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Recap — Al for science

FourCastNet, lead time = 0 hours

egative ITER-like Snowflake Elongated
180.0 H Triangularity shape Plasma

ERAS, lead time = 0 hours

Degrave et al, Magnetic control of tokamak plasmas through deep
reinforcement learning, Nature (2022)

Jumper et al, Highly accurate protein structure
prediction with AlphaFold, Nature (2021)

Pathak et al, FourCastNet: A Global Data-driven High-resolution

Weather Model using Adaptive Fourier Neural Operators, ArXiv (2022) T1037 / 6vr4 T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

@ Experimental result

@® Computational prediction
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Recap — key scientific tasks

Simulation Inverse problems Equation discovery

b =F(a) b=1I(a)

Ground truth Resulting Result of t
computed tomographic inverse
tomography data algorithm Ground truth: u; + uu, — 0.0032u,, =0
Mesh for finite element method image (sinogram) (filtered back- Discovered: u; + 1.002uu, — 0.0032u4, = 0
Source: COMSOL projection)
Adler et al, Solving ill-posed inverse problems using iterative deep neural networks, Chen et al, Physics-informed learning of governing equations from
Inverse Problems (2017) scarce data, Nature communications (2021)
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Recap — scientific machine learning

qlltonian neural networks .. _..Solver-in-the-1loop
Learned sub-grid processes
Physics- informed neural networks
AI Feynman
DeepONets PDE-NetAlgorithm unrolling

Learned regularisation

F 1 " Physics-informed neural operators
Ourler neura OP%&PMSSM@K&lﬂmmuuﬁ Neural ODEs

Machine Scientific
learning understanding
@ E
SciML

more powerful,

robust, interpretable
models
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Course timeline

Tutorials

Mon 12:15-14:00 HG E 5

26.02.
04.03.
11.03.
18.03.
25.03.

08.04.

22.04.

29.04.

06.05.

13.05.

27.05.

Introduction to PyTorch

CNNs and surrogate modelling
Implementing PINNSs |
Implementing PINNSs II

Operator learning |

Operator learning

GNNs
Transformers
Diffusion models

Coding autodiff from scratch

Introduction to JAX / NDEs

ETHzurich

Lectures

Wed 08:15-10:00 ML H 44

21.02.
28.02.
06.03.
13.03.
20.03.
27.03.

10.04.
17.04.
24.04.

08.05.
15.05.
22.05.
29.05.
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Introduction to deep learning Il

Introduction to physics-informed neural networks

PINNs — extensions and theory

Introduction to operator learning

Fourier- and convolutional- neural operators

Operator learning — limitations and extensions

Foundational models for operator learning

GNNs for PDEs / introduction to diffusion models

Introduction to differentiable physics

Neural differential equations

Symbolic regression and equation discovery

Guest lecture: ML in chemistry and biology

Fri 12:15-13:00 ML H 44

23.02.
01.03.
08.03.
15.03.
22.03.

12.04.
19.04.
26.04.
03.05.
10.05.
17.05.
24.05.
31.05.

Introduction to deep learning |
Importance of PDEs in science
PINNs — limitations and extensions
PINNs — theory

DeepONets and spectral neural operators

Introduction to transformers

Graph neural networks for PDEs
Introduction to diffusion models
Diffusion models - applications
Hybrid workflows

Introduction to JAX

Course summary and future trends

Guest lecture: ML in chemistry and biology



Lecture overview

* What is deep learning?

* Multilayer perceptrons

« Universal approximation

* Popular deep learning tasks
« Supervised learning

» Unsupervised learning

 Training deep neural networks

« Backpropagation & autodifferentiation
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Lecture overview Learning objectives

- What is deep learning? - Be able to mathematically define a deep

- Universal approximation « Understand the typical tasks neural

networks are used for
* Popular deep learning tasks
« Explain how neural networks are trained
« Supervised learning

» Unsupervised learning

 Training deep neural networks

« Backpropagation & autodifferentiation

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



State-of-the-art

* Inside ChatGPT — by end of these two lectures, you will understand how this works!

S:‘a‘n you find the bug in this code: Text Task
Prediction | Classifier

def mean_squared_error(x,y):
"Returns mean squared error" —
return np.mean((x-y)**3) A

Layer Norm

There is a bug in the provided code. The mean squared error (MSE) formula involves é‘

squaring the difference between the predicted and actual values. However, in the

. : . . Feed Forward
provided code, the difference is cubed instead of squared.

A
12x —
To fix the bug, the code should be modified to square the difference instead of cubing it.

Here's the corrected code: Layer Norm

python [?) Copy code $
Masked Multi
Self Attention

x, ¥): A

np.mean((x - y)**2)

Text & Position Embed

In this corrected code, the difference between the predicted “x* and actual “y* values is

squared using the exponent operator “***. The resulting array of squared differences is . . .
Radford et al, Improving Language Understanding by Generative Pre-

Training, ArXiv (2018)
Brown et al, Language Models are Few-Shot Learners, NeurlPS (2020)

then averaged using the “np.mean()" function to compute the mean squared error.

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



ETHzurich

Number of Al Publications in the World, 2010-21

Source: Center for Security and Emerging Technology, 2022 | Chart: 2023 Al Index Report

T I [ ] f n I 500 496.01
e I I S e O ’_UG 400
2
8
g
2
[
£
You H 300
how powerful is Al today? é
.
< 200
5
ChatGPT 1.2
As of my last update in January 2022, Al has made significant strides in various 2
100
domains, demonstrating remarkable capabilities in tasks such as natural language
processing, image recognition, speech synthesis, and more. Here are some aspects of
Al's current power:
2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
1. Natural Language Processing (NLP): Al models like GPT-3 (the architecture I'm based . . ..
Global Corporate inAlbyl Activity, 2013-22
on) have demonstrated the ability to generate human-like text, answer questions, Source: NetBase Quid, 2022 | Chart: 2023 Al Index Report
300 .
summarize information, and even engage in basic forms of conversation. These : Merger/Acquisition
Minority Stake
models have advanced to the point where they can generate coherent and M Private Investment
contextually relevant text across a wide range of topics. e Public Offering
? inp
Computer Vision: Al-powered systems are now capable of accurately recognizing and §
classifying objects, people, and activities in images and videos. They are used in 4 200
various applications such as autonomous vehicles, medical imaging, surveillance, and E
s
augmented reality. E 10 14674
Speech Recognition and Synthesis: Al technologies can accurately transcribe spoken < 26.06
5
language into text and generate human-like speech. Virtual assistants like Siri, Alexa, %
$ 100 95.57 46.06
and Google Assistant rely on these capabilities to understand and respond to user é 70.62 .
< 31.91
commands. © 2189
53.72
* 3382 2468 431 55.09 ot
25.43 - -
19.04 13.05
Brown et al, Language Models are Few-Shot
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Learners, NeurlPS (2020)

Number of Al-Related Bills Passed Into Law in 127 Select Countries, 2016-22
Source: Al Index, 2022 | Chart: 2023 Al Index Report

“a photograph of an .

astronaut riding a horse” )

Source: Stable Diffusion

Rombach et al, High-

Resolution Image c

Synthesis with Latent .

Diffusion Models, CVPR

(2022) T

Source: Al Index Report, Stanford University
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& Copliot

Reed et al., A
Generalist Agent,
TMLR (2022)

Wnat 1s the copital of

O France
G

Paris.

© Con you mrite me o poon?

T don’t know exactly what
to write. There's fust so
much to answer.

G

- I
kit / Q\ BBBD

A cat that 1s sitting next
o a wa1l

rt datetime

(expenses_string) :
of expenses and return the list of triples (date,
tarting with #.

value, currency).

date, value, currency = lin

expenses. append ( (datetine. d
float(value),
currency))

(
e, strptine(date, “%Y-4n-%d"),

return expenses

Source: GitHub Copilot
Source: Machine Learning
for Autonomous Driving
Workshop, NeurlPS (2023)

MODEL OUTPUT

SeamlessM4T

MODEL INPUT

Meta Al

Barrault et al., SeamlessM4T: Massively Multilingual

& Multimodal Machine Translation, ArXiv (2023) 9



Why now?

Neural networks date back to the 1950’s — so why is deep learning so popular today?

Rapidly increasing
amounts of data

Global data volume
(Zettabytes)

Source: Statista

7, T
I M A G E \ ‘ E H i‘gfwﬁ WIKIPEDIA
¢

‘The Free Encyclopedia
%

g

N

ETHzurich

Hardware
improvements

1990 2000 2010

40 Years of Microprocessor Trend Data

Source: NVIDIA

» Graphical processing units
(GPUs)

 Highly optimised for deep
learning (massively parallel)

401-4656-21L Al in the Sciences and Engineering 2024

Software
improvements

O PyTorch g

TensorFlow

y 4
Keras "lzx

™

* Mature deep learning
frameworks

 Better training algorithms

» Deeper and more sophisticated
architectures

10



Deep learning vs Al

ETHzurich

Artificial intelligence
= Mimic human behaviour

Reasoning Knowledge representation

Logic Value alignment

Theorem proving

Planning

Machine learning

Turing test
= [ earn about the world

Search

Support vector machines

Logistic regression Symbolic learning

K-means

. Gaussian processes
Decision trees

Deep learning MCMC

Principle

component = Extract patterns .

analysis using neural networks Bayesian
modelling

RNNs

Transformers

ResNets MLPs

GANs

CNNs  vAEs

Diffusion models
For a wide introduction to Al, see for example:

Russell & Norvig, Artificial Intelligence: A Modern Approach

401-4656-21L Al in the Sciences and Engineering 2024

11



What is a neural network?

ETHzurich

Neural networks are
simply flexible functions

fit to data

y=2x>—-3z% -z

21 —— Exact function
® Noisy training data

Example dataset:

401-4656-21L Al in the Sciences and Engineering 2024

Goal: given training data, find a
function (with flexible parameters 0)
which approximates the true
function,

y=NN(x;0) = y(x)



Function fitting

y=2x3—-3z%—=z

2 | e Polynominal regression
—— Exact function

Simple polynomial regression 11 o Nolsy training data
P(x;0) = 0,x3 + 0,x% + 0,x + 0, '

To fit, use least-squares:

0" = mginZ’iV(if(xi; 0) —y)* (1)

Re-write using linear algebra:

AN AT
92)=(1 x 22 x|l g |or? =078

0" = n}ginHCDTH —Y|?

In this case, it can be shown (1) has an analytical
solution:
0* = (@T0) 9Ty

401-4656-21L Al in the Sciences and Engineering 2024

ETHzurich



Function fitting

Simple polynomial regression
P(x;0) = 0,03 + 0,x% + 0,x + 0,
To fit, use least-squares:
0" = meinZ’iV(if(xi; 6)—y)* (1)

Re-write using linear algebra:

y=2x3—-3z%—=z

2 | e Polynominal regression
—— Exact function
11 @ Noisy training data

gy (1 x x k[
s | = 2 .3 2lor? =70
yZ 1 xz x2 x2

0" = n}ginHCDTH —Y|?

In this case, it can be shown (1) has an analytical

solution:

0" = (®TD) 1dTY

ETHzurich

Neural network regression
y(x;0) = NN(x; 0)
To fit, use least-squares:
6" =min XY (NN(x;;0) =) (2)

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

d Y N(NN(x;0) — v;)?
a0,

or equally
dL(0)

96;

Where y is the learning rate and L(0) is the loss
function

401-4656-21L Al in the Sciences and Engineering 2024 14



Neural network architecture

ETHzurich

2-layer MLP

So, what exactly is y = NN(x; 6)?

This depends on the network architecture you choose (CNN, ResNet,
Transformer, ... etc)

The most basic architecture is the multilayer perceptron (MLP) (aka fully
connected network)

For example, a 2-layer MLP is defined as:
NN(X, 8) = Wzo-(Wlx + bl) + bz
Where x is an input vector, W; and W, are learnable weight matrices, b,

and b, are learnable bias vectors, and o is an activation function, for
example, o = tanh(-)

401-4656-21L Al in the Sciences and Engineering 2024
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2-layer MLP

o=ReLU(z) o = tanh(z)
1.0 1
[ ] [ ] | [ ] [ ]
Biological inspiration “'
0.0
2_
_0.5'
a 01; . . . _F1.01; . . . .
1 -50 -25 00 25 50 -50 -25 00 25 5.0
a, \"1
Wa
a3 W O' Dendrite Axon terminal
? a' =o ZWiai+b (\ N e
- ] S 2
a, Wy b i xp) y‘z
Wt X2 :
: Ym
a5 . p‘ v
Xn 4 Outputs
\/ | elin shea Output points = synapses
| __ Myelinated axon trunk
nputs o =
For last layer: input paints = synapses
Biological neuron
Zl (Source: Wikipedia)
2
(ai) — 5 (W11 Wiz Wiz Wiy W15) as +<b1>
a, Wa1 Waz Waz Waq Was/| o b,
as

ETHzurich

Entire network:
NN(x;0) = o(W,o(W,x+ by) + b;) = fog (x;0)

401-4656-21L Al in the Sciences and Engineering 2024
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Polynomial regression example

ETHzurich

Training step O

y=2z%—3z% — 2z Line width = weight value
2 q === Neural network prediction
=== Polynominal regression
14 — Exact function
® Noisy training data

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
T

Trained using gradient descent

O XY (NN (x;;6) — y;)?

%<8~ 30,

401-4656-21L Al in the Sciences and Engineering 2024
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Universal approximation

So why not just use linear regression?

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Universal approximation

So why not just use linear regression?

ETHzurich

Neural networks are .. With enough parameters,
simply flexible functions @ neural networks can
fit to data approximate any* arbitrarily

complex function
= universal approximation

x = array of RGB values

401-4656-21L Al in the Sciences and Engineering 2024
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Importance of activation functions

Non-linearities allow us to approximate arbitrary non-linear functions

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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MLPs use lots of parameters

" AN
A
A“ A’l
"‘: ,:::‘l;‘\‘{ 2,
/ : 9, :\‘,‘ /
CTIRN @
/A
o ’
KR

Assume the image has shape 128 x 128, and we have 100 hidden units in the first layer, then
W, has shape (100 x (128 x 128)) = (100 x 16,384)

= 1.6M parameters!
=> A simple MLP image classifier can have millions of parameters

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Convolutional neural network (CNN)

Convolutional neural networks honor the spatial correlations

in their inputs

Each neuron;
- Has a limited field of view

NN(x,H) - W3 *(O-(Wz *O-(Wl *x+b1) +b2) +b3
h

I m

hij = Z WirjiXigir jrjr +b
o

il g

Let the size of the convolutional filter be 3 x 3

- Shares the same weights as the other neurons in the layer
- Mathematically, CNNs use cross-correlation Then W, has shape (3 x 3)

CNNs have translation equivariance (an inductive bias) = 9 parameters! (much, much smaller than a MLP)

ETHzurich

Image source:
github/vdumoulin/conv_arithmetic

401-4656-21L Al in the Sciences and Engineering 2024
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Convolutional neural network (CNN)

hijc
I||||||||||||||||

-O

Then the convolutional layer is defined by:

hijc — y ) Wl’]’C’Cxl+l J+i'c! + b,

LLT T T T T T T T T T1
L2
=}

In practice, CNNs are usually extended so they can have

multiple channels in the inputs and outputs of each layer
Let the size of the convolutional filter be 3 x 3

e.g. (R,G,B) image as input, where each channel is a color
Then W has shape (3 x 3 X Cj, X Cout)

Also: = 81 parameters for 3 input and 3 output channels

- 1D and 3D CNNs follow analogously
- And we can add dilations and strides too

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Deep CNNs

First layer Second layer Third layer

/I/\-[ .\'
e ANS \&!{:f”.

Deep CNNs learn hierarchical features

Lee et al, Unsupervised Learning of Hierarchical Representations with
Convolutional Deep Belief Networks, Communications of the ACM (2011)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Depth is key

97 | I | | |
Z= +—e 3. convolutional
= 96} 1
8 +—+ 3, fully connected
—
Ei/ 95 |- V¥ 11, convolutional []
5
§ 9 ]
=
S o3t e T T i
g
37
B 92 |- o
91 . l | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters X¥6°

Goodfellow et al, Multi-digit number recognition from street view imagery
using deep convolutional neural networks, ICLR (2014)

Empirically, deep neural networks perform better than shallow neural
networks

=> encode a very general belief that the true function is composed of
simpler functions

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



ETHzurich

Popular deep learning tasks

401-4656-21L Al in the Sciences and Engineering 2024
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Popular deep learning tasks

« Supervised learning
« Regression
 Classification

» Unsupervised learning
» Feature learning
» Autoregression
» Generative models

« ...butin all cases, the neural network is still a function fit to data!

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Supervised learning - regression

y=2x>—3z> -z

21 — Exact function
® Noisy training data

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Loss function (mean squared error)

L(8) = ) (NN(x;0) ~ .

Supervised learning - regression:

Given a set of example inputs and outputs (labels)

{(x1,¥1), -, (xn, yn)} from some true function y(x)
where x € R™,y € R™

Find
¥y =NN(x;0) = y(x)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Supervised learning - regression

y=2x>—3z> -z

21 — Exact function
® Noisy training data

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Loss function (mean squared error)

L(8) = ) (NN(x;0) ~ .

Supervised learning - regression:

Given a set of example inputs and outputs (labels)
{(x1,¥1), -, (xn, yn)} from some true function y(x)
where x € R™,y € R™

Find
¥y =NN(x;0) = y(x)

Probabilistic perspective:

Given a set of example inputs and outputs (labels)
{(x1,y1), -, (xy, Yn)} drawn from the probability
distribution p(y|x)

Find
plx, 0) = p(ylx)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Supervised learning - regression

ETHzurich

y=2x>—3z> -z

21 — Exact function
® Noisy training data

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Loss function (mean squared error)

L(8) = ) (NN(x;0) ~ .

Probabilistic perspective:
Assume p(y|x, 8) is a normal distribution:
p(ylx,8) = N(;u=NN(x;6),0 =1)

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

N
HDIO) = pCrs, yu, e yl0) = | [ PGk, 0)
i

Then use maximum likelihood estimation (MLE) to estimate 6*:

6" = mgxﬁ(DlH)

A (3’i_NN(xi29)>2
= max | | e 2 1
6

N
- meinz(NN(xi; 9) — v,)?

l

401-4656-21L Al in the Sciences and Engineering 2024
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Supervised learning - classification

Supervised learning - classification:

Given a set of example inputs and outputs (labels)
{(x1,y1), ..., (xn,¥n)} drawn from the discrete probability
distribution P(y|x)

where y € Y, for example, Y = {dog, cat}

Find
P(ylx,0) = P(y|x)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 31



Supervised learning - classification

Then assume

c c
P(y|x,0) = HNN(x; 9);]", ZNN(x; 6);=1
J Jj

Let each class be encoded as a one-hot vector of
length C, e.g

y =(0,1) (dog) or
y = (1,0) (cat)

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Supervised learning - classification

ETHzurich

Let each class be encoded as a one-hot vector of
length C, e.g

y =(0,1) (dog) or

y =(1,0)

(cat)

401-4656-21L Al in the Sciences and Engineering 2024

Then assume

c c
P(y|x,0) = nNN(x; 9);/", ZNN(x; 6);=1
J Jj

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

N
PDI6) = PCry, v, - X 310D = | | PGil:,0)
i

Then use maximum likelihood estimation (MLE) to estimate 6*:

0% = meaxP(Dle)
N C
= max 1_[ NN (x;; 9);’”
J

i
N

C
L

L

Also known as the cross-entropy loss

33



Supervised learning - classification

ETHzurich

Let each class be encoded as a one-hot vector of
length C, e.g

y =(0,1) (dog) or

y = (1,0) (cat)

Typically, we use a softmax output layer to assert

YiNN(x;0); = 1;

a(z); =

e’i

Y e?

401-4656-21L Al in the Sciences and Engineering 2024

Then assume

c c
P(y|x,0) = nNN(x; 9);71', ZNN(x; 6);=1
J Jj

Then, assume each training datapoint is independently and identically
distributed (iid), then the data likelihood can be written as:

N
PDI6) = PCry, v, - X 310D = | | PGil:,0)
i

Then use maximum likelihood estimation (MLE) to estimate 6*:

0% = meaxP(Dle)
N C
= max 1_[ NN (x;; 9);’”
J

i
N

C
L

L

Also known as the cross-entropy loss

34



Unsupervised learning - feature learning

Loss function

Many different possibilities, a simple
choice is

N
L©O) = ) (NNGxis 0) = x)?

|0e0|]

L] z(x) = L]
- Latent variables -

Unsupervised learning — feature learning zy —>
bbbl OOOOOOOOOOOO S
Gi t of | find ARALRARRSR0080000088

qa

iven a set of examples {x4, ..., xy}, find some NUSMARARASERnsossana
features z(x) For example: 9q222222333355866557
9994832223333 353555557
Zy qqqqqazzz?,ggggsss::z
. . . e 9999993333 5555787
Which are salient descriptors of x, where x € Variational autoencoders i 99999333333333888577
7999999%%3533388¢8¢¢8¥87
R",z € R? (VAEs) 79999998888888888857
7999999888866 66¢6¢6¢s5¢s57
7999419188622222:::1
1 — H i 794999999868¢6 ss
Typically, d < n (= compression) Kingma et al, 2014 4444444 44 455651144
7999494999938 808¢E¢€¢C¢¢¢< s
79999997733V 00¢E¢€¢€¢Eé€sy
799997711 vy VvV Lt
z can be used for downstream tasks, e.g. 44445582220 R R SR AR LT
77777779 vv 000000001017

clustering / classification

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024
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Unsupervised learning - autoregression

Apple share price

175 1

150 1
125 4
100 A

UsD

751 The cat sat on ?

50 1

25 1

2004 2008 2012 2016 2020 2024

Unsupervised learning — autoregression

Given many examples sequences, train a model to predict
future values from past values

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024



Unsupervised learning - autoregression

Apple share price

175 1

150 1

125 4

100 A

" s The cat sat on ?
50 -
25 -
0-
2004 2008 2012 2016 2020 2024 For example:
ChatGPT
X4 X5 X6 X7
ho hy h, hgTh4Th5Th6T
X0 X1 ) X3

ETHzurich 401-4656-21L Al in the Sciences and Engineering 2024 37



Unsupervised learning - generative modelling

Training dataset

Randomly
sampled latent
variable

Source: CelebA

ETHzurich

7= |

Generative model

For example:

Generative adversarial
networks (GANSs)

Goodfellow et al, 2014

Real image

Discriminator

loss

Discriminator

Z —>

Generator

N

Generator
loss

x = generated
image

Unsupervised learning — generative modelling

Given many examples {x;, ..., xy} sampled from some
distribution p(x), learn to sample from p(x)

401-4656-21L Al in the Sciences and Engineering 2024
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Training deep neural networks

401-4656-21L Al in the Sciences and Engineering 2024
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How do we train neural networks?

Gradient descent
Y(x;0) = NN(x;0)
To fit, use least-squares:
0" = mginZIiV(NN(xi; 0)—y)* (2

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

0% (NN (x;; 0) — y)?
96;

or equally
dL(0)
26,

Where y is the learning rate and L(0) is the loss
function
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How do we train neural networks?

: Note that

Gradient descent oL & ONN (i )

—o— = ) 2(NN(x;; 0) - y) ——
y(x;0) = NN(x; 0) J - J
To fit, use least-squares: Let’s consider a fully connected network
g9
6" = min YV (NN(x;;60) —y)?  (2) NN(x;60) = W3(c(Wo0(Wyx + by) + by) + bz = fo g o h(x;0)
h
In general, no analytical solution to (2) exists, so we
e .. INN(x;;60)
must use optimisation How do we calculate ——=7?

ow,
For example, gradient descent:

0% (NN (x;; 0) — y)?

or equally
dL(0)

96;

Where y is the learning rate and L(0) is the loss
function
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How do we train neural networks?

Gradient descent
Y(x;0) = NN(x;0)
To fit, use least-squares:
0* = m(}nZIiV(NN(xi; 6) —y)* (2

In general, no analytical solution to (2) exists, so we
must use optimisation

For example, gradient descent:

0% (NN (x;; 0) — y)?

Note that
dL(0)
a0;

= INN (x;; 6)
= ) 2NN G 0) - y) ——

J

Let’s consider a fully connected network
9

NN(x;8) = W3(c(Woo0(Wyx + by) + by) + b3 = f o goh(x;0)
h

ONN(x;;0) o)

How do we calculate
aw,

Note f, g, and h are vector functions =>

Use the multivariate chain rule (= matrix multiplication of Jacobians)

0, « 6; — 56,
or equally ONN _ ga_g oh
6, < 6, _],5229) oW, _ dg oh oW,
J
Oh .
Where y is the learning rate and L(6) is the loss of 09, 0gn
function J= g | .5
T \Un | Un
agl agn
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Evaluating the chain rule

ETHzurich

g
NN(x; 6) = Wy (0(Woo (Wyx + by) + by) + b = f o g o h(x; 6)
h

One can show (exercise for the reader!)

S = 39 3h I, = W; diag(c'(g))W, diag(c'(h)) ® x

and therefore

oL iag(o’ oo’ (h
ow, Z 2(fi — i) W3 diag(o'(g:)) W, diag(o’(hy)) ® x;
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Backpropagation

Forward pass:

Backward pass:

ETHzurich

x; > h; =Wyx; + b, > g; = Wyo(h;) + b, > f; = W30(g;) + bs

T~ \ 7

Save layer outputs in forward pass

S = 2, 20— y) Wi diag(a'(g0) W, diag(a’(hy) ® x;
1

i
Evaluate from left to right (reverse-mode) for efficiency

Similar equations for other weight matrices and bias vectors
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Backpropagation

Forward pass:

Backward pass:

ETHzurich

x; > h; =Wyx; + b, > g; = Wyo(h;) + b, > f; = W30(g;) + bs

In practice: O PyTo rch

Autodifferentiation tracks all your forward computations and their
gradients and applies the chain rule automatically for you, so you don’t
have to worry!
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Lecture summary

» (Deep) neural networks are simply flexible functions fit to data

* Universal approximation means they can be applied to many different

tasks

 DNNs are trained using chain rule (backpropagation) and gradient

descent
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