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Recap – AI for science

Pathak et al, FourCastNet: A Global Data-driven High-resolution 
Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022)

Degrave et al, Magnetic control of tokamak plasmas through deep 
reinforcement learning, Nature (2022)

Jumper et al, Highly accurate protein structure 
prediction with AlphaFold, Nature (2021)
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Recap – key scientific tasks

Ground truth 
computed 
tomography 
image

Resulting 
tomographic 
data 
(sinogram)

Result of 
inverse 
algorithm 
(filtered back-
projection)

Chen et al, Physics-informed learning of governing equations from 
scarce data, Nature communications (2021)

Adler et al, Solving ill-posed inverse problems using iterative deep neural networks, 
Inverse Problems (2017)

Simulation
𝑏 = 𝐹(𝑎)

Inverse problems
𝑏 = 𝐹(𝑎)

Equation discovery
𝑏 = 𝐹(𝑎)

Mesh for finite element method
Source: COMSOL
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Recap – scientific machine learning

Machine 
learning

Scientific 
understanding

SciML

more powerful, 
robust, interpretable 

models 
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Course timeline

Mon 12:15-14:00 HG E 5

19.02.

26.02.    Introduction to PyTorch

04.03.    CNNs and surrogate modelling

11.03.    Implementing PINNs I

18.03.    Implementing PINNs II

25.03.    Operator learning I

01.04. 

08.04.    Operator learning II

15.04. 

22.04.    GNNs

29.04.    Transformers

06.05.    Diffusion models

13.05.    Coding autodiff from scratch

20.05.    

27.05.    Introduction to JAX / NDEs

Wed 08:15-10:00 ML H 44

21.02.    Course introduction

28.02.    Introduction to deep learning II

06.03.    Introduction to physics-informed neural networks

13.03.    PINNs – extensions and theory

20.03.    Introduction to operator learning

27.03.    Fourier- and convolutional- neural operators

03.04. 

10.04.    Operator learning – limitations and extensions

17.04.    Foundational models for operator learning

24.04.    GNNs for PDEs / introduction to diffusion models

01.05. 

08.05.    Introduction to differentiable physics

15.05.    Neural differential equations

22.05.    Symbolic regression and equation discovery

29.05.    Guest lecture: ML in chemistry and biology

Fri 12:15-13:00 ML H 44

23.02.    Introduction to deep learning I
01.03.    Importance of PDEs in science

08.03.    PINNs – limitations and extensions

15.03.    PINNs – theory

22.03.    DeepONets and spectral neural operators

29.03. 

05.04. 

12.04.    Introduction to transformers 

19.04.    Graph neural networks for PDEs

26.04.    Introduction to diffusion models 

03.05.    Diffusion models - applications

10.05.    Hybrid workflows

17.05.    Introduction to JAX

24.05.    Course summary and future trends

31.05.    Guest lecture: ML in chemistry and biology

Tutorials Lectures
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Lecture overview
• What is deep learning?

• Multilayer perceptrons

• Universal approximation

• Popular deep learning tasks
• Supervised learning

• Unsupervised learning

• Training deep neural networks

• Backpropagation & autodifferentiation
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Lecture overview Learning objectives
• Be able to mathematically define a deep 

neural network 

• Understand the typical tasks neural 
networks are used for

• Explain how neural networks are trained

• What is deep learning?

• Multilayer perceptrons

• Universal approximation

• Popular deep learning tasks
• Supervised learning

• Unsupervised learning

• Training deep neural networks

• Backpropagation & autodifferentiation
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State-of-the-art
• Inside ChatGPT – by end of these two lectures, you will understand how this works!

Radford et al, Improving Language Understanding by Generative Pre-
Training, ArXiv (2018)
Brown et al, Language Models are Few-Shot Learners, NeurIPS (2020)
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The rise of AI

Source: Machine Learning 
for Autonomous Driving 
Workshop, NeurIPS (2023)

Source: GitHub Copilot

“a photograph of an 
astronaut riding a horse”

Source: Stable Diffusion
Rombach et al, High-
Resolution Image 
Synthesis with Latent 
Diffusion Models, CVPR 
(2022)

Barrault et al., SeamlessM4T: Massively Multilingual 
& Multimodal Machine Translation, ArXiv (2023)

Source: AI Index Report, Stanford University

Brown et al, Language Models are Few-Shot 
Learners, NeurIPS (2020)

Reed et al., A 
Generalist Agent, 
TMLR (2022)
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Why now?

Neural networks date back to the 1950’s – so why is deep learning so popular today? 

Rapidly increasing 
amounts of data

Hardware 
improvements

Software 
improvements

Source: Statista

Global data volume 
(Zettabytes)

Source: NVIDIA

• Graphical processing units 
(GPUs)

• Highly optimised for deep 
learning (massively parallel)

• Mature deep learning 
frameworks

• Better training algorithms
• Deeper and more sophisticated 

architectures
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Deep learning vs AI
Artificial intelligence
= Mimic human behaviour

Machine learning
= Learn about the world

Deep learning
= Extract patterns 

using neural networks

Reasoning

Value alignmentLogic

Logistic regression

K-means
Decision trees

Principle 
component 
analysis

Gaussian processes

MCMC

CNNs

Transformers

GANs

RNNs

MLPs

VAEs

Diffusion models

Planning

Search

Theorem proving

ResNets

…

……

……

Knowledge representation

Symbolic learning

Support vector machines

Turing test

Memory

Bayesian 
modelling

For a wide introduction to AI, see for example:
Russell & Norvig, Artificial Intelligence: A Modern Approach
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What is a neural network?

Neural networks are 
simply flexible functions 
fit to data

Example dataset:

Goal: given training data, find a 
function (with flexible parameters 𝜃) 
which approximates the true 
function,

"𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)

𝑥 (𝑦 = 𝑁𝑁 𝑥; 𝜃
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Function fitting

Simple polynomial regression

!𝑦 𝑥; 𝜃 = 𝜃!𝑥" + 𝜃"𝑥# + 𝜃#𝑥 + 𝜃$

To fit, use least-squares:

𝜃∗ = min
&
∑'( !𝑦 𝑥'; 𝜃 − 𝑦' #      (1)

Re-write using linear algebra:

!𝑦$
!𝑦#
…

=
1 𝑥$ 𝑥$# 𝑥$"

1 𝑥# 𝑥## 𝑥#"
… … … …

𝜃$
𝜃#
𝜃"
𝜃!

 or /𝑌 = Φ)𝜃

𝜃∗ = min
&

Φ)𝜃 − 𝑌 #

In this case, it can be shown (1) has an analytical 
solution:

𝜃∗ = (Φ)Φ)*$Φ)𝑌
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Function fitting

Neural network regression

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #      (2)

In general, no analytical solution to (2) exists, so we 
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss 
function

Simple polynomial regression

!𝑦 𝑥; 𝜃 = 𝜃!𝑥" + 𝜃"𝑥# + 𝜃#𝑥 + 𝜃$

To fit, use least-squares:

𝜃∗ = min
&
∑'( !𝑦 𝑥'; 𝜃 − 𝑦' #      (1)

Re-write using linear algebra:

!𝑦$
!𝑦#
…

=
1 𝑥$ 𝑥$# 𝑥$"

1 𝑥# 𝑥## 𝑥#"
… … … …

𝜃$
𝜃#
𝜃"
𝜃!

 or /𝑌 = Φ)𝜃

𝜃∗ = min
&

Φ)𝜃 − 𝑌 #

In this case, it can be shown (1) has an analytical 
solution:

𝜃∗ = (Φ)Φ)*$Φ)𝑌
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Neural network architecture

The most basic architecture is the multilayer perceptron (MLP) (aka fully 
connected network)

For example, a 2-layer MLP is defined as:

𝑁𝑁(𝑥; 𝜃) = 𝑊!σ 𝑊"𝑥 + 𝑏" + 𝑏!

Where 𝑥 is an input vector, 𝑊" and 𝑊! are learnable weight matrices, 𝑏" 
and 𝑏! are learnable bias vectors, and σ is an activation function, for 
example, 𝜎 = tanh(1)

2-layer MLP

So, what exactly is 2𝑦 = 𝑁𝑁 𝑥; 𝜃 ?

This depends on the network architecture you choose (CNN, ResNet, 
Transformer, … etc)
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For last layer:

𝑎$,

𝑎#,
= 𝜎

𝑤$$ 𝑤$# 𝑤$" 𝑤$! 𝑤$-
𝑤#$ 𝑤## 𝑤#" 𝑤#! 𝑤#-

𝑎$
𝑎#
𝑎"
𝑎!
𝑎-

+ 𝑏$
𝑏#

Entire network:

𝑁𝑁 𝒙; 𝜃 = 𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 = 𝒇 ∘ 𝒈	(𝒙; 𝜃)

𝑎, = 	𝜎 D
'

𝑤'𝑎' 	 + 𝑏

𝑎-

𝑎!

𝑎"

𝑎#
𝑤#

𝑤"

𝑤!
𝑤-

𝜎

𝑏

𝑤$

𝑎$

∑

Biological inspiration

Biological neuron 
(Source: Wikipedia)

𝑥$

𝑥#

𝑥"

2-layer MLP
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Polynomial regression example

𝑁𝑁 𝑥; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝑥 + 𝑏$ + 𝑏# + 𝑏"

Trained using gradient descent

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
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Universal approximation
So why not just use linear regression?
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Universal approximation

Neural networks are 
simply flexible functions 
fit to data

With enough parameters, 
neural networks can 
approximate any* arbitrarily 
complex function
= universal approximation

So why not just use linear regression?

2𝑦 = 𝑃 dog	|	𝑥 = 1

𝑥 = array of RGB values
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Importance of activation functions

Non-linearities allow us to approximate arbitrary non-linear functions
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MLPs use lots of parameters

𝑁𝑁 𝑥; 𝜃 = 𝑊!(𝜎 𝑊"𝜎 𝑊#𝑥 + 𝑏# + 𝑏" + 𝑏!

Assume the image has shape 128 x 128, and we have 100 hidden units in the first layer, then 
𝑊$ has shape (100 x (128 x 128)) = (100 x 16,384)

= 1.6M parameters!

=> A simple MLP image classifier can have millions of parameters

⋮

=> Flatten to 1D =>
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Convolutional neural network (CNN)

Convolutional neural networks honor the spatial correlations 
in their inputs

Each neuron;
- Has a limited field of view
- Shares the same weights as the other neurons in the layer
- Mathematically, CNNs use cross-correlation

CNNs have translation equivariance (an inductive bias)

𝑁𝑁 𝑥; 𝜃 = 𝑊! ⋆ (𝜎 𝑊" ⋆ 𝜎 𝑊# ⋆ 𝑥 + 𝑏# + 𝑏" + 𝑏!

ℎ$% =2
$!

&

2
%!

'

𝑊$!%!𝑥$($!,%(%! + 𝑏

ℎ$%

ℎ

Let the size of the convolutional filter be 3 x 3

Then 𝑊$ has shape (3 x 3)

= 9 parameters! (much, much smaller than a MLP)

Image source: 
github/vdumoulin/conv_arithmetic
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Convolutional neural network (CNN)

In practice, CNNs are usually extended so they can have 
multiple channels in the inputs and outputs of each layer

e.g. (R,G,B) image as input, where each channel is a color

Also:
- 1D and 3D CNNs follow analogously
- And we can add dilations and strides too

ℎ$%* =2
$!

&

2
%!

'

2
*!

+"#

𝑊$!%!*!*𝑥$($!,%(%!,*! + 𝑏*

ℎ$%*

Let the size of the convolutional filter be 3 x 3

Then 𝑊 has shape (3 x 3 x 𝐶01 x 𝐶234)

= 81 parameters for 3 input and 3 output channels

Then the convolutional layer is defined by:
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Deep CNNs

Lee et al, Unsupervised Learning of Hierarchical Representations with 
Convolutional Deep Belief Networks, Communications of the ACM (2011)

First layer Second layer Third layer

Deep CNNs learn hierarchical features
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Depth is key

Empirically, deep neural networks perform better than shallow neural 
networks

=> encode a very general belief that the true function is composed of 
simpler functions

Goodfellow et al, Multi-digit number recognition from street view imagery 
using deep convolutional neural networks, ICLR (2014)
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Popular deep learning tasks
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Popular deep learning tasks

• Supervised learning
• Regression
• Classification

• Unsupervised learning
• Feature learning
• Autoregression
• Generative models

• …but in all cases, the neural network is still a function fit to data!
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Supervised learning - regression

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

Supervised learning - regression:

Given a set of example inputs and outputs (labels) 
{(𝑥$, 𝑦$), … , (𝑥( , 𝑦()}	from some true function 𝑦 𝑥  
where 𝑥 ∈ ℝ5 , 𝑦 ∈ ℝ6

Find
!𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)
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Supervised learning - regression

Probabilistic perspective:

Given a set of example inputs and outputs (labels) 
{(𝑥$, 𝑦$), … , (𝑥( , 𝑦()} drawn from the probability 
distribution 𝑝 𝑦 𝑥 	

Find
𝑝̂ 𝑦 𝑥, 𝜃 ≈ 𝑝 𝑦 𝑥

Supervised learning - regression:

Given a set of example inputs and outputs (labels) 
{(𝑥$, 𝑦$), … , (𝑥( , 𝑦()}	from some true function 𝑦 𝑥  
where 𝑥 ∈ ℝ5 , 𝑦 ∈ ℝ6

Find
!𝑦 = 𝑁𝑁 𝑥; 𝜃 ≈ 𝑦(𝑥)

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #
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Supervised learning - regression
Probabilistic perspective:

Assume 𝑝̂ 𝑦 𝑥, 𝜃  is a normal distribution:

𝑝̂ 𝑦 𝑥, 𝜃 = 𝒩 𝑦; 𝜇 = 𝑁𝑁 𝑥; 𝜃 , 𝜎 = 1

Then, assume each training datapoint is independently and identically 
distributed (iid), then the data likelihood can be written as:

𝑝̂ 𝐷 𝜃 = 𝑝 𝑥$, 𝑦$, … , 𝑥( , 𝑦( 𝜃 =Q
'

(

𝑝̂ 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&
𝑝̂ 𝐷 𝜃

= max
&
	Q
'

(

	𝑒*
$
#

7!*(( 8!;&
$

"

= min
&
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

Loss function (mean squared error)

𝐿 𝜃 =
1
𝑁
D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑦' #
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Supervised learning - classification

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

Supervised learning - classification:

Given a set of example inputs and outputs (labels) 
{(𝑥$, 𝑦$), … , (𝑥( , 𝑦()} drawn from the discrete probability 
distribution 𝑃 𝑦 𝑥 	

where 𝑦 ∈ 𝑌, for example, 𝑌 = {dog, cat}

Find
/𝑃 𝑦 𝑥, 𝜃 ≈ 𝑃 𝑦 𝑥
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Supervised learning - classification
Then assume 

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Let each class be encoded as a one-hot vector of 
length 𝐶, e.g 

     𝑦 = 0,1    (dog) or
𝑦 = (1,0)   (cat)

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01
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Supervised learning - classification
Then assume 

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Then, assume each training datapoint is independently and identically 
distributed (iid), then the data likelihood can be written as:

/𝑃 𝐷 𝜃 = /𝑃 𝑥$, 𝑦$, … , 𝑥5 , 𝑦5 𝜃 =Q
'

(

/𝑃 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&

/𝑃 𝐷 𝜃

= max
&
	Q
'

(

Q
+

:

𝑁𝑁 𝑥'; 𝜃 +
7!#

= min
&
−D

'

(

D
+

:

𝑦'+ log𝑁𝑁 𝑥'; 𝜃 +

Also known as the cross-entropy loss

Let each class be encoded as a one-hot vector of 
length 𝐶, e.g 

     𝑦 = 0,1    (dog) or
𝑦 = (1,0)   (cat)

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01
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Supervised learning - classification
Then assume 

/𝑃 𝑦 𝑥, 𝜃 =Q
+

:

𝑁𝑁 𝑥; 𝜃 +
7# , 	 D

+

:

𝑁𝑁 𝑥; 𝜃 + = 1

Then, assume each training datapoint is independently and identically 
distributed (iid), then the data likelihood can be written as:

/𝑃 𝐷 𝜃 = /𝑃 𝑥$, 𝑦$, … , 𝑥5 , 𝑦5 𝜃 =Q
'

(

/𝑃 𝑦' 𝑥' , 𝜃

Then use maximum likelihood estimation (MLE) to estimate 𝜃∗:

𝜃∗ = max
&

/𝑃 𝐷 𝜃

= max
&
	Q
'

(

Q
+

:

𝑁𝑁 𝑥'; 𝜃 +
7!#

= min
&
−D

'

(

D
+

:

𝑦'+ log𝑁𝑁 𝑥'; 𝜃 +

Also known as the cross-entropy loss

𝑃 dog	|	𝑥 = 0.99

𝑃 cat	|	𝑥 = 0.01

Typically, we use a softmax output layer to assert 
∑+
:𝑁𝑁 𝑥; 𝜃 + = 1;

𝜎 𝒛 ' =
𝑒;!

∑+
: 𝑒;#

Let each class be encoded as a one-hot vector of 
length 𝐶, e.g 

     𝑦 = 0,1    (dog) or
𝑦 = (1,0)   (cat)
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Unsupervised learning - feature learning

𝑧(𝑥) = 
Latent variables

Loss function

Many different possibilities, a simple 
choice is

𝐿 𝜃 =D
'

(

𝑁𝑁 𝑥'; 𝜃 − 𝑥' )#

For example: 

Variational autoencoders 
(VAEs)

Kingma et al, 2014

𝑧#

𝑧$Unsupervised learning – feature learning

Given a set of examples 𝑥$, … , 𝑥( , find some 
features 𝑧 𝑥

Which are salient descriptors of 𝑥,	where 𝑥 ∈
ℝ5 , 𝑧 ∈ ℝ<

Typically, 𝑑 ≪ 𝑛	(= compression)

𝑧	can be used for downstream tasks, e.g. 
clustering / classification
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Unsupervised learning - autoregression

The cat sat on ?

Unsupervised learning – autoregression

Given many examples sequences, train a model to predict 
future values from past values
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Unsupervised learning - autoregression

The cat sat on ?

𝑥#

ℎ#

𝑥"

ℎ"

𝑥!

ℎ!

𝑥$

ℎ$

𝑥%

ℎ%

𝑥&

ℎ&

𝑥'

ℎ'

𝑥(

For example: 

ChatGPT
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Unsupervised learning - generative modelling

Training dataset

𝑧 = 
Randomly 

sampled latent 
variable

Source: CelebA

For example: 

Generative adversarial 
networks (GANs)

Goodfellow et al, 2014

Real image

Generator

Discriminator

Generative model

Discriminator 
loss

Generator 
loss𝑧

𝑥 = generated 
image

Unsupervised learning – generative modelling

Given many examples {𝑥$, … , 𝑥(} sampled from some 
distribution 𝑝(𝑥), learn to sample from 𝑝(𝑥)
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Training deep neural networks
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How do we train neural networks?
Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #      (2)

In general, no analytical solution to (2) exists, so we 
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss 
function
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How do we train neural networks?
Note that

𝜕𝐿(𝜃)
𝜕𝜃+

=D
'

(

2 𝑁𝑁 𝑥'; 𝜃 − 𝑦'
𝜕𝑁𝑁 𝑥'; 𝜃

𝜕𝜃+

Let’s consider a fully connected network

𝑁𝑁 𝒙; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

How do we calculate >(( 𝒙!;&
>@$

 ?

𝒈

𝒉

Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #      (2)

In general, no analytical solution to (2) exists, so we 
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss 
function
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How do we train neural networks?
Note that

𝜕𝐿(𝜃)
𝜕𝜃+

=D
'

(

2 𝑁𝑁 𝑥'; 𝜃 − 𝑦'
𝜕𝑁𝑁 𝑥'; 𝜃

𝜕𝜃+

Let’s consider a fully connected network

𝑁𝑁 𝒙; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

How do we calculate >(( 𝒙!;&
>@$

 ?

Note 𝒇, 𝒈, and 𝒉 are vector functions =>

Use the multivariate chain rule (= matrix multiplication of Jacobians)

𝜕𝑁𝑁
𝜕𝑊$

=
𝜕𝒇
𝜕𝒈

𝜕𝒈
𝜕𝒉

𝜕𝒉
𝜕𝑊$

𝐽 =
𝜕𝒇
𝜕𝒈

=

𝜕𝑓$
𝜕𝑔$

⋯
𝜕𝑓$
𝜕𝑔5

⋮ ⋱ ⋮
𝜕𝑓6
𝜕𝑔$

⋯
𝜕𝑓6
𝜕𝑔5

𝒈

𝒉

Gradient descent

!𝑦 𝑥; 𝜃 = 𝑁𝑁 𝑥; 𝜃

To fit, use least-squares:

𝜃∗ = min
&
∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #      (2)

In general, no analytical solution to (2) exists, so we 
must use optimisation

For example, gradient descent:

𝜃+ ← 𝜃+ − 𝛾
𝜕∑'( 𝑁𝑁 𝑥'; 𝜃 − 𝑦' #

𝜕𝜃+
or equally

𝜃+ ← 𝜃+ − 𝛾
𝜕𝐿(𝜃)
𝜕𝜃+

Where 𝛾 is the learning rate and 𝐿(𝜃) is the loss 
function
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Evaluating the chain rule

𝑁𝑁 𝑥; 𝜃 = 𝑊"(𝜎 𝑊#𝜎 𝑊$𝒙 + 𝒃𝟏 + 𝒃𝟐 + 𝒃𝟑 = 𝒇 ∘ 𝒈 ∘ 𝒉(𝒙; 𝜃)

One can show (exercise for the reader!)

𝜕𝑁𝑁
𝜕𝑊$

=
𝜕𝑓
𝜕𝒈

𝜕𝒈
𝜕𝒉

𝜕𝒉
𝜕𝑊$

= 𝑊"	diag(𝜎, 𝒈 )𝑊#	diag(𝜎, 𝒉 )⊗ 𝒙

and therefore

𝒈

𝒉

𝜕𝐿
𝜕𝑊#

=2
$

,

2 𝑓$ − 𝑦$ 	 𝑊!	diag(𝜎- 𝒈$ )	 𝑊"	diag(𝜎- 𝒉$ ) ⊗ 𝒙$
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Backpropagation

𝒙$ → 𝒉$ = 𝑊#𝒙$ + 𝒃# → 𝒈$ = 𝑊"𝜎(𝒉$) + 𝒃" → 𝑓$ = 𝑊!𝜎 𝒈$ + 𝒃!

Forward pass:

Backward pass:

Evaluate from left to right (reverse-mode) for efficiency

Similar equations for other weight matrices and bias vectors

Save layer outputs in forward pass

𝜕𝐿
𝜕𝑊#

=2
$

,

2 𝑓$ − 𝑦$ 	 𝑊!	diag(𝜎- 𝒈$ )	 𝑊"	diag(𝜎- 𝒉$ ) ⊗ 𝒙$
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Backpropagation
Forward pass:

Backward pass:

In practice:

Autodifferentiation tracks all your forward computations and their 
gradients and applies the chain rule automatically for you, so you don’t 

have to worry!

𝒙$ → 𝒉$ = 𝑊#𝒙$ + 𝒃# → 𝒈$ = 𝑊"𝜎(𝒉$) + 𝒃" → 𝑓$ = 𝑊!𝜎 𝒈$ + 𝒃!
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Lecture summary

• (Deep) neural networks are simply flexible functions fit to data

• Universal approximation means they can be applied to many different 

tasks

• DNNs are trained using chain rule (backpropagation) and gradient 

descent


