦$
!𝑦#
…

=
1 𝑥$ 𝑥$# 𝑥$"

1 𝑥# 𝑥## 𝑥#"
… … … …

𝜃$
𝜃#
𝜃"
𝜃!

 or /𝑌 = Φ)𝜃

𝜃∗ = min
&

Φ)𝜃 − 𝑌 #

In this case, it can be shown (1) has an analytical
solution:

𝜃∗ = (Φ)Φ)*$Φ)𝑌

401-4656-21L AI in the Sciences and Engineering 2024 15

Neural network architecture

The most basic architecture is the multilayer perceptron (MLP) (aka fully
connected network)

For example, a 2-layer MLP is defined as:

𝑁𝑁(𝑥; 𝜃) = 𝑊!σ 𝑊"𝑥 + 𝑏" + 𝑏!

Where 𝑥 is an input vector, 𝑊" and 𝑊! are learnable weight matrices, 𝑏"
and 𝑏! are learnable bias vectors, and σ is an activation function, for
example, 𝜎 = tanh(1)

2-layer MLP

So, what exactly is 2𝑦 = 𝑁𝑁 𝑥; 𝜃 ?

This depends on the network architecture you choose (CNN, ResNet,
Transformer, … etc)

401-4656-21L AI in the Sciences and Engineering 2024 16

For last layer:

𝑎$,

𝑎#,
= 𝜎

𝑤$$ 𝑤$# 𝑤$" 𝑤$! 𝑤$-
𝑤#$ 𝑤## 𝑤#" 𝑤#! 𝑤#-

𝑎$
𝑎#
𝑎"
𝑎!
𝑎-

+ 𝑏$
𝑏#

Entire network:

𝑁𝑁 𝒙; 𝜃 = 𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 = 𝒇 ∘ 𝒈	(𝒙; 𝜃)

𝑎, = 	𝜎 D
'

𝑤'𝑎' 	 + 𝑏

𝑎-

𝑎!

𝑎"

𝑎#
𝑤#

𝑤"

𝑤!
𝑤-

𝜎

𝑏

𝑤$

𝑎$

∑

Biological inspiration

Biological neuron
(Source: Wikipedia)

𝑥$

𝑥#

𝑥"

2-layer MLP

401-4656-21L AI in the Sciences and Engineering 2024 17

Polynomial regression example

𝑁𝑁 𝑥; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝑥 + 𝑏$ + 𝑏# + 𝑏"

Trained using gradient descent

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+

401-4656-21L AI in the Sciences and Engineering 2024 18

Universal approximation
So why not just use linear regression?

401-4656-21L AI in the Sciences and Engineering 2024 19

Universal approximation

Neural networks are
simply flexible functions
fit to data

With enough parameters,
neural networks can
approximate any* arbitrarily
complex function
= universal approximation

So why not just use linear regression?

2𝑦 = 𝑃 dog	|	𝑥 = 1

𝑥 = array of RGB values

401-4656-21L AI in the Sciences and Engineering 2024 20

Importance of activation functions

Non-linearities allow us to approximate arbitrary non-linear functions

401-4656-21L AI in the Sciences and Engineering 2024 21

MLPs use lots of parameters

𝑁𝑁 𝑥; 𝜃 = 𝑊!(𝜎 𝑊"𝜎 𝑊#𝑥 + 𝑏# + 𝑏" + 𝑏!

Assume the image has shape 128 x 128, and we have 100 hidden units in the first layer, then
𝑊$ has shape (100 x (128 x 128)) = (100 x 16,384)

= 1.6M parameters!

=> A simple MLP image classifier can have millions of parameters

⋮

=> Flatten to 1D =>

401-4656-21L AI in the Sciences and Engineering 2024 22

Convolutional neural network (CNN)

Convolutional neural networks honor the spatial correlations
in their inputs

Each neuron;
- Has a limited field of view
- Shares the same weights as the other neurons in the layer
- Mathematically, CNNs use cross-correlation

CNNs have translation equivariance (an inductive bias)

𝑁𝑁 𝑥; 𝜃 = 𝑊! ⋆ (𝜎 𝑊" ⋆ 𝜎 𝑊# ⋆ 𝑥 + 𝑏# + 𝑏" + 𝑏!

ℎ$% =2
$!

&

2
%!

'

𝑊$!%!𝑥$($!,%(%! + 𝑏

ℎ$%

ℎ

Let the size of the convolutional filter be 3 x 3

Then 𝑊$ has shape (3 x 3)

= 9 parameters! (much, much smaller than a MLP)

Image source:
github/vdumoulin/conv_arithmetic

401-4656-21L AI in the Sciences and Engineering 2024 23

Convolutional neural network (CNN)

In practice, CNNs are usually extended so they can have
multiple channels in the inputs and outputs of each layer

e.g. (R,G,B) image as input, where each channel is a color

Also:
- 1D and 3D CNNs follow analogously
- And we can add dilations and strides too

ℎ$%* =2
$!

&

2
%!

'

2
*!

+"#

𝑊$!%!*!*𝑥$($!,%(%!,*! + 𝑏*

ℎ$%*

Let the size of the convolutional filter be 3 x 3

Then 𝑊 has shape (3 x 3 x 𝐶01 x 𝐶234)

= 81 parameters for 3 input and 3 output channels

Then the convolutional layer is defined by:

401-4656-21L AI in the Sciences and Engineering 2024 24

Deep CNNs

Lee et al, Unsupervised Learning of Hierarchical Representations with
Convolutional Deep Belief Networks, Communications of the ACM (2011)

First layer Second layer Third layer

Deep CNNs learn hierarchical features

401-4656-21L AI in the Sciences and Engineering 2024 25

Depth is key

Empirically, deep neural networks perform better than shallow neural
networks

=> encode a very general belief that the true function is composed of
simpler functions

Goodfellow et al, Multi-digit number recognition from street view imagery
using deep convolutional neural networks, ICLR (2014)

401-4656-21L AI in the Sciences and Engineering 2024 26

Popular deep learning tasks

401-4656-21L AI in the Sciences and Engineering 2024 27

Popular deep learning tasks

• Supervised learning
• Regression
• Classification

• Unsupervised learning
• Feature learning
• Autoregression
• Generative models

• …but in all cases, the neural network is still a function fit to data!

401-4656-21L AI in the Sciences and Engineering 2024 28

Supervised learning - regression

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

Supervised learning - regression:

Given a set of example inputs and outputs (labels)
{(𝑥$, 𝑦$), … , (𝑥(, 𝑦()}	from some true function 𝑦 𝑥
where 𝑥 ∈ ℝ5 , 𝑦 ∈ ℝ6

Find
!𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)

401-4656-21L AI in the Sciences and Engineering 2024 29

Supervised learning - regression

Probabilistic perspective:

Given a set of example inputs and outputs (labels)
{(𝑥$, 𝑦$), … , (𝑥(, 𝑦()} drawn from the probability
distribution 𝑝 𝑦 𝑥 	

Find
𝑝̂ 𝑦 𝑥, 𝜃 ≈ 𝑝 𝑦 𝑥

Supervised learning - regression:

Given a set of example inputs and outputs (labels)
{(𝑥$, 𝑦$), … , (𝑥(, 𝑦()}	from some true function 𝑦 𝑥
where 𝑥 ∈ ℝ5 , 𝑦 ∈ ℝ6

Find
!𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

401-4656-21L AI in the Sciences and Engineering 2024 30

Supervised learning - regression
Probabilistic perspective:

Assume 𝑝̂ 𝑦 𝑥, 𝜃 is a normal distribution:

𝑝̂ 𝑦 𝑥, 𝜃 = 𝒩 𝑦; 𝜇 = 𝑁𝑁 𝑥; 𝜃 , 𝜎 = 1

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

𝑝̂ 𝐷 𝜃 = 𝑝 𝑥$, 𝑦$, … , 𝑥(, 𝑦(𝜃 =Q
'

(

𝑝̂ 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&
𝑝̂ 𝐷 𝜃

= max
&
	Q
'

(

	𝑒*
$
#

7!*((8!;&
$

"

= min
&
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

401-4656-21L AI in the Sciences and Engineering 2024 31

Supervised learning - classification

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

Supervised learning - classification:

Given a set of example inputs and outputs (labels)
{(𝑥$, 𝑦$), … , (𝑥(, 𝑦()} drawn from the discrete probability
distribution 𝑃 𝑦 𝑥 	

where 𝑦 ∈ 𝑌, for example, 𝑌 = {dog, cat}

Find
/𝑃 𝑦 𝑥, 𝜃 ≈ 𝑃 𝑦 𝑥

401-4656-21L AI in the Sciences and Engineering 2024 32

Supervised learning - classification
Then assume

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Let each class be encoded as a one-hot vector of
length 𝐶, e.g

 𝑦 = 0,1 (dog) or
𝑦 = (1,0) (cat)

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

401-4656-21L AI in the Sciences and Engineering 2024 33

Supervised learning - classification
Then assume

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

/𝑃 𝐷 𝜃 = /𝑃 𝑥$, 𝑦$, … , 𝑥5 , 𝑦5 𝜃 =Q
'

(

/𝑃 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&

/𝑃 𝐷 𝜃

= max
&
	Q
'

(

Q
+

:

𝑁𝑁 𝑥'; 𝜃 +
7!#

= min
&
−D

'

(

D
+

:

𝑦'+ log𝑁𝑁 𝑥'; 𝜃 +

Also known as the cross-entropy loss

Let each class be encoded as a one-hot vector of
length 𝐶, e.g

 𝑦 = 0,1 (dog) or
𝑦 = (1,0) (cat)

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

401-4656-21L AI in the Sciences and Engineering 2024 34

Supervised learning - classification
Then assume

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

/𝑃 𝐷 𝜃 = /𝑃 𝑥$, 𝑦$, … , 𝑥5 , 𝑦5 𝜃 =Q
'

(

/𝑃 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&

/𝑃 𝐷 𝜃

= max
&
	Q
'

(

Q
+

:

𝑁𝑁 𝑥'; 𝜃 +
7!#

= min
&
−D

'

(

D
+

:

𝑦'+ log𝑁𝑁 𝑥'; 𝜃 +

Also known as the cross-entropy loss

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

Typically, we use a softmax output layer to assert
∑+
:𝑁𝑁 𝑥; 𝜃 + = 1;

𝜎 𝒛 ' =
𝑒;!

∑+
: 𝑒;#

Let each class be encoded as a one-hot vector of
length 𝐶, e.g

 𝑦 = 0,1 (dog) or
𝑦 = (1,0) (cat)

401-4656-21L AI in the Sciences and Engineering 2024 35

Unsupervised learning - feature learning

𝑧(𝑥) =
Latent variables

Loss function

Many different possibilities, a simple
choice is

𝐿 𝜃 =D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑥')#

For example:

Variational autoencoders
(VAEs)

Kingma et al, 2014

𝑧#

𝑧$Unsupervised learning – feature learning

Given a set of examples 𝑥$, … , 𝑥(, find some
features 𝑧 𝑥

Which are salient descriptors of 𝑥,	where 𝑥 ∈
ℝ5 , 𝑧 ∈ ℝ<

Typically, 𝑑 ≪ 𝑛	(= compression)

𝑧	can be used for downstream tasks, e.g.
clustering / classification

401-4656-21L AI in the Sciences and Engineering 2024 36

Unsupervised learning - autoregression

The cat sat on ?

Unsupervised learning – autoregression

Given many examples sequences, train a model to predict
future values from past values

401-4656-21L AI in the Sciences and Engineering 2024 37

Unsupervised learning - autoregression

The cat sat on ?

𝑥#

ℎ#

𝑥"

ℎ"

𝑥!

ℎ!

𝑥$

ℎ$

𝑥%

ℎ%

𝑥&

ℎ&

𝑥'

ℎ'

𝑥(

For example:

ChatGPT

401-4656-21L AI in the Sciences and Engineering 2024 38

Unsupervised learning - generative modelling

Training dataset

𝑧 =
Randomly

sampled latent
variable

Source: CelebA

For example:

Generative adversarial
networks (GANs)

Goodfellow et al, 2014

Real image

Generator

Discriminator

Generative model

Discriminator
loss

Generator
loss𝑧

𝑥 = generated
image

Unsupervised learning – generative modelling

Given many examples {𝑥$, … , 𝑥(} sampled from some
distribution 𝑝(𝑥), learn to sample from 𝑝(𝑥)

401-4656-21L AI in the Sciences and Engineering 2024 39

Training deep neural networks

401-4656-21L AI in the Sciences and Engineering 2024 40

How do we train neural networks?
Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' # (2)

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss
function

401-4656-21L AI in the Sciences and Engineering 2024 41

How do we train neural networks?
Note that

𝜕𝐿(𝜃)
𝜕𝜃+

=D
'

(

2 𝑁𝑁 𝑥'; 𝜃 − 𝑦'
𝜕𝑁𝑁 𝑥'; 𝜃

𝜕𝜃+

Let’s consider a fully connected network

𝑁𝑁 𝒙; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

How do we calculate >((𝒙!;&
>@$

 ?

𝒈

𝒉

Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' # (2)

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss
function

401-4656-21L AI in the Sciences and Engineering 2024 42

How do we train neural networks?
Note that

𝜕𝐿(𝜃)
𝜕𝜃+

=D
'

(

2 𝑁𝑁 𝑥'; 𝜃 − 𝑦'
𝜕𝑁𝑁 𝑥'; 𝜃

𝜕𝜃+

Let’s consider a fully connected network

𝑁𝑁 𝒙; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

How do we calculate >((𝒙!;&
>@$

 ?

Note 𝒇, 𝒈, and 𝒉 are vector functions =>

Use the multivariate chain rule (= matrix multiplication of Jacobians)

𝜕𝑁𝑁
𝜕𝑊$

=
𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝒉

𝜕𝒉
𝜕𝑊$

𝐽 =
𝜕𝒇
𝜕𝒈

=

𝜕𝑓$
𝜕𝑔$

⋯
𝜕𝑓$
𝜕𝑔5

⋮ ⋱ ⋮
𝜕𝑓6
𝜕𝑔$

⋯
𝜕𝑓6
𝜕𝑔5

𝒈

𝒉

Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' # (2)

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'(𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss
function

401-4656-21L AI in the Sciences and Engineering 2024 43

Evaluating the chain rule

𝑁𝑁 𝑥; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

One can show (exercise for the reader!)

𝜕𝑁𝑁
𝜕𝑊$

=
𝜕𝑓
𝜕𝒈

𝜕𝒈
𝜕𝒉

𝜕𝒉
𝜕𝑊$

= 𝑊"	diag(𝜎, 𝒈)𝑊#	diag(𝜎, 𝒉)⊗ 𝒙

and therefore

𝒈

𝒉

𝜕𝐿
𝜕𝑊#

=2
$

,

2 𝑓$ − 𝑦$ 	 𝑊!	diag(𝜎- 𝒈$)	 𝑊"	diag(𝜎- 𝒉$) ⊗ 𝒙$

401-4656-21L AI in the Sciences and Engineering 2024 44

Backpropagation

𝒙$ → 𝒉$ = 𝑊#𝒙$ + 𝒃# → 𝒈$ = 𝑊"𝜎(𝒉$) + 𝒃" → 𝑓$ = 𝑊!𝜎 𝒈$ + 𝒃!

Forward pass:

Backward pass:

Evaluate from left to right (reverse-mode) for efficiency

Similar equations for other weight matrices and bias vectors

Save layer outputs in forward pass

𝜕𝐿
𝜕𝑊#

=2
$

,

2 𝑓$ − 𝑦$ 	 𝑊!	diag(𝜎- 𝒈$)	 𝑊"	diag(𝜎- 𝒉$) ⊗ 𝒙$

401-4656-21L AI in the Sciences and Engineering 2024 45

Backpropagation
Forward pass:

Backward pass:

In practice:

Autodifferentiation tracks all your forward computations and their
gradients and applies the chain rule automatically for you, so you don’t

have to worry!

𝒙$ → 𝒉$ = 𝑊#𝒙$ + 𝒃# → 𝒈$ = 𝑊"𝜎(𝒉$) + 𝒃" → 𝑓$ = 𝑊!𝜎 𝒈$ + 𝒃!

401-4656-21L AI in the Sciences and Engineering 2024 46

Lecture summary

• (Deep) neural networks are simply flexible functions fit to data

• Universal approximation means they can be applied to many different

tasks

• DNNs are trained using chain rule (backpropagation) and gradient

descent

