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Comments and course information

These are lecture notes for Functional Analysis (Math 920), Spring 2022. The text for
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• J. B. Conway. A Course in Functional Analysis. Vol. 96. Graduate Texts in Mathematics.

New York, NY: Springer New York, 2007.
For background on undergraduate analysis, see:
• W. Rudin. Principles of Mathematical Analysis. 3rd ed. International Series in Pure and

Applied Mathematics. McGraw-Hill, 1976.
For measure theory and complex analysis background, see:
• T. Tao. An Introduction to Measure Theory. Graduate Studies in Mathematics 126. Prov-

idence, RI: American Mathematical Soc., 2011.
• B. Simon. Real Analysis. Providence, Rhode Island: American Mathematical Society,

Nov. 2015
• D. Sarason. Complex Function Theory. Second. Providence, RI: American Mathematical

Society, 2007.
• G. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied

Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 1999.
• W. Rudin. Real and Complex Analysis. 3rd ed. New York: McGraw-Hill, 1987.
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Part 1

Linear Spaces and the Hahn Banach Theorem





LECTURE 1

Linear spaces, linear maps and the index

Reading: Chapters 1 and 2 of Lax

Linear Spaces

Many objects in mathematics, particularly in analysis, are (or may be described in
terms of) linear spaces (also called vector spaces). For example:

(1) F[X] = set of polynomials over a field F.
(2) C(M) = space of continuous functions (R or C valued) on a manifold M.
(3) A(U) = space of analytic functions in a domain U ⊂ C.
(4) L1(µ) = { equivalence classes of integrable functions on a measure space M, µ

modulo equality µ-almost everywhere }.
The key features here are the axioms of linear algebra,

Definition 1.1. A linear space X over a field F (in this course we always take F = R or C)
is a set on which we have defined

(1) addition: x, y ∈ X 7→ x + y ∈ X
and

(2) scalar multiplication: k ∈ F, x ∈ X 7→ kx ∈ X
with the following properties

(1) (X,+) is an abelian group. That is, the operation + is commutative and associative,
and identity and inverses exist.
• The identity is called 0 (“zero”).
• The inverse of x is denoted −x.

(2) Scalar multiplication is
• associative: a(bx) = (ab)x,
• distributive: a(x + y) = ax + by and (a + b)x = ax + bx,

and satisfies 1x = x.

Remark 1.2. It follows from the axioms that 0x = 0 and −x = (−1)x.

Let X be a linear space. Let us recall various facts and definitions from linear algebra:
• A set of vectors S ⊂ X is linearly independent if

n

∑
j=1

ajxj = 0 with x1, . . . , xn ∈ S =⇒ a1 = · · · = an = 0.

• The dimension of X, dim X, is the cardinality1 of a maximal linearly independent set in
X (it is a theorem of linear algebra that all such sets have the same cardinality).

1Recall that cardinal numbers can be finite (0,1,2,3,...), countable (the cardinality of N), or uncountable
(any cardinal that is neither finite or countable, for example c the cardinality of R).

3
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• The span of a set S is the set

span S =

{
n

∑
j=1

ajxj : a1, . . . , an ∈ R and x1, . . . , xn ∈ S

}
,

and S is spanning, or spans X, if span S = X.
• The dimension dim X is also the the cardinality of a minimal spanning set.

Definition 1.3. Given linear spaces X, Y and a mapping T : X → Y, we say that T is linear
if

T(x + ay) = T(x) + aT(y)
for all x, y ∈ X and a ∈ F. A linear isomorphism is a linear mapping that is one-to-one and
onto, and two linear spaces are isomorphic if there is a linear isomorphism between them.

It is a basic fact of linear algebra that two linear spaces are isomorphic if and only if
they have the same dimension (try proving this without using finiteness of the dimen-
sion!). For example, regarding the example linear spaces above, F[X] is the only space
with countable dimension. Both C(M) and A(U) have uncountable dimension. The space
L1(µ) could be finite dimensional (if µ is supported on a finite set) or could have uncount-
able dimension.

What is functional analysis?

If you are only familiar with finite dimensional linear algebra, it may seem odd that
functional analysis is part of analysis. For finite dimensional spaces the axioms of lin-
ear algebra are very rigid: there is essentially only one interesting topology on a finite
dimensional space and up to isomorphism there is only one linear space of each finite di-
mension.2 In infinite dimensions we shall see that topology matters a great deal, and the
topologies of interest are related to the sort of analysis that one is trying to do.

All that explains the “analysis” in “functional analysis.” “Functional” is a somewhat
archaic term for a function defined on a domain of functions. Since most of the spaces
we study are function spaces, like C(M), the functions defined on them are “functionals.”
Thus “functional analysis” is the analysis of functions defined on function spaces.

Linear Maps

As we will see, not all linear maps are continuous (in infinite dimensions). By de-
manding that our linear maps be continuous we will obtain a much richer and more use-
ful structure than what is provided by simple linear algebra. Nonetheless there a few
concepts that can be introduced and studied in great generality, without topology.

There is a natural algebra on linear maps, inherited from the algebra on general maps:
• Given linear maps T, S : X → Y, their sum T + S, defined by (T + S)(x) = T(x) + S(x)

is a linear map. Similarly, the scalar multiple aT is defined by (aT)(x) = aT(x). These
two operations make the space L(X, Y) of linear maps from X to Y into a linear space
in its own right.

2The usual topology on the finite dimensional space Fn is a metric topology given by the Euclidean
metric d(x,y) =

√
(x1 − y1)2 + · · ·+ (xn − yn)2. However, this topology can also be characterized, in a

completely algebraic fashion, as the minimal topology such that every linear map from Fn to F is continuous
(when F is given its usual metric topology).
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• Given linear maps T : X → Y and S : Y → Z, the product ST is the composite map:
(ST)(x) = S(T(x)). As in linear algebra we write this operation as a product, rather
than using the composition symbol ◦.

Definition 1.4. A linear map T : X → Y is invertible if it is one-to-one and onto.

An invertible map has an inverse map T−1 : Y → X defined by T−1(y) = x if and only if
T(x) = y.

Exercise 1.1. Verify that the inverse T−1 : Y → X of an invertible linear map is linear.

Definition 1.5. The nullspace of T (or kernel of T), denoted NT or ker T, is the set

ker T := {x ∈ X | Tx = 0} .

The range of T (denoted ran T) is the image of X under T:

ran T := {y ∈ Y} y = Tx for some x ∈ X .

Recall the following notions from linear algebra:
• A set U ⊂ X is a subspace if it is a linear space under the operations inherited from X,

that is if x + ay ∈ U whenever x, y ∈ U and a ∈ F.
• Given a subspace U ⊂ X, the quotient space X/U is the set of cosets {x + U : x ∈ X},

which is a linear space under the natural operations (x + U) + (y + U) = (x + y) + U
and a(x + U) = ax + U.

The following theorem lists several standard results. The proof is left as an exercise:

Theorem 1.6. Let T : X → Y be a linear map.
(1) ker T and ran T are linear subspaces of X and Y, respectively.
(2) T is invertible if and only if ker T = {0} and ran T = Y.
(3) T maps the quotient X/ ker T one-to-one onto ran T.
(4) If T is invertible and S : Y → Z is an invertible linear map, then ST is invertible and

(ST)−1 = T−1S−1.
(5) If ST is invertible, then ker T = {0} and ran S = Z.

Exercise 1.2. Prove Theorem 1.6.

Note that it can happen (even in finite dimensions) that ST is invertible although T
and S are not separately invertible. For example, consider the linear maps T : R2 → R3

and S : R3 → R2 given by the following matrices:

S =

(
1 0 0
0 1 0

)
and T =

1 0
0 1
0 0

 .

However, if ST is invertible and X = Y = Z AND X is finite dimensional, then S and T
are separately invertible.

Similarly, if X is finite dimensional and T : X → X is linear, then
• if ker T = {0}, then ran T = X and T is invertible,
• if ran T = X, then ker T = {0} and T is invertible.
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These facts are no longer true if X is infinite dimensional. For example, consider the space ℓ∞

of all bounded, complex sequences. That is,

ℓ∞ :=

{
(a1, a2, . . .)

∣∣∣∣∣ aj ∈ C and sup
j

|aj| < ∞

}
.

Let R be the right shift,
R(a1, a2, . . .) = (0, a1, a2, . . .) ,

and L be the left shift,
L(a1, a2, . . .) = (a2, a3, . . .) .

Formally R and L correspond to the infinite matrices

R =


0
1 0
0 1 0

0 1 0
. . . . . . . . .

 and L =


0 1 0

0 1 0
0 1 0

. . . . . . . . .

 .

Note that
• ran L = ℓ∞ but ker L = span{(1, 0, . . .)}, so L is not invertible;
• ker R = {0} but ran R = {(a1, a2, . . .) : a1 = 0} ̸= ℓ∞, so R is not invertible;
• LR = I (the identity);
• but RL(a1, a2, . . .) = (0, a2, . . .) .

So, new and interesting things can happen in infinite dimensions!

Pseudo-invertible maps

There is a a very general notion, the index, that quantifies the phenomenon we just
saw for the right and left shifts. It applies to a special class of maps called pseudoinvertible
maps.

Definition 1.7. A linear map K is degenerate if ran K is finite dimensional.

Note that any linear map on a finite dimensional space is degenerate. The degenerate
maps have two imporant properties:

Theorem 1.8. Let X, Y, U, V be linear spaces and let K(X, Y) denote the set of degenerate maps
from X into Y. Then

(1) K(X, Y) is a linear space, and
(2) if K ∈ K(X, Y), T ∈ L(U, X), and S ∈ L(Y, V), then SK and KT are degenerate.

Exercise 1.3. Prove Theorem 1.8

Definition 1.9. Let X, Y be linear spaces. Linear maps T : X → Y and S : Y → X are
pseudoinverses of each other if there are degenerate maps K, K′ such that

ST = I + K and TS = I + K′ ,

where I denotes the identity map on the appropriate space (X or Y). We say that a map is
pseudoinvertible if it has a pseudoinverse.

Exercise 1.4. Show that the right and left shifts defined above are pseudoiverses to each
other.
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Theorem 1.10. (1) If T and S are pseudoiverses of each other, so are T + K and S + K′ for
arbitrary degenerate maps K, K′.

(2) If T : X → Y and S : Y → Z have pseudoinverses T′ : Y → X and S′ : Z → Y,
respectively, then T′S′ is a pseudoiverse for ST.

Exercise 1.5. Prove theorem 1.10 .

Definition 1.11. Given a subspace U ⊂ X of a linear space X, the codimension of U is the
dimension of X/U :

codim U := dim(X/U) .

The following theorem characterizes pseudoinvertible maps:

Theorem 1.12. A linear map T : X → Y is pseudoinvertible if and only if

dim ker T < ∞ and codim ran T < ∞ . (1.1)

To prove Theorem 1.12, we will use two lemmas. The first is

Lemma 1.13. If K : X → X is a degenerate linear map, then

dim ker(I + K) < ∞ and codim ran(I + K) < ∞ .

PROOF. If x ∈ ker(I + K) then x = −Kx = K(−x) ∈ ran K. So ker(I + K) ⊂ ran K
is finite dimensional. By Theorem 1.6, K maps X/ ker K one-to-one onto ran K. Thus
codim ker K = dim ran K < ∞. If x ∈ ker K then (I + K)x = x. Thus ran(I + K) ⊃ ker K,
so codim ran(I + K) ≤ codim ker K < ∞. □

We can use this lemma prove half of Theorem 1.12:

PROOF OF THE FORWARD DIRECTION OF THEOREM 1.12. Suppose that T has a pseu-
doinverse S. Then

dim ker T ≤ dim ker ST and codim ran T ≤ codim ran TS ,

since ker T ⊂ ker ST and ran T ⊃ ran TS. Thus (1.1) follows from the following Lemma:
□

For the reverse implication, we need a definition and a lemma to proceed.

Definition 1.14. Let U, V ⊂ X be subspaces. We say that V is a complementary subspace
to U (or that U and V are complementary) if U ∩ V = {0} and U + V = {u + v : u ∈
U and v ∈ V} = X .

Lemma 1.15. Let U ⊂ X be a linear subspace. Then there is a subspace V complementary to U.

This proof is going to be unsatisfying. In the generality of the statement written here,
there is no constructive proof. Instead we will use the Kuratowski-Zorn lemma, more com-
monly known as Zorn’s lemma. This is the following result equivalent to the axiom of
choice:

Theorem 1.16 (Kuratowski 1922 and Zorn 1935). Let S be a partially ordered set such that
every totally ordered subset has an upper bound. Then S has a maximal element.

To understand the statement, we need

Definition 1.17. A partially ordered set (poset) S is a set on which an order relation a ≤ b is
defined on pairs a, b ∈ S, with the following properties
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(1) transitivity: if a ≤ b and b ≤ c then a ≤ c
(2) reflexivity: a ≤ a for all a ∈ S.

The relation ≤ is called a partial order. A subset T of S is totally ordered if any two elements
of T are comparable, i.e.,

x, y ∈ T =⇒ x ≤ y or y ≤ x.
An element u ∈ S is an upper bound for T ⊂ S if x ≤ u for all x ∈ T. A maximal element
m ∈ S satisfies m ≤ b =⇒ m = b.

Note that it is not required that any two elements of a poset S are comparable: we may
have, for given a, b ∈ S, a ̸≤ b and b ̸≤ a. Similarly, a maximal element m need not be
comparable to all elements of S – it just has the property that if it is comparable with a then
a ≤ m.

A proof of Zorn’s lemma, based on certain facts about ordinal numbers, is included in
an appendix. In these lectures, we will take it as given.

PROOF OF LEMMA 1.15. Consider the collection Z of all subspaces V such that V ∩
U = {0}. Clearly Z is non-empty, since {0} ∈ Z . We can partially order Z by taking
V ≤ V′ if V ⊂ V′. Given any totally ordered collection of elements of Z , we find that the
union of the elements is itself an element of Z (this is an elementary exercise) and thus an
upper bound. By Zorn’s lemma Z has a maximal element, i.e., there is a V ∈ Z such that
if Y ∈ Z and Y ⊃ V then Y = V. Suppose that U + V ̸= X and let y ∈ X \ (U + V). It
follows that V + {ay : a ∈ F} is an element of Z strictly larger than V, contradicting the
maximality of V. Thus we must have U + V = X. □

Remark 1.18. If U and V are complementary, we will write U ⊕ V = X. It follows that
each coset in X/U contains a unique element of V. Thus there is a linear isomorphism
from X/U to V.

PROOF OF THE REVERSE DIRECTION OF THEOREM 1.12. Suppose that (1.1) holds. Let
U ⊂ X and V ⊂ Y be subspaces such that X = ker T ⊕ U and Y = ran T ⊕ V. Note
that dim V = codim ran T < ∞. By Theorem 1.6, T maps X/ ker T one-to-one and onto
ran T. Since X/ ker T is isomorphic to U we conclude that the restriction of T to U is an
invertible map from U to ran T. Thus every element of Y can be written uniquely as Tu+ v
with u ∈ U and v ∈ V. Define S : Y → X as follows, if y = Tu + v as above, then

Sy := u .

Then ker S = V, ran S = U, and

ST = I − P and TS = I − Q ,

where P(x + u) = x for x ∈ ker T, u ∈ U, and Q(y + v) = v for y ∈ ran T, v ∈ V. Since Q
and P are degenerate, it follows that S is a pseudoiverse for T. □



LECTURE 2

The Index; The Hahn Banach Theorem

Reading: Chapter 3 of Lax

The Index

Definition 2.1. Let T : X → Y be a pseudoinvertible map. The index of T is the integer

ind T = dim ker T − codim ran T . (2.1)

Note that if X and Y are finite dimensional, then ind T = dim X − dim Y. Indeed, we
have dim X = dim ran T + dim ker T by the “rank-nullity theorem.” Thus

ind T = dim ker T − dim Y + dim ran T = dim X − dim Y .

On the other hand, in infinite dimensions the index is not just a function of the domain
and target spaces, but actually depends on the map. Indeed, for the right and left shift
defined above, we have

ind R = −1 and ind L = 1 .

It is no accident that ind R+ ind L = 0. Indeed, this follows from LR = I and the following

Theorem 2.2. If T : X → Y and S : Y → Z are pseudoinvertible linear maps, then ST has a
pseudoinverse and

ind(ST) = ind S + ind T .

To prove the theorem we will use the following algebraic notion:

Definition 2.3. Consider a finite sequence V0, . . . , Vn of linear spaces with maps Tj : Vj →
Vj+1 for j = 0, . . . , n − 1,

V0
T0−→ V1

T1−→ · · · Tn−1−−→ Vn .

This sequence is called exact if ran Tj = ker Tj+1 for j = 0, . . . , n − 2.

Lemma 2.4. Suppose that we have an exact sequence of finite dimensional vector spaces with
dim V0 = dim Vn = 0. Then

n

∑
j=0

(−1)j dim Vj = 0 .

PROOF. Decompose each Vj as Vj = Nj ⊕ Yj with Nj = ker Tj (for j = 0, . . . , n − 1).
We take Nn = {0}. It follows that Tj is an isomorphism of Yj with Nj+1 for each j =
0, . . . , n − 1. Thus

dim Vj = dim Nj + dim Yj = dim Nj + dim Nj+1 , j = 0, . . . , n − 1

9
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Hence, summing the relation from j = 0 to n − 1, with alternating signs, leads to
n−1

∑
j=0

(−1)j dim Vj =
n−1

∑
j=0

(−1)j dim Nj −
n

∑
j=1

(−1)j dim Nj = dim N0 − dim Nn = 0,

since N0 = Nn = {0}. □

PROOF OF THEOREM 2.2. To prove the theorem we use the exact sequence

0 → ker T
J−→ ker ST T−→ ker S P−→ Y/ ran T S′

−→ Z/ ran ST
Q−→ Z/ ran S → 0 ,

where

(1) J is the identification map x
J7−→ x (note that ker T ⊂ ker ST);

(2) P is the map y P7−→ y + ran T;

(3) S′ is the map y + ran T S′
7−→ Sy + ran ST; and

(4) Q is the map z + ran ST
Q7−→ z + ran S.

Exercise 2.1. Check that these maps are well defined and that this is indeed an exact se-
quence.

As a result, we have from Lemma 2.4

0 = dim ker T − dim ker ST + dim ker S − codim ran T + codim ran ST − codim ran S
= ind T + ind S − ind ST . □

One further important result is stability of the index under degenerate perturbations:

Theorem 2.5. Let T : X → Y be a pseudoinvertible linear map and K : X → Y a degenerate
linear map. Then T + K is pseudoinvertible and

ind(T + K) = ind T .

For a proof of this result, see Theorem 12 in Lax 2002.

The Hahn Banach Theorem

Definition 2.6. A linear functional is a linear map ℓ : X → F from a linear space X over a
field F to the field itself.

Given a linear space X it is not immediately obvious that any non-zero linear func-
tionals actually exist. However, there is a very general logical principle, called the Hahn-
Banach Theorem, that allows us to show that many linear functionals do exist. It is not a
hard result, but it does rely on Zorn’s lemma. The theorem gives a sufficient condition for
a linear functional defined initially on a linear subspace Y ⊂ X to be extended to all of X.

Theorem 2.7 (Hahn 1927 and Banach 1929). Let X be a linear space over R and p a real valued
function on X with the properties

(1) p(ax) = ap(x) for all x ∈ X and a > 0 (Positive homogeneity)
(2) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X (subadditivity).

If ℓ is a linear functional defined on a linear subspace of Y and dominated by p, that is ℓ(y) ≤ p(y)
for all y ∈ Y, then ℓ can be extended to all of X as a linear functional dominated by p, so ℓ(x) ≤
p(x) for all x ∈ X.
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Example 2.8. Let X = B[0, 1], the space of all bounded, real valued functions on [0, 1],
and let Y = C[0, 1], the space of continuous, real valued functions on [0, 1]. Let ℓ( f ) =∫ 1

0 f (t)dt for f ∈ Y, where the integral is the Riemann integral:

ℓ( f ) = lim
n→∞

1
n

n

∑
k=1

f (k/n).

Let p : B → R be p( f ) = sup{| f (x)| : x ∈ [0, 1]}. Then p satisfies (1) and (2) and
ℓ( f ) ≤ p( f ). Thus we can extend ℓ to all of B[0, 1].

We will return to this example later and see that we can extend ℓ so that ℓ( f ) ≥ 0
whenever f ≥ 0. With this extension we can define a set function µ(S) = ℓ(χS) on
arbitrary subsets S ⊂ [0, 1]. Since ℓ is linear, µ is finitely additive: µ(S ∪ T) = µ(S) + µ(T)
if S ∩ T = ∅. As you might expect, for Lebesgue measurable S, µ(S) is nothing other than
the Lebesgue measure of S. However, that does not follow from Hahn-Banach. This is
typical of applications of Hahn-Banach. The Hahn-Banach theorem usually accomplishes
the soft part of an argument, but in a way that doesn’t give us much information without
further analysis.

The proof of Hahn-Banach is not constructive, but relies on Zorn’s lemma:

PROOF OF THEOREM 2.7. To apply Zorn’s Lemma, we use the following poset:

S = {extensions of ℓ dominated by p} .

That is S consists of pairs (ℓ′, Y′) with ℓ′ a linear functional defined on a linear subspace
Y′ ⊂ X, such that

(1) Y ⊂ Y′ ⊂ X,
(2) ℓ′(y) = ℓ(y) for all y ∈ Y, and
(3) ℓ′(y) ≤ p(y) for all y ∈ Y′.

We partially order S as follows

(ℓ1, Y1) ≤ (ℓ2, Y2) ⇐⇒ Y1 ⊂ Y2 and ℓ2|Y1 = ℓ1.

If T is a totally ordered subset of S, let (ℓ, Y) be

Y =
⋃ {

Y′ : (ℓ′, Y′) ∈ T
}

and
ℓ(y) = ℓ′(y) for y ∈ Y′.

Since T is totally ordered, this definition of ℓ is unambiguous. Clearly (ℓ, Y) is an upper
bound for T. Thus by Zorn’s Lemma there exists a maximal element (ℓ+, Y+).

To finish, we need to see that Y+ = X. It suffices to show that (ℓ′, Y′) ∈ S has an exten-
sion dominated by p whenever Y′ ̸= X. Fortunately, this reduces to a finite dimensional
problem! Suppose Y′ ̸= X and let x0 ∈ X \ Y′. Let

Y′′ = {ax0 + y | y ∈ Y, a ∈ R} .

To define an extension ℓ′′ of ℓ′ on Y′′, we need only define ℓ′′(x0). If we didn’t care about
dominating ℓ′′ by p, we could choose ℓ′′(x0) as we like. However, to guarantee that ℓ′′ is
dominated by p, we must have

aℓ′′(x0) + ℓ′(y) ≤ p(ax0 + y)
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for all a ∈ R and y ∈ Y′. Since Y′ is a subspace and p is homogeneous, this is the same as

±ℓ′′(x0) ≤ p(y ± x0)− ℓ′(y) (2.2)

for all y ∈ Y′. We can find a suitable choice of ℓ′′(x0) as long as

ℓ′(y′)− p(y′ − x0) ≤ p(x0 + y)− ℓ′(y) for all y, y′ ∈ Y′, (2.3)

or equivalently

ℓ′(y′ + y) ≤ p(x0 + y) + p(y′ − x0) for all y, y′ ∈ Y′. (2.4)

Since
ℓ′(y′ + y) ≤ p(y′ + y) = p(y′ − x0 + y + x0) ≤ p(x0 + y) + p(y′ − x0),

eq. (2.4) holds. Thus a choice of ℓ′(x0) satisfying eq. (2.2) exists. □

If codim Y < ∞ has finite co-dimension, then one can follow the second paragraph of
the proof to give a constructive proof of the Hahn-Banach theorem involving only finitely
many choices. However, when Y has infinite co-dimension, the approach via Zorn’s
lemma is necessary and typically involves uncountably many “choices.”

Geometric Hahn-Banach Theorems

One key use of the Hahn-Banach Theorem is to understand something of the geometry
of linear spaces. In particular, we want to understand if the following picture holds in
infinite dimension: Let X be a linear space over R.

FIGURE 2.1. Separating a point from a convex set by a line hyperplane

Definition 2.9. A set S ⊂ X is convex if for all x, y ∈ S and t ∈ [0, 1] we have tx+(1− t)y ∈
S.
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Definition 2.10. A point x ∈ S ⊂ X is an interior point of S if for every y ∈ X there is ε > 0
such that |t| < ε =⇒ x + ty ∈ S.

Remark 2.11. We could define a topology using this notion, letting U ⊂ X be open when-
ever all x ∈ U are interior. From the standpoint of abstract linear algebra this seems to be
“the” natural topology on X. In practice, however, it has way too many open sets and we
work with weaker topologies that are relevant to the analysis under consideration. Much
of functional analysis centers around the interplay of different topologies.

We are aiming at the following

Theorem 2.12. Let K be a non-empty convex subset of X, a linear space over R, and suppose K
has at least one interior point. If y ̸∈ K then there is a linear functional ℓ : X → R s.t.

ℓ(x) ≤ ℓ(y) for all x ∈ K, (2.5)

with strict inequality for all interior points x of K.

This is the “hyperplane separation theorem.” It essentially validates the picture drawn
above. A set of the form {ℓ(x) = c} with ℓ a linear functional is a “hyperplane” and the
sets {ℓ(x) < c} are “half spaces.”

To accomplish the proof we will use Hahn-Banach. We need a dominating function p.

Definition 2.13. Let K ⊂ X be convex and suppose 0 is an interior point. The gauge of K
(with respect to the origin) is the function pK : X → R defined as

pK(x) = inf
{

a
∣∣∣ a > 0 and

x
a
∈ K

}
.

Note that pK(x) < ∞ for all x since 0 is interior.

Lemma 2.14. pK is positive homogeneous and sub-additive.

PROOF. Positive homogeneity is clear (even if K is not convex). To prove sub-additivity
we use convexity. Consider pK(x + y). Let a, b be such that x/a, y/b ∈ K. Then

t
x
a
+ (1 − t)

y
b
∈ K ∀t ∈ [0, 1],

so
x + y
a + b

=
a

a + b
x
a
+

b
a + b

y
b
∈ K.

Thus pK(x + y) ≤ a + b. Optimizing over a, b we obtain the result. □

PROOF OF HYPERPLANE SEPARATION THEOREM. It suffices to assume 0 ∈ K and is
interior. Let pK be the gauge of K. Note that pK(x) ≤ 1 for x ∈ K and that pK(x) < 1 if x is
interior, as then (1 + t)x ∈ K for small t > 0. Conversely, if pK(x) < 1 then x is an interior
point of K (why?), so

pK(x) < 1 ⇐⇒ x if an interior point ofK.

Now define ℓ(y) = 1, so ℓ(ay) = a for a ∈ R. Since y ̸∈ K it is not an interior point and
so pK(y) ≥ 1. Thus pK(ay) ≥ a for a ≥ 0 and also, trivially, for a < 0 (since pK ≥ 0). Thus

ℓ(ay) ≤ pK(ay)

for all a ∈ R. By Hahn-Banach, with Y the one dimensional space {ay}, ℓ may be extended
to all of x so that pK(x) ≥ ℓ(x) which implies eq. (2.5). □
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An extension of this is the following

Theorem 2.15. Let H, M be disjoint convex subsets of X, at least one of which has an interior
point. Then H and M can be separated by a hyperplane ℓ(x) = c: there is a linear functional ℓ
and c ∈ R such that

ℓ(u) ≤ c ≤ ℓ(v)∀u ∈ H, v ∈ M.

PROOF. The proof rests on a trick of applying the hyperplane separation theorem with
the set

K = H − M = {u − v : u ∈ H and v ∈ M}
and the point y = 0. Note that 0 ̸∈ K since H ∪ M = ∅. Since K has an interior point
(why?), we see that there is a linear functional such that ℓ(x) ≤ 0 for all x ∈ K. But then
ℓ(u) ≤ ℓ(v) for all u ∈ H, v ∈ M. □

In many applications, one wants to consider a vector space X over C. Of course, then
X is also a vector space over R so the real Hahn-Banach theorem applies. Using this one
can show the following

Theorem 2.16 (Complex Hahn-Banach: Bohnenblust and Sobczyk 1938 and Soukhomli-
noff 1938). Let X be a linear space over C and p : X → [0, ∞) such that

(1) p(ax) = |a|p(x)∀a ∈ C, x ∈ X.
(2) p(x + y) ≤ p(x) + p(y) (sub-additivity).

Let Y be a C linear subspace of X and ℓ : Y → C a linear functional such that

|ℓ(y)| ≤ p(y) (2.6)

for all y ∈ Y. Then ℓ can be extended to all of X so that (2.6) holds for all y ∈ X.

Remark 2.17. A function p that satisfies (1) and (2) is called a semi-norm. It is a norm if
p(x) = 0 =⇒ x = 0.

PROOF. Let ℓ1(y) = Re ℓ(y), the real part of ℓ. Then ℓ1 is a real linear functional and
−ℓ1(iy) = −Re iℓ(y) = Im ℓ(y), the imaginary part of ℓ. Thus

ℓ(y) = ℓ1(y)− iℓ1(iy). (2.7)

Clearly |ℓ1(y)| ≤ p(y) so by the real Hahn-Banach theorem we can extend ℓ1 to all of
X so that ℓ1(y) ≤ p(y) for all y ∈ X. Since −ℓ1(y) = ℓ1(−y) ≤ p(−y) = p(y), we have
|ℓ1(y)| ≤ p(y) for all y ∈ X. Now define the extension of ℓ via (2.7). Given y ∈ X let
θ = arg ln ℓ(y). Thus ℓ(y) = eiθℓ1(e−iθy) (why?). So,

|ℓ(y)| = |ℓ1(e−iθy)| ≤ p(y). □

Lax gives another beautiful extension of Hahn-Banach, due to Agnew and Morse,
which involves a family of commuting linear maps.
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LECTURE 3

Norms and Banach Spaces

Reading: Chapter 5 of Lax.
The Hahn-Banach theorem made use of a dominating function p(x). When this func-

tion is positive for x ̸= 0, it can be understood roughly as a kind of “distance” from a
point x to the origin. Such a function is called a norm:

Definition 3.1. Let X be a linear space over F = R or C. A norm on X is a function
∥·∥ : X → [0, ∞) such that

(1) ∥x∥ = 0 ⇐⇒ x = 0 (non-degeneracy),
(2) ∥x + y∥ ≤ ∥x∥+ ∥y∥ (sub-additivity), and
(3) ∥ax∥ = |a|∥x∥ for all a ∈ F and x ∈ X (homogeneity).

A normed space is a linear space X with a norm ∥·∥.

On any normed space we define an associated metric

d(x, y) = ∥x − y∥.

Exercise 3.1. Show that d is a metric. Note that this proof uses only non-degeneracy and
sub-additivity.

Thus any normed space is a metric space and the metric is easily seen to be
(1) translation invariant: d(x + z, y + z) = d(x, y) and
(2) homogeneous d(ax, ay) = |a|d(x, y).

Associated to the metric, is the metric topology. In particular we have the following no-
tions:

(1) a sequence (xn)∞
n=1 converges to x, denoted xn → x, if d(xn, x) = ∥xn − x∥ → 0.

(2) a set U ⊂ X is open if for every x ∈ U there is a ball {y : ∥y − x∥ < ϵ} ⊂ U.
(3) a set K ⊂ X is closed if X \ K is open.
(4) a set K ⊂ X is compact if every open cover of K has a finite sub-cover.

The norm defines the topology but not the other way around. Indeed two norms ∥·∥1
and ∥·∥2 on X are equivalent if there is c > 0 such that

c∥x∥1 ≤ ∥x∥2 ≤ c−1∥x∥2 ∀x ∈ X.

Exercise 3.2. Show that equivalent norms define the same topology. That is, they generate
the same family of open sets and the same family of convergent sequences.

Recall from real analysis that a metric space X is complete if every Cauchy sequence
(xn)∞

n=1 converges in X. In a normed space, a Cauchy sequence (xn)∞
n=1 is one such that

∀ϵ > 0∃N ∈ N such that n, m > N =⇒ ∥xn − xm∥ < ϵ.

A complete normed space is called a Banach space. Banach spaces were introduced by
Banach 1922. Fréchet 1926 coined the term Espace de Banach (Banach space).

17
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Not every normed space is complete, and whether or not it is complete may depend
on the norm. For example C[0, 1] with the norm

∥ f ∥1 =
∫ 1

0
| f (x)|dx

fails to be complete, although it is complete with respect to the uniform norm, ∥ f ∥u =
supx∈[0,1] | f (x)|. However, every normed space X has a completion, defined abstractly as a
set of equivalence classes of Cauchy sequences in X. This space, denoted X, is a Banach
space.

1. Examples of Normed and Banach spaces

Example 3.2. For each p ∈ [1, ∞) let

ℓp = {p summable sequences} =

{
(a1, a2, . . .)

∣∣∣∣∣ ∞

∑
j=1

|aj|p < ∞

}
.

Define a norm on ℓp via

∥a∥p =

[
∞

∑
j=1

|aj|p
] 1

p

.

Then ℓp is a Banach space. Note that a ∈ ℓ1 is summable, i.e., ∑∞
j=1 aj is convergent and∣∣∣∣∣ ∞

∑
j=1

aj

∣∣∣∣∣ ≤ ∥a∥1.

Example 3.3. Let
ℓ∞ = {bounded sequences} = B(N),

with norm
∥a∥∞ = sup

j
|aj|. (⋆)

Then ℓ∞ is a Banach space.

Example 3.4. Let

c0 = {sequences converging to 0} =

{
(a1, a2, . . .)

∣∣∣∣ lim
j→∞

aj = 0
}

,

with norm (⋆). Then c0 is a Banach space.

Example 3.5. Let

F = {sequences with finitely many non-zero terms}
= {(a1, a2, . . .) | ∃N ∈ Nsuch that n ≥ N =⇒ an = 0} .

Then for any p ≥ 1, Fp = (F , ∥·∥p) is a normed space which is not complete. The com-
pletion of Fp is isomorphic to ℓp.



SEPARABLE SPACES 19

Example 3.6. Let D ⊂ Rd be a domain and let p ∈ [1, ∞). Let X = Cc(D) be the space of
continuous functions with compact support in D, with the norm

∥ f ∥p =

[∫
D
| f (x)|pdx

] 1
p

.

Then X is a normed space, which is not complete. Its completion is denoted Lp(D) and
may be identified with the set of equivalence classes of measurable functions f : D → C

such that ∫
D
| f (x)|pdx < ∞ (Lebesgue measure),

with two functions f , g called equivalent if f (x) = g(x) for almost every x.

Example 3.7. Let D ⊂ Rd be a domain and let p ∈ [1, ∞). Let X denote the set of C1

functions on D such that∫
D
| f (x)|pdx < ∞ and

∫
D
|∂j f (x)|pdx < ∞, j = 1, . . . , n.

Put the following norm on X,

∥ f ∥1,p =

[∫
D
| f (x)|pdx +

n

∑
j=1

∫
D
|∂j f (x)|pdx.

] 1
p

.

Then X is a normed space which is not complete. Its completion is denoted W1,p(D) and
is called a Sobolev space and may be identified with the subspace of Lp(D) consisting of
(equivalence classes) of functions all of whose first derivatives are in Lp(D) in the sense
of distributions.

Separable Spaces

Definition 3.8. A normed space X over F = R or C is called separable if it has a countable,
dense subset.

Most spaces we consider are separable, with a few notable exceptions. For example,
(1) ℓp is separable for 1 ≤ p < ∞.
(2) ℓ∞ is not separable. To see this, note that to each subset of A ⊂ N we may associate

the sequence χA, and
∥χA − χB∥∞ = 1

if A ̸= B.
(3) L∞(D) is not separable.
(4) Lp(D) is separable for 1 ≤ p < ∞.
(5) The space M of all signed (or complex) measures µ on, say, D with norm

∥µ∥ =
∫

D
|µ|(dx)

is a non-separable Banach space. Here |µ| denotes the total variation of µ,

|µ|(A) = sup
Partitions A1, . . . , An of A

n

∑
j=1

|µ(Aj)|.
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Since the point mass

δx(A) =

{
1 x ∈ A
0 x ̸∈ A

is an element of A and
∥∥δx − δy

∥∥ = 2 if x ̸= y, we have an uncountable family of
elements of M all at a fixed distance of one another. Thus there can be no countable
dense subset.

Noncompactness of the Unit Ball

Theorem 3.9. Let X be a normed linear space. Then the closed unit ball B1(0) = {x : ∥X∥ ≤ 1}
is compact if and only if X is finite dimensional.

The fact that the unit ball is compact if X is finite dimensional is the Heine-Borel The-
orem from Real Analysis. To prove the converse, we use the following

Lemma 3.10 (Riesz 1916). Let Y be a closed proper subspace of a normed space X. Then there is
a unit vector z ∈ X, ∥z∥ = 1, such that

∥z − y∥ >
1
2

∀y ∈ Y.

PROOF. Since Y is proper, there is x ∈ X \ Y. As Y is closed and x ̸∈ Y,

inf
y∈Y

∥x − y∥ = d > 0.

There may not be a minimizing y, but we can certainly find y0 such that

d ≤ ∥x − y0∥ < 2d.

Let z = x−y0
∥x−y0∥ . Then

∥z − y∥ =
∥x − y0 − ∥x − y0∥y∥

∥x − y0∥
>

d
2d

=
1
2

for y ∈ Y. □

PROOF THAT THE UNIT BALL IN AN INFINITE DIMENSIONAL SPACE IS NOT COMPACT.
It suffices to show that if X is infinite dimensional then there is a sequence in B1(0) with
no convergent subsequence.1

Let y1 be any unit vector and recursively define a sequence of unit vectors so that

∥yk − y∥ >
1
2

∀y ∈ span{y1, . . . , yk−1}.

Note that span{y1, . . . , yk−1} is finite dimensional, hence complete, and thus a closed sub-
space of X. So the Lemma guarantees the existence of yk. Since X is infinite dimensional
the process never stops. No subsequence of yj can be Cauchy, much less convergent. □

1Since B1(0) is a metric space, it is compact if and only if it is sequentially compact, namely if and only
if every sequence in B1(0) has a convergent subsequence.
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Uniform Convexity and Bounded Linear Maps

Reading: Chapter 5 of Lax.

Uniform convexity

The following theorem may be easily shown using compactness:

Theorem 4.1. Let X = Rn with the usual Euclidean norm. Let K be a closed convex subset of X
and z any point of X. Then there is a unique point of K closer to z than any other point of K. That
is there is a unique solution y0 ∈ K to the minimization problem

∥y0 − z∥ = inf
y∈K

∥y − z∥. (⋆)

Exercise 4.1. Prove this theorem. (Hint: existence of a minimizer follows from compact-
ness; uniqueness follows from convexity.)

The conclusion of theorem does not hold in a general infinite dimensional space. Nonethe-
less there is a property which allows for the conclusion, even though compactness fails!

Definition 4.2. A normed linear space X is uniformly convex if there is a function ϵ :
(0, ∞) → (0, ∞), such that

(1) ϵ is increasing.
(2) limr→0 ϵ(r) = 0.
(3)

∥∥∥1
2(x + y)

∥∥∥ ≤ 1 − ϵ(∥x − y∥) for all x, y ∈ B1(0), the unit ball of X.

Theorem 4.3 (Clarkson 1936). Let X be a uniformly convex Banach space, K a closed convex
subset of X, and z any point of X. Then the minimization problem (⋆) has a unique solution
y0 ∈ K.

PROOF. If z ∈ K then y0 = z is the solution and is clearly unique.
When z ̸∈ K, we may assume z = 0 (translating z and K if necessary). Let

s = inf
y∈K

∥y∥.

So s > 0. Now let yn ∈ K be a minimizing sequence, so

∥yn∥ → s.

Now let xn = yn/∥yn∥, and consider

1
2
(xn + xm) =

1
2∥yn∥

yn +
1

2∥ym∥
ym =

(
1

2∥yn∥
+

1
2∥ym∥

)
(tyn + (1 − t)ym)

for suitable t ∈ (0, 1). By convexity, tyn + (1 − t)ym ∈ K so

∥tyn + (1 − t)ym∥ ≥ s.
21
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Thus

1 − ϵ(∥xn − xm∥) ≥
1
2

(
s

∥yn∥
+

s
∥ym∥

)
→ 1

as n, m → ∞. We conclude that xn is a Cauchy sequence, from which it follows that yn is
Cauchy. The limit y0 ∈ limn yn exists in K since X is complete and K is closed. Clearly
∥y0∥ = s. □

Exercise 4.2. Show that the minimizer y0 found above is unique.

Warning: Not every Banach space is uniformly convex. For example, the space C(D) of con-
tinuous functions on a compact set D is not uniformly convex. In fact we can have∥∥∥∥1

2
( f + g)

∥∥∥∥
∞
= 1

for unit vectors f and g. (They need only have disjoint support.) Lax gives an example
of a closed convex set in C[−1, 1] in which the minimization problem (⋆) has no solution.
It can also happen that a solution exists but is not unique. For example, in C[−1, 1] let
K = {functions that vanish on [−1, 0]}. and let f = 1 on [−1, 1]. Clearly

sup
x

| f (x)− g(x)| ≥ 1 ∀g ∈ K,

and the distance 1 is attained for any g ∈ K that satisfies 0 ≤ g(x) ≤ 1.
On the other hand, many familiar Banach spaces are uniformly convex. For example,

ℓp with 1 < p < ∞ and Lp(D) with D any measure space and 1 < p < ∞ are uniformly
convex.

Bounded Linear maps

Definition 4.4. Let X, Y be normed spaces. A linear map T : X → Y is bounded if there is
c > 0 such that

∥T(x)∥ ≤ c∥x∥.
The norm of T is the smallest such c, that is

∥T∥ = sup
x ̸=0

∥T(x)∥
∥x∥ .

Theorem 4.5. A linear map T : X → Y between normed spaces X and Y is continuous if and
only if it is bounded.

PROOF. First suppose that T : X → Y is bounded. If T is the zero map, then it is
constant, hence continuous. If T is not the zero map, then ∥T∥ > 0. Let x ∈ X and let
ϵ > 0. If ∥x′ − x∥ < ϵ

∥T∥ , then∥∥T(x′)− T(x)
∥∥ =

∥∥T(x′ − x)
∥∥ ≤ ∥T∥

∥∥x′ − x
∥∥ < ϵ .

Thus T is continuous at x.
On the other hand, suppose that T : X → Y and that ∥T∥ = ∞. Then for each n there

is xn ̸= 0 such that
∥T(xn)∥
∥xn∥

≥ n .
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Let
x′n =

1√
n

1
∥xn∥

xn .

So ∥x′n∥ = 1√
n and limn→∞ x′n = 0. But∥∥T(x′n)

∥∥ =
1√
n
∥T(xn)∥
∥xn∥

≥
√

n .

Thus T is not continuous at 0. By linearity, we conclude that T is discontinuous every-
where. □

Exercise 4.3. 1) Verify that the norm defined above is a norm on the space B(X, Y) of
bounded linear maps from X to Y. 2) Let T1 ∈ B(X, Y) and T2 ∈ B(Y, Z) prove that
∥T2 ◦ T1∥ ≤ ∥T2∥∥T1∥. Find an example to show that the inequality can be strict (hint use
matrices).

Isometries

An isometry of normed spaces X and Y is a map M : X → Y such that
(1) M is surjective.
(2) ∥M(x)− M(y)∥ = ∥x − y∥.

Clearly translations Tu : X → X, Tu(x) = x + u are isometries of a normed linear space. A
linear map T : X → Y is an isometry if T is surjective and

∥T(x)∥ = ∥x∥ ∀x ∈ X.

A map M : X → Y is affine if M(x)− M(0) is linear. So, M is affine if it is the composi-
tion of a linear map and a translation.

Theorem 4.6 (Mazur and Ulam 1932). Let X and Y be normed spaces over R. Any isometry
M : X → Y is an affine map.

Remark 4.7. The theorem conclusion does not hold for normed spaces over C. In that
context any isometry is a real -affine map (M(x)− M(0) is real linear), but not necessarily
a complex-affine map. For example on C([0, 1], C) the map f 7→ f (complex conjugation)
is an isometry and is not complex linear.

PROOF. It suffices to show M(0) = 0 =⇒ M is linear. To do this we will use the
following:

Exercise 4.4. Let M : X → Y be a continuous map between normed spaces X and Y such
that

M(0) = 0 and M
(

1
2
(x + y)

)
=

1
2

M(x) +
1
2

M(y), ∀x, y ∈ X.

Show that M is linear.

Let x and y be points in X and z = 1
2(x + y). Note that

∥x − z∥ = ∥y − z∥ =
1
2
∥x − y∥,

so z is “half-way between x and y.” Let

x′ = M(x), y′ = M(y), z′ = M(z).
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We need to show
2z′ = x′ + y′. (⋆)

Since M is an isometry, it follows that∥∥x′ − z′
∥∥ =

∥∥y′ − z′
∥∥ =

1
2

∥∥x′ − y′
∥∥ =

1
2
∥x − y∥.

So z′ is “half-way between x′ and y′.” It may happen that 1
2(x′ + y′) is the unique point of

Y with this property (in which case we are done). This happens, for instance, if the norm
in Y is strictly sub-additive, i.e., if

βx′ ̸= αy′ =⇒
∥∥x′ + y′

∥∥ <
∥∥x′
∥∥+ ∥∥y′

∥∥.

In general, however, there may be a number of points “half-way between x′ and y′.” This
happens, for example in C(X) or L1(X).

Let

A1 =

{
u ∈ X

∣∣∣∣ ∥x − u∥ = ∥y − u∥ =
1
2
∥x − y∥

}
,

and

A′
1 =

{
u′ ∈ Y

∣∣∣∣ ∥∥x′ − u′∥∥ =
∥∥y′ − u′∥∥ =

1
2

∥∥x′ − y′
∥∥} .

Since M is an isometry, we have A′
1 = M(A1). Let d1 denote the diameter of A1,

d1 = sup
u,v∈A1

∥u − v∥.

This is also the diameter of A′
1. Now, let

A2 =

{
u ∈ A1

∣∣∣∣ v ∈ A1 =⇒ ∥u − v∥ ≤ 1
2

d1

}
,

which is the set of “centers of A1.” If v ∈ A1 then 2z − v ∈ A1:

∥x − (2z − v)∥ = ∥v − y∥ = ∥v − x∥ = ∥y − (2z − v)∥.

Thus
d ≥ ∥2z − v − v∥ = 2∥z − v∥

and so z ∈ A2. Similarly, let

A′
2 =

{
u′ ∈ A′

1

∣∣∣∣ v′ ∈ A′
1 =⇒

∥∥u′ − v′
∥∥ ≤ 1

2
d1

}
.

Again, since M is an isometry we have A′
2 = M(A2).

In a similar way, define decreasing sequences of sets, Aj and A′
j, inductively by

Aj =

{
u ∈ Aj−1

∣∣∣∣ v ∈ Aj−1 =⇒ ∥u − v∥ ≤ 1
2

diam(Aj−1)

}
,

and

A′
j =

{
u′ ∈ A′

j−1

∣∣∣∣ v′ ∈ A′
j−1 =⇒

∥∥u′ − v′
∥∥ ≤ 1

2
diam(A′

j−1)

}
.
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Again M(Aj) = A′
j and z ∈ Aj since Aj−1 is invariant under inversion around z: u ∈

Aj−1 =⇒ 2z − u ∈ Aj−1. Since diam(Aj) ≤ 21−jd1 we conclude that
∞⋂

j=1

Aj = {z} and
∞⋂

j=1

A′
j =

{
1
2
(x′ + y′)

}
.

Since z′ ∈ A′
j for all j, (⋆) follows. □





LECTURE 5

Scalar Products and Hilbert Spaces

Reading: Chapter 6 of Lax.

Definition 5.1. A scalar product on a linear space X over R is a real valued function ⟨·, ·⟩ :
X × X → R with the following properties

(1) Bilinearity: x 7→ ⟨x, y⟩ and y 7→ ⟨x, y⟩ are linear functions.
(2) Symmetry: ⟨x, y⟩ = ⟨y, x⟩.
(3) Positivity: ⟨x, x⟩ > 0 if x ̸= 0. (Note that ⟨0, 0⟩ = 0 by bilinearity.)

A (complex) scalar product on a linear space X over C is a complex valued function
⟨·, ·⟩ : X × X → C with the properties

(1) Sesquilinearity: y 7→ ⟨x, y⟩ is linear and x 7→ ⟨x, y⟩ is skewlinear,〈
x + ax′, y

〉
= a ⟨x, y⟩+

〈
x′, y

〉
.

(2) Skew symmetry: ⟨x, y⟩ = ⟨y, x⟩.
(3) Positivity: ⟨x, x⟩ > 0 for x ̸= 0.

Given a (real or complex) scalar product, the associated norm is

∥x∥ =
√
⟨x, x⟩.

Remark 5.2. A complex linear space is also a real linear space, and associated to any
complex inner product is a real inner product:

(x, y) = Re ⟨x, y⟩ .

Note that the associated norms are the same, so the metric space structure is the same
whether or not we consider the space as real or complex. Note that

(ix, y) = −(x, iy). (⋆)

and the real and complex inner products are related by

⟨x, y⟩ = (x, y) + i(ix, y) = (x, y)− i(x, iy). (⋆⋆)

Conversely, suppose (·, ·) is a real inner product on a complex linear space; if (·, ·) satisfies
(⋆), then (⋆⋆) defines a complex inner product.

We have not shown that the definition ∥x∥ =
√
⟨x, x⟩ actually gives a norm. Homo-

geneity and positivity are clear. To verify sub- additivity we need the following important

Theorem 5.3 (Cauchy-Schwarz Inequality). A real or complex scalar product satisfies

|⟨x, y⟩| ≤ ∥x∥∥y∥,

with equality only if ax = by.
27
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Remark 5.4. A corollary is that

∥x∥ = max
∥u∥=1

| ⟨x, u⟩ |,

from which follows sub-additivity

∥x + y∥ ≤ ∥x∥+ ∥y∥.

PROOF. It suffices to consider the real case, since given x, y we can always find θ so
that

〈
x, eiθy

〉
= eiθ ⟨x, y⟩ is real. Also, we may assume y ̸= 0, as otherwise both sides of

the inequality are zero.
Let ⟨·, ·⟩ be a real inner product and t ∈ R. Then

∥x + ty∥2 = ∥x∥2 + 2t ⟨x, y⟩+ t2∥y∥2.

Minimizing the r.h.s. over t we find that,

tmin = −⟨x, y⟩
∥y∥2 ,

and

0 ≤ ∥x∥2 − ⟨x, y⟩2

∥y∥2 .

The Cauchy-Schwarz inequality follows. □

Another important, related result, is the parallelogram identity

∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2.

A result of Jordan and von Neumann 1935 states that any norm which satisfies the paral-
lelogram law comes from an inner product.

Definition 5.5. A linear space with a scalar product that is complete in the induced norm
is a Hilbert space.

That is a Hilbert space is a Banach space with a norm that comes from an inner product.
Any scalar product space can be completed in norm. It follows from the Schwarz

inequality that the scalar product is continuous in each of its factors and extends uniquely
to the completion, which is thus a Hilbert space.

Examples:
(1) ℓ2 is a Hilbert space with the inner product

⟨a, b⟩ = ∑
j

ajbj,

which is finite by Hölder’s inequality.
(2) C[0, 1] is an inner product space with respect to the inner product

⟨ f , y⟩ =
∫ 1

0
f (t)g(t)dt.

It is not complete. The completion is L2[0, 1] and can be associated with the set of
equivalence classes of Lebesgue square integrable functions.
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Remarks. 1) There is no standard as to which factor of the inner product is skew-linear.
In the physics literature, it is usually the first factor; in math it is sometimes the second. 2)
Hilbert 1906 used inner products in his study of linear integral equations. 3) The abstract
definition of a Hilbert space, and the name, are due to von Neumann 1927 in his work on
the foundations of quantum mechanics.

Orthogonal Projection

Definition 5.6. Two vectors in an inner product space are orthogonal if

⟨x, y⟩ = 0.

The orthogonal complement of a set s is

S⊥ = {v | ⟨v, y⟩ = 0 ∀y ∈ S} .

Lemma 5.7. Let H be a Hilbert space. If S ⊂ H, then S⊥ is a closed subspace.

PROOF. That S⊥ is a subspace is clear. That it is closed follows from continuity of the
inner product in each factor, since if vn → v, vn ∈ S⊥, then

⟨v, y⟩ = lim
n

⟨vn, y⟩ = 0 for y ∈ S. □

Theorem 5.8. Let H be a Hilbert space. If Y is a closed subspace of H, then
(1) Any vector x ∈ H can be written uniquely as a linear combination

x = y + v, with y ∈ Y and v ∈ Y⊥.

(2) (Y⊥)⊥ = Y.

To prove this theorem, we need

Lemma 5.9. Given a nonempty closed, convex subset K of a Hilbert space, and a point x ∈ H,
there is a unique point y in K that is closer to x than any other point ofK.

PROOF. This follows from Clarkson’s Theorem 4.3 if we show that H is uniformly
convex. Let x, y be unit vectors. It follows from the parallelogram law that∥∥∥∥1

2
(x + y)

∥∥∥∥2

= 1 − 1
4
∥x − y∥2,

so ∥∥∥∥1
2
(x + y)

∥∥∥∥ ≤ 1 −
(

1 −
√

1 − 1
4
∥x − y∥2

)
︸ ︷︷ ︸

ϵ∥x−y∥

. □

PROOF OF THEOREM. According to the Lemma there is a unique point y ∈ Y closest
to a given point x ∈ H. Let v = x − y. We claim that ⟨v, y′⟩ = 0 for any y′ ∈ Y. Indeed,
we must have

∥v∥2 ≤
∥∥v + ty′

∥∥2
= ∥v∥2 + 2t Re

〈
v, y′

〉
+ t2∥∥y′

∥∥2

for any t. In other words the function

0 ≤ 2t Re
〈
v, y′

〉
+ t2∥∥y′

∥∥2 for all t,
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which can occur only if Re ⟨v, y′⟩ = 0. Since this holds for all y′ ∈ Y we get ⟨v, y′⟩ = 0 by
complex linearity.

Thus the decomposition x = y + v is possible. Is it unique? Suppose x = y + v =
y′ + v′. Then y − y′ = v − v′ ∈ Y ∩ Y⊥. But z ∈ Y ∩ Y⊥ =⇒ ⟨z, z⟩ = 0 so z = 0. The
proof that (Y⊥)⊥ = Y is left as a simple exercise. □

Riesz-Fréchet Theorem

We have already seen that for fixed y ∈ H, a Hilbert space, the map ℓy(x) = ⟨y, x⟩
is a bounded linear functional — boundedness follows from Cauchy-Schwarz. In fancy
language y 7→ ℓy embeds H into H⋆, the dual of H. Since∥∥ℓy

∥∥ = sup
x

|⟨y, x⟩|
∥x∥ = ∥y∥,

again by Cauchy-Schwarz, this map is an isometry onto it’s range. In a real Hilbert space,
this is a linear map; in a complex Hilbert space, it is skew-linear:

ℓy+αy′ = ℓy + αℓy′ .

The question now comes up whether we get every linear functional in H⋆ this way?
The answer turns out to be “yes.”

Theorem 5.10 (Riesz Representation Theorem). Let ℓ(x) be a bounded linear functional on a
Hilbert space H. Then there is a unique y ∈ H such that

ℓ(x) = ⟨y, x⟩ .

Remark. The theorem in the abstract context is due to Riesz 1934. The result is sometimes
called the “Riesz-Fréchet” theorem because of earlier work by Riesz 1907b and Fréchet
1907 in the context of function spaces.

Before turning to the proof, let us state several basic facts whose proofs are left as an
exercise.
Lemma 5.11.

(1) Let X be a linear space and ℓ a non-zero linear functional on X. Then the null space of ℓ
is a linear subspace of co-dimension 1. That is, if Y = {y : ℓ(y) = 0} then there exists
x0 ̸∈ Y and any vector x ∈ X may be written uniquely as

x = αx0 + y, α ∈ F and y ∈ Y.

(2) If two linear functionals ℓ, m share the same null space, they are constant multiples of
each other: ℓ = cm.

(3) If X is a Banach space and ℓ is bounded, then the null-space of ℓ is closed.

PROOF OF THE RIESZ-FRÉCHET THM. If ℓ = 0 then y = 0 will do, and this is the
unique such point y. If ℓ ̸= 0, then it has a null space Y, which by the lemma is a
closed subspace of co-dimension 1. The orthogonal complement Y⊥ must be one dimen-
sional. Let ŷ be a unit vector in Y⊥. The point ŷ is unique up to a scalar multiple. Then
m(x) = ⟨ŷ, x⟩ is a linear functional, with null-space Y. Thus ℓ = αm and we may take
y = αŷ.

To see that y is unique, note that if ⟨y, x⟩ = ⟨y′⟩ x for all x then ∥y − y′∥ = 0, so
y = y′. □



LECTURE 6

Lax-Milgram Theorem and the Geometry of a Hilbert space

Reading: §6.3 of Lax.

Lax-Milgram Theorem

In applications, one is often given not a linear functional, but a quadratic form:

Definition 6.1. Let H be a Hilbert space over R. A bilinear form on H is a function B :
H × H → R such that

x 7→ B(x, y) and y 7→ B(x, y)
are linear maps. A skew-linear form on a Hilbert space H over C is a map B : H × H → C

such that
x 7→ B(x, y) is skew-linear, and y 7→ B(x, y) is linear.

A bilinear or skew-linear form B on H is bounded if there is a constant c > 0 such that

|B(x, y)| ≤ c∥x∥∥y∥ ,

and is bounded below if
|B(y, y)| ≥ b∥y∥2 .

Theorem 6.2 (Lax and Milgram 1954). Let H be a Hilbert space over R, or C, and let B be a
bounded bilinear, or skew-linear, form on H that is bounded from below. Then every bounded linear
functional ℓ ∈ H⋆ may be written

ℓ(x) = B(y, x), for unique y ∈ H.

PROOF. For fixed y, x 7→ B(y, x) is a bounded linear functional. By Riesz-Fréchet there
exists z : H 7→ H such that

B(y, x) = ⟨z(y), x⟩ .
It is easy to see that the map y 7→ z(y) is linear. Thus the range of z,

ran z = {z(y) : y ∈ H} ,

is a linear subspace of H.
Let us prove that ran z is a closed subspace. Here we need the fact that B is bounded

from below. Indeed,
B(y, y) = ⟨z(y), y⟩ ,

so
b∥y∥2 ≤ ∥y∥∥z(y)∥,

and thus
b∥y∥ ≤ ∥z(y)∥.

If yn is any sequence then

∥yn − ym∥ ≤ b−1∥z(yn)− z(ym)∥.
31



32 6. LAX-MILGRAM THEOREM AND THE GEOMETRY OF A HILBERT SPACE

Hence, if z(yn) → z0, then yn is Cauchy so yn → y0 and it is easy to see we must have
z0 = z(y0). Thus z0 ∈ ran z, so ran z is closed.

Now we show that ran z = H. Since ran z is closed it suffices to show ran z⊥ = {0}.
Let x ⊥ ran z. It follows that

B(y, x) = ⟨z(y), x⟩ = 0 ∀y ∈ H.

Thus B(x, x) = 0 and so x = 0 since ∥x∥2 ≤ b−1|B(x, x)|.
Since ran z = H we see by Riesz-Fréchet that any linear functional ℓ may be written

ℓ(x) = ⟨z(y), x⟩ = B(y, x) for some y. Uniqueness of y follows as above, since if B(y, x) =
B(y′, x) for all x we conclude that ∥y − y′∥ = 0 since B is bounded from below. □

An Application of Riesz-Fréchet and Lax Milgram

The Reisz-Fréchet 5.10 and Lax Milgram 6.2 theorems can be used to give a simple
proof of the existence of weak solutions to parabollic equations. The following is a sketch
of the ideas. For more details, see Chapter 7 of Lax.

Let D ⊂ Rn be a bounded, connected, open set. To begin consider the Dirichlet prob-
lem for the Laplacian

−∆u = f on D, u(x) = 0 on ∂D.

Let H1
0(D) be the homogeneous Sobolev space of first order over D. One can introduce this

as the Hilbert space obtained by completing the smooth, compactly supported functions
C∞

c (D) in the norm

∥u∥1 =

(
n

∑
j=1

∫
D

∣∣∂ju(x)
∣∣2ds

)
.

The following Lemma is often called the Poincare Lemma; Poincare 1890 proved a
version of it for convex domains. The result as stated here is due to Zaremba 1909:

Lemma 6.3 (Zaremba 1909). For u ∈ H1
0(D) one has

∥u∥0 ≤ d∥u∥1

where ∥u∥0 =
(∫

D |u(x)|2dx
)

is the L2 norm and d = diam(D).

PROOF. By taking limits, it suffices to prove the inequality for u ∈ C∞
c (D). Let x ∈ D

and let e be unit vector in Rn. Let dx be the smallest number such that x + dxe ∈ ∂D. Then

u(x) = −
∫ dx

0
e · ∇u(x + te)dt .

Applying Cauchy-Schwarz yields

|u(x)|2 ≤ dx

∫ dx

0
|∇u(x + te)|2dx.

Integrating of D yields and noting that dx ≤ d yields

∥u∥2
0 ≤ d

∫ d

0

∫
D
|∇u(x + te)|2dx ≤ d2∥u∥2

1 . □
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Given f ∈ L2(D), let ℓ f (v) denote the linear functional

ℓ f (v) =
∫

D
f (x)v(x)dx .

By Cauchy-Schwarz and Zaremba’s lemma, ℓ f bounded on H1
0 :∣∣ℓ f (v)

∣∣ ≤ ∥ f ∥0∥v∥0 ≤ d∥ f ∥0∥v∥0 .

Thus by the Riesz-Fréchet Theorem, there is u ∈ H1
0 such that

ℓ f (v) = ⟨u, v⟩ =
∫

D
∇u(x) · ∇v(x)dx

for all v ∈ H1
0 . This u is the weak solution to the Dirichlet problem that we wished to find.

By using the Lax-Milgram Theorem, we can extend the above result to divergence form
elliptic problems such as

−∇ ·A(x)∇u(x) + ϕ(x)u(x) = f (x) , x ∈ D , (6.1)

with u(x) = 0 for x ∈ ∂D, provided
(1) A(x) is a positive definite n × n matrix that is bounded and uniformly elliptic

0 < µ := inf
x∈D

λ1(x) ≤ sup
x∈D

λn(x) ,

where λ1(x) ≤ λn(x) are the smallest and largest eigenvalues of A(x), and
(2) −µ

d < infx∈D ϕ(x) ≤ supx∈D ϕ(x) < ∞.
The key is to define the bilinear form

B(u, v) =
∫

D
{∇u(x) ·A(x) · ∇v(x) + ϕ(x)u(x)v(x)} dx .

Exercise 6.1. Show that B(u, v) is bounded on H1
0 , i.e., |B(u, v)| ≤ c∥u∥1∥v∥1, and positive,

i.e., B(u, u) ≥ c∥u∥2
1. Hint: as in Zaremba’s lemma it suffices to prove the bounds for

u, v ∈ C∞
c (D) and take limits. One needs the uniform ellipticity of A to get positivity.

Thus by Lax-Milgram, we can write the linear funtional ℓ f (v) as

ℓ f (v) = B(u, v)

for some unique u ∈ H1
0 . This u is the weak solution to (6.1) that we seek.

Geometry of Hilbert Space

Recall that the linear span of a set S in a linear space X is the collection of finite linear
combinations of elements of S:

span S =

{
n

∑
j=1

αjxj : xj ∈ S, αj ∈ F, j = 1, . . . , n, n ∈ N

}
.

This is also the smallest subspace containing S:

span S = ∩{Y : Y ⊂ X is a subspace and S ⊂ Y}.

If X is a Banach space, it is natural to look at the smallest closed subspace containing S:

c-span S = ∩{Y : Y ⊂ X is a closed subspace and S ⊂ Y}.
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Proposition 6.4. Let X be a Banach space. Then c-span S = span S.

The proof is left as an exercise.
In a Hilbert space we have a geometric characterization of c-span S:

Theorem 6.5. Let S ⊂ H be any subset of a Hilbert space H. Then

c-span S =
(

S⊥
)⊥

.

That is, y ∈ c-span S if and only if y is perpendicular to everything that is perpendicular to S:

⟨z, y⟩ = 0 for all z such that ⟨z, x⟩ = 0 for all x ∈ S.

PROOF. Recall that a closed subspace Y satisfies (Y⊥)⊥ = Y. Thus it suffices to show
(c-span S)⊥ = S⊥. Since S ⊂ c-span S we clearly have S⊥ ⊃ (c-span S)⊥. On the other
hand, if z ∈ S⊥, then z is perpendicular to span S and by continuity of the scalar product
z ⊥ span S = c-span S. Thus S⊥ ⊂ (c-span S)⊥. □

Definition 6.6. A collection of vectors S in an inner product space H is called orthonormal
if

⟨x, y⟩ =
{

1 x = y ∈ S
0 x ̸= y, x, y ∈ S.

An orthonormal collection S is called an orthonormal basis if c-span S = H.

Lemma 6.7. Let S be an orthonormal set of vectors in a Hilbert space H. Then the c-span S
consists of all vectors of the form

x =
∞

∑
j=1

αjxj, xj ∈ S, j = 1, . . . , ∞, (⋆)

where the αj are square summable:
∞

∑
j=1

|αj|2 < ∞.

The sum converges in the Hilbert space:∥∥∥∥∥x −
n

∑
j=1

αjxj

∥∥∥∥∥→ 0,

and

∥x∥2 =
∞

∑
j=1

|αj|2.

Furthermore, the sum may be written

x = ∑
y∈S

⟨y, x⟩ y.

In particular, ⟨y, x⟩ ̸= 0 for only countably many elements y ∈ S.
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Remark 6.8. Most orthonormal sets encountered in practice are countable, so we would
tend to write S = {x1, . . . , } and

x =
∞

∑
j=1

〈
xj, x

〉
xj.

However, the lemma holds even for uncountable orthonormal sets.

PROOF. It is clear that all vectors of the form (⋆) are in span S = c-span S. Furthermore
vectors of this form make up a subspace, which is easily seen to be closed. (Exercise:
show that this subspace is closed. This rests on the fact that a subset of a complete metric
space is closed iff it is sequentially complete.) By definition c-span S is contained in this
subspace. Thus the two subspaces are equal.

The remaining formulae are easy consequences of the form (⋆). □

Theorem 6.9. Every Hilbert space contains an orthonormal basis.

PROOF. We use Zorn’s Lemma. Consider the collection of all orthonormal sets, with
S ≤ T iff S ⊂ T. This collection is non-empty since any unit vector makes up a one
element orthonormal set.

A totally ordered collection has an upper bound — the union of all sets in the collec-
tion. Thus there is a maximal orthonormal set. Call it Smax.

Suppose c-span Smax ⊊ X. Then, c-span S⊥
max is a non-trivial closed subspace. Let

y ∈ c-span S⊥
max be a unit vector. So Smax ∪ {y} is an orthonormal set contradicting the

fact that Smax is maximal. □

Corollary 6.10 (Bessel’s inequality). Let S be any orthonormal set in a Hilbert space H (not
necessarily a basis), then

∑
y∈S

|⟨y, x⟩|2 ≤ ∥x∥2 for all x ∈ H.

Equality holds for every x if and only if S is a basis.





LECTURE 7

Gram-Schmidt Process, Isometries of Hilbert Spaces, and Duality of
Banach Spaces

Reading: Ch. 6 and 8 in Lax.

Gram-Schmidt Process

Recall that a metric space is separable if it contains a countable dense set. If a Hilbert
space is separable, then any orthonormal basis is finite or countable. For such spaces we
can avoid Zorn’s Lemma in the construction of an orthonormal basis by using the Gram-
Schmidt process.

Theorem 7.1 (Gram-Schmidt Process). Let (yj)
∞
j=1 be a sequence of vectors in a Hilbert space.

Then there is a sequence (xj)
∞
j=1, with N ∈ N ∪ {∞}, such that〈

xj, xk
〉
= 0 if j ̸= k,∥∥xj

∥∥ = 1 or 0 for each j and

span{y1, . . . , yn} = span{x1, . . . , xn} .

The set S =
{

xj
∣∣ ∥∥xj

∥∥ = 1
}

is an ortho-normal basis for c-span
{

yj
∣∣ j = 1, . . . , ∞

}
.

PROOF. The proof is recursive. If y1 = 0 let x1 = 0. Otherwise let

x1 =
y1

∥y1∥
.

Clearly span{x1} = span{y1}.
Now, suppose we are given x1, . . . , xn−1 such that

span{x1, . . . , xn−1} = span{y1, . . . , yn−1}.

If yn ∈ span{y1, . . . , yn−1}, let xn = 0. Otherwise let

xn =
yn − ∑n−1

j=1

〈
yn, xj

〉
xj∥∥∥yn − ∑n−1

j=1

〈
yn, xj

〉
xj

∥∥∥ .

This is OK since yn ̸= ∑n−1
j=1

〈
yn, xj

〉
xj ∈ span{y1, . . . , yn−1}. Clearly ∥xn∥ = 1,

⟨xn, xk⟩ = 0 for 1 ≤ k < n

and
span{x1, . . . , xn} = span{y1, . . . , yn}.

By induction, the result follows. □

Corollary 7.2. Let H be a separable Hilbert space. Then H has a finite or countable orthonormal
basis.

37
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Isometries of Hilbert spaces

Finally, let us discuss the isometries of Hilbert spaces.

Theorem 7.3. Let H and H′ be Hilbert spaces. Given an orthonormal basis S for H, an orthonor-
mal set S′ ⊂ H′ and a one-to-one onto map f : S → S′, define a linear map H → H′ via

∑
y∈S

αyy
Tf7−−−→ ∑

y∈S
αy f (y).

Then T is a linear isometry onto c-span S′ ⊂ H′. Furthermore, any linear isometry of H with a
subspace of H′ is of this form.

Corollary 7.4. Two Hilbert spaces are isomorphic iff their orthonormal bases have equal cardinal-
ity. In particular, every Hilbert space is isomorphic with ℓ2(S) for some set S. Any separable,
infinite dimensional Hilbert space is isomorphic to ℓ2 and any finite dimensional Hilbert space is
isomorphic to ℓ2({1, . . . , n}) ∼= Cn for some n.

Remark 7.5. For an arbitrary set S, ℓ2(S) is defined to be the set of functions f : S → R or
C such that

∑
y∈S

| f (y)|2 < ∞.

Note that f ∈ ℓ2(S) =⇒ {y : f (y) ̸= 0} is countable.

The proof of these results is left as an exercise.

Dual of a Banach Space

The dual of a Banach space X is the linear space X⋆ of bounded linear functionals on
X. The operator norm

∥ℓ∥ = sup
x ̸=0

|ℓ(x)|
∥x∥

makes X⋆ a normed space.

Proposition 7.6. The dual space X∗ is a Banach space.

PROOF. By exercise 4.3, ∥·∥ is a norm on X⋆. It remains to show that X⋆ is complete.
Suppose that ℓn is a Cauchy sequence in X⋆. Then for each x ∈ X, ℓn(x) is a Cauch
sequence in F, the base field of X. Let ℓ(x) = limn ℓn(x). The result map is linear by
elementary properties of limits in F and furthermore ℓ is bounded since

|ℓ(x)| = lim
n→∞

|ℓn(x)| ≤ lim
n→∞

∥ℓn∥∥x∥.

Here, limn ∥ℓn∥ exists since, by the triangle inequality,

|∥ℓ∥n − ∥ℓ∥m| ≤ ∥ℓn − ℓm∥ . □

We have the following dual characterization of the norm on X:

Theorem 7.7. For every x ∈ X we have

∥x∥ = max
ℓ ̸=0 ℓ∈X⋆

|ℓ(x)|
∥ℓ∥ .
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PROOF. Since ∥ℓ∥∥y∥ ≥ |ℓ(y)| the left hand side is no smaller than the right hand side.
Thus we need only produce an ℓ such that |ℓ(x)| = ∥x∥∥ℓ∥. Define ℓ first on the one
dimensional subspace span{x} by ℓ(tx) = t∥x∥. Since this functional is norm bounded
by 1 on this subspace it has an extension (by Hahn-Banach) to the whole space with this
property. □

Since X⋆ is a Banach space, we can take form its dual (X⋆)⋆. There is a natural isometry
T : X → (X⋆)⋆ given by

Tx(ℓ) = ℓ(x) .
It is natural to ask whether this isometry is surjective or not, i.e., whether X ∼= (X⋆)⋆?

As an example, recall the definitions of the following spaces, with associated norms

c0 :=
{
(an)

∞
n=1

∣∣∣ lim
n→∞

an = 0
}

, ∥(an)
∞
n=1∥0 = max

n
|an|

ℓ1 :=

{
(an)

∞
n=1

∣∣∣∣∣∑n
|an| < ∞

}
, ∥(an)

∞
n=1∥1 = ∑

n
|an| ,

ℓ∞ :=
{
(an)

∞
n=1

∣∣∣∣ sup
n

|an| < ∞
}

, ∥(an)
∞
n=1∥∞ = sup

n
|an| ,

each of which is a Banach space. Note that

ℓ1 ⊊ c0 ⊊ ℓ∞

and that c0 is a closed subspace of ℓ∞. We have

Theorem 7.8. c⋆0 = ℓ1, ℓ⋆1 = ℓ∞, and ℓ⋆∞ ⊋ ℓ1.

PROOF. Let ℓ be a linear functional on c0. Evaluating ℓ on the sequences ek with

ek
n =

{
1 if k = n
0 if k ̸= n

produces a sequence bn = ℓ(en). If a is eventually zero, i.e., an = 0 for n > n0, then we
have a = ∑n0

n=1 ane
n . Thus, by linearity we have

ℓ(a) =
n0

∑
n=1

anbn .

Taking an = e−i arg bn for n ≤ n0 and 0 for n > n0, we find that
n0

∑
n=1

|bn| = ℓ(a) ≤ ∥ℓ∥ .

Taking n0 → ∞ we see that b ∈ ℓ1. For arbitrary a ∈ c0, we have a = limn→∞ ∑n
j=1 aje

j.
Thus by linearity and continuity ℓ(a) = limn→∞ ∑n

j=1 ajbj , where the right hand side is
absolutely summable since b ∈ ℓ1.

The same idea works to prove ℓ⋆1 = ℓ∞. Finally, it is clear that ℓ1 ⊂ ℓ⋆∞, however we
can construct linear functionals on ℓ⋆∞ that are not associated to any element of ℓ1. For
instance, consider the space

L = {a : lim
n→∞

an exists} .
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This is a closed subspace of ℓ∞ and the linear functional ℓ(a) = limn an satisfies

|ℓ(a)| ≤ ∥a∥∞

for all a ∈ L. So by the Hahn-Banach theorem ther is an extension of ℓ to ℓ∞ satisfying
the same bound. This linear functional satisfies ℓ(ek) = 0 for all k and thus cannot be
represented as ∑n bnan for some b ∈ ℓ1. □

On the other hand there are spaces with X ∼= (X⋆)⋆.

Definition 7.9. A Banach space is called reflexive if (X⋆)⋆ ∼= X. That is if every norm-
bounded linear functional on X⋆ is of the form ℓ 7→ ℓ(x) for some x ∈ X.

Theorem 7.10. Every Hilbert space is reflexive.

PROOF. By the Riesz-Fréchet theorem 5.10, every linear functional ℓ ∈ X∗ can be rep-
resented as ℓ(x) = ⟨yℓ, x⟩ for a unique yℓ ∈ X. It follows that ∥ℓ∥ = ∥yℓ∥, so the map
ℓ 7→ yℓ is an isometry. If X is a real Hilbert space, the map ℓ 7→ yℓ is also linear and we see
that X ∼= X∗.

If X is a complex Hilbert space, the situation is slightly more complicated. The map
Sℓ = yℓ is not linear, but is rather conjugate linear. Thus we do not have a linear isometry
between X and X∗. However, X∗ is a complex Hilbert space, with〈

ℓ, ℓ′
〉

X∗ =
〈
Sℓ′, Sℓ

〉
X .

Note that we have reversed the order of Sℓ and Sℓ′ in the inner product on the right to
guarantee the correct skew-linearity of ⟨·, ·⟩X∗ . By applying Riesz-Fréchet to X∗ we obtain
a conjugate linear isometry S′ : (X∗)∗ → X∗. The compostion SS′ is a linear isometry from
(X∗)∗ to X. □



LECTURE 8

Lp spaces

Reading: Ch. 8 in Lax
Let (X, µ) be a measure space, where X and µ is a measure defined on a sigma algebra

Sµ of subsets of X. For 1 ≤ p < ∞, the Lp space with respect to µ is defined to be

Lp(µ; F) =

{
f : X → F :

∫
X
| f (x)|pdµ(x) < ∞

}
, (8.1)

where F = C or R and we identify functions that are equal µ-almost everywhere. In the
discussion below we will use Lp(µ) to denote either Lp(µ; R) or Lp(µ; C) whenever the
choice of specific base field is unimportant. The Lp norm is defined to be

∥ f ∥p :=
(∫

X
| f (x)|pdµ(x)

) 1
p

. (8.2)

Similarly, we define the L∞ norm

∥ f ∥∞ := inf{t ∈ R : µ({x ∈ X : | f (x)| > t} = 0)} , (8.3)

and the space
L∞(µ; F) = { f : X → F : ∥ f ∥∞ < ∞} . (8.4)

It is clear from the definitions that we have

Proposition 8.1. For 1 ≤ p ≤ ∞, we have
(1) ∥ f ∥p ≥ 0 and ∥ f ∥p = 0 if and only if f = 0 almost everywhere.
(2) ∥α f ∥p = |α|∥ f ∥p for all α ∈ F.

For p = 1 and p = ∞ the triangle inequalities,

∥ f + g∥1 ≤ ∥ f ∥1 + ∥g∥1 and
∥∥ fg
∥∥

∞ ≤ ∥ f ∥∞ + ∥g∥∞ ,

also follow directly from the definitions. To prove the triangle inequalty for 1 < p < ∞,
we require

Theorem 8.2 (Hölder’s Inequality). Let (X, µ) be a measure space, let 1 ≤ p < ∞, and let q be
the conjugate exponent with 1

p +
1
q = 1. If f ∈ Lp(µ) and g ∈ Lq(µ) then f g ∈ L1(µ) and∫

X
| f g|dµ ≤ ∥ f ∥p∥g∥q.

PROOF. If p = 1 and q = ∞, this is immediate from the pointwise almost everywhere
inequality | f g| ≤ ∥g∥∞| f |.

For 1 < p < ∞, it suffices to consider f , g ≥ 0. One has

f g = exp(log f + log g) = exp
(

1
p log f p + 1

q log gq
)

≤ 1
p f p + 1

q gq ,

41
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by convexity of the exponential. Thus∫
X

f gdµ ≤ 1
p

∫
X

f pdµ + 1
q

∫
X

gqdµ < ∞ , (8.5)

so f g ∈ L1. Applying (8.5) with 1
∥ f ∥p

f and 1
∥g∥q

g in place of f and g yields∫
X f gdµ

∥ f ∥p∥g∥q
≤ 1

p
+

1
q

= 1 . □

Recall that a measure µ is semi-finite if whenever µ(E) = ∞ there is E′ ⊂ E such that
0 < µ(E′) < ∞. That is a measure is semi-finite if it has no infinite atoms.

Corollary 8.3. Let (X, µ) be a measure space, let 1 ≤ p < ∞, and let q be the conjugate exponent:
1
p +

1
q = 1. If f ∈ Lp(µ), then

∥ f ∥p = sup
{∣∣∣∣∫X

f gdµ

∣∣∣∣ : g ∈ Lq(µ) and ∥g∥q = 1
}

. (8.6)

If µ is semi-finite then (8.6) holds also for p = ∞.

Remark. Note that (8.6) definitely fails for p = ∞ if µ is not semi-finite. Indeed, if f = 1E
with where µ(E) = ∞ and E has no subset of finite measure then ∥ f ∥∞ = 1 but

∫
f g = 0

for any g ∈ L1..

PROOF. Hölder’s equality guarantees that ∥ f ∥p is an upper bound for the right hand
side of (8.6). To show equality, we will show that

∫
X f gdµ = ∥ f ∥p for a suitable choice of

g. If ∥ f ∥p = 0, then f = 0 almost everywhere, and any g will do.
If ∥ f ∥p > 0, let

g =
1

∥ f ∥p−1
p

{
| f |p−1

f , if | f | > 0

0 if f = 0 .

Then f g = 1
∥ f ∥p−1

p
| f |p so

∫
X f gdµ = ∥ f ∥p. It remains to see that ∥g∥q = 1. If p = 1 then

g = | f |
f I[| f | > 0], so |g| = 1 almost everywhere on the support of f and ∥g∥∞ = 1. If

p > 1 then q < ∞ and

|g|q =
| f |q(p−1)

∥ f ∥q(p−1)
p

=
| f |p

∥ f ∥p

so ∥g∥q = 1.
If p = ∞ and µ is semi-finite, then for any t < ∥ f ∥∞ we can find a measurable set Et

with 0 < µ(Et) < ∞ such that | f | > t on Et. Taking g = 1
µ(Et)

1Et we have∫
X
| f g|dµ =

1
µ(Et)

∫
Et
| f |dµ > t .

As this was possible for any t < ∥ f ∥∞ we see that (8.6) holds. □

Now we can show that ∥·∥ is a norm, and furthermore that Lp is a Banach space.

Theorem 8.4. Let (X, µ) be a measure space and 1 ≤ p ≤ ∞. Then ∥·∥p is a norm and Lp(µ) is
a Banach space.
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Remark. The completeness of Lp is often refered to as the Riesz-Fischer Theorem. Riesz
1907a and Fischer 1907 studied the completeness of L2([a, b]) for an interval on the real
line.

SKETCH OF PROOF. The positivity and scaling properties of the norm were already
stated in Prop. 8.1. It remains to show the triangle inequality. For 1 ≤ p < ∞ this follows
from Cor. 8.3 since

∥ f + g∥p = sup
∥h∥q=1

∣∣∣∣∫X
( f + g)hdµ

∣∣∣∣ ≤ sup
∥h∥q=1

∣∣∣∣∫X
f hdµ

∣∣∣∣+ sup
∥h∥q=1

∣∣∣∣∫X
ghdµ

∣∣∣∣ = ∥ f ∥p + ∥g∥p .

For p = ∞, one has | f + g| ≤ | f |+ |g| ≤ ∥ f ∥∞ + ∥g∥∞ almost everywhere, so the inequal-
ity holds in that case too.

To show that Lp is a Banach space, we will use the following

Lemma 8.5. Let ( fn)∞
n=1 be a sequence of measurable functions. Then∥∥∥∥∥ ∞

∑
n=1

| fn|
∥∥∥∥∥

p

≤
∞

∑
n=1

∥ fn∥p , (8.7)

and if the sum on the right hand side is finite, then the series g = ∑∞
n=1 fn converges absolutely

µ-almost everywhere, ∥g∥p ≤ ∑n ∥ fn∥p, and limN

∥∥∥g − ∑N
n=1 fn

∥∥∥
p
= 0.

PROOF OF LEMMA. Eq. (8.7) generalizes the triangle inequality to infinite sums. For
p = ∞, this result and the following conclusions are immediate from the definition of the
norm. For 1 ≤ p < ∞, we may prove (8.7) by noting that∫

X

∣∣∣∣∣ N

∑
n=1

| fn|
∣∣∣∣∣

p

dµ ≤
(

N

∑
n=1

∥ fn∥p

)p

≤
(

∞

∑
n=1

∥ fn∥p

)p

by the usual triangle inequality. Eq. (8.7) follows by the monotone convergence theorem.
From (8.7), we conclude that the series defining g converges absolutely µ-almost ev-

erywhere provided ∑n ∥ fn∥p < ∞. It follows easily that ∥g∥p ≤ ∑n ∥ fn∥p. Finally,

g − ∑N
n=1 fn = ∑∞

n=N+1, so ∥g∥p ≤ ∑∞
n=N+1 ∥ fn∥p → 0. □

Returning to the proof that Lp is a Banach space, suppose that ( fn)∞
n=1 is a Cauchy

sequence in Lp. It suffices to show that a subsequence has a limit. By passing to a suitable
subsequence, we may assume that ∥ fn − fm∥ ≤ 2−n for all n ≤ m < ∞. Let gn =
fn+1 − fn for each n. Then we have ∑n ∥gn∥p ≤ ∑n 2−n = 1. Thus ∑n gn converges almost
everywhere to a function in Lp by the Lemma. However,

fN+1 = f1 +
N

∑
n=1

gn .

We conclude that fN → f1 + ∑∞
n=1 gn in Lp. Therefore Lp is complete, and thus a Banach

space. □

Theorem 8.6. Let (X, µ) be a measure space. For 1 < p < ∞, we have Lp(µ)⋆ ∼= Lq(µ) where
1
p +

1
q = 1. If µ is σ-finite, then L1(µ)⋆ ∼= L∞(µ).

Remark. Recall that µ is σ-finite if X = ∪∞
j=1Ej with µ(Ej) < ∞.
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PROOF. The Hölder inequality shows that Lq(X) ↪→ Lp(X)⋆, via the map g 7→ ℓg
defined by

ℓg( f ) =
∫

X
f (x)g(x)dµ(x), f ∈ Lp and g ∈: Lq.

Furthermore, by Cor. 8.3 we have
∥∥ℓg
∥∥ = ∥g∥q, so this mapping is an isometry.

Let us first prove the result under the assumption that µ is finite, using the Radon-
Nikodym theorem:

Theorem 8.7 (Radon 1913 and Nikodym 1930; see Thm. 6.10 of Rudin 1987). Let (X, µ) be
a σ-finite measure space. If ν is a complex measure on Sµ such that ν(E) = 0 whenever µ(E) = 0,
then there is f ∈ L1(µ; C) such that ν(E) =

∫
X f dµ for any measurable set E.

Suppose now that µ is finite and ℓ is a linear functional on Lp(X). For each measurable
set A, we have 1A ∈ Lp(X), with ∥1A∥p = µ(A)1/p. So

ν(A) := ℓ(1A)

defines a finitely additive set function. In fact, it is countably additive since ℓ is continu-
ous, and if A1, A2, . . . are pairwise disjoint then∥∥∥∥∥1⋃

j Aj −
n

∑
j=1

1Aj

∥∥∥∥∥
p

=
(

µ
(⋃∞

j=n+1 Aj

)) 1
p → 0 .

Furthermore ν(A) = 0 if µ(A) = 0. Thus by the Radon-Nikodym Theorem, there is
g ∈ L1(µ) such that

ℓ(1A) = ν(A) =
∫

A
g(x)dµ(x) =

∫
X

g(x)1A(x)dµ(x).

By taking limits of simple functions we have

ℓ( f ) =
∫

X
g(x) f (x)dµ(x) (8.8)

whenever f ∈ L∞(µ), using dominated convergence.
It remains to show that g ∈ Lq, for then (8.8) extends to all of Lp by the Hölder inequal-

ity and density of L∞ in Lp. First consider the case p > 1 and fix t > 0 and let

ft(x) =

{ |g(x)|q
g(x) 0 < |g(x)| < t

0 |g(x)| = 0 or |g(x)| ≥ t.

Clearly | ft| ≤ tq−1 so ft ∈ L∞ ⊂ Lp. Thus∫
{|g|<t}

|g|qdµ =
∫

ftgdµ ≤ ∥ℓ∥
[∫

| ft|pdµ

] 1
p

.

But | ft|p = |g|pq−p = |g|q on {|g(x)| < t}. Thus[∫
{|g|<t}

|g|qdµ(x)
] 1

q
≤ ∥ℓ∥

and it follows by monotone convergence that ∥g∥q ≤ ∥ℓ∥.
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When p = 1 we modify the above by setting

ft(x) =
|g(x)|
G(x)

1At where At = {x | |g(x)| > t} .

Note that ft ∈ L∞ and that

tµ(At) <
∫

At
|g|dµ =

∫
ftgdµ = ℓ( ft) ≤ ∥ℓ∥∥ ft∥L1 = ∥ℓ∥µ(At).

It follows that µ(At) = 0 when t > ∥ℓ∥, so ∥g∥∞ ≤ ∥ℓ∥.
If µ is σ-finite, we can write X as a countable disjoint union X =

⋃
j Ej with µ(Ej) < ∞.

Let µj(A) = µ(A ∩ Ej). Note that Lp(µj) embeds in Lp(µ) in a natural way (extending
a function on Ej to be zero on the rest of X). Thus ℓ defines a bounded linear functional
on Lp(µj) and by the above argument there is a function gj ∈ Lq(µj) such that ℓ(1Ej f ) =∫

Ej
gj f dµ for all f ∈ Lp(µ). Furthermore, by finite additivity, we have

ℓ(1⋃n
j=1 Ej

f ) =
n

∑
j=1

∫
Ej

gj f dµ

for all f ∈ Lp(µ). It follows that
∥∥∥∑n

j=1 1Ej gj

∥∥∥
q
≤ ∥ℓ∥. Let g = ∑n

j=1 1Ej gj, noting that at

most one term in the sum is nonzero. It follows by monotone convergence that ∥g∥q ≤
∥ℓ∥, and by dominated convergence that∫

X
g f dµ = ∑

j

∫
Ej

gj f dµ = ∑
j
ℓ(1Ej f ) = ℓ( f ) ,

for every f ∈ Lp(µ).
For a proof that the inequality extends to general (non σ-finite) µ in case 1 < p < ∞,

see Theorem 6.15 in Folland 1999. In the proof, one shows that any linear functional ℓ on
Lp(µ) vanishes except on functions supported on a σ-finite piece of X. □

Corollary 8.8. Lp(X) is reflexive for 1 < p < ∞.

This result also follows from

Theorem 8.9 (Milman 1938). Any uniformly convex Banach space is reflexive

In general L1 is not reflexive: (L1)⋆ = L∞ but L∞ contains linear functionals that are
not in L1. The proof breaks down even if µ(X) < ∞. Given a linear functional ℓ on L∞ we
can define a set function

ν(A) = ℓ(1A)

as above. It is certainly finitely additive, and clearly ν(A) = 0 if µ(A) = 0. However ν is
not in general countably additive since∥∥∥∥∥ n

∑
j=1

1Aj − 1⋃
j Aj

∥∥∥∥∥
L∞

= 1

as long as ∪∞
j=n+1Aj has positive measure.

The inequality (L∞)⋆ ̸= L1 also follows from:

Theorem 8.10. Let X be a Banach space. If X⋆ is separable so is X.
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PROOF. Let {ℓn} be a countable dense subset of X⋆. For each n there is xn ∈ X such
that

∥xn∥ = 1 and ℓn(xn) ≥
1
2
∥ℓn∥.

It suffices to show span {xn | n = 1, 2, . . .} is dense in X.
Suppose contrarily that c-span {xn | n = 1, 2, . . .} ̸= X. Then there is a non-zero linear

functional ℓ ∈ X⋆ such that ℓ(xn) = 0 for all n. We may assume that ∥ℓ∥ = 1. However,
we can find n such that ∥ℓ− ℓn∥ ≤ 1

4 , say. Thus ∥ℓn∥ ≥ 3
4 and

0 = ℓ(xn) = ℓ(xn)− ℓn(xn) + ℓn(xn) ≥
1
2
∥ℓn∥ − ∥ℓ− ℓn∥ ≥ 1

8
.

Thus no such ℓ exists and we must have c-span {xn | n = 1, 2, . . .} = X. □



LECTURE 9

Point set topology in a nutshell

We will make a brief interlude now to discuss point-set topology. The immediate rea-
son is to be able to formulate the Riesz-Markov-Kakutani theorem on the dual of C(Q)
with Q a compact Hausdorff space. Later on we will introduce locally convex spaces; for
that we will need a bit of topology. This will be a very brief presentation. For more details,
see Chapter 2 of Simon 2015b.

1. Definitions

Definition 9.1. A topological space is a pair (X, T ) where X is a set and T is a family of
subsets of X satisfying

(1) ∅, X ∈ T ,
(2) T is closed under arbitrary unions: if V ⊂ T then

⋃
U∈V U ∈ T ,

(3) T is closed under finite intersections: if U1, . . . , Un are in T then
⋂

j Uj ∈ T .
A family T satisfying (1-3) is called a topology. The sets in T are called open sets; if U ∈ T
and x ∈ U we say that U is an open neighborhood of x. A set F ⊂ X is closed if Fc = X \ F is
open.

Proposition 9.2. Let (X, T ) be a topological space and E ⊂ X. Let TE = {U ∩ E : U ∈ T }.
Then TE is a topology on E.

The topology TE is called the relative topology; its elements are called relatively open subsets
of E.

Definition 9.3. Let X be a topological space and E ⊂ X. The closure of E, denoted E is the
smallest closed set containing E, that is

E =
⋂
{F ⊃ E : F is closed} .

The interior of E, denoted E◦, is the largest open set contained in E, that is

E◦ =
⋃
{U ⊂ E : U is open} .

Topological spaces provide a general framework for discussing convergence and con-
tinuity:

(1) A sequence (xn)∞
n=1 in X converges to x ∈ X if for every open neighborhood U of

x there is N such that xn ∈ U for n ≥ N.
(2) If (X, TX) and (Y, TY) are topological spaces, we say that f : X → Y is continuous

if V ∈ TY =⇒ f−1(V) ∈ TX.
A continuous map f : X → Y that is invertible and has a continuous inverse is called a
homeomorphism. The set of continuous maps from X to Y is denoted C(X, Y). The following
proposition shows that topological spaces form a category, with continuous functions the
morphisms. The proof is left as an exercise.
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Proposition 9.4. Let X, Y and Z be topological spaces.
(1) The identity map I(x) = x is continuous on X.
(2) If f ∈ C(X, Y) and g ∈ C(Y, Z) then g ◦ f ∈ C(X, Z).

The following two exercises relate convergence of sequences to continuity.

Exercise 9.1. Let Y = N ∪ {∞} and let T consist of 1) all subsets of N, and 2) sets of the
form S ∪ {∞} where N \ S is a finite set. Show that T is a topology on Y and that a map
f : Y → X, with X another topological space, is continuous if an only if the sequence
( f (n))∞

n=1 converges to f (∞).

Exercise 9.2. Let f : X → Y be a continuous function and (xn)∞
n=1 a convergent sequence

in X, with limit x. Show that ( f (xn))∞
n=1 converges to Y.

Exercise 9.3 (See Simon 2015b, Example 2.6.1). Let X be an uncountable set and let T =
{S ⊂ X : X \ S is countable} and let D = {S : S ⊂ X}.

(1) Prove that T is a topology and that a sequence (xn)∞
n=1 converges in X if and only

if it is eventually constant, i.e., if, for some N, one has xn = x for all n ≥ N.
(2) Note that D is also a topology (it is called the discrete topology). Let f (x) = x,

considered as a map from (X, T ) to (X,D). Show that limn f (xn) = f (limn xn)
for any convergent sequence but f is not continuous (hint: {x0} is an open set in
(X,D)).

The last example shows that sequencial convergence does not capture all the features
of a general topological space. This can be remedied by introducing nets.

Definition 9.5. A directed set (I,≤) is a set I with a partial order ≤ such that any two
elements of I have a common upper bound, i.e., α, β ∈ I =⇒ there is γ ∈ I with α ≤ γ
and β ≤ γ. Given a statement S(α) that depends on α ∈ I, we say that S(α) is eventually
true if there is α0 such that S(α) is true for α ≥ α0.

Definition 9.6. A net in a topological space X is a map I → X where I is a directed set,
denoted by (xα)α∈I . We say that a net (xα)α∈I in X converges to x ∈ X if for any open
set U ∋ x it holds that xα is eventually in U. We denote the limit of a convergent net by
x = limα xα or xα → x, as for sequences.

Note that a sequence is a special case of a net, with I = N. General nets may have
uncountable and/or partially ordered index sets.

Exercise 9.4. Let X, Y be topological spaces. Show that
(1) A set F ⊂ X is closed if and only if whenever a net (xα)α∈I in F converges to

x ∈ X, we have x ∈ F.
(2) A map f : X → Y is continuous if and only limα f (xα) = f (limα xα) for any

convergent net (xα)α∈I in X.

2. Separation Axioms

The above axioms for topological spaces were introduced by Hausdorff 1914 in his text
Grundzüge der Mengenlehre (Principles of Set Theory). Hausdorff included also the following
axiom:

(T2) open sets separate points: for every x, y ∈ X with x ̸= y we can find open sets
U, V ∈ T such that x ∈ U, y ∈ V and U ∩ V = ∅.
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In modern treatments, axioms (1-3) are taken as fundamental and a topological space
that satisfies (4) is called Hausdorff (or T2). The letter T in T2 stands for Trennungsaxiom
(separation axiom in German); there is a family of separation axioms Tj, j = 0, . . . , 6 as
well as several interpolations T2 1

2
and T3 1

2
. However the most important additional axiom

is T4, which is the following: a topological space X is normal (or T4) if it is Hausdorff and open
sets separate closed sets:

(T4) X is Hausdorff and if C, D ⊂ X are closed then there are open sets U, V such that
C ⊂ U, D ⊂ V, and U ∩ V = ∅.

Proposition 9.7. Let X be a Hausdorff topological space. Then
(1) one point sets in X are closed, and
(2) limits of nets are unique, i.e., if xα → y and xα → z then y = z.

Remark. The proof is left as an exercise. It can happen, in a general topological space, that
one point sets are not closed and limits are not unique.

The following result is known as Urysohn’s lemma — it is stated by Urysohn 1925 as
a lemma for the proof of his metrization theorem. The result is, however, an important
theorem in its own right.

Theorem 9.8 (Urysohn 1925). Let X be a normal topological space and let C, D ⊂ X be closed
and disjoint. Then there exists a continuous function f : X → [0, 1] such that

f (x) = 1 on C and f (x) = 0 on D.

SKETCH OF PROOF. Note that we can reformulate the T4 axiom as follows:
• let C be closed and V open with C ⊂ V. Then there are an open set U and a closed

set K with C ⊂ U ⊂ K ⊂ V.
(To see this apply T4 to C and Vc, letting K be the complement of the neighborhood of Vc

that is obtained.)
With the above reformulation in mind, let K1 = C and U0 = Dc. We can find U1/2 and

K1/2 such that
K1 ⊂ U1/2 ⊂ K1/2 ⊂ U0 .

Now iterate the construction to find further sets betwee K1 and U1/2 and K1/2 and U0:

K1 ⊂ U3/4 ⊂ K3/4 ⊂ U1/2 ⊂ K1/2 ⊂ U1/4 ⊂ K1/4 ⊂ U0 .

Proceeding in this way we define, recursively, Uα and Kα for every dyadic rational α =
m/2n in [0, 1] such that Uα ⊂ Kα and Kβ ⊂ Uα for α < β.

Now we simply define

f (x) := sup {α : x ∈ Uα} . (9.1)

Similarly, one may define
g(x) := inf {α : x ̸∈ Kα} . (9.2)

In fact, g(x) = f (x). To see this note first that f (x) ≤ g(x) since Uα ⊂ Kα for every α. On
the other hand, given ϵ > 0 we can find a dyadic rational α < f (x) + ϵ such that x ̸∈ Uα.
Taking another dyadic rational β < α + ϵ, we have x ̸∈ Kβ and thus g(x) ≤ β ≤ α + ϵ ≤
f (x) + 2ϵ. As ϵ was arbitrary, we have g(x) ≤ f (x).

By (9.1), we have for any t that {x : f (x) > t} =
⋃

α>t Ut is open , while by (9.2)
{x : f (x) < t} =

⋃
α<t Kc

α is open. It follows that f is continuous. Since f (x) = 0 on
Uc

0 = D and f (x) = 1 on K1 = C, we are done. □
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An important corollary of Urysohn’s lemma is the following

Theorem 9.9 (Tietze Extension Theorem; Tietze 1915). Let X be a normal topological space. If
E ⊂ X is closed and f : E → R is a bounded function that is continuous in the relative topology,
then there is a bounded continuous function g : X → R so that g|E = f .

Remark. For a direct exercise leading to the proof of the Tietze Extension Theorem, see
Problem 4, §2.3 of Simon 2015b.

3. Metric Spaces

Metric spaces are an improtant example of topological spaces. Recall that a metric

space (X, d) is a set X together with a metric d, which is map X × X d7−→ R such that
(1) d(x, y) ≥ 0 for all x, y and equals zero if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y, and
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

The open ball Br(x) of radius r > 0 and centered at x is the set Br(x) = {y ∈ x | d(y, x) < r}.
The metric topology Td is the collection of sets U such that x ∈ U =⇒ Br(x) ⊂ U for some
r > 0.

Exercise 9.5. Let (X, d) be a metric space. Verify that Td is a topology and that X is Haus-
dorff.

Theorem 9.10. Every metric space is normal.

To prove this, we will use the following

Lemma 9.11. Let C ⊂ X be a closed subset of a metric space and let

dC(x) = inf
y∈C

d(x, y) .

Then dC is a continuous function and dC(x) = 0 if and only if x ∈ C.

PROOF. By the triangle inequality |dC(x)− dC(x′)| ≤ d(x, x′). It follows that dC is
continuous. Clearly dC(x) ≥ 0 and dC(x) ≤ d(x, x) = 0 if x ∈ C. On the other hand if
dC(x) = 0 then there are xn ∈ C such that d(x, xn) ≤ 1

n , i.e., xn → x. Since C is closed, we
have x ∈ C. □

PROOF OF THM. 9.10. Let C, D be disjoint closed sets. Let f : X → [−, 1] be defined
as follows

f (x) :=
dC(x)− dD(x)
dC(x) + dD(x)

,

with dC and dD as in the lemma. Since C ∩ D = ∅ we have dC(x) + dD(x) > 0 for all x,
so the expression is defined and f is continuous. Also f (x) = 1 on D and f (x) = 0 on
C. Taking U = f−1(−∞, 0) and V = f−1(0, ∞) we obtain open sets that separate C and
D. □

The topology on a metric space does not determine the metric — two metrics d1 and
d2 are called equivalent if Td1 = Td2 .

Exercise 9.6. Show that d1 and d2 are equivalent if and only if there is c > 1 such that
1
c d1(x, y) ≤ d2(x, y) ≤ cd1(x, y) for all x, y ∈ X.
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A topological space (X, T ) is called metrizable if there is a metric d on X such that
T = Td. Clearly a necessary condition for metrizability is that X be normal. But not every
normal space is metrizable. There are necessary and sufficient conditions for metrizabil-
ity — see Bing 1951; Nagata 1950; Smirnov 1951 — however, they are technical to state.
Urysohn gave a famous sufficient condition, based on the following notion. A base for a
topology is a collection B ⊂ T such that if x ∈ U ∈ T then there is V ∈ B such that
x ∈ V ⊂ V. A space is called second countable if it has a countable base.

Theorem 9.12 (Urysohn 1925). If (X, T ) is a second countable, normal space, then X is metriz-
able.

For a proof, see Simon 2015b.

4. Compact Spaces

Definition 9.13. An open cover of a topological space X is a collection C of open subsets of
X such that X =

⋃
U∈C U. A topological space X is compact if every open cover of X has a

finite subcover.

Lemma 9.14. Let X be a compact space. 1) If F ⊂ X is closed, then F is compact (with respect to
the relative topology). 2) If X is Hausdorff and F ⊂ X is compact, then F is closed.

PROOF. For 1, let {Sα : α ∈ I} be an open cover of F by relatively open sets. For each
Sα = Uα ∩ F with Uα open in X. Since Fc is open in X, we have X = Fc ∪ ⋃α Uα. Thus
there is a finite subcover. This in turn gives a finite subcover of F.

For 2, we will show that Fc is open. Let x ∈ Fc. Then for each y ∈ F there is Uy ∋ y
and Vy ∋ x open with Uy ∩ Vy = ∅. Since F is compact, we have F ⊂ Uy1 ∪ . . . ∪ Uyn for
some finite number of points. Let Sx = Vy1 ∩ . . . ∩ Vyn . Then x ∈ Sx is open and Sx ⊂ Fc.
Clearly Fc =

⋃
x∈Fc Sx, so Fc is open. □

Theorem 9.15. If X is a compact Hausdorff space, then X is normal.

PROOF. Let us first show that a closed set C can be separated from a one point set {x}
with x ̸∈ C (this is a property called regularity or T3). For each y ∈ C we can find open sets
Uy ∋ x0 and Vy ∋ y such that Uy ∩ Vy = ∅. Clearly {Vy : y ∈ C} is an open cover of C.
Since C is compact, we may find a finite subcover Vyj , j = 1, . . . , n. Let V =

⋃n
j=1 Vyj and

U =
⋂n

j=1 Uyj . Then U, V are open, U ∩ V = ∅, x ∈ U and C ⊂ V.
Now repeat the argument with two closed sets C, D. For each x ∈ D find open Ux ∋ x

and Vx ⊃ C such that Ux ∩ Vx = ∅. Since D is compact, there are x1, . . . , xn such that
U = Ux1 ∪ . . . ∪ Uxn ⊃ D. Let V = Vx1 ∩ . . . ∩ Vxn . Then U ⊃ D, V ⊃ C are open and
U ∩ V = ∅. □

Definition 9.16. Let X be a Hausdorff space. If x ∈ X, a compact neighborhood of x is a
compact set K such that x ∈ K◦. A Hausdorff space X is locally compact if every x ∈ X has
a compact neighborhood.

If X is locally compact, the one point compactification of X is X∞ = X ∪ {∞}, where
∞, the point at infinity, is a point not in X and the topology T∞ = TX ∪ {X∞ \ C :
C is a compact subset of X}.

Exercise 9.7. Check that T∞ is a topology.
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Theorem 9.17. Let X be a locally compact Hausdorff space. Then the one-point compactification
X∞ is a compact Hausdorff space.

PROOF. Let {Uα : α ∈ I} be an open cover of X∞. We must have ∞ ∈ Uα0 for some
α0. The Uα0 = X∞ C with C compact. The remaining sets must cover C. So there is a
finite subcover C ⊂ Uα1 ∪ . . . Uαn . Clearly then X∞ ⊂ Uα0 ∪ Uα1 ∪ · · · ∪ Uαn . Thus X∞ is
compact.

If x, y ∈ X∞ and both are in X then we can separate them with open sets because X is
Hausdorff. Suppose that one of them is ∞, say y = ∞. Let K be a compact neighborhood
of x ∈ X. Then x ∈ K◦ and y ∈ X∞ \ K. Thus X∞ is Hausdorff. □

It is an amusing fact that we only used the local compactness of X to prove that X∞
is Hausdorff. The one-point compactification exists for any space and is always compact.
For it to be Hausdorff we need to start with a locally compact Hausdorff space.



LECTURE 10

The Riesz-Markov-Kakutani theorem

Reading: Appendix A of Lax 2002. See also Ch. 4 of Simon 2015b, §4.4 of Reed and Simon
1980, Ch. 2 of Rudin 1987, and Ch. 7 of Folland 1999.

1. Banach spaces of continuous functions

Given a Hausdorff topological space X, let C(X) denote the set of all continuous,
complex-valued functions on X. If X is locally compact, we say that f ∈ C(X) vanishes
at infinity if every ϵ > 0 there is a compact K ⊂ X such that | f (x)| < ϵ if x ∈ Kc, and
let C0(X) ⊂ C(X) denote those functions that vanish at infinity. Let CR(X), respectively
C0;R(X), denote the real valued elements of C(X), respectively C0(X). If X is compact,
then C(X) = C0(X).

Proposition 10.1. If f ∈ C0(X), with X a locally compact Hausdorff space, then there is a point
x0 ∈ X such that | f (x0)| = supx∈X | f (x)| < ∞.

PROOF. Since f vanishes at infinity, K = {| f (x)| ≥ 1} is compact. Since f is contin-
uous, C =

{
f−1({|z| < t}) : t > 1

}
is an open cover for K. As K is compact, there is a

finite sub-cover. Because the sets in C are increasing with t, we see that there is t0 > 1 such
that K ⊂ {| f (x)| < t0}. Thus κ = supx | f (x)| < t0.

If κ = 0, then f (x) = 0 = κ for all x. If κ > 0, let F = {x : | f (x)| ≥ κ/2}. Then F is
compact. Let (xn)n be a sequence in F such that | f (xn)| → κ. Every sequence in a compact
space has a convergent sub-sequence (see Ex. 10.1). Thus there is a subsequence xnk → x0.
Then we have | f (x0)| = κ by continuity. □

Exercise 10.1. Let (xn)∞
n=1 be a sequence in a compact space X. Show that (xn)∞

n=1 has a
convergent subsequence. (Hint: Suppose there is a sequence with no convergent subse-
quence and use this to create an open cover with no finite sub-cover.)

Definition 10.2. Let X be a locally compact Hausdorff space. The uniform norm on C0(X)
and C0;R(X) is

∥ f ∥u = max
x∈X

| f (x)| . (10.1)

Lemma 10.3. Let X be a locally compact Hausdorff space. Then the uniform norm defined in
(10.1) is a norm. Furthermore C0(X) and C0;R(X) are Banach spaces over C and R, respectively.

Exercise 10.2. Prove Lemma 10.3.

2. Measure theory on compact Hausdorff spaces

Definition 10.4. Let X be topological space. A Gδ set in X is a countable intersection of
open sets. An Fσ set in X is a countable union of closed sets.

Proposition 10.5. 1) In a metric space X, every closed set is Gδ. 2) If X is second countable and
normal, then every closed set is Gδ.

53
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PROOF. (1) =⇒ (2) by the Urysohn metrization theorem 9.12. To prove (1), note that
if F ⊂ X is closed then F =

⋂∞
n=1{x : dF(x) < 2−n} where dF(x) = infy∈F d(x, y). □

There are important compact Hausdorff spaces (e.g., uncountable products of compact
sets) in which not every closed set is Gδ. However, the level sets of continuous real valued
functions are always closed Gδ’s sets.

Proposition 10.6. Let X be a topological space and let f : X → R be continuous. Then
f−1([a, ∞)) is a closed Gδ for each a ∈ R.

PROOF. The set [a, ∞) is a closed Gδ in R (since R is a metric space). Thus f−1([a, ∞))
is a closed Gδ, since f−1 preserves intersections, closed sets and open sets. □

Definition 10.7. Let X be a Hausdorff space. The Baire σ-algebra, Baire(X), is the smallest
σ-algebra containing all compact Gδ’s. The Borel σ-algebra, Borel(X), is the smallest σ-
algebra containing all open sets.

Clearly Baire(X) ⊂ Borel(X). Although these σ-algebras can be distinct in a general
space X, they agree on R and C, and more generally on any space which is a countable
union of compact Gδ sets. We will always consider C and R with the Baire/Borel σ-
algebra.

Proposition 10.8. Let X be a compact Hausdorff space. 1) If f ∈ C(X), then f is measurable
with respect to Baire(X). 2) Baire(X) is the smallest σ-algebra such that every f ∈ C(X) is
measurable.

For the proof see Simon 2015b.

Definition 10.9. Let X be a locally compact Hausdorff space. A positive Baire measure on
X is a countably additive map µ : Baire(X) → [0, ∞] such that µ(K) < ∞ for any compact
K. A complex Baire measure is an countably additive map µ : Baire(X) → C. A signed Baire
measure is a complex Baire measure with µ(E) ∈ R for all E.

Remark. A signed or complex measure µ has ∑j |µ(Ej)| < ∞ whenever (Ej)
∞
j=1 are dis-

joint. This follows from the fact that a sum is absolutely convergent if and only if it is
convergent and invariant under all rearrangements — see Rudin 1976, Thms. 3.54 and
3.55. The total variation measure |µ|, defined by

|µ|(E) = sup

 ∞

∑
j=1

|µ(Ej)| : (Ej)
∞
j=1 are disjoint and E =

⋃
j

Ej

 ,

is a positive, finite measure on X — see Rudin 1987, Thm. 6.2. By the Radon-Nikodym
Theorem, one has dµ = f d|µ| where f : X → C is a measurable function of modulus one
— Rudin 1987, Thm. 6.12.

Theorem 10.10. Let µ be a positive, finite Baire measure on a compact Hausdorff space X. Then
µ is regular, meaning that for any E ∈ Baire(X) we have:

(1) Inner regularity: µ(E) = sup{µ(K) : K ⊂ E is Baire and compact.}, and
(2) Outer regularity: µ(E) = inf{µ(U) : U ⊃ E is Baire and open.}.

SKETCH OF PROOF. One can show that the collection of sets for which inner and outer
regularity holds is a σ-algebra — see Simon 2015b, Lemma 4.5.5. Let K be a compact
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Gδ. Then inner regularity holds trivially. To prove outer regularity, note that we have
K =

⋂
n Vn with Vn open. It could happen that Vn is not a Baire set for some n. However,

by Urysohn’s Lemma, Thm. 9.8, there are continuous functions fn : X → [0, 1] such that
fn = 1 on K and fn = 0 on Vc

n . The sets Un = { fn > 0} are open and Baire, by Prop.
10.6, since Un =

⋃∞
m=1{ fn ≥ 2−m}. Since K ⊂ Un ⊂ Vn, we have K =

⋂
v Un with Un

open and Baire. Thus µ(K) = limn µ(Un) by dominated convergence and inner regularity
holds. □

Remark 10.11. A Borel measure on X is a measure defined on the Borel σ-algebra. A Borel
measure µ is regular if it satsfies

(1) Inner regularity: µ(E) = sup{µ(K) : K ⊂ E compact.}, and
(2) Outer regularity: µ(E) = inf{µ(U) : U ⊃ E open.}.

Regular Borel measures are sometimes called Radon measures. Unfortunately, the analogue
of Thm. 10.10 does not hold for finite Borel measures — for an example of a finite, non-
regular Borel measure on a compact Hausdorff space, see Folland 1999, §7.2 Problem 15.
However, every Baire measure on a compact Hausdorff space can be extended uniquely
to a regular Borel measure — see Dudley 2002, Thm. 7.31.

Definition 10.12. Let X be a locally compact Hausdorff space. Let M+(X) denote the
set of all positive Baire measures. Let M(X), respectively MR(X), denote the set of all
complex, respectively signed, Baire measures. These last two spaces are normed linear
spaces, over C and R respectively, with the total variation norm ∥µ∥ = |µ|(X) .

Proposition 10.13. M(X) and MR(X) are Banach spaces in the total variation norm.

The proof is left as an exercise.

3. The Riesz-Markov-Kakutani Theorem

The following theorem is called the Riesz-Markov-Kakutani Theorem. Riesz 1911
showed that the dual of C([a, b]) could be described using Stieltjes integrals, while Markov
1938 and Kakutani 1941 independently derived the general result stated here.

Theorem 10.14 (Riesz-Markov-Kakutani Theorem). Let Q be a compact Hausdorff space.
Then to every bounded linear functional ℓ ∈ CR(Q)⋆ (respectively, C(Q)⋆) is associated a unique
signed (respectively, complex) Baire measure µ such that

ℓ( f ) =
∫

Q
f dµ.

Furthermore the norm of ℓ is the total variation ∥ℓ∥ = |µ|(Q). Thus CR(Q)∗ ∼= MR(Q) and
C(Q)⋆ ∼= M(Q).

We will prove the real valued case; the complex case follows easily. Let

C+(Q) = { f ∈ CR(Q) : f (x) ≥ 0 for all x ∈ Q} .

A linear functional ℓ ∈ CR(Q) is called positive if ℓ( f ) ≥ 0 whenever f ∈ C+(Q). Note
that a positive linear functional satisfies ∥ℓ∥ = ℓ(1), since clearly ℓ(1) ≤ ∥ℓ∥ but also

0 ≤ ℓ(∥ f ∥u1 ± f ) = ∥ f ∥uℓ(1)± ℓ( f ) ,

from which we conclude that |ℓ( f )| ≤ ∥ f ∥uℓ(1) and thus ∥ℓ∥ ≤ ℓ(1).
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Theorem 10.15. Given ℓ ∈ CR(Q)⋆ there is a unique deomposition ℓ = ℓ+− ℓ− with ℓ± positive
linear functionals and ∥ℓ∥ = ℓ+(1) + ℓ−(1).

PROOF. For f ∈ C+(Q) define ℓ+( f ) = sup{ℓ(h) : 0 ≤ h ≤ f }. It is clear that ℓ+(t f ) =
tℓ+( f ) for t ≥ 0 and that ℓ+( f ) ≥ ℓ(0) = 0. Given f , g ∈ C+(Q), f + g ∈ C+(Q) and

ℓ+( f + g) ≥ sup{ℓ(h1) + ℓ(h2) : 0 ≤ h1 ≤ f and 0 ≤ h2 ≤ g} = ℓ+( f ) + ℓ+(g).

The opposite inequality follows from the following:

Claim 10.16. Given f , g ∈ C+(Q) and 0 ≤ h ≤ f + g we can write h = h1 + h2 with h1,2 ∈
C+(Q), 0 ≤ h1 ≤ f and 0 ≤ h2 ≤ g.

PROOF OF CLAIM. Let h1 = min{ f , h}. Then h1 is continuous and 0 ≤ h1 ≤ f . Let
h2 = h − h1. Since h1 ≤ h, we have h2 ≥ 0. When h1 = f we have h2 ≤ f + g − f = g,
while when h1 = h we have h2 = 0 so h2 ≤ g. □

So, ℓ+(t f + sg) = tℓ+( f ) + sℓ+(g) if t, s ≥ 0 and f , g ∈ C+(Q). Extend ℓ+ to C(Q) by

ℓ+( f ) = ℓ+( f+)− ℓ+( f−), with f+ = max{ f , 0} and f− = min{ f , 0}.

It is not hard to see that ℓ+ is linear. Now set ℓ− = ℓ+ − ℓ and note that

ℓ−( f ) = sup{ℓ(h)− ℓ( f ) : 0 ≤ h ≤ f } = sup{ℓ(k) : − f ≤ k ≤ 0} ≥ 0,

for f ∈ C+(Q).
To prove ∥ℓ∥ = ℓ+(1) + ℓ−(1) note first that ∥ℓ∥ ≤ ∥ℓ+∥+ ∥ℓ−∥ = ℓ+(1) + ℓ−(1). On

the other hand, by the definition of ℓ+ and the corresponding equality for ℓ− we have

ℓ+(1) + ℓ−(1) = sup{ℓ(h) : 0 ≤ h ≤ 1}+ sup{ℓ(k) : −1 ≤ k ≤ 0}
= sup{ℓ(g) : −1 ≤ g ≤ 1} ≤ ∥ℓ∥. □

We are now ready to prove the Riesz-Kakutani Theorem in the real valued case. By the
splitting of a linear functional into positive and negative parts, it suffices to show

Theorem 10.17 (Riesz, Markov, Kakutani). Let ℓ be a positive linear functional on CR(Q) with
Q a compact Hausdorff space. Then there is a unique positive Baire measure m on Q such that
ℓ( f ) =

∫
Q f dm and ∥ℓ∥ = m(Q). Conversely, any positive Baire measure m gives a positive

linear functional on C(Q) via f 7→
∫

Q f dm.

Before the proof let us introduce some notation and a lemma. Given an open set U ⊂
Q, we write f ≺ U to indicate that f ∈ C(Q), supp f ⊂ U, and 0 ≤ f ≤ 1. Similarly, if K
is compact, f ≻ K indicates 1 − f ≺ Kc, i.e., 1K ≤ f and 0 ≤ f ≤ 1.

Lemma 10.18 (Finite partitions of unity). Let K ⊂ Q be compact and let U1, . . . , Un be a finite
open cover of K. Then there are f j ≺ Uj, j = 1, . . . , n, such that ∑j f j ≻ K.

Remark 10.19. ( f j)
n
j=1 is called a partition of unity on K subordinate to (Uj)

n
j=1..

PROOF. The case n = 1 is Urysohn’s lemma, Thm. 9.8. Suppose the lemma is verified
for covers of size n − 1 and let K ⊂ U1 ∪ · · · ∪ Un. Then K \ Un is compact and covered
by (Uj)

n−1
j=1 . Let (gj)

n−1
j=1 be a partition of unity on K \ Un subordinate to (Uj)

n−1
j=1 and let
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gn ≺ Un be such that gn ≡ 1 on K \ ⋃n−1
j=1 Uj. We have q = ∑n

j=1 gj ≥ 1 on K. Let

V = {q(x) > 1
2}. Then V is open and K ⊂ V. Let K ≺ h ≺ V and take

f j(x) =
h(x)
q(x)

gj(x) . □

PROOF OF RIESZ-MARKOV-KAKUTANI THEOREM. First, it is clear that any finite pos-
itive Baire measure m gives rise to a positive linear functional by ℓ( f ) =

∫
Q f dm. Since

the functional is positive ∥ℓ∥ = ℓ(1) = m(Q).
To see uniqueness, suppose that m ̸= m′ are distinct Baire measures. By regularity,

Thm. 10.10, we must have m(U) ̸= m′(U) for some open Baire U. By inner regularity, we
can find sequences (Kn)∞

n=1 and (K′
n)

∞
n=1 of compact Baire subsets of U such that m(U) =

limn m(Kn) and m′(U) = limn m′(K′
n). Let Fn =

⋃n
j=1(Kn ∪ K′

n) and let Fn ≺ fn ≺ U. Then

m(Kn) ≤ m(Fn) ≤
∫

Q
fndm ≤ m(U) and m′(K′

n) ≤ m′(Fn) ≤
∫

Q
fndm′ ≤ m′(U) .

Thus limn
∫

Q fndm = m(U) ̸= m′(U) =
∫

Q fndm′. It follows that
∫

Q fndm ̸=
∫

Q fndm′ for
some n, so m and m′ generate distinct linear functionals.

It remains to show any positive linear functional ℓ ∈ CR(Q)⋆ is of the form ℓ( f ) =∫
Q f dm for a positive Baire measure. The proof we give will actually construct the com-

pletion of the measure, its restriction to the Baire sets will be the Baire measure we seek.
Given an open set U we take

m∗(U) := sup{ℓ( f ) : f ≺ U}, (10.2)

Since 1 ≺ Q, it follows that m∗(Q) = ℓ(1). Since m∗(U) ≤ m∗(V) if U ⊂ V, we have
m∗(U) ≤ ℓ(Q) for all U. We extend m∗ to arbitrary subsets of Q by taking

m∗(S) := inf{m∗(U) : S ⊂ U and U is open}. (10.3)

By the monotonicity already noted for open sets, this identity is consistent for open U.

Claim 10.20. m∗ is an outer measure.

PROOF OF CLAIM. Recall that an outer measure satisfies (1) m ∗ (∅) = 0 and (2) mono-
tonicity with countable subadditivity: if B ⊂ ⋃∞

j=1 Aj, then m∗(B) ≤ ∑∞
j=1 m∗(Aj). Because

0 ≺ ∅, we have m∗(∅) = ℓ(0) = 0.
Suppose that B ⊂ ⋃

j Aj and let Uj ⊃ Aj be open with m∗(Uj) ≤ m∗(Aj) +
ϵ
2j . Then

B ⊂ V =
⋃∞

j=1 Uj. Let f ≺ V with ℓ( f ) ≥ m∗(V)− ϵ. Since supp f is compact, we have
supp f ⊂ ⋃n

j=1 Uj for some n. Let (gj)
n
j=1 be a partition of unity on supp f subordinate to

(Uj)
n
j=1. Since gj f ≺ Uj, we have

m∗(B) ≤ m∗(V) ≤ ℓ( f ) + ϵ ≤ ϵ +
n

∑
j=1

ℓ( f gj) ≤ ϵ +
n

∑
j=1

m∗(Uj) ≤ 2ϵ +
∞

∑
j=1

m∗(Aj) .

As ϵ was arbitrary, we see that m∗ is monotonic and countably subadditive. □

Let Fm denote the set of Carathéodory measurable sets: E ∈ Fm if and only if m∗(A) =
m∗(A ∩ E) + m∗(A \ E) for every A ⊂ X. By the Carathéodory extension theorem, Fm is
a σ-algebra and m∗|Fm is a measure — see Tao 2011, Theorem 1.7.3.
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Claim 10.21. Every open set is Caratheodry measurable.

PROOF. Let U be open. Since m∗ is subadditive, it suffices to show

m∗(A) ≥ m∗(A ∩ U) + m∗(A \ U) for all A ⊂ Q. (10.4)

We first prove (10.4) for A open. Then A ∩ U is open and there is f ≺ A ∩ U with
ℓ( f ) ≥ m(A ∩ U) − ϵ. Also A \ supp f is open, so we can find g ≺ A \ supp f with
ℓ(g) ≥ m∗(A \ supp f )− ϵ. Then f + g ≺ A, so

m∗(A) ≥ ℓ( f + g) = ℓ( f ) + ℓ(g) ≥ m∗(A ∩ U) + m∗(A \ supp f )− 2ϵ

≥ m∗(A ∩ U) + m∗(A \ U)− 2ϵ .

Taking ϵ → 0, we obtain (10.4) for A open.
Now suppose A is an arbitrary set. Then there is V ⊃ A with m∗(V) ≤ m∗(A) + ϵ. By

(10.4) for V we have

m∗(A) + ϵ ≥ m∗(V) ≥ m∗(V ∩ U) + m∗(V \ U) ≥ m∗(A ∩ U) + m∗(A \ U) .

Taking ϵ → 0, we obtain (10.4). □

Since open sets generate Borel(Q), we have Fm ⊃ Borel(Q) ⊃ Baire(Q). Let m denote
the restriction of m∗ to Baire(Q). To complete the proof we will need the following

Claim 10.22. If K ⊂ Q is a compact Baire set, then m(K) = inf{ℓ( f ) : f ≻ K}.

PROOF OF CLAIM. Let f ≻ K. Then Vϵ = { f > 1 − ϵ} ⊃ K is open. Let g ≺ Vϵ

with ℓ(g) ≥ m(Vϵ)− ϵ. Since g ≤ 1
1−ϵ f , we have ℓ( f ) ≥ (1 − ϵ)ℓ(g) ≥ (1 − ϵ)m(Vϵ)−

ϵ ≥ m(K) − O(ϵ). Taking ϵ → 0, we find that ℓ( f ) ≥ m(K). Now let Uϵ ⊃ K with
m(Uϵ) ≤ m(K) + ϵ and let K ≺ f ≺ U. Then m(K) ≤ ℓ( fϵ) ≤ m(U) ≤ m(K) + ϵ. Taking
ϵ → 0, the result follows. □

It remains to show that
∫

f dm = ℓ( f ). By linearity and scaling, it suffices to prove this
for 0 ≤ f ≤ 1. By Fubini’s Theorem,∫

Q
f dm =

∫ 1

0
m({x : f (x) ≥ t})dt =

∫ 1

0
m({x : f (x) > t})dt.

Thus ∫
Q

f dm ≤
n

∑
j=1

1
n

m
({

x : f (x) ≥ j−1
n

})
.

Let gj;n be such that
{

f (x) ≥ j−1
n

}
≺ gj;n ≺

{
f (x) > j−2

n

}
. Then

∫
Q

f dm ≤
n

∑
j=1

1
n
ℓ
(

gj;n
)
= ℓ

(
n

∑
j=1

1
n

gj;n

)
.

Now for every x ∈ Q

n

∑
j=1

1
n

gj;n(x) =
⌊n f (x)⌋

∑
j=1

1
n
+ O(1/n) =

1
n
⌊n f (x)⌋+ O(1/n) = f (x) + O(1/n).
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We conclude that ∥∥∥∥∥ n

∑
j=1

1
n

gj;n(x)− f (x)

∥∥∥∥∥
n

= O(1/n),

so ℓ(∑n
j=1

1
n gj;n) → ℓ( f ), and

∫
f dm ≤ ℓ( f ).

To show the reverse inequality, note that∫
Q

f dm ≥
n

∑
j=1

1
n

m
{

f (x) >
j
n

}
.

Thus, ∫
Q

f dm ≥ ℓ

(
n

∑
j=1

1
n

hj;n

)
,

with { f (x) ≥ j+1
n } ≺ hj;n ≺ { f (x) > j

n}. Again ∑j
1
n hj,n(x) = f (x) +O(1/n) and ∑j hj;n →

f uniformly, so
∫

f dm ≥ ℓ( f ), completing the proof. □





Part 3

Locally Convex Spaces





LECTURE 11

Locally Convex Spaces and the Schwartz Space

1. Topological Vector Spaces and Locally Convex Spaces

Reading: Lax 2002, §13.-13.2 and §B.1 and Reed and Simon 1980, Ch. 5 or Simon 2015b,
Ch. 6.

A Banach space is one example of a topological vector space (TVS), which is a linear
space X together with a topology on X such that the basic operations of addition and
scalar multiplication are continuous functions.

Definition 11.1. Let X and Y be topological spaces. The product topology on X × Y is the
smallest topology containing sets of the form U × V with U ⊂ X and V ⊂ Y open.

Remark. The product topology is also the smallest topology such that the coordinate
maps (x, y) 7→ x and (x, y) 7→ y are continuous.

Definition 11.2. A topological vector space is a linear space X with a Hausdorff topology
such that

(1) (x, y) 7→ x + y is a continuous map from X × X (with the product topology) into
X.

(2) (k, x) 7→ kx is a continuous map from F × X (with the product topolgoy, F = R or
C) into X.

Theorem 11.3. Let X be a TVS and let U ⊂ X be open. Then
(1) For any x ∈ X, U + x = {y + x : y ∈ U} is open.
(2) For any scalar k ̸= 0, kU = {ky : y ∈ U} is open
(3) Every point of U is interior: given x ∈ U and y ∈ X there is ϵ > 0 such that for any

scalar t with |t| < ϵ we have x + ty ∈ U.

PROOF. The set U + x is the inverse image of U under the map y 7→ y − x. Thus
(1) follows from continuity of the map y 7→ y + x which follows from joint continuity of
(y, x) 7→ y + x. Likewise (2) follows from continuity of y 7→ ky.

Since U + x is open it suffices to prove that 0 is interior if 0 ∈ U. For fixed y ∈ X the
map t 7→ ty is continuous. Thus {t : ty ∈ U} is open. Since this set contains t = 0 it must
contain an interval (−ϵ, ϵ) (or an open disc at the origin if the field of scalars is C). □

The class of TVSs is very large. However, most of the TVSs important to analysis have
the following property:

Definition 11.4. A locally convex space (LCS) is a TVS X such that every open set containing
the origin contains an open convex set containing the origin. That is, there is a base at the
origin consisting of open convex sets.

Definition 11.5. Let X be a linear space. A subset U ⊂ X is 1) absorbing if every 0 is an
interior point of U, and 2) balanced if x ∈ X =⇒ ωx ∈ X whenever ω ∈ F has |ω| = 1.

63
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Remarks. 1) The term absorbing stems from the fact that U is absorbing if and only if
X =

⋃
t>0 tU. 2) For F = R, balanced is equivalent to symmetric, U = −U.

Proposition 11.6. Let X be an LCS. Then X has a neighborhood base consisting of balanced,
absorbing, convex sets.

PROOF. Let N be a neighborhood base at 0 consisting of open, convex sets. Each ele-
ment of U ∈ N is absorbing by Thm. 11.3, part 3. If F = R, we may simply replace N by
N ′ = {U ∩ (−U) : U ∈ N} to obtain the desired base.

If F = C we need to work a bit more. We claim that if U ∈ N there is a convex, open
V ∋ 0 and ϵ > 0 such that if x ∈ V then ϵeiθx ∈ U for all θ. To see this note that if
T(x, z) = zx, then T−1(U) is open. Since (0, 0) ∈ T−1(U) and X is an LCS, there is an
open, convex set V ∋ 0 and ϵ > 0 such that V × (2ϵD) ⊂ T−1(U), where D denotes the
unit disk. Take

U′ =
⋃

θ∈[0,2π]

1
ϵ

e−iθV .

Then U′ is open, balanced, and convex, and U′ ⊂ U by construction. Taking N ′ = {U′ :
U ∈ N} gives the desired neighborhood base. □

Given a TVS X, we define the dual X′ to be the set of all continuous linear functional
on X. The dual X′ is a linear space, but for a general TVS may not be very large, or may
even consist of only the zero functional (examples will come later). However, the dual X′

of an LCS has enough functionals to separate points of X:

Theorem 11.7. Let X is a LCS. If y ̸= y′ are points of X, then there is a linear functional ℓ ∈ X′

such that ℓ(y) ̸= ℓ(y′).

PROOF. Of course, we use the Hahn-Banach theorem. Specifically the hyperplane sep-
aration Theorem 2.12. Also, it suffices to suppose the field of scalars is R, for if we con-
struct a suitable real linear functional ℓr on a complex LCS we can complexify it

ℓ(x) = ℓr(x)− iℓr(ix).

Without loss we suppose that y′ = 0. Since the topology on X is Hausdorff, there is an
open set U ∋ y′ with y ̸∈ U. Since X is locally convex, we may take U to be convex and
balanced. Since all points of U are interior, Theorem 2.12 asserts the existence of a linear
functional ℓ with 1 = ℓ(y) and ℓ(x) < 1 for x ∈ U. In fact, the proof shows that

ℓ(x) ≤ pU(x) ∀x ∈ X,

where pU is the gauge function of U, pU(x) = inf{t > 0 : t−1x ∈ U}.
We need to show that ℓ is continuous. It suffices to show ℓ−1(a, b) is open for any

a < b ∈ R. Let t ∈ (a, b). Let x0 be any point with ℓ(x0) = t. As ℓ is linear,

ℓ−1(a − t, b − t) = ℓ−1(a, b)− x0 ∋ 0 .

Thus it suffices to suppose a < 0 < b and show that ℓ−1(a, b) contains an open neighbor-
hood at 0. Let s = min{−a, b}. Then, given x ∈ U,

ℓ(sx) ≤ pU(sx) = spU(x) < s and ℓ(−sx) ≤ pU(−sx) = spU(−sx) < s.

Thus sU ⊂ ℓ−1(−s, s) ⊂ (a, b). □

Converse to this construction is the following result
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Theorem 11.8. Let X be linear space and let L be any collection of linear functionals on X that
separates points — i.e., for any y, y′ ∈ X there is ℓ ∈ L such that ℓ(x) ̸= ℓ(x′). Endow X with
the weakest TVS topology such that all elements of L are continuous. Then X is a LCS, and the
dual of X is

X′ = span L = {finite linear combinations of elements of L}.

Remark 11.9. The weakest topology with property A is the intersection of all topologies
with property A.

PROOF. Exercise. □

What are some examples of LCSs? First off, any Banach space is locally convex, since
the open balls at the origin are a base of convex sets. But not every LCS has a norm which
is compatible with the topology. By far the most important examples, are spaces of “test
functions” and their duals, spaces of distributions.

2. Generation of an LCS by semi-norms

The theory of distributions — due to Laurent Schwarz — is based on introducing a
LCS of “test functions” X and it’s dual X′, a space of “generalized functions,” or “dis-
tributions.” The test functions are “nice:” we can operate on them arbitrarily with all
the various operators of analysis – differentiation, integration etc. Using integration, we
embed X ↪→ X′ via a map ϕ 7→ ℓϕ:

ℓϕ(ψ) =
∫

Rd
ϕ(x)ψ(x)dx.

Thus we think of a (test) function both as a map and as an “averaging” procedure. It is
common to use inner product and function notation for a distribution, writing

ℓ(ψ) = ⟨T, ψ⟩ =
∫

T(x)ψ(x)dx,

even if the “function” T doesn’t exist.
A common, and useful, space of test functions is the Schwartz space

S(Rd)

=
{

f ∈ C∞(Rd) : f and its derivatives vanish faster than any polynomial
}

. (11.1)

Thus a function f ∈ S(Rd) if

pα,β( f ) := sup
x∈Rd

|xαDβ f (x)| < ∞ (11.2)

for every α,β ∈ Nd, where

xα = xα1
1 · · · xαd

d and Dβ =
∂β1

∂xβ1
1

· · · ∂βd

∂xβd
d

.

We want to topologize S(Rd) in a way so that a sequence fn → f if pα,β( fn − f ) → 0 for
every α,β.

Recall that a semi-norm on a linear space X is a map p : X → [0, ∞) which is positive
homogeneous, p(ax) = |a|p(x), and sub-additive, p(x + y) ≤ p(x) + p(y). It is allowed
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that p(x) = 0 for x ̸= 0. The maps pα,β on the Schwartz space are semi-norms (in fact,
they are norms). Note that this collection of semi-norms separates points, where

Definition 11.10. A collection N of semi-norms separates points if whenever p(u) = 0 for
all p ∈ N it follows that u = 0.

Now endow S(Rd) with the weakest topology such that S(Rd) is a TVS and each of
the semi-norms pα,β is continuous.

Claim 11.11. S(Rd) with this topology is a LCS

The claim follows from the following general result.

Definition 11.12. Let X be a linear space and N a family of functions f : X → M, M a
topological space (usually M = R or C). The natural topology generated by N is the weakest
topology on X such that addition and all the functions in N are continuous.

Theorem 11.13. Given a linear space X and a collection of semi-norms N that separates points,
the natural topology generated by N makes X a locally convex space. Conversely, given a LCS
X and C0 a neighborhood base at the origin consisting of balanced, convex, open sets, the LCS
topology on X is the natural topology generated by N = {pU : U ∈ C0}.

PROOF. First given an LCS space X let us show that the gauge function pU of a convex,
symmetric neighborhood of the origin U is continuous. To begin, note that

p−1
U [0, b) = {x ∈ X : x ∈ bU} = bU

is open in [0, ∞) for each b > 0. Next consider a set p−1
U (b, ∞). Let x be in this set and let

α = pU(x). Consider the open neighborhood V = x + (α − b)U then for y ∈ V we have
y = x + (α − b)y′ with y′ ∈ U and thus

pU(y) ≥ pU(x)− (α − b)pU(y′) > b.

So V ⊂ p−1
U (b, ∞) and thus p−1

U (b, ∞) is open. Continuity of pU follows since the sets
[0, b), (b, ∞) as b ranges over (0, ∞) generate the topology on [0, ∞).

Now suppose we are given a collection N of semi-norms that separates points. Any
topology such that addition and every p ∈ N is continuous necessarily contains the col-
lection

C = {x + U : x ∈ X and U ∈ C0} ,

where
C0 = {p−1[0, b) : p ∈ N and b ∈ (0, ∞)}.

Consider the coarsest topology T containing C. Since p = pU for U = p−1[0, 1), we see
from the above argument that all p ∈ N are continuous in T . Thus, T is the natural
topology generated by N .

We must show that (X, T ) is a LCS. Because N separates points, (X, T ) is Hausdorff.
Since C0 is a convex neighborhood base at the origin, the topology is locally convex. Be-
cause the collection C is invariant under translation (U ∈ C ⇔ x + U ∈ C), it follows that
T is invariant under translation. Because, zp−1[0, b) = p−1[0, |z|b) for any z ∈ F and
b > 0, we see that C is invariant under scalar multiplication. Thus T is invariant under
scalar multiplication.
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Exercise 11.1. Let (X, T ) be a linear space with a topology T that is invariant under trans-
lation and scalar multiplication and contains a convex neighborhood base at the origin.
Show that addition and scalar multiplication are continuous and, thus, that (X, T ) is a
LCS.

Conversely, let T denote a given LCS topology on X. Thus T is certainly a topology
under which addition and all elements of

N = {pU | U a balanced, convex, open neighborhood of 0}
are continuous. To prove it is the weakest such, we must show that any such topology
contains T . Any U ∈ C0 satisfies U = p−1

U ([0, 1)). Thus any topology such that addition
and all pU are continuous certainly contains C0 and all its translates, and thus T . □





LECTURE 12

Metrizable Spaces, Dual Spaces, and Tempered Distributions

Reading: Reed and Simon 1980, Ch. 5

1. Metrizable LCSs

Above we claimed that the topology on S(Rd) could be given in terms of uniform
convergence of sequences of functions. However, in a general LCS sequential convergence
may not specify the topology — a set may fail to be closed even it contains the limits of
all convergent sequences of its elements — because there may not be a countable neighbor-
hood base at the origin. We will see examples of this later. However, if the origin has a
countable neighborhood base then it turns out that the LCS is actually metrizable, so in
particular sequential convergence specifies the topology.

Theorem 12.1. Let X be an LCS. The following are equivalent
(1) X is metrizable;
(2) X has a countable neighborhood basis at the origin C consisting of balanced, convex, open

sets; and
(3) the topology on X is generated by a countable family of semi-norms.

PROOF. The equivalence of (2) and (3) is established by associating to balanced, con-
vex, open neighborhoods of the origin the corresponding gauge function and vice versa.
The details are left as an exercise.

Suppose X is metrizable. Then X has a countable neighborhood base (this is a property
of metric spaces), and in particular a countable neighborhood base at the origin. Since X
is a LCS we may find a balanced, convex, open set contained in each set of the base, thus
obtaining a countable, balanced, convex neighborhood base at the origin.

Now, suppose X has a countable, balanced, convex neighborhood base as indicated,
and let T denote the corresponding topology. Since C is countable we may assume, with-
out loss, that it is a decreasing sequence C = {U1 ⊃ U2 ⊃ · · · }. (Order the elements of C
and take finite intersections Uk 7→ U1 ∩ · · · ∩ Uk.) Let pj(x) = pUj(x), so pk(x) ≥ pj(x) if
k ≥ j. Define a metric

d(x, y) =
∞

∑
j=1

2−j pj(x − y)
1 + pj(x − y)

, (12.1)

and the metric topology Td.

Exercise 12.1. Prove that d defined in (12.1) is a metric. Note that the collection {pU : U ∈
C} separates points since C is a base.

Clearly,
{x : d(x, 0) < 2−j−1} ⊂ Uj.
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Thus T ⊂ Td (since any T open set contains a translate of some d-ball centered at each of
its points). On the other hand, if x ∈ tUk

d(x, 0) <
k

∑
j=1

2−j t
1 + t

+
∞

∑
j=k+1

2−j ≤ 1
2

t
1 + t

+ 2−k−1.

Thus
2−kUk ⊂ {x : d(x, 0) < 2−k},

which shows that Td ⊂ T . Thus T = Td and X is metrizable. □

For a general locally convex space, not necessarily metrizable, we can define the no-
tions of Cauchy nets and completeness.

Definition 12.2. Let X be a LCS. A net (xα)α∈I in X is Cauchy if for any continuous semi-
norm p and any ϵ > 0 there is α0 ∈ I such that p(xα − xβ) < ϵ for α, β ≥ α0. The LCS X is
complete if every Cauchy net is convergent to a limit in x.

Exercise 12.2. Let X be a LCS with a countable, increasing family of semi-norms as in the
proof of the last theorem. Prove that a net in X is Cauchy (in the LCS sense) if and only if
it is Cauchy with respect to the metric d defined in (12.1). Conclude that X is complete as
an LCS if and only if it is complete as a metric space in the metric d.

Definition 12.3. A Fréchet space is a complete, metrizable, locally convex linear space.

Remark. If X is a LCS with a topology generated by a countable family of seminorms, it
suffices to check that every Cauchy sequence is convergent to prove completeness.

Corollary 12.4. The space S(Rd) with the topology generated by the seminorms pα,β is a Fréchet
space.

PROOF. It is clear that S(Rd) is a LCS generated by a countable family of seminorms.
Suppose that ( fn)∞

n=1 is a Cauchy sequence. Since ( fn)∞
n=1 is Cauchy with repsect to

p0,0(u) = supx |u(x)|, by completeness of C0(R
d) we conclude that there is a function

f ∈ C0(R
d) such that fn → f uniformly. Since ( fn)∞

n=1 is Cauchy with respect to pα,0(u) =
supx |xβu(x)|, we conclude that supx |xβ f (x)| < ∞. Similarly, for each β, we find a limit
function gβ such that Dβ f j → gβ uniformly and supx |xβgβ(x)|. Arguing by induction on
β, we conclude gβ = Dβ f (see Rudin 1976 Thm. 7.17). Thus f ∈ S(Rd) and fn → f in the
Schwartz space. □

2. The dual space of a LCS

Given a linear space X and a linear space of linear functionals L on X that separates
points we have seen that there is a LCS topology on X such that L is the dual of X. This
topology is called the L-weak topology on X and is denoted σ(X, L).

On the other hand, given an LCS, we can think of X as a collection of linear functionals
on X⋆, associating to x ∈ X the map

ℓ 7→ ⟨ℓ, x⟩ .

(It is useful to use the inner product notation to denote the pairing between elements of X
and linear functionals ℓ(x) = ⟨ℓ, x⟩ . Note that this inner product is linear in both factors
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even if we are dealing with complex spaces.) The X-weak topology on X⋆, σ(X⋆, X), is
also called the weak⋆ toplogy. It is generated by the family of seminorms

px(ℓ) = |⟨ℓ, x⟩|, x ∈ X
Theorem 12.5. If X is a LCS then (X⋆, σ(X⋆, X))⋆ = X.
Remark 12.6. That is every LCS is “reflexive” if we give X⋆ the weak⋆ topology. Recall
that σ(X, X⋆) is the given LCS topology on X so we also have (X, σ(X, X⋆))⋆ = X⋆. Thus
for any LCS (X⋆)⋆ = X, provided we topologize X⋆ with the weak⋆ toplogy. If X is a
Banach space we also have a norm topology on X⋆, which is substantially stronger than
the weak⋆ topology and with respect to which this identity may not hold. For instance,

(1) As Banach spaces c⋆0 = ℓ1 and ℓ⋆1 = ℓ∞ and ℓ⋆∞, which includes Banach limits, is
strictly larger than ℓ1.

(2) As LCS spaces c⋆0 = ℓ1 and (ℓ1, σ(ℓ1, c0))
⋆ = c0, etc.

The moral of the story is topology matters.
The following theorem is useful for determining if a linear functional is continuous.

Theorem 12.7. Let X be a LCS generated by a family of semi-norms S . Then a linear functional
ℓ ∈ X′ if and only if there is a constant C > 0 and a finite collection p1, . . . , pn ∈ S such that

|ℓ(x)| ≤ C
n

∑
j=1

pj(x) ∀x ∈ X.

PROOF. (⇒) If ℓ is continuous then U = ℓ−1(D) is a balanced, convex, open neighbor-
hood of the origin in X, where D is the unit disc in F (so D = (−1, 1) if F = R). By virtue
of the fact that S generates the topology on X, since U is open we have

n⋂
j=1

{
x : pj(x) < ε

}
⊂ U

for some finite collection p1, . . . , pn. Thus,

V =

{
x :

n

∑
j=1

pj(x) < ε

}
⊂ U.

Now, given x let t = 2
ε ∑n

j=1 pj(x). Then
n

∑
j=1

pj(t−1x) =
ε

2
,

so t−1x ∈ V ⊂ U. Thus∣∣∣ℓ(t−1x)
∣∣∣ < 1 =

∑n
j=1 pj(x)

∑n
j=1 pj(x)

=
2
ε

n

∑
j=1

pj(t−1x).

Multiplying through by t we get the desired bound with C = 2/ε.
(⇐) Since ℓ is linear, it suffices to show that ℓ is continuous at 0. That is we must show

that ℓ−1(εD) contains an open set containing the origin for each ε > 0. But clearly{
x : C

n

∑
j=1

pj(x) < ε

}
⊂ ℓ−1(εD). □
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3. Tempered Distributions

The dual of S(Rd) denoted S⋆(Rd) is the space of tempered distributions. Here are
some examples:

(1) S(Rd) ⊂ S⋆(Rd) where we associate to a function ϕ ∈ S(Rd) the distribution

ψ 7→ ⟨ψ, ϕ⟩ =
∫

Rd
ψ(x)ϕ(x)dx.

(2) More generally, a function F ∈ L1
loc(R

d) that is polynomially bounded in the sense
that p(x)−1F(x) ∈ L1(Rd) for some positive polynomial p > 0 may be considered
as a tempered distribution

ψ 7→ ⟨ψ, F⟩ =
∫

Rd
ψ(x)F(x)dx.

(3) Similarly, any polynomially bounded Borel measure µ, with∫
p(x)−1d|µ|(x) < ∞.

is a tempered distribution:

⟨ψ, µ⟩ =
∫

Rd
ψ(x)dµ(x).

To go further we need the following generalization of Theorem 12.7, which may be
proved similarly:

Theorem 12.8. Let X, Y be LCSs generated by a families of semi-norms S , T respectively. A
linear map T : X → Y is continuous if and only if for any semi-norm q ∈ T there is a constant
C > 0 and a finite collection p1, . . . , pn ∈ S such that

q(Tx) ≤ C
n

∑
j=1

pj(x) ∀x ∈ X.

Corollary 12.9. For each j = 1, . . . , d, differentiation ∂j is a continuous map from S → S .

Now we define ∂j : S⋆ → S⋆. Note that〈
∂jψ, F

〉
= −

〈
ψ, ∂jF

〉
,

whenever F is a C1 function of polynomial growth. Thus define for arbitrary ℓ ∈ S⋆:〈
ψ, ∂jℓ

〉
= −

〈
∂j, ℓ

〉
.

Proposition 12.10. So defined, ∂j : S⋆ → S⋆ is a continuous map.

PROOF. Exercise □

Thus we have the following generalization of the above examples:

• Let α ∈ N d be a multi-index and let F be a polynomial L1 bounded function.
Then DαF is a tempered distribution:

⟨ψ, DαF⟩ = (−1)α ⟨Dαψ, F⟩ = = (−1)α
∫

Rd
Dαψ(x)F(x)dx.
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Theorem 12.11 (Structure Theorem for Tempered Distributions). Let ℓ ∈ S(Rd) be a tem-
pered distribution. Then there is a polynomially bounded continuous function g and a multi-index
α ∈ Nd such that ℓ = Dαg.

For the proof see Reed and Simon 1980, Ch. V.





LECTURE 13

Inductive Limits

Reading: Reed and Simon 1980, Ch. 5 or Simon 2015b, Ch. 9.
Consider the scale of spaces

C∞
c (Rd) ⊂ S(Rd) ⊂ C∞

0 (Rd) ⊂ C∞(Rd) ,

where
(1) C∞

c (Rd) is the set of compactly, suported smooth functions,
(2) S(Rd) is the Schwartz space defined above,
(3) C∞

0 (Rd) is the set of smooth functions f such that f and all its derivatives vanish
at ∞, and

(4) C∞(Rd) is the set of all smooth functions.
Each of these spaces has a natural complete LCS topology, which we will discuss here.

1. C∞
0 and C∞

We have already seen the topology on S(Rd). The spaces C∞
0 (Rd) and C∞(Rd) are

similar. In fact, we can replace Rd by an arbitrary open subset Ω ⊂ Rd.

Definition 13.1. Let Ω be an open subset of Rd and let C∞(Ω) denote the set of all infinitely
differentiable maps f : Ω → F. The space C∞

0 (Ω) denotes the set of all maps f ∈ C∞(Ω)

such that for every α ∈ Nd, Dα f (x) → 0 whenever x approaches Ωc or ∞.

Theorem 13.2. Let Ω ⊂ Rd be open.
(1) With the LCS topology generated by the family of seminorms

N0 =

{
pα( f ) = sup

x∈Ω
|Dα f (x)| : α ∈ Nd

}
,

C∞
0 (Ω) is a Fréchet space.

(2) With the LCS topology generated by the family of seminorms

N =

{
qα,K( f ) = sup

x∈K
|Dα f (x)| : α ∈ Nd and K ⊂ Ω is compact

}
,

C∞(Ω) is a Fréchet space.

Remark. Note that we can embed C∞
0 (Ω) ↪→ C∞

0 (Rd) by extending f to be zero on Ωc.
This imbedding is continuous and makes C∞

0 (Ω) a closed subspace of C∞
0 (Rd).

SKETCH OF PROOF. The proof that C∞
0 and C∞ are locally convex spaces follows closely

the result for the Schwartz space. In fact, the proof for C∞
0 is actually a bit easier since we

75
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don’t need to verify that the resulting limiting function is polynomially bounded. Since
N0 is countable, it follows immediately that C∞

0 (Ω) is a Fréchet space.
Because there are uncountably many compact sets K ⊂ Ω, the family N is not count-

able. However, one can choose a countable family K1 ⊂ K2 ⊂ · · · ⊂ Ω of compact sets
with Ω =

⋃
n K◦

n. For example,

Kn = {x ∈ Ω : dist(x, Ωc) ≥ 2−n and |x| ≤ 2n} . (13.1)

Any compact set K ⊂ Ω is contained in one of the Kn, so qα,K ≤ qα,Kn . It follows that
the topology generated by N is the same as that generated by the countable collection
{qα,Kn : α ∈ Nd , n ∈ N}. Thus C∞(Ω) is a Fréchet space as claimed. □

2. Inductive Limits and C∞
c

The space C∞
c (Ω) requires a new concept: the inductive limit topology. The key idea is

to think of C∞
c (Ω) as the union

⋃
n C∞

0 (K◦
n) with (Kn)∞

n=1 as in (13.1). We want to put a
topology on the union C∞

c (Ω) that is consistent with the LCS topology of each subspace
C∞

0 (K◦
n). The key observation that allows us to do this is the fact that the topology on

C∞
0 (K◦

n) obtained by considering it as a subspace of C∞
0 (K◦

n+1) is the same as its given LCS
topology.

Theorem 13.3. Let X be a linear space with (Xn)∞
n=1 a family of subspaces of X such that Xn ⊂

Xn+1 and X =
⋃

n Xn. Suppose that each Xn has a locally convex topology Tn such that the
restriction of Tn+1 to Xn is Tn. Let U be the collection of balanced, convex, absorbing sets U ⊂ X
such that U ∩ Xn is open in Xn for each n. If T is the natural topology generated by U , then

(1) T is the strongest locally convex topology on X such that the injections Xn ↪→ X are
continuous.

(2) The resriction of T to Xn is the given topology Tn on Xn.
(3) If each (Xn, Tn) is complete, then so is (X, T ).

Definition 13.4. The LCS X in Thm. 13.3 is the strict inductive limit of (Xn)∞
n=1.

Remarks. 1) For the proof of Thm. 13.3, see Simon 2015b, Thm. 9.1.1. 2) Recall that the
restriction of a topology T on X to a subspace Y ⊂ X is the relative topology consiting of
the sets U ∩ Y for U ∈ T . 3) The inductive limit is strict because the topology Tn is the
restriction of Tn+1 to Xn. There is a more general definition in which one has continuous
embeddings ϕn : Xn → Xn+1, see Conway 2007, §IV.5.

Theorem 13.5. Let X be the strict inductive limit of an increasing family (Xn)∞
n=1 of LCSs, let Y

be an LCS, and let T : X → Y be a linear map. Then T is continuous if and only if the restriction
Tj = T|Xj is a continuous map for each j.

PROOF. If T is continuous, then the restrction of T to any subspace is continuous. Con-
versely, suppose that the restriction Tj is continuous for each j. Since Y is an LCS, to prove
that T is continuous it suffices to prove that T−1(V) is open for every balanced, convex,
open set in Y. Because T is linear, the inverse image of a balanced, convex set is balanced
and convex. Since T−1(V) ∩ Xj = T−1

j (V), we see that T−1(V) ∩ Xj is balanced, convex
and open for each j. Thus T−1(V) is open, by definition. □
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Theorem 13.6. Let X be the strict inductive limit of an increasing family (Xn)∞
n=1 of LCSs.

Suppose that each Xn is a proper, closed subspace of Xn+1. If (xj)
n
j=1 is a sequence in X, then

(xj)
∞
j=1 converges if and only if, for some Xm, all xj ∈ Xm and (xj)

∞
j=1 converges in Xm.

Lemma 13.7. Let X be the strict inductive limit of an increasing family (Xn)∞
n=1 of LCSs. If each

Xn is a proper, closed subspace of Xn+1, then each Xn is closed in X.

PROOF. Since Xn is closed in Xn+1 for each n, we see that Xn is closed in Xm for any
m > n. Let x be a limit point of Xn. Then x ∈ Xm for some m. If m ≤ n then x ∈ Xn. If
m > n, then x ∈ Xn since Xn is a closed subspace of Xm. □

PROOF OF THM. 13.6 . By Lem. 13.7, we see that if all xj are in Xm and xj → x in X,
then x ∈ Xm. Hence to prove the result we just need to show that any convergent sequence
lies in a single Xm for some m. We will show the contrapositive: if (xj)

∞
j=1 does not lie in any

one of the Xm, then (xj)
∞
j=1 does not converge. By passing to a subsequence, we may suppose

that we have xj ∈ Yj+1 \ Yj with Yj = Xmj and Xm1 ⊊ Xm2 ⊊ Xm3 · · · .
We will show that (xj)

∞
j=1 does not converge by constructing a continuous linear func-

tional L : X → F such that L(xj) → ∞. We will define L as a sum L = ∑∞
j=1 Lj with Lj

constructed recursively. Let ℓ1 : span(Y1, x1) → F be a linear functional such that ℓ1|Y1 ≡ 0
and ℓ1(x1) = 1. Since Y1 is closed, ℓ1 is continuous and thus, by the Hahn-Banach the-
orem, there is an extension L1 of ℓ1 to X. Now, given the maps L1, . . ., Ln−1, let ℓn :
span(Yn, xn) → F be a linear functional such that ℓn|Yn ≡ 0 and ℓn(xn) = n − ∑n−1

j=1 Lj(xn).
By Hahn-Banach, since Yn is closed, there is an extension Ln of ℓn to X. Let L = ∑∞

n=1 Ln.
If x ∈ Ym, then Ln(x) = 0 for n ≥ m so L|Ym = ∑m−1

n=1 Ln is continuous. Thus, L is well-
defined on X =

⋃
m Ym and L is continuous on X by Thm. 13.5. Since L(xn) = n, we

conclude that (xn)∞
n=1 cannot converge. □

Theorem 13.8. Let X be the strict inductive limit of an increasing family (Xn)∞
n=1 of LCSs. If

each Xn is a proper, closed subspace of Xn+1, then X is not metrizable.

PROOF. Suppose that X had a countable neighborhood base at the origin. Without loss
of generality, we may suppose that the base (Un)∞

n=1 is decreasing, Un ⊃ Un+1 for each n.
Since X is Hausdorff,

⋂
n Un = {0}. Let xn ∈ Un \ Xn — note that Un cannot be a subset of

Xn since Xn is a proper subspace and Un is absorbing. Then xn → 0 but we cannot have
(xn)∞

n=1 contained in any one Xm by construction, contradicting Thm. 13.6. Thus X has no
countable neighborhood base at 0 and is hence not metrizable. □

3. A simple example

Consider the three spaces
F ⊂ c0 ⊂ E ,

where c0 and ℓ∞ are the Banach spaces defined above and
(1) E = all F valued sequences, and
(2) F = sequences that are eventually zero.

We have
(1) E is a Frechét space, generated by the seminorms

pN(a) = sup
n≤N

|an| .
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(2) c0 is a Banach space (so a Frechét space) generated by the single norm ∥a∥ =
supn |an|.

(3) F is the inductive limit of (Fn)∞
n=1, where we embed Fn ↪→ F as Fn 7→ sequences

that are zero after the n-th term.
(4) E⋆ = F and F ⋆ = E ; the dual of c0 is, of course, ℓ1.



LECTURE 14

C∞
c (R

d) and Distributions

Reading: Reed and Simon 1980, Ch. 5 and Simon 2015b, Ch. 11. For more details about
distributions, see Rudin 1991, Ch. 6.

1. C∞
c (Ω) as an inductive limit

Let Ω ⊂ Rd be open and let (Kn)∞
n=1 be an increasing sequence of compact subsets of

Ω such that Ω =
⋃

n K◦
n. We topologize C∞

c (Ω) with the inductive limit topology given by
C∞

0 (K◦
n). Since C∞

0 (K◦
n) is a Fréchet space for each n, C∞

c (Ω) is complete. Since C∞
0 (K◦

n) is
a closed subspace of C∞

0 (K◦
n+1), the resulting topology is not metrizable. At the moment,

this construction appears to depend on the choice of the sequence (Kn)∞
n=1. That it does

not follows from the following

Exercise 14.1. Reed and Simon 1980, Ch.5, problem 46:
(a) Suppose X is the strict inductive limit of (Xn)∞

n=1 and that (Yn)∞
n=1 is an increasing

family of subspaces of X so that for any n, there is N with Xn ⊂ YN. Prove that X
is the strict inductive limit of (Yn)∞

n=1.
(b) Let K ⊂ Ω ⊂ Rd with K compact and Ω open. Prove that if C∞

c (Ω) has the in-
ductive limit topology given by (C∞

c (Kn))∞
n=1 for some family as described above,

then the restriction of this topology to C∞
0 (K◦) is the Fréchet topology for this

space defined above.
(c) Prove that the topology on C∞

c (Ω) is independent of the choice of the increasing
family (Kn)∞

n=1 of compact sets.

2. Distributions

Let Ω ⊂ Rd be open. A distribution on Ω is an element of D⋆(Ω) = (C∞
c (Ω))⋆.

Proposition 14.1. Let T ∈ S⋆(Rd) be a tempered distribution. Then the restriction of T to
C∞

c (Rd) is a distribution and the restriction map is one-to-one, i.e., if T(ϕ) = S(ϕ) for all ϕ ∈
C∞

c (Rd) then T = S.

PROOF. To prove that T is continuous, it suffices (by Thm. 13.5) to prove that T|C∞
0 (K◦) is

continuous for any compact set K ⊂ Rd. This follows since C∞
0 (K◦) is a closed subspace of

S(Rd). That the restriction map is one-to-one follows since C∞
c (Rd) is dense in S(Rd). □

Thus we have the embedding S⋆ ⊂ D⋆. Distributions in D⋆ need not be bounded at
∞ – any locally integrable function, like exp

(
exp

(
|x|2

))
is a distribution.

As for tempered distributions, the derivatives DαT of a distribution on Ω can be de-
fined using integratation by parts

⟨DαT, u⟩ = (−1)|α| ⟨T, Dαu⟩
79
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for u ∈ C∞
c (Ω). Using Thm. 13.5 it is easy to see that Dα : D⋆(Ω) → D⋆(Ω) is continuous.

A direct analogue of the structure theorem 12.11 does not hold in this context. However,
there is a local version:

Theorem 14.2. Let Ω ⊂ Rd be open and let T be a distribution on Ω. If K ⊂ Ω is compact then
there is FK ∈ Cc(Ω) and αK ∈ Nd such that if supp u ⊂ K, then

⟨T, u⟩ = ⟨DαK FK, u⟩ .

SKETCH OF PROOF. Let U be open with U compact and K ⊂ U ⊂ U ⊂ Ω. Since T
is continuous on C∞

c (Ω) there are β1, . . . ,βn ∈ Nd and C, depending on U, such that for
u ∈ C∞

0 (U) we have

|⟨T, u⟩| ≤
n

∑
j=1

sup
x∈U

∣∣∣Dβj u(x)
∣∣∣ .

Now let Φ be a smooth function that is one on K and vanishes on Uc. It follows that
ΦT ∈ S⋆(Rd), so ΦT = DαF for some F, with F ≡ 0 on Uc since Φ ≡ 0 there. □

Corollary 14.3. Let Ω ⊂ Rd be open and let T be a distribution on Ω. Then there are sequences
(Fn)∞

n=1 in Cc(Ω) and (αn)∞
n=1 in Nd such that

(1) For any compact K ⊂ Ω at most finitely many Fn are non-zero on K, and
(2) T = ∑∞

n=1 Dαn Fn.

Remark. The point here is that, the distribution can become less and less regular as we
approach the boundary of Ω or ∞. Note that for any u ∈ C∞

c (Rd) only finitely many terms
contribute to the sum ⟨T, u⟩ = ∑n ⟨Dαn Fn, u⟩.

SKETCH OF PROOF. Write Ω =
⋃

n Kn with Kn an increasing sequence of compact sets
with Kn ⊂ K◦

n+1. Let (ϕn)∞
n=1 be a sequence of smooth functions such that ϕn ≡ 0 on Kn

and ϕn ≡ 0 on Kc
n+1.

Let L1 = K1 and, for n > 1, let Ln = Kn \ L◦
n−1. Then (Ln)∞

n=1 is a sequence of compact
subsets of Ω with

⋃
Ln = Ω and any x ∈ Ω is in at most two of the Ln. Let Ψn = ϕn − ϕn−1

(with ϕ0 ≡ 0). Then (Ψn)∞
n=1 satisfy

(1) ∑∞
n=1 Ψn ≡ 1, and

(2) supp Ψn ⊂ Ln ∪ Ln+1, in particular for any x at most three of the Ψn(x) are non-
zero.

Decompose T as ∑n ΨnT. Following the proof of Thm. 14.2, write each distribution
ΨnT = Dαn Fn with a suitably chosen Fn ∈ Cc(Ω). Looking at the proof of Thm. 14.2, we
see that we may choose Fn with supp Fn ⊂ Ln−1 ∪ Ln ∪ Ln+1 ∪ Ln+2. □

The space D⋆(Ω) is a complete LCS in the weak-⋆ topology. Recall that a measurable
map f : Ω → K is locally integrable if

∫
K | f (x)|dx < ∞ for any compact subset. The set of

locally integrable functions on Ω is denoted L1
loc(Ω).

Exercise 14.2. Give L1
loc(Ω) the LCS topology generated by the semi-norms pK( f ) =∫

K | f (x)|dx for compact K ⊂ Ω. Show that L1
loc(Ω) is a Fréchet space.

Let f ∈ L1
loc(Ω). We think of f as an element of D⋆(Ω) by associating it to the linear

functional
⟨ f , u⟩ =

∫
Ω

f (x)u(x)dx .
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This provides an embedding L1
loc(Ω) ↪→ D⋆(Ω).

Exercise 14.3. Show that this embedding of L1
loc(Ω) is a continuous map. Note that to do

this, it suffices to show that the map f 7→ ⟨ f , u⟩ is continuous for each u ∈ C∞
c (Ω).

In particular, we have an embedding C∞
c (Ω) ↪→ D⋆(Ω).

Exercise 14.4. Show that the embedding C∞
c (Ω) ↪→ D⋆(Ω) is continuous.

Derivatives are defined on D⋆(Ω) via integration by parts. We want to see that they are
continuous. There is a more general class of operators for which we can define continuity.

Definition 14.4. Let T, T′ : C∞
c (Ω) → C∞

c (Ω) be continuous linear maps. We say that T′ is
the transpose of T if 〈

T′v, u
〉
= ⟨v, Tv⟩

for every u, v ∈ C∞
c (Ω).

Note that the transpose T′ is uniquely determined by T (if it exists) and (T′)′ = T. This
transpose operation obeys the usual rules, namely if T and S have transposes, then

(1) aT + bS has a transpose and (aT + bS)′ = aT′ + bS′ for any a, b ∈ F, and
(2) ST has a transpose and (ST)′ = T′S′.

Theorem 14.5. Let T : C∞
c (Ω) → C∞

c (Ω) be a continuous map with a transpose. Let ℓ be a
distribution and define Tℓ by

⟨Tℓ, u⟩ =
〈
ℓ, T′u

〉
.

Then Tℓ ∈ D⋆(Ω) and T : D⋆(Ω) → D⋆(Ω) is a continuous linear map.

PROOF. To see that Tℓ is a distribution, we must show that u 7→ ⟨ℓ, T′u⟩ is continuous.
But this map is the composition of the continuous maps u 7→ T′u and v 7→ ⟨ℓ, v⟩

Linearity of T on D⋆(Ω) is clear from the definition. To see that the map is continuous,
note that we must show that ℓ 7→ ⟨ℓ, T′u⟩ is continuous for any u ∈ C∞

c (Ω). This follows
from the definition of the weak-⋆ topology, since T′u ∈ C∞

c (Ω). □

Exercise 14.5. Show that the following are continuous linear maps with transposes on
C∞

c (Rd):
(1) Multiplication by a function f ∈ C∞(Ω), u 7→ f u.
(2) Differentiation to any order α ∈ Nd, u 7→ Dαu.
(3) Translation by y ∈ Rd, u 7→ u(· − y).
(4) Convolution with compactly supported F ∈ L1(Rd),

u 7→ F ∗ u(x) =
∫

Rd
F(x − y)u(y)dy .

(5) Composition with a diffeomorphism Φ : Rd → Rd, u 7→ u ◦ Φ.

All of the operations in the previous exercise lift to distributions. These are most of
the operations of smooth analysis, with the exception of products. In general products of
distrbutions cannot be defined. However, there is a way to do this for distributions acting
on distinct variables:

Exercise 14.6. Suppose that Ω = A × B with A ⊂ Rn and B ⊂ Rm open sets.
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(1) Suppose that ℓA ∈ D⋆(A) and u ∈ C∞
c (Ω). Define, for each y ∈ B,

ℓA(u)(y) = ⟨ℓA, u(·, y)⟩ ,

where u(·, y) is the element of C∞
c (A) obtained by restricting u to the level set

A × {y}. Show that this map is a continuous map from C∞
c (Ω) → C∞

c (B).
(2) Suppose that ℓA ∈ D⋆(A) and ℓB ∈ D⋆(B) and define

ℓBℓA(u) = ⟨ℓB, ℓA(u)⟩
with ℓA(u) as in part (1). Prove that ℓBℓA ∈ D⋆(Ω) and that ℓBℓA = ℓAℓA.

3. Spaces of Distributions

Each of the spaces
C∞

c (Ω) ⊂ C∞
0 (Ω) ⊂ C∞(Ω)

is dense in the larger space. It follows by arguments similar to Prop. 14.1 that the corre-
sponding spaces of distributions satsify a reverse inclusion

E⋆(Ω) ⊂ D⋆
0(Ω) ⊂ D⋆(Ω)

where
(1) E⋆(Ω) = (C∞(Ω))⋆, and
(2) D⋆

0(Ω) = (C∞
0 (Ω))⋆.

Distributions in E⋆ have compact support, where

Definition 14.6. A distribution vanishes on an open set U ⊂ Rd if ⟨ϕ, T⟩ = 0 whenever ϕ
has compact support in U. The support of a distribution is the smallest closed set F such
that T vanishes on Rd \ F.

Distributions in D⋆
0(Ω) are “bounded,” in the sense that they satisfy an analogue of

the Structure Theorem:

Theorem 14.7. Let Ω ⊂ Rd be open and let T ∈ D⋆
0(Ω), then there is a bounded continuous

function F on Ω and α ∈ Nd such that ⟨T, u⟩ = ⟨DαF, u⟩ .

SKETCH OF PROOF. We will use some facts from harmonic analysis. The basic idea to
the proof is the following. If T ∈ D⋆

0(Ω) then there are finitely many α1, . . . ,αn such that

|⟨T, u⟩| ≤ C
n

∑
j=1

sup
x∈Ω

|Dαju(x)| .

Now it turns out that for any smooth function that vanishes at ∞ fast enough there are
constants such that

sup
x

|Dαu(x)| ≤ Cα,n sup
x

|(−∆ + 1)nu(x)|

where −∆ = −∇ · ∇ is the Laplacian and 2n > |α| — this is closely related to Sobolev
inequalities, see Simon 2015a, Thm. 6.3.2. Thus we can replace the finite family of semi-
norms by the bound

|⟨T, u⟩| ≤ C sup
x

|(−∆ + 1)nu| .
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Now it turns out that there is a continuous map (−∆ + 1)−n which is its own transpose
— for Ω = Rd it is given by convolution with an explicit function, a Bessel kernel. The
distribution (−∆ + 1)−nT satisfies the bound∣∣〈(−∆ + 1)−nT, u

〉∣∣ ≤ C sup
x

|u(x)| .

Thus (−∆ + 1)−nT can be extended to give a continuous linear function on C0(Ω). By
the Riesz representation theorem there is a finite Borel measure µ on Ω such that (−∆ +
1)−nT = µ. Convolving with (−∆ + 1)−1 one more time we obtain

(−∆ + 1)−n − 1T = (−∆ + 1)−1 ∗ µ ,

where G = (−∆ + 1) ∗ µ is a continuous function (actually it is even C1). Thus T =
(−∆ + 1)n+1G. This is close to what was claimed, and the actual result can be obtained by
a function F such that DβF = (−∆ + 1)n+1G where β = (2(n + 1), 2(n + 1), · · · , 2(n + 1))
— see Simon 2015b, §6.2, Problem 8.q12w □





Part 4

More about Banach Spaces





LECTURE 15

Baire category theorem and its consequences

Reading: Lax 2002, Ch. 10, Simon 2015b, §5.4

1. Baire Category Theorem

In this lecture we will consider several results about Banach spaces that follow from
the Baire Category Theorem:

Theorem 15.1 (Baire Category Theorem). Let X be a complete metric space. If (Un)∞
n=1 is a

countable family of open dense sets, then
⋂

n Un is dense.

Remark. The theorem was proved for X = Rn by Baire 1899. The general version is due
to Kuratowski 1930 and Banach 1930.

Before proving the theorem, let us present some consequences and discuss the name.
Let X be a metric space K ⊂ X is nowhere dense if K has empty interior. An equivalent
statement of the Baire category theorem is the following:

Corollary 15.2 (Nowhere dense version of the Baire Category Theorm). Let X be a complete
metric space. If (Kn)∞

n=1 is a countable family of nowhere dense subsets in X, then
⋃

n Kn is
nowhere dense.

Exercise 15.1. Prove that Thm. 15.1 and Cor. 15.2 are equivalent.

The word “category” in all this comes from the following definitions. A set K in a
metric space is said to be first category if it is the countable union of nowhere dense sets and
is second category otherwise. The Baire Category Theorem implies the following statements
that are responsible for the name:

(1) A first category subset of a complete metric space has empty interior.
(2) A complete metric space is second category.

The Baire Category Theorem follows from the following

Lemma 15.3. Let X be a complete metric space. If (Un)∞
n=1 is a countable family of open dense

sets, then
⋂

n Un is non-empty.

Exercise 15.2. Show that Lemma 15.3 implies Theorem 15.1. (Hint: use the lemma to prove
that

⋂
n Un ∩ Br(x) ̸= 0 for any closed ball Br(x) ⊂ X.)

PROOF OF LEMMA 15.3. Suppose that (Un)∞
n=1 is a countable family of open dense

sets. Since U1 is open and dense, it is a non empty open set. Thus, there are x1 ∈ X
and r1 > 0 such that Br(x1) ⊂ U1. Proceeding recursively, for each n = 2, 3, . . ., since
Un is open and dense, we can find a point xn and 0 < rn ≤ rn−1/2 such that Brn(xn) ⊂
Brn−1(xn−1) ∩ Un. Because rn ≤ 2n−2r1 and xn ∈ Brm(xm) for n ≥ m, we see that (xn)∞

n=1 is
a Cauchy sequence. Let x = limn xn, then x ∈ Brn(xn) ⊂ Brn−1(xn−1) ∩ Un for each n, so
x ∈ ⋂n Un. □
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In our applications of Thm. 15.1 we will use the following simpler version which fol-
lows directly from Lem. 15.3:

Lemma 15.4. Let X be a complete metric space and let (Cn)∞
n=1 be a sequence of closed sets. If

X =
⋃

n Cn, then there is m such that Cm has non-empty interior

PROOF. We show the contrapositive: if (Cn)∞
n=1 are nowhere dense, then X ̸= ⋃

n Cn. This
follows directly from Lemma 15.3 applied to the open dense sets Un = X \ Cn. □

2. Principle of Uniform Boundedness

The Principle of Uniform Boundedness (PUB), or Banach-Steinhaus Theorem, is the follow-
ing result:

Theorem 15.5 (Principle of Uniform Boundedness; Banach and Steinhaus 1927). Let X be
a Banach space, let Y be a normed space and let L be a collection of bounded linear maps from X to
Y. If supT∈L ∥T(x)∥Y < ∞ for each x ∈ X, then supT∈L ∥T∥ < ∞.

Remark. That is, if a family of bounded linear maps is pointwise bounded, then it is uniformly
bounded.

The Principle of Uniform Boundedness follows from the following more general result
about functions on a metric space:

Theorem 15.6 (Principle of Uniform Boundedness for a complete metric space). Let X be a
complete metric space and F a collection of real valued continuous functions on X. If F is bounded
at each point x ∈ X, i.e.,

sup
f∈F

| f (x)| < ∞ for each x ∈ X,

then there is an open set U ⊂ X and a constant M < ∞ such that

| f (x)| ≤ M for all x ∈ U and f ∈ F .

PROOF. Note that by assumption X =
⋃

n{x : | f (x)| ≤ n for all f ∈ F}, where each
of the sets {x : | f (x)| ≤ n ∀ f ∈ F} is closed. By Lemma 15.4, at least one of the sets has
non-empty interior, which is to say it contains an open set U. This is the open set claimed
in the theorem. □

Suppose now that X is a Banach space and each function f ∈ F is
(1) sub-additive: f (x + y) ≤ f (x) + f (y); and
(2) absolutely homogeneous: f (ax) = |a| f (x).

For instance each f could be of the form f (x) = ∥T(x)∥ for some linear map T. In this
case, we can translate the local bound provided by Thm. 15.6 into a uniform bound.

Corollary 15.7 (Principle of Uniform Boundedness for sub-additive functionals). Let X
be a Banach space and let F be a collection of real-valued continuous, sub-additive, absolutely
homogeneous functions on X. If F is bounded at each point x ∈ X, then functions f ∈ F are
uniformly bounded, i.e., there is c < ∞ such that

| f (x)| ≤ c∥x∥ for all x ∈ X and f ∈ F .
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PROOF. Clearly the hypotheses of the PUB for metric spaces hold. Let U be the open
set claimed and let x0 ∈ U. Since U is open there is ϵ > 0 such that ∥y∥ < ϵ =⇒
x0 + y ∈ U. Now consider y with ∥y∥ < ϵ. We have, for f ∈ F ,

f (y) = f (y + x0 − x0) ≤ f (y + x0) + f (x0) ≤ 2M.

Thus for arbitrary x ∈ X and f ∈ F ,

f (x) =
2∥x∥

ϵ
f
(

ϵ

2∥x∥x
)
≤ 4M

ϵ
∥x∥. □

Exercise 15.3. Show that Cor. 15.7 implies Thm. 15.5. (Hint: apply Cor. 15.7 to the family
of functions f (x) = ∥T(x)∥ with T ∈ L.)

3. Open Mapping Theorem and related results

The second big consequence of the Baire category theorem is the open mapping theorem.
A map f : X → Y between topological spaces is said to be open if it maps open sets to open
sets, i.e., f (U) is open if U ⊂ X is open. This is in contrast to continuity, which requires
f−1(V) to be open if V ⊂ Y is open. Continuous maps need not be open, and open maps
need not be continuous:

Exercise 15.4. 1) Show that ϕ(x) = x2 is not an open map from R → R. 2) Let f : [0, 2π) →
T1 = {z : |z| = 1} be the map f (θ) = eiθ. Then f is continuous, one-to-one and surjective.
Show that the inverse map f−1 open but not continuous.

The open mapping theorem shows that surjective, bounded, linear maps do not suffer
from this problem:

Theorem 15.8 (Open Mapping Theorem). Let X and Y be Banach spaces. If T : X → Y is a
bounded linear map with T(X) = Y, then T is an open map.

PROOF. For each n, let An = T(BX
n (0)) where Bn(0) = {x ∈ X : ∥x∥ < n} is the open

ball of radius n in X. Since T is surjective, we have Y =
⋃

n An. By Lemma 15.4, there
is m such that Am has non-empty interior. Thus there is y0 ∈ Am and r > 0 such that
BY

r (y0) ⊂ Am, where BY
r (y0) = {y ∈ Y : |y − y0| ≤ r}.

If ∥y∥ < 1 then
ry = (ry + y0)− y0 ∈ Am + Am ∈ A2m .

Thus BY
1 (0) ⊂ Ag where g = 2m/r. Given y ∈ Y, we have y

∥y∥ ∈ BY
1 (0). It follows that for

any y ∈ Y and ε > 0 we can find x ∈ X such that

∥x∥ ≤ g∥y∥ and ∥y − Tx∥ < ϵ .

(To see this note that y
∥y∥ ∈ BY

1 (0) ⊂ Ag.)

We will now show that BY
1 (0) ⊂ A2g. Let ∥y∥ < 1. Proceeding recursively, we can find

x1, x2, . . . such that

∥xn∥ < g21−n and ∥y − T(x1 + · · ·+ xn)∥ < 2−n

for each n. The sequence ξn = x1 + · · ·+ xn is then a Cauchy sequence; let ξ denote its
limit. We have

∥ξ∥ < g
∞

∑
j=1

21−j = 2g
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and y = T(ξ), by continuity of T. Thus y ∈ A2g and, as y was arbitrary, BY
1 (0) ⊂ A2g.

Now let U ⊂ X be open and let y ∈ T(U). There is x ∈ X and ε > 0 such that
y = T(x) and BX

ε (x) ⊂ U. Since T(BX
ε (x)) = y + ε

2g T(BX
2g(0)) = y + ε

2g A2g, we see that
BY

ε
2g
(y) ⊂ T(U) and thus that T(U) is open. □

The open mapping theorem has a number of important consequences.

Corollary 15.9. Let X and Y be Banach spaces and let T : X → Y a bounded linear map. If ran T
is closed and ker T = {0}, then there is ε > 0 such that

∥Tx∥Y ≥ ε∥x∥X for all x ∈ X.

The hypothesis that ran T is closed is crucial here:

Exercise 15.5. Consider the map T : L1(0, 1) → L1(0, 1) given by T f (x) = x f (x). Show
that ker T = {0} but that ran T is not closed and that there is no ε > 0 such that ∥T f ∥1 ≥
ε∥ f ∥1.

PROOF. Since ran T is closed it is a Banach space in the norm of Y. Thus we may
replace Y by ran T and assume without loss of generality that T is surjective. Then, by
the Open Mapping Theorem 15.8, T(BX

1 (0)) is open in Y. Thus there is ε > 0 such that
BY

ε (0) ⊂ T(BX
1 (0)). Hence if ∥x∥ ≥ 1 then ∥Tx∥ ≥ ε. The result follows by scaling. □

A particular case of the last corollary is that bijective, bounded linear maps have
bounded inverses:

Corollary 15.10. Let X and Y be Banach spaces and let T : X → Y be a bounded linear map. If T
is a bijection, then T−1 is a bounded linear map.

PROOF. That T−1 is linear follows from elementary linear algebra. The key is to prove
that T−1 is bounded. By the previous corollary, we have ∥Tx∥ ≥ ε∥x∥ for some ε > 0. It
follows that

∥∥T−1y
∥∥ ≤ 1

ε ∥y∥. □

The final application of the Open Mapping Theorem is the Closed Graph Theorem, which
gives a useful criterion for a linear map to be bounded. Given Banach spaces X and Y, let
X ⊕ Y denote the Banach space of ordered pairs (x, y) with x ∈ X and y ∈ Y with norm

∥(x, y)∥X⊕Y = ∥x∥X + ∥y∥Y .

Exercise 15.6. • Show that ∥·∥X⊕Y is a norm and that X ⊕ Y is a Banach space.
• Let 1 < p < ∞ and define ∥(x, y)∥X⊕Y,p = (∥x∥p

X + ∥y∥p
Y)

1/p. Show that ∥·∥X⊕Y,p
is a norm and that it is equivalent to ∥·∥X⊕Y.

Given a linear map T : X → Y, the graph of T, denoted Γ(T), is the linear subspace of
X ⊕ Y given by

Γ(T) := {(x, Tx) : x ∈ X} . (15.1)

Exercise 15.7. Suppose that T : X → Y is a bounded linear map. Prove that Γ(T) is a
closed subspace of X ⊕ Y.

It turns out that the graph being closed is also a sufficient condition for T to be bounded.
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Theorem 15.11 (Closed Graph Theorem). Let X and Y be Banach spaces and let T : X → Y
be a linear map. If the graph of T, X ⊕ TX = {(x, Tx) : x ∈ X}, is a closed subspace of X ⊕ Y
then T is bounded.

PROOF. Consider the coordinate maps π1 : X ⊕ Y → X and π2 : X ⊕ Y → Y given by

π1(x, y) = x and π2(x, y) = y ,

which both have norm bounded by one. Let S denote the restriction of π1 to Γ(T). Then
S : Γ(T) → X is a bounded linear bijection. Since Γ(T) is closed, it is a Banach space and
thus the inverse S−1 : X → Γ(T) is bounded. Thus T = π2 ◦ S−1 is bounded. □

4. Algebraic dimension of Banach spaces

As a final application of the Baire category theorem, we prove that any infinite dimen-
sional Banach space has uncountable algebraic dimension:

Theorem 15.12. Let X be a Banach space. If X is not finite dimensional, then X has uncountable
algebraic dimension.

PROOF. Suppose that there is a countable set {xj}∞
j=1 in X that spans X. We must show

that X is finite dimensional. Let

Xn =

{
N

∑
j=1

αjxj : α1, . . . , αN ∈ F

}
.

By assumption X =
⋃

N XN. Furthermore, each set XN is a closed subspace:

Exercise 15.8. Let X be a topological vector space and let Y ⊂ X be a finite dimensional
subspace. Prove that Y is closed.

Thus there is m such that Xm has non-empty interior. In particular, there is x0 ∈ Xm
such that Br(x0) ⊂ Xm for some r > 0. But then Br(0) = Br(x0)− x0 ⊂ Xm. By scaling it
follows that Xm = X. □





LECTURE 16

Weak and weak⋆ topologies

1. Weak convergence in Banach spaces

Consider a Banach space X and its Banach space dual X⋆. The weakest topology on X
so that every element of X⋆ is continuous is called the weak topology on X. This topology
was already introduced above in the general context of LCSs, where it was denoted above
by σ(X, X⋆). A net (xn)n∈I in X converges weakly to x if it converges in the weak topology,
i.e., if

ℓ(xn) → ℓ(x) for every ℓ ∈ X⋆.
This is denoted

xn ⇀ x or wk-lim
n→∞

xn = x .

Strong convergence refers to convergence in the norm topology: ∥xn − x∥ → 0, denoted
xn → x. Weak convergence is in fact weaker than strong convergence. That is strong con-
vergence implies weak convergence, but not conversely.

Exercise 16.1. Let X be a Banach space and let (xn)∞
n=1 be a sequence in X that converges

strongly to x ∈ X. Prove that wk-lim xn = x.

Proposition 16.1. Let (xn)∞
n=1 be an orthonormal sequence in a Hilbert space H. Then xn ⇀ 0.

Remark 16.2. Since ∥xn∥ = 1, xn does not converge strongly to 0.

PROOF. Fix y ∈ H. By Bessel’s inequality 6.10

∑
n
| ⟨y, xn⟩ |2 ≤ ∥y∥2,

we see that ⟨y, xn⟩ → 0. By the Riesz-Fréchet Theorem 5.10 it follows that xn ⇀ 0. □

The following theorem is very useful in practice for establishing weak convergence, by
focusing on proving convergence for a dense subset of linear functionals.

Theorem 16.3. Suppose (xn)∞
n=1 ∈ X, a Banach space, satisfies

(1) xn are uniformly bounded: supn ∥xn∥ < ∞.
(2) lim ℓ(xn) = ℓ(x) for ℓ ∈ Y′ with Y′ norm-dense in X′.

Then xn ⇀ x.

PROOF. Let M = max(∥x∥, supn ∥xn∥). Let ℓ ∈ X′ and ϵ > 0. Then there is ℓ′ ∈ Y′

such that ∥ℓ− ℓ′∥ < ϵ
3M . We have

|ℓ(xn − x)| ≤
∣∣ℓ(xn)− ℓ′(xn)

∣∣+ ∣∣ℓ′(xn)− ℓ′(x)
∣∣ + ∣∣ℓ′(x)− ℓ(x)

∣∣
≤
∥∥ℓ− ℓ′

∥∥(∥xn∥+ ∥x∥) +
∣∣ℓ′(xn − x)

∣∣ <
2
3

ϵ +
∣∣ℓ′(xn − x)

∣∣.
93
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Choosing N large enough (depending on ℓ′) we may obtain |ℓ′(xn − x)| < ϵ
3 and thus

|ℓ(xn − x)| < ϵ for n ≥ N. □

The Principle of Uniform Boundednes (Thm. 15.5) provides a converse to the previous
result: weakly convergent sequences are bounded. We will obtain this from a more general
result about weakly precompact sets. We say that a set S in a topological space is pre-compact
if S is compact. In partiuclar, the image of any convergent sequence is precompact.

Theorem 16.4. Let X be a Banach space and let S ⊂ X be a weakly pre-compact subset of X. Then
S is bounded, i.e., there is a constant c < ∞ such that

∥x∥ ≤ c for all x ∈ S.

In particular, any weakly convergent sequence is norm bounded.

PROOF. Since S is weakly pre-compact, for a given linear functional ℓ the set {ℓ(x) :
x ∈ X} must be a bounded subset of F (otherwise we could find a weakly divergent
sequence). By the Principle of Uniform Boundedness applied to L = X, considered as a
set of linear functionals on X⋆, there is a constant c such that ∥x∥ ≤ c for all x ∈ S. Here
we have used Thm. 7.7 which states that the norm x as a linear functional on X⋆ is the
same as the Banach space norm of x. □

The Banach space norm is, in general, not a weakly continuous function. For example,
an orthonormal sequence in a Hilbert space converges to zero weakly, although each ele-
ment of the sequence has norm one. It is, however, “lower semi-continuous.” A function
f : X → R, X a topological space, is called lower semi-continuous if {x : f (x) > t} is open
for each t ∈ R. Such a function satisfies

f (x) ≤ lim inf
n

f (xn) (16.1)

for any convergent sequence xn → x. That is a lower semi-continuous function can “jump
down” in a limit, but cannot “jump up.” (To see (16.1), note that for each ϵ > 0 the set
{y : f (y) > f (x)− ϵ} is open and thus eventually contains xn so lim inf xn ≥ f (x)− ϵ.)

Theorem 16.5 (Weak lower semicontinuity of the norm). Let X be a Banach space. The norm
∥·∥ is weakly lower semicontinuous. In particular, if xn ⇀ x in X then

∥x∥ ≤ lim inf ∥xn∥.

Remark 16.6. 1) This should remind you of Fatou’s lemma. 2) We have already seen that
the norm is not continuous, since it may “jump down” in a limit.

PROOF. Fix t ≥ 0. Let X′
1 denote the unit ball {ℓ : ∥ℓ∥ ≤ 1} in X′. Note that ∥x∥ > t if

and only if there is a linear functional ℓ ∈ X′
1 with |ℓ(x)| > t . Thus

{∥x∥ > t} = ∪ℓ∈X′
1
{x : ℓ(x) > t}

is weakly open. □

2. The weak⋆ topology

We may also consider a weak topology on the dual X⋆ of a Banach space. That is
the weak⋆ topology σ(X⋆, X). A sequence un of linear functionals is said to be weak⋆

convergent to u if
lim un(x) = u(x) for all x ∈ X,
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also denoted
wk⋆-lim

n→∞
un = u.

Weak⋆ convergence of measures is also known as vague convergence. If X is reflexive then
weak⋆ convergence is the same as weak convergence, but in general the weak⋆ topology
is strictly weaker than the weak topology since the latter requires all linear functionals in
X⋆⋆ to be continuous.

Theorem 16.7. A weak⋆ convergent sequence un is uniformly bounded and

∥u∥ ≤ lim inf ∥un∥,

if u = wk⋆-lim un.

PROOF. Exercise. □

A key advantage of the weak⋆ topology is that closed balls in X⋆ are compact in this
topology, a result known as Alaoglu’s Theorem or somtimes the Banach-Alaoglu Theorem.
For the proof of this result we will need:

Theorem 16.8 (Tychonoff’s Theorem). Let (Kα), α ∈ I, be a collection of compact spaces. Then
the product T = ∏α∈I Kα is compact in the product topology.

Remarks. 1) Recall that the Cartesian product T = ∏α∈I Kα is the set of all maps x : I → ⋃
α Kα

such that x(α) ∈ Kα for every α ∈ I. ] 2) The product topology on T is the weakest topology
such that the coordinate maps Πα(x) = x(α) are continuous. That is, a neighborhood base
for T is given by the collection of sets of the form

{x : x(αj) ∈ Uj, j = 1, . . . , N} ,

with Uj open in Kαj and {α1, . . . , αN} ⊂ I an arbitrary finite collection. 3) The key point
here is that the collection I can be arbitrarily large. 4) The theorem, with Kα = [0, 1] for
each α, is due to Tychonoff 1930. A proof of the full version was first given by Cech 1937.
5) The proof of this theorem is beyond the scope of these notes. It can be found in standard
references on point set topology, e.g., Munkres 1974, Ch. 5, Theorem 1.1. For a short proof
using nets see Chernoff 1992.

Theorem 16.9 (Alaoglu 1940). Let X⋆ be the dual of a Banach space X. The unit ball of X⋆ is
weak⋆ compact.

PROOF. Let B be the unit ball in X⋆. Let T be the (uncountable) product space:

T = ∏
x∈X

Ix, Ix = [−∥x∥, ∥x∥].

By Tychonoff’s theorem 16.8, T is compact in the product topology. To complete the proof,
we embed B as a closed subset of T.

The infinite product space T is the collection of all functions F : X → R such that
F(x) ∈ Ix for all x. Given ℓ ∈ B, |ℓ(x)| ≤ ∥ℓ∥∥x∥ ≤ ∥x∥ so ℓ(x) ∈ Ix for every x. Thus
B ⊂ T. Now the product topology on T is just the weakest topology such that coordinate
evaluation F 7→ F(x) is continuous for every x. The restriction of this topology to B is just
the weak⋆ topology on B.

Thus we have embedded B as a subset of the compact space T. It suffices to show that
B is closed. For each x, y ∈ X and t ∈ R, let

Φx,y;t(F) = F(x + ty)− F(x)− F(y),
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a continuous map of T into the field of scalars. Clearly B ⊂ Φ−1
x,y;t({0}) and Φ−1

x,y;t({0}) is
a closed set. Thus

B ⊂
⋂

x,y,t
Φ−1

x,y;t({0}),

so every element of B is linear. Since any F ∈ T is also bounded by ∥x∥, |F(x)| ≤ ∥x∥, we
conclude that B = B. □

The weak⋆ compactness of the unit ball in X⋆ has important consequences, for ex-
ample in proving the existence of minimizers of functionals and thus for solving partial
differential equations with a variational principle. Often one simply needs the existence
of convergent subsequences for a given sequence, which follows from a weaker property.

Definition 16.10. A subset C of a dual Banach space X⋆ is weak⋆ sequentially compact if
every sequence of points in C has a weak⋆ convergent subsequence with weak∗ limit in C.

Sequential compactness is, in general, a strictly weaker notion than compactness, al-
though the notions are equivalent in metric spaces. In the present context, X is metrizable
in the weak-topology if and only if X⋆ is separable (see Thm. 12.1).

Theorem 16.11 (Helly 1912). Let X be a separable Banach space. Then the closed unit ball in X⋆

is weak⋆ sequentially compact.

Clearly Helly’s Theorem follows from Alaoglu’s theorem 16.9. However, the proof we
will now give of Helly’s theorem is much more useful. The proof of Alaoglu’s theorem is
non-constructive, as it relies on Tychonoff’s theorem. Often times what one really wants
is to find a convergent sequence. The following proof Helly’s theorem gives you an idea
how to construct it.

PROOF. Given un ∈ X⋆ with ∥un∥ ≤ 1 and a countable dense subset {xn} of X, we can
use the diagonal process to select a subsequence vn of un so that

lim
n→∞

vn(xk)

exists for every xk. By density of {xk} this extends to all of X:

lim
n→∞

vn(x) = v(x)

for all x ∈ X. One readily verifies that v is linear and bounded, so it is the desired limit. □

Every reflexive space is, of course, a dual space. So Alaoglu’s Theorem 16.9 implies
the forward direction of the following

Theorem 16.12. A Banach space is reflexive if and only if its unit ball is weakly compact.

Remark. The “only if” direction is due to Eberlein 1947 and Smulian 1940.

In particular, this result applies to any Hilbert space and to Lp, 1 < p < ∞. The unit
ball in L∞ is weak∗ compact since L∞ = (L1)′. The unit ball in L1 is not weakly compact.

Here is what happens in L1. Consider, for example, L1([0, 1]), and let

fn(x) = nχ[0, 1
n ]
(x).

So ∥ fn∥L1 = 1 and for any continuous function g ∈ C([0, 1]) T
∫ 1

0 g(x) fn(x)dx → g(0).T
Thus wk⋆-lim fndx = δ(x)dx in M([0, 1]) but fn has no weak limit in L1. Of course, the
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sequence fn has a weak∗ convergent subsequence in L∞([0, 1])′, which shows the existence
of a linear functional on L∞ that restricts to g 7→ g(0) for continuous functions g. (We
could have used the Hahn Banach theorem to get this.)

Here is another example. On L1([0, ∞)) let

fn(x) =
1
n

χ[0,n](x).

Again ∥ fn∥L1 = 1. As measures fndx ⇀ 0 in M0([0, ∞)), that is∫ ∞

0
fn(x)g(x)dx −→ 0 g ∈ C0([0, ∞)),

however, fn does not converge weakly to zero in L∞. Indeed for the constant function
g ≡ 1, ∫ ∞

0
fn(x)g(x) = 1.

Reading: §11.6 in Lax

3. Positive harmonic functions

Let Ω ⊂ C be an open set. Recall that a function u : Ω → R is called harmonic if it
satisfies the mean value property

u(z) =
1

πε2

∫
Dε(z)

u(w)dm(w), (16.2)

whenever the disc Dε(z) of radius ε centered at z is contained in Ω, where m is Lebesgue
measure. We may apply weak⋆ compactness to prove the following:

Theorem 16.13. Let u be a harmonic function on the open unit disk D = {|z| < 1}. If u(z) ≥ 0
for all z ∈ D, then here is a unique finite, non-negative, Borel measure µ on ∂D = {|z| = 1}
such that

u(z) =
∫

∂D

1 − |z|2
|z − w|2 dµ(w). (16.3)

Conversely, any such function is a non-negative Harmonic function on the disk.

Remark. The theorem implies |u(z)| ≤ const./(1 − |z|). Thus the singularities of a non-
negative harmonic function are highly constrained as z approaches the boundary. No
similar estimate holds for a general real valued harmonic function. For example u(z) =
Re exp(1/1−z) blows up very fast as z → 1 from within the disk.

PROOF. Note that u is continuous. To see this, observe that by the mean value property

u(z + h)− u(z) =
1

πε2

[∫
Dε(z+h)

u(w)dm(w)−
∫

Dε(z)
u(w)dm(w)

]
.

By dominated convergence the difference of integrals on the r.h.s. converges to zero as h
converges to zero. Since u is continuous, we may differentiate

πr2u(0) =
∫

Dr(0)
u(z)dm(z) =

∫ r

0

∫ 2π

0
u(seiθ)dθsds
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with respect r and conclude that for every r

u(0) =
1

2π

∫ 2π

0
u(reiθ)dθ. (16.4)

For each r ∈ (0, 1), define a measure on the circle ∂D by dµr(θ) = (2π)−1u(reiθ)dθ.
Since u is non-negative we have ∥µ∥ = µ(∂D) = u(0) by (16.4). Thus the family (µr)r∈(0,1)
lies in the ball of radius u(0) centered at 0 in M(∂D) = C(∂D)⋆. By Helly’s theorem we
may find a weak⋆ convergent subsequence µrn . That is, there is a Borel measure µ on ∂D

such that ∫
∂D

f (θ)dµ(θ) = lim
n→∞

1
2π

∫
∂D

f (θ)u(rneiθ)dθ (16.5)

for every f ∈ C(∂D). We see from (16.5) that µ is a positive measure and, by taking f ≡ 1,
that µ(∂D) = u(0).

To complete the proof, we will use the identity

u(z) =
1

2π

∫ 2π

0

r2 − |z|2
|reiθ − z|2

u(reiθ)dθ, (16.6)

valid for z ∈ Dr(0). Let us defer the proof for the moment and show how (16.6) implies
the representation (16.3). Fix z and let

fr,z(eiθ) =
r2 − |z|2
|reiθ − z|2

.

Note that fr,z → 1−|z|2
|eiθ−z|2 uniformly as r → 1. Thus the weak⋆ convergence µrn →

∫
·µ

implies

u(z) = lim
n

∫
∂D

frn;z(eiθ)dµrn(θ) =
∫ 2π

0

1 − |z|2
|eiθ − z|2

dµ(θ).

Exercise 16.2. Let (xn)∞
n=1 be a sequence in a Banach space X and let (ℓn)∞

n=1 be a sequence
in the dual X⋆. If ℓn ⇀ ℓ and xn → x, prove that ℓn(xn) → ℓ∞(x).

The identity (16.6) is a classical formula, which may be verified in a number of ways.
One of these is as follows. Let v(z) denote the integral on the right hand side. It is straight-

forward to show that v is harmonic in Dr(0) — for this it suffices to show that |w|2−|z|2
|w−z|2 is

harmonic in D|w|(0) for fixed w and use Fubini’s theorem. Furthermore, it is not too hard
to show that

lim
s↑r

v(reiθ) = u(reiθ),

since for any continuous function f on the circle

1
2π

lim
s↑r

∫ 2π

0

r2 − s2

|reiθ − seiϕ|2
f (eiϕ)dϕ = f (eiθ). (16.7)

Exercise 16.3. Prove (16.7).

Thus u(z) − v(z) is a harmonic function on Dr(0), continuous up to the boundary and
identically equal to zero there. It follows from the maximum principle, applied to u − v
and v − u, that u − v = 0 throughout. Recall that the maximum principle is a straightfor-
ward consequence of the mean value property and continuity. □
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4. Herglotz-Riesz Theorem

An important application of the above is the following:

Theorem 16.14 (Herglotz-Riesz). Let F be an analytic function in the unit disk D = {|z| < 1}
such that Re F ≥ 0 in D. Then there is a unique non-negative, finite, Borel measure µ on T1 = ∂D

such that

F(z) =
∫ 2π

0

eiθ + z
eiθ − z

µ(dθ) + i Im F(0).

Conversely every analytic function in the disk with positive real part can be written in this form.

Remark. This theorem is due to Herglotz 1911 and Riesz 1911.

PROOF. First apply the Thm. 16.13 to Re F. Let

G(z) =
∫ 2π

0

eiθ + z
eiθ − z

µ(dθ).

Then G and F are analytic functions on the disk whose real parts agree. It follows that
F−G is constant and imaginary. However G(0) = Re F(0) so F(z)−G(z) = i Im F(0). □

The theorem is often used in the following form

Theorem 16.15. Let F be an analytic map from the upper half plane {z : Im z > 0} into itself.
Then there is a unique non-negative Borel measure µ on R and a non-negative number A ≥ 0
such that ∫

R

1
1 + x2 dµ(x) < ∞

and
F(z) = Az + Re F(i) +

∫
R

1 + xz
x − z

1
1 + x2 dµ(x). (⋆ ⋆ ⋆)

Furthermore
A = lim

z→∞

F(z)
z

,

and
dµ(x) = wk⋆-lim

y↓0

1
π

Im F(x + iy)dx.

If limz→∞(F(z)− Az) = B exists and is real, and if limz→∞ z(F(z)− Az − B) exists then µ is
a finite measure and

F(z) = Az + B +
∫

R

1
x − z

dµ(x).

Remark 16.16. Note that
1 + xz
x − z

1
1 + x2 =

1
x − z

− Re
1

x − i
.

PROOF. Consider the function

G(ζ) = −iF
(

i
1 − ζ

ζ + 1

)
.

This is an analytic map from the disk into the right half plane. By the Herglotz-Riesz
theorem

F
(

i
1 − ζ

ζ + 1

)
= i

∫ 2π

0

eiθ + ζ

eiθ − ζ
dν(θ) + Re F(i)



100 16. WEAK AND WEAK⋆ TOPOLOGIES

Now let z = i(1 − ζ)/(ζ + 1), so ζ = (1 + iz)/(1 − iz) and

F(z) = i
∫ 2π

0

eiθ(1 − iz) + 1 + iz
eiθ(1 − iz)− 1 − iz

dν(θ) + Re F(i).

Now we define a map ϕ : ∂D \ {−1} → R via

ϕ(eiθ) = i
1 − eiθ

1 + eiθ ,

and let µ̃ = ϕ♯ν, that is ∫
f dµ̃ =

∫
f ◦ ϕdν

for functions f ∈ C0(R). Now given g ∈ C(∂D), g − g(−1)1 vanishes at −1 and may be
written as

g − g(−1)1 = f ◦ ϕ

with f = (g − g(−1)1) ◦ ϕ−1. Thus∫
∂D

gdν =
∫
(g − g(−1)1) ◦ ϕ−1dµ̃ + g(−1)ν(∂D).

Since ν(∂D) = Im F(i), we conclude that

F(z) = Re F(i) + z Im F(i) +
∫

R

[
i
(1 + ix)(1 − iz) + (1 − ix)(1 + iz)
(1 + ix)(1 − iz)− (1 − ix)(1 + iz)

− z
]

dµ̃(x),

since ϕ−1(x) = (1 + ix)/(1 − ix). After simplifying, this gives

F(z) = Az + Re F(i) +
∫

R

1 + xz
x − z

dµ̃(x),

with A = Im F(i)− µ̃(R). The representation (⋆ ⋆ ⋆) follows with dµ(x) = (1 + x2)dµ̃(x).
The identity

A = lim
z→∞

F(z)
z

holds since
1
z

∫
R

1 + xz
x − z

dµ̃(x) −→ 0.

Furthermore, if limz→∞ z(F(z)− Az − B) exists for some real number B then in particular

lim
t→∞

t(Im F(it)− iAt) = lim
t→∞

t
∫

R
Im

1 + itx
x − it

dµ̃(x)

exists and is finite. The integrand on the r.h.s. is

t2

x2 + t2 + t2 x2

t2 + x2 =
t2

x2 + t2 (1 + x2)

converges pointwise, monotonically to (1 + x2). Thus µ is a finite measure, and

F(z) = Az + Re F(i) +
∫

R

1
x − z

dµ(x)− Re
∫

R

1
x − i

dµ(x).

One checks now that

lim
z→∞

(F(z)− Az) = Re F(i)− Re
∫

R

1
x − i

dµ(x). □



Part 5

Convexity





LECTURE 17

Convex sets in a Banach space

Reading: §8.4 and Ch. 12 of Lax

Definition 17.1. The support function SM : X′ → R of a subset M of a Banach space X
over R is the function

SM(ℓ) = sup
y∈M

ℓ(y).

The support function SM of a set M has the following properties:
(1) Subadditivity, SM(ℓ+ m) ≤ SM(ℓ) + SM(m).
(2) SM(0) = 0.
(3) Positive homogeneity, SM(aℓ) = aSM(ℓ) for a > 0.
(4) Monotonicity: for M ⊂ N, SM(ℓ) ≤ SN(ℓ).
(5) Additivity: SM+N = SM + SN, where M + N = {x + y|x ∈ M and y ∈ N}.
(6) S−M(ℓ) = SM(−ℓ), where −M = {−x|x ∈ M}.
(7) SM = SM.

Exercise 17.1. Prove properties 1-7.

Definition 17.2. Let M be a subset of a Banach space. The convex hull M̂ of M is the
smallest convex set containing M. The closed convex hull M̆ of M is the smallest closed
convex set containing M.

Exercise 17.2. Prove that M̆ is equal to the closure M̂.

In addition, to properties 1-8 above, we have
(8) SM̆ = SM.

Let us prove property (8), assuming the other properties. First by (7) and exercise ?? it
suffices to show SM̂ = SM. Since M ⊂ M̂, by (5) we have SM ≤ SM̂. However,

M̂ =

{
n

∑
j=1

ajxj : xj ∈ M, aj > 0, and ∑
j

aj = 1

}
.

So for any point in M̂ we have

ℓ

(
n

∑
j=1

ajxj

)
=

n

∑
j=1

ajℓ(xj) ≤ SM(ℓ).

Thus SM̂ ≤ SM.
Here are some examples:

• If M = {x0}, SM is just evaluation at x0.
• If M = BR(0) then SM(ℓ) = R∥ℓ∥.
• If M = BR(x0) then M = {x0}+ BR(0) so SM(ℓ) = R∥ℓ∥+ ℓ(x0).

103
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• If M is a closed subspace then SM(ℓ) = 0 for ℓ ∈ M⊥ and ∞ for all other ℓ.
Note that in the last example the set M is unbounded. For bounded sets, SM : X⋆ → R,

however in general we define SM as a map from X⋆ → R ∪ {∞}. As in measure theory,
we extend the order relation and arithmetic to R ∪ {∞} by x ≤ ∞ and x + ∞ = ∞ for all
x and a∞ = ∞ for a > 0. This extended function satisfies all of the above properties.

If M is bounded, then SM(ℓ) ≤ const.∥ℓ∥ and is therefore continuous in the norm
topology, since by sub-additivity∣∣SM(ℓ)− SM(ℓ′)

∣∣ ≤ max{SM(ℓ− ℓ′), SM(ℓ′ − ℓ)} ≤ const.
∥∥ℓ− ℓ′

∥∥.

This fails if M is unbounded, and also in the weak⋆ topology. Nonetheless, we have the
following additional property

(9) SM is weak⋆ lower semi-continuous .
Here we extend the definition of lower semi-continuity to functions taking values in R ∪
{∞}: a function f from a topological space Ω to R ∪ {∞} is lower semi-continuous if
{x ∈ Ω : f (x) > t} is open for every t ∈ R. Since SM is defined to be a surpremum of
the weak⋆ continuous functions ℓ 7→ ℓ(x), property (9) follows from the fact that lower
semi-continuity is preserved by taking supremums:

Proposition 17.3. Let Ω be a topological space and let { fα : Ω → R ∪ {∞} : α ∈ I} be
an arbitrary collection of lower semi-continuous functions. Then F(x) := supx fα(x) is lower
semi-continuous.

PROOF. Note that

{x : F(x) > t} =
⋃
α∈I

{x : fα(x) > t} . □

Theorem 17.4. The closed convex hull M̆ of a subset M of a Banach space X over R is equal to

M̆ = {x : ℓ(x) ≤ SM(ℓ) for all ℓ}.

PROOF. Since SM = SM̆ it follows that ℓ(x) ≤ SM(ℓ) for all x ∈ M̆.
Now, suppose x ̸∈ M̆. Since M̆ is closed there is an open ball BR(x) disjoint from M̆.

By the geometric Hahn-Banach theorem 2.15 we can find a linear functional ℓ0 and c ∈ R

such that
ℓ0(u) ≤ c < ℓ0(v) for all u ∈ M̆ and v ∈ BR(x).

In particular, if ∥y∥ ≤ R then

ℓ0(−y) = −ℓ0(y + x) + ℓ0(x) < ℓ0(x)− c .

Thus ℓ0 is bouned and ∥ℓ0∥ ≤ R−1(ℓ0(x)− c). Furthermore, we have

ℓ0(x) ≥ c − ℓ0(y) ≥ c + R∥ℓ0∥.

It follows that
ℓ0(z) ≥ SM(ℓ0) + R∥ℓ0∥.

Thus ℓ0 is a linear functional such that ℓ0(x) > SM(ℓ0). □

The theorem shows that a closed, convex set K in a Banach space may be specified as
the set

K = {z : ΦK(x) ≤ 0}
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where
ΦK(z) = sup

ℓ:∥ℓ∥≤1
[ℓ(x)− SK(ℓ)].

Since SK : X⋆ → R ∪ {∞}, the function ΦK is initially defined as a map X → R ∪ {−∞}.
However, note that Φ(x) = −∞ for some x if and only if SK(ℓ) = ∞ for all ℓ, in which
case Φ(x) = −∞ for all x and K = X. For any proper closed, convex set K there is some ℓ
such that SK(ℓ) < ∞ and ΦK : X → R.

Since SK is weak⋆ lower semi-continuous, it follows that, for fixed x, ℓ(x) − SK(ℓ) is
weak⋆ upper semi-continuous, that is for each t

{ℓ : ℓ(x)− SK(ℓ) < t}
is weak∗ open. This observation is relevant, since {∥ℓ∥ ≤ 1} is compact, and

Proposition 17.5. Let K be a compact topological space and let F : K → R ∪ {−∞} be upper
semi-continuous. Then F is bounded from above and attains it’s maximum.

PROOF. The sets ({F(x) < t})t∈R are increasing, open, and cover K. By compactness
K ⊂ {F(x) < t} for some t. So F is bounded from above. Now let tm = supx∈K F(x).
Suppose F(x) < tm for all x. Then the sets {F(x) < t} for t < tm cover X. By compactness
there is then some t < tm such that K ⊂ {F(x) < t}, contradicting tm = supx∈K F(x). So
there is a point xm such that tm = F(xm). □

It follows that,
ΦK(x) = max

∥ℓ∥≤1
[ℓ(x)− SK(ℓ)].

The function ΦK(x), being a max of weakly continuous functions, is in turn weakly
lower semi-continuous. In particular,

K = {x : ΦK(x) ≤ 0}
is weakly closed! Thus we have obtained the following theorem:

Theorem 17.6 (Theorem 2, §12 of Lax). A convex set K of a Banach space is closed in the norm
topology if and only if it is closed in the weak topology.

This theorem is astounding, since there are certainly strongly closed sets that are not
weakly closed. (Weakly closed =⇒ strongly closed for any set.)

Exercise 17.3. Find a Banach space such that the complement of an open ball {x : ∥x∥ ≥
1} is not weakly closed.

As a corollary we have

Corollary 17.7. If X is reflexive, then a bounded, norm closed, convex subset K in X is weakly
compact.

Exercise 17.4. 1) Show that the set K of non-negative functions ρ ∈ L1(R) such that∫
ρdx = 1 is convex, norm closed and bounded, but not weakly compact. Thus Cor.

17.7 fails if the requirement that X be reflexive is dropped. 2) Show that the space of Baire
probability measures on R is a norm closed, bounded and convex set of the space M0(R)
of finite Baire measures on R, but that it is not weak⋆ closed (M0(R) is the dual to the
space C0(R)).
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All of the suggests that ΦK(x) might be a decent measure of how far a point x is from
K. In fact, it is precisely the distance of x to K!

Theorem 17.8. Let K be a closed, convex subset of a Banach space X. Then

ΦK(x) = inf
u∈K

∥x − u∥.

PROOF. Suppose x ∈ K. Then ℓ(x)− SK(ℓ) ≤ 0 for all ℓ so the maximum is attained at
ℓ = 0 and ΦK(x) = 0.

If x ̸∈ K, u ∈ K and ∥ℓ∥ ≤ 1, then

SK(ℓ) ≥ ℓ(u) = ℓ(u − x) + ℓ(x) ≥ ℓ(x)− ∥u − x∥.

Thus
∥u − x∥ ≥ sup

∥ℓ∥≤1
[ℓ(x)− SK(ℓ)].

On the other hand, if R < infu∈K ∥u − x∥, then the convex set K + BR(0) still has
positive distance from x. Thus by Thm. 17.4, there is ℓ0 ∈ X′ such that

SK(ℓ0) + R∥ℓ0∥ = SK+BR(0)(ℓ0) < ℓ0(x).

By scaling, we may take ∥ℓ0∥ = 1 to conclude

R < ℓ0(x)− SK(ℓ0) ≤ sup
∥ℓ∥≤1

[ℓ(x)− SK(ℓ)].

As R was any number less than infu∈K ∥u − x∥ the reverse inequality follows. □



LECTURE 18

Convex sets continued; Krein Millman Theorem

Reading: §13.3

1. Duality between convex sets and homogeneous subadditive functions

In the last lecture we saw that a closed convex set K in a Banach space satisfied the
equality

K = {x ∈ X : ℓ(x) ≤ SK(ℓ) for all ℓ ∈ X⋆} ,
where SK(ℓ) = supx∈K ℓ(x) is the support function of K. In this lecture, we turn things
aroung and start with a function S : X⋆ → R ∪ {∞}. Consider the set

K = {z ∈ X : ℓ(z) ≤ S(ℓ) for all ℓ ∈ X⋆}.

Then K is clearly convex and weakly closed, and its support function satisfies

SK(ℓ) = sup
x∈K

ℓ(x) ≤ S(ℓ). (18.1)

Can strict inequality hold in (18.1)? Of course it can, e.g., if the function S is not sub-
additive or homogeneous. However, if we assume that S is positive homogeneous, sub-
additive, maps 0 to 0 and is weak∗ lower semi-continuous then the answer is “no,” at least
if X is reflexive.

Theorem 18.1. Let X be a reflexive Banach space and let S : X⋆ → R ∪ {∞} be a weak⋆ lower
semi-continuous function which is positive homogeneous, sub-additive, and maps 0 to 0. Then

S(ℓ) = sup
x∈K

ℓ(x),

where K = {x : ℓ(x) ≤ S(ℓ) for all ℓ}.

PROOF. To begin, let us prove the theorem under the additional restriction that S is
bounded: |S(ℓ)| ≤ β∥ℓ∥. Then x ∈ K =⇒ ∥x∥ ≤ β, so K is bounded. Since S(0) = 0 the
identity holds for ℓ = 0.

Now fix a non-zero linear functional ℓ0. Let us define a linear functional L ∈ X⋆⋆, the
double dual, via Hahn-Banach. Begin on the one-dimensional subspace spanned by ℓ0
and let

L(tℓ0) = tS(ℓ0).
By positive homogeneity and sub-additivity L(tℓ0) ≤ S(tℓ0) for all t ∈ R. (Note that
S(−ℓ0) ≥ −S(ℓ0) by sub-additivity.) Thus by Hahn-Banach there is a linear functional L
on X⋆ which satisfies L(ℓ) ≤ S(ℓ) for every ℓ ∈ X⋆. Since S(ℓ) ≤ β∥ℓ∥ this functional is
bounded.

As X is reflexive there is x ∈ X such that L(ℓ) = ℓ(x). Since ℓ(x) ≤ S(ℓ) for all ℓ, we
have x ∈ K, and since

S(ℓ0) = L(ℓ0) = ℓ0(x),
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we have
S(ℓ0) = max

y∈K
ℓ0(y).

As ℓ0 was arbitrary, this completes the proof for S bounded.
To extend this to unbounded S, note that

−∞ < inf
∥ℓ∥≤1

S(ℓ) ≤ 0,

by wk∗ lower semi-continuity. Let −β = inf∥ℓ∥≤1 S(ℓ). Then by positive homogeneity,

S(ℓ) ≥ −β∥ℓ∥,

that is S is bounded from below.
Now, for each ϵ define

Kϵ = {x : ℓ(x) ≤ Sϵ(ℓ) for all ℓ} ,

where

Sϵ(ℓ) = inf
ℓ1,ℓ2∈X⋆ : ℓ1+ℓ2=ℓ

[
S(ℓ1) +

1
ϵ
∥ℓ2∥

]
.

It is left as an exercise to show, for each ϵ > 0, that Sϵ is positive homogeneous, sub-
additive and maps 0 to 0. Note also that

−β∥ℓ∥ ≤ Sϵ(ℓ) ≤
1
ϵ
∥ℓ∥, and Sϵ(ℓ) ≤ S(ℓ),

so Sϵ is bounded and smaller than S.
Now, in fact,

Kϵ = K ∩ B 1
ϵ
(0).

Indeed, given x ∈ K ∩ B1/ϵ(0) we have

ℓ(x) = ℓ1(x) + ℓ2(x) ≤ S(ℓ1) +
1
ϵ
∥ℓ2∥

if ℓ = ℓ1 + ℓ2, so ℓ(x) ≤ Sϵ(ℓ) and x ∈ Kϵ. On the other hand if x ∈ Kϵ then ℓ(x) ≤ S(ℓ)
and 1

ϵ∥ℓ∥ for all ℓ so x ∈ K ∩ B1/ϵ(0). It follows that K =
⋃

ϵ Kϵ, so

sup
x∈K

ℓ(x) = sup
ϵ

sup
x∈Kϵ

ℓ(x) = sup
ϵ

Sϵ(ℓ).

Thus, it suffices to show, for fixed ℓ, that

S(ℓ) = sup
ϵ

Sϵ(ℓ).

To show this, note that Sϵ increases as ϵ decreases, so

S0(ℓ) := lim
ϵ→0

Sϵ(ℓ) = sup
ϵ>0

Sϵ(ℓ)

exists and (since Sϵ ≤ S) satisfies 0 ≤ S0(ℓ) ≤ S(ℓ). Furthermore, for each ϵ we can find
ℓϵ such that

Sϵ(ℓ) ≤ S(ℓ− ℓϵ) +
1
ϵ
∥ℓϵ∥ ≤ Sϵ(ℓ) + ϵ.

Since S(ℓ− ℓϵ) ≥ −β∥ℓ∥ − β∥ℓϵ∥ we see that

−β∥ℓ∥+
(

1
ϵ
− β

)
∥ℓϵ∥ ≤ Sϵ(ℓ) + ϵ.
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Consider the following cases: (1) ∥ℓϵ∥/ϵ is bounded as ϵ → 0 or (2) ∥ℓϵ∥/ϵ is unbounded
as ϵ → 0 . In case (2) limϵ→0 Sϵ(ℓ) = S0(ℓ) = S(ℓ) = ∞. On the other hand, in case (1)
ℓϵ → 0 so by weak∗ lower semi-continuity of S we find that

S(ℓ) ≤ lim inf
ϵ→0

S(ℓ− ℓϵ) ≤ S0(ℓ)− lim inf
ϵ→0

1
ϵ
∥ℓϵ∥ ≤ S0(ℓ),

which completes the proof. □

2. Krein-Milman Theorem

Definition 18.2. An extreme subset S of a convex set K is a subset S ⊂ K such that
(1) S is non-empty and convex
(2) If x ∈ S and x = ty + (1 − t)z with y, z ∈ K then y, z ∈ S.

An extreme point is a point x ∈ K such that {x} is an extreme subset.

The following is a classical result due to Carathéodory:

Theorem 18.3 (Carathéodory 1911). Every compact convex subset K of RN has extreme points,
and every point of K can be written as a convex combination of (at most) N + 1 extreme points.

Remark 18.4. The proof is left as an exercise. Use induction on N. The case N = 1 is easy!

Theorem 18.5 (Krein and Milman 1940). Let X be a locally convex space. If K is a non-empty,
compact, convex subset of X, then

(1) K has at least one extreme point
(2) K is the closure of the convex hull of its extreme points.

To prove the Krein-Milman theorem we will use a characterization of compactness in
terms of intersections of closed sets. A family F of closed sets in a topological space is
said to have the finite intersection property (FIP) if any finite collection F1, . . . Fn ∈ F has
non-empty intersection: F1 ∩ · · · ∩ Fn ̸= ∅.

Lemma 18.6. A topological space M is compact if and only if every collection F of closed sets with
the FIP satisfies

∩F ̸= ∅.

PROOF. Suppose M is compact and ∩F = ∅. Then ∪U = M with U = {Fc : F ∈ F}.
Thus M = ∪n

j=1Fc
j for some finite collection. Then ∩n

j=1Fj = ∅, so F does not have the FIP.
Conversely, if F is a collection of closed sets with the FIP and nonetheless ∩F = ∅, then
U = {Fc : F ∈ F} is an open cover of M with no finite subcover so M is not compact. □

PROOF OF THEOREM 18.5. Consider the collection E of all nonempty, closed, extreme
subsets of K. Since K ∈ E , this collection is nonempty. Partially order E by inclusion.
We wish to apply Zorn’s lemma to see that E has a “maximal” element, i.e., a set that is
minimal with respect to conclusion.

Let T ⊂ E be a totally ordered sub-collection. That is T = {Eω : ω ∈ Ω} with Ω
some totally ordered index set and Eα ⊂ Eβ if α ≥ β. Clearly ∩T is a candidate for an
“upper bound.” To see that it is, we must show that ∩T ∈ E , i.e. that it is nonempty,
closed, and extreme.

Clearly ∩T is closed. Furthermore, the intersection of a family of extreme sets is easily
seen to be extreme, provided it is non-empty. Thus it suffices to show that T is non-empty.
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Here we use compactness of K in a crucial way. Note that the collection T has the FIP —
since it is totally ordered, any finite collection can be ordered with E1 ⊃ E2 · · · ⊃ En so the
intersection is just En. By Lemma 18.6, we see that ∩T ̸= ∅.

By Zorn’s Lemma E has a “maximal element,” namely a set E ∈ E with no proper
subset contained in E . We claim that any such “maximal” element is a one point set.
Indeed, suppose E ⊂ E contains two distinct points — as E is convex it must also contain
the line segment joining them. Then there is a continuous linear functional ℓ on X that
separates these points. Let M ⊂ E be the set at which ℓ attains its maximum on E:

M = {x ∈ E : ℓ(x) = max
z∈E

ℓ(z)}.

Then M is a non-empty, proper, closed subset of E. It is clearly convex and is easily seen
to be an extreme subset of E. It follows that M is an extreme subset of K and M ⊊ E so E
is not minimal.

Exercise 18.1. Let K be a convex set and let E be an extreme subset of K. If M is an extreme
subset of E show that M is an extreme subset of K.

This proves (1): K has at least one extreme point. It might have only one: K could be
the set {x}. Since any closed extreme subset E of K is itself a closed convex set we find
that every extreme subset of E has an extreme point x. By the above exercise, an extreme
point of E is also an extreme point of K. Thus

Every closed, extreme subset of K contains an extreme point of K.
Let Ke denote the set of extreme points, K̂e its convex hull, and K̆e its closed convex

hull. As in a Banach space one has

K̆e = closure of K̂e = smallest closed convex set containing Ke .

Since K is closed and convex and contains Ke, we have K̆e ⊂ K. On the other hand if
z ̸∈ K̆e then there is an open set U with z ∈ U ⊂ Kc

e . Since X is a LCS, we may take U to be
convex. By the geometric Hahn-Banach there is a linear functional ℓ and c ∈ R such that

ℓ(x) < c ≤ ℓ(y) for all x ∈ U and y ∈ K̆e.

(As U is open, all points of U are interior, so the first inequality is strict.) The gauge
function of U − z,

pU−z(x) = inf{t : x/t ∈ U − z}.
is a continuous seminorm on X. If x

t ∈ U − z we have
1
t ℓ(x) = ℓ( x

t + z)− ℓ(z) < c − ℓ(z).

Thus ℓ(x) < t(c − ℓ(z)) and so

ℓ(x) ≤ (c − ℓ(z))pU−z(x).

Therefore ℓ is a continuous linear functional on X.
Since K is compact ℓ achieves its minimum on K. Let E be the set of minimizers. Then

E is closed, convex and extreme. By the above derived result E contains an extreme point.
Thus

min
x∈K

ℓ(x) = min
x∈Ke

ℓ(x) > ℓ(z).

Thus z ̸∈ K. □



LECTURE 19

The Stone Weierstrass Theorem and Choquet’s Theorem

Reading: §13.4 and 14.10 in Lax.

1. The Stone Weierstrass Theorem

An interesting application of the Krein Milman Theorem 18.5 is the Stone-Weiertstrass
Theorem, which is a vast generalization of the classical result of Weierstrass 1885 on ap-
proximation of continuous functions on an interval with polynomials.

Definition 19.1. Let S be a compact Hausdorff space and CR(S) the set of real valued
continuous functions on S. Let E ⊂ C(S).

(1) E is a sub-algebra if E is a linear subspace and f g ∈ E whenever f and g are
elements of E. (Here f g denotes the function f g(x) = f (x)g(x)).

(2) E is said to separate points if for any pair p, q ∈ S with p ̸= q there is f ∈ E such
that f (p) ̸= f (q).

(3) E is said to be nowhere vanishing if for any p ∈ S there is f ∈ E such that f (p) ̸= 0.

Theorem 19.2 (Stone-Wierstrass). Let S be a compact Hausdorff and let E ⊂ CR(S) be a sub-
algebra. If E separates points and is nowhere vanishing, then E is dense in C(S) in the max norm.

Remark. This theorem is due to Stone 1937.

In the proof we will use the following

Exercise 19.1. Let S be a compact Hausdorff space and E ⊂ CR(S). Consider the collection
N of all finite Baire measures µ on S such that

∫
f dµ = 0 for all f ∈ E. Show that E is

dense if and only if N = {0}.

PROOF. Let E denote the closure of E in the max norm. We must show that E = CR(S).
Note that E is, itself, a subalgebra that is nowhere vanishing and separates points.
Claim: If f ∈ E, then | f | ∈ E.

To see this, let M = maxx | f (x)| and let ε > 0. By the classical Weierstrass theorem (see
Rudin 1976, Theorem 7.26), there is a polynomial P such that

max
x∈[−M,M]

||x| − P(x)| < ϵ .

Since E is an algebra, P ◦ f ∈ E and we have ∥P ◦ f − | f |∥ < ϵ. As ϵ is arbitrary and E is
closed, we have | f | ∈ E.
Claim: If f , g ∈ E then max( f , g) ∈ E.

This follows from the previous claim since for any two real numbers a, b, we have
max(a, b) = 1

2(|a − b|+ a + b).
Claim: There is a function G ∈ E such that G(x) > 0 for all x ∈ S.
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To see this, note that for each x ∈ S there is gx ∈ S with gx(x) ̸= 0. Multiplying by
−1 if necessary, we may choose gx so that gx(x) > 0. Let Ux = {y : gx(y) > 0}. Then
(Ux)x∈S is an open cover of S. Since S is compact there is a finite subcover x1, . . . , xn. Let
g̃j = max(gxj , 0) and let G = ∑j g̃j.

Now let N denote the set of all finite Baire measures µ on S such that
∫

f dµ = 0 for
all f ∈ E. We must show that N = {0}. By construction N is weak∗ closed and convex.
So K = N ∩ B1(0) is weak∗ compact and convex. Suppose K contains a non-zero measure
µ. Then K must contain a non-zero extreme point µ. Since µ is extreme we have ∥µ∥ = 1
(otherwise we could write µ as a linear combination of 0 and a multiple of µ).

Suppose such a non-zero extreme point µ exists. Since E is an algebra
∫

f gdµ = 0 for
all f , g ∈ E. Thus gdµ ∈ N for all g ∈ E. Now suppose g ∈ E and 0 < g(x) < 1 for
all x ∈ S. Let a =

∫
gd|µ| and b =

∫
(1 − g)d|µ|. So a, b > 0 and a + b = 1 and gdµ/a,

(1 − g)dµ/b ∈ K. Since
dµ = a g

a dµ + b (1−g)
b dµ

and µ is an extreme point, we must have gdµ/a = dµ.Consider the support of µ:

supp µ = {x : |µ|(U) > 0 for any open neighborhood of x}.

Since dµ = gdµ/
∫

gd|µ| we must have g =
∫

gd|µ| on supp µ.
Now suppose x and y are distinct points in S. Then there is a function g ∈ E such

that 0 < g < 1 and g(x) ̸= g(y) — let h be any function that separates x and y and let
g = 1

γ (h + δG) for suitable γ and δ. Thus at most one of the points x, y lies in the support
of µ. That is the support of µ is a single point supp µ = {x0}! Since |µ|(1) = ∥µ∥ = 1 we
have ∫

f (p)dµ(p) = f (x0) or
∫

f (p)dµ(p) = − f (x0).

However, there is a function f ∈ E with f (x0) ̸= 0 and thus
∫

f dµ ̸= 0, contradicting the
definition of N . Thus N = {0} and E = CR(S). □

Following the above proof, we find

Theorem 19.3. Let S be a compact Hausdorff space. The extreme points of the unit ball {µ :∫
d|µ| ≤ 1} ⊂ MR(S) are the point masses ±δ(p − p0).

and

Theorem 19.4. Let S If A ⊂ C(S) is a proper closed sub-algebra that separates points of S then
A = { f : f (p0) = 0} for some p0 ∈ S.

The Stone-Weierstrass Theorem, as stated, does not hold for complex valued functions.
Here is a simple example. Let S = {eiθ : θ ∈ R}, the unit circle in the complex plane. Let

A(S) = { f : S → C : f has a continuous extension to D that is analytic on D.}
Exercise 19.2. Show that A(S) is a norm closed proper sub-algebra of C(S) and that

E =

{
N

∑
n=0

aneinθ : a0, . . . , aN ∈ C and N ∈ N

}
is a nowhere vanishing sub-algebra of A(S) that separates points of S. Show that E is
dense in A(S) (but not in C(S), of course, since A(S) is closed and a proper subset.)
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There is an easy remedy to the above problem. We say that a subalgebra E ⊂ C(S) is a
⋆-algebra if f ∗ ∈ E whenever f ∈ E. (Here f ∗ denotes the function with f ∗(x) = ( f (x))∗ =
complex conjugate of f (x).)

Theorem 19.5. Let S be a compact Hausdorff space and let C(S) denote the set of all complex
valued continuous functions on S. If E ⊂ C(S) is a nowhere vanishing ⋆-algebra that separates
points, then E is dense in C(S) in the max norm.

PROOF. Let ER = {Re f : f ∈ E}. Note that if f ∈ E, then Re f = 1
2( f + f ∗) ∈ E. Thus

ER = { f ∈ E : f (S) ⊂ R} .

We have ER ⊂ CR(S) is a linear subspace, and if Re f , Re g ∈ ER we have Re f Re g ∈ ER.
Thus ER is a (real) sub-algebra of CR(S).

Let p ∈ S. There is f ∈ C(S) such that f (p) ̸= 0. Scaling by a suitable complex
number, we may choose f such that Re f (p) ̸= 0. Thus ER is nowhere vanishing. Let
q ̸= p be another point in S. If Re f (q) ̸= Re f (p) then this function separates p and q. If
not, then pick another function g ∈ C(S) such that g(q) ̸= g(p). Replacing g by ag − b f
for suitable complex numbers a, b, we may choose g that g(p) = 0 and Re g(q) ̸= 0. Thus
ER separates points. Therefore ER is dense in CR(S).

Now let f ∈ C(S) and let ε > 0. We can choose g, h ∈ ER such that ∥g − Re f ∥ ≤ ε and
∥h − Im f ∥ ≤ ε. Then g + ih ∈ E and ∥g + ih − f ∥ < 2ε. Thus E is dense in C(S). □

2. Applications of Stone Weierstrass

There are numerous applications of the Stone-Weierstrass theorems, 19.2 and 19.5.
Here are a few.

Theorem 19.6. The set S = {ψn(θ) = 1√
2π

einθ : n ∈ Z} are an orthonormal basis for

L2([0, 2π]).

PROOF. Note that it is an easy exercise to check that S is an orthonormal set. Thus it
suffices to prove that A = spanS is dense in L2([0, 2π]).

Note that

A = {
N

∑
n=−N

an fn : a−N, . . . aN ∈ C and N ∈ N}

is a ⋆-algebra in C([0, 2π]). It is nowhere vanishing since 1 ∈ A. It doesn’t quite separate
points, since f (0) = f (2π) for all f ∈ A. However, if we think of it as a ⋆-algebra over
C(T1), with T1 the unit circle, then it does separate points (eiθ alone does this). Thus A is
dense in C(T1), which we can identify with

C(T1) = { f ∈ C([0, 2π]) : f (0) = f (2π)} .

Now let f ∈ L2([0, 2π]) and ε > 0. I claim there is g ∈ C(T1) such that ∥ f − g∥2 < ε.
Explicitly, we can take extend f periodically on R (so that f (θ ± 2π) = f (θ)) and let

g(θ) =
1
2δ

∫ θ+δ

θ−δ
f (ϕ)dϕ

for small enough δ. We can choose p ∈ A such that supθ |g(θ)− p(θ)| < ε. Then

∥ f − p∥2 ≤ ∥ f − g∥2 + ∥g − p∥2 ≤ ε +
√

2πε .
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Thus A is dense in L2. □

A similar argument can be used to prove the following:

Theorem 19.7. Let µ be a compactly supported finite Borel measure on R. Let p0, p1, . . . be the
polynomials obtained from the Gram-Schmidt process applied to 1, x, x2, . . . , with respect to the
real inner product ⟨ f , g, ⟩ =

∫
f gdµ. Then {pj : j = 0, . . .} is an orthonormal basis for

L2
R(µ).



Part 6

Spectral Theory of Linear Maps





LECTURE 20

Banach Algebras and Spectral Theory

Reading: §11.4 and Ch. 17 in Lax

Definition 20.1. A Banach algebra is a Banach space (completed normed space) A on which
we have defined an associative product so that A is an algebra and such that

∥AB∥ ≤ ∥A∥∥B∥, ∥cA∥ = |c|∥A∥.

The motivating example of a Banach algebra is the space B(X) of bounded linear maps
from a Banach space X into itself. It turns out that a good deal of the theory of linear maps
can be carried out in the more general context of Banach algebras. A Banach algebra may
or may not have a unit I, which is an element such that IA = AI = A for all A.

Here are some basic facts and definitions about Banach algebras. The proofs are left as
exercises:

(1) If A has a unit, then the unit is unique.
(2) Any Banach algebra is a closed sub-algebra of an algebra with a unit. If A has a

unit there is nothing to prove. If not, consider the space A⊕ C with product

(A, z)(B, w) = (AB + zB + wA, zw)

and norm
∥(A, z)∥ = ∥A∥+ |z|.

(3) An element A ∈ A is invertible if there exists B ∈ A such that BA = AB = I.
(4) It can happen that A has either a left inverse (BA = I) or a right inverse (AB = I)

but is not invertible.

Exercise 20.1. Find an example of an operator in B(ℓ2(N)) that has a left inverse
but no right inverse. Can you find one in B(Cn)? Why?

(5) If A has a left inverse B and a right inverse C then B = C and A is invertible.

Theorem 20.2. The set of invertible elements in A is open. Specifically, if A is invertible then
A + K is invertible provided ∥K∥ < 1/

∥∥A−1
∥∥.

Exercise 20.2. Using the geometric series to prove this theorem.

Definition 20.3. Let A be a Banach algebra with a unit. The resolvent set of ρ(A) of A ∈ A
is the set of ζ ∈ C such that

ζ I − A
is invertible. The spectrum σ(A) of A is the complement of the resolvent set. The resolvent
of A is the map R : ρ(A) → A given by

R(ζ) = (ζ I − A)−1.

It turns out that R(ζ) is an analytic function. To make sense of this, we should first
consider what it means for a Banach space valued function to be analytic.
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1. Interlude: Analytic functions

Definition 20.4. Let X be a Banach space. A function f : Ω → X, with Ω ⊂ C an open set,
is strongly analytic (or just analytic) if

lim
h→0

1
h
[ f (ζ + h)− f (ζ)]

exists as a norm limit for every ζ ∈ Ω, in which case the limit is denoted f ′(ζ) or d
dζ f (ζ).

If f is a strongly analytic function, the following familiar facts from complex analysis
hold:

(1) If f is analytic so is f ′.
(2) f is analytic if and only if

(a) The power series for f at any point converges in a disc centered at that point.
(b) f is continuous and f (ζ) = 1

2πi

∫
C f (z) 1

z−ζ dz for any rectifiable closed curve
C that can be contracted to a point in Ω and with winding number 1 around
z. The integral here can be taken to be a vector valued Riemann integral since
f is continuous.

Exercise 20.3. Prove these facts. While you are at it, verify that the Riemann integral can
be defined for norm continuous functions taking values in a Banach space.

One might also define what looks like a weaker notion of analyticity:

Definition 20.5. A function f : Ω → C is weakly analytic if for every ℓ ∈ X′ = the dual of
X, ℓ( f (ζ)) is a (scalar) analytic function.

Clearly if f is strongly analytic, then it is weakly analytic. Suprisingly, the converse is
true:

Theorem 20.6. Let X be a Banach space and Ω ⊂ C an open set. If f : Ω → X is weakly analytic,
then it is strongly analytic.

PROOF. By the Cauchy integral formula

ℓ( f (ζ)) =
1

2πi

∫
C

ℓ( f (z))
z − ζ

dz

for a suitably chosen curve C. This formula holds if ζ is moved a little bit, so

ℓ

(
f (ζ + h)− f (ζ)

h
− f (ζ + k)− f (ζ)

k

)
=

1
2πi

∫
C

[
1
h

(
1

z − h − ζ
− 1

z − ζ

)
− 1

k

(
1

z − k − ζ
− 1

z − ζ

)]
ℓ( f (z))dz

=
1

2πi

∫
C

[
1

z − h − ζ
− 1

z − k − ζ

]
ℓ( f (z))
z − ζ

dz

=
(h − k)

2πi

∫
C

1
(z − h − ζ)(z − k − ζ)

ℓ( f (z))
z − ζ

dz.

It follows that∣∣∣∣ℓ( 1
h − k

[
f (ζ + h)− f (ζ)

h
− f (ζ + k)− f (ζ)

k

])∣∣∣∣ ≤ M(ℓ) < ∞
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uniformly for all h, k sufficiently close to 0. By the Principle of Uniform Boundedness
(Thm. 15.5), there is a constant C < ∞ such that∥∥∥∥ f (ζ + h)− f (ζ)

h
− f (ζ + k)− f (ζ)

k

∥∥∥∥ ≤ C|h − k|.

Thus the limit defining f ′(ζ) exists and f is strongly analytic. □

2. Back to the spectrum

Theorem 20.7. Let A be a Banach algebra. For any A ∈ A the resolvent R(ζ) is analytic on the
resolvent set ρ(A) and the spectrum σ(A) is a non-empty, compact subset of {ζ ≤ ∥A∥}.

PROOF. The Neumann series shows that R(ζ) has a convergent power series at each
point:

R(ζ + h) = ((ζ + h)I − A)−1 =
∞

∑
n=0

hn(ζ I − Z)n+1

for small enought h. Analyticity follows.
Furthermore, for ζ > ∥A∥ we have

R(ζ) =
∞

∑
n=0

An 1
ζn+1 , (20.1)

so σ(A) ⊂ {ζ ≤ ∥A∥}. Since ρ(A) is open it follows that σ(A) is compact.
Integrating (20.1) around a large circle, we obtain∫

|ζ|=r
R(ζ)dζ = 2πiI

for r > ∥A∥. Suppose σ(A) were empty. Then we could contract the circle down to a
point and would obtain 0. Since the result is not 0, σ(A) is not empty. □





LECTURE 21

Spectral Radius, Functional Calculus and Spectral Mapping

1. Spectral radius

Having seen that σ(A) ⊂ {z ≤ ∥A∥}, it is natural to ask if this estimate is sharp. In
other words if we let the spectral radius of A be

sp-rad(A) = max{|z| : z ∈ σ(A)},

then can it happen that sp-rad(A) < ∥A∥?
This can indeed happen, even for 2 × 2 matrices:

Exercise 21.1. Consider the matrix A =
(

0 t
0 0
)
. Show that ∥A∥ = |t| and σ(A) = {0}.

Note that the example in the exercise shows that that the gap between σ(A) and the
resolvent set ρ(A) can be arbitrarly large. However, we do have the following

Theorem 21.1. Let A be a Banach algebra and let A ∈ A. Then sp-rad A = limn→∞ ∥An∥1/n.

Remark. Note that the matrix A =
(

0 t
0 0
)

in the above exercise has A2 = 0, so we have
sp-rad A =

∥∥A2
∥∥ in that case.

PROOF. Consider the Laurent expansion of the resolvent around ∞:

R(ζ) =
∞

∑
n=0

ζ−n−1An. (21.1)

I claim that this converges whenever |ζ| >
∥∥Ak

∥∥ 1
k . Indeed we can write

R(ζ) =

[
k−1

∑
m=0

ζ−m−1Am

] [
∞

∑
n=0

ζ−nk Ak

]
.

The first factor is a finite sum and the second converges if the above condition holds. Thus

sp-rad(A) ≤ lim inf
k→∞

∥∥∥Ak
∥∥∥ 1

k .

On the other hand, let ϕ(t) = (sp-rad(A) + δ)eit, t ∈ [0, 2π]. Then ϕ is a curve in the
resolvent set which winds once around the spectrum. Integrating and using (21.1) we find
that

1
2πi

∫
ϕ

ζnR(ζ)dζ = An.

Thus

∥An∥ ≤
[

sup
ζ∈ϕ([0,2π])

∥R(ζ)∥
]
(sp-rad(A) + δ)n+1.
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Taking the nth root and sending n to infinity, we obtain

lim sup
n→∞

∥An∥
1
n ≤ sp-rad(A) + δ.

Note that supζ∈ϕ([0,2π]) ∥R(ζ)∥ < ∞, since the resolvent is analytic, hence continuous, on
the resolvent set. Since δ was arbitrary, we have

lim sup ∥An∥
1
n ≤ sp-rad(A) ≤ lim inf ∥An∥

1
n

and the result follows. □

2. Functional calculus

The Cauchy integral formula

f (ζ) =
1

2πi

∫
C

f (z)
z − ζ

dz

for scalar analytic functions suggests a way of defining f (A) for A in a Banach algebra.

Definition 21.2. Let A be a Banach algebra and let A ∈ A. Given an open set Ω ⊃ σ(A)
and an analytic function f : Ω → C, we define

f (A) :=
1

2πi

∫
C

f (z)R(z)dz, (21.2)

with R the resolvent of A and C is any chain of contours in Ω that has winding number 1
around σ(A) and winding number 0 around any point in Ωc.

Exercise 21.2. Verify that this definition does not depend on the choice of chain C.

That’s that. We have defined f (A) for any analytic function. For instance

A2 =
1

2πi

∫
C

z2R(z)dz.

But, WAIT!!!!!! We can’t just define A2 — it’s already defined! We need to check some-
thing. Does this definition make sense? Yes it does.

Theorem 21.3. Let A be a Banach algebra and let A ∈ A. Then
(1) For any polynomial p, p(A) (evaluated by algebra) is equal to the r.h.s. of (21.2).
(2) More generally if f has a power series f (z) = ∑n an(z − z0)

n convergent in a disk
{|z − z0| < r} which contains σ(A) then

∞

∑
n=0

an(A − z0 I)n

is norm convergent and agrees with the r.h.s. of (21.2).
(3) If f and g are two analytic functions defined in a neighborhood of σ(A) then

f (A)g(A) = [ f g](A).

Exercise 21.3. Prove (1) and (2).

PROOF. To prove (3) we will use the following
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Lemma 21.4 (Resolvent identity). Let z, w ∈ ρ(A). Then

R(z)− R(w) = (w − z)R(z)R(w).

Exercise 21.4. Prove the resolvent identity.

Now let f , g be analytic in a neighborhood of σ(A):

f (A) =
1

2πi

∫
C

f (z)R(z)dz, g(A) =
1

2πi

∫
D

g(z)R(z)dz.

Without loss of generality, assume C lies inside D — so the winding number of D around
any point z ∈ C is one. Then

f (A)g(A) =
1

2πi

∫
C

∫
D

f (z)g(w)R(z)R(w)dwdz =
1

2πi

∫
C

∫
D

f (z)g(w)

w − z
[R(z)− R(w)]dwdz.

Let’s compute each term separately:

1
2πi

∫
C

∫
D

f (z)g(w)

w − z
R(z)dwdz =

1
2πi

∫
C

f (z)g(z)R(z)dz = [ f g](A),

1
2πi

∫
C

∫
D

f (z)g(w)

w − z
R(w)dwdz =

1
2πi

∫
D

[∫
C

f (z)
w − z

dz
]

g(w)R(w)dw = 0. □

The map A 7→ f (A) is called the Riesz functional calculus. Part (2) of the functional
calculus shows that f 7→ f (A) is an algebraic homomorphism of the algebra of functions
analytic in a neighborhood of σ(A) into the Banach algebra A. Next we will consider
some of the analytic properties of this homomorphism.

3. Spectral mapping theorem and Riesz Projections

Theorem 21.5. Let A be a Banach Algebra, A ∈ A, and f analytic in a neighborhood of σ(A).
(1) (The spectral mapping theorem): σ( f (A)) = f (σ(A))
(2) If g is analytic in a neighborhood of σ( f (A)) then

g( f (A)) = [g ◦ f ](A).

PROOF. To show (1) we need to show that ζ I − f (A) is invertible if and only if ζ ̸∈
f (σ(A)). If ζ ̸∈ f (σ(A)) then h(z) = (ζ − f (z))−1 is analytic in a neighborhood of σ(A).
But then

h(A)(ζ I − f (A)) = I
by the multiplicative property of the functional calculus. On the other hand, if ζ ∈
f (σ(A)), say ζ = f (w) with w ∈ σ(A). Let

k(z) =
f (w)− f (z)

w − z
,

so k is analytic in a neighborhood of σ(A), and

k(A)(wI − A) = (wI − A)k(A) = ζ I − f (A).

Suppose (ζ I − f (A)) were invertible, then we would have

(ζ I − f (A))−1k(A)(wI − A) = (wI − A)k(A)(ζ I − f (A))−1 = I,

which would imply that w ̸∈ σ(A), a contradiction.
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To show (2), since σ( f (A)) = f (σ(A)) we have

g( f (A)) =
1

2πi

∮
D
(ζ I − f (A))−1g(ζ)dζ

with D a suitable contour. But

(ζ I − f (A))−1 =
1

2πi

∮
C
(zI − A)−1 1

ζ − f (z)
dz,

so

g( f (A)) =
1

(2πi)2

∮
D×C

(zI − A)−1 1
ζ − f (z)

g(ζ)dzdζ

=
1

2πi

∮
C
(zI − A)−1g( f (z))dz = [g ◦ f ](A). □

The functional calculus f 7→ f (A) is often known as the “Riesz functional calculus” to
distinguish it from the functional calculus we will develop later for self-adjoint operators,
which will allow the evaluation of f (A) for measurable functions.

One of the key conclusions of the spectral mapping theorem is the association of pro-
jections to each component of the spectrum of A.

Definition 21.6. A projection P in a Banach algebra A is any element of A which satisfies
(1) P2 = P and (2) P ̸= 0.

Proposition 21.7. If P is a projection in a Banach algebra A, then PAP = {PAP : A ∈ A} is
a Banach algebra with unit P. If P ̸= I then σ(P) = {0, 1}.

PROOF. Since (PAP)(PBP) = P(APB)P,

∥PAPPBP∥ ≤ ∥PAP∥∥PBP∥ and P(PAP) = (PAP)P = PAP,

it follows that PAP is a Banach algebra with unit P.
To see that σ(P) = {0, 1}, first note that

P(I − P) = (I − P)P = P − P = 0.

Thus neither P nor (I − P) can be invertible. Since P, (I − P) ̸= 0, it follows that {0, 1} ⊂
σ(P).

It remains to show that any ζ ∈ C \ {0, 1} is in the resolvent set. For this purpose,
consider the Laurent series for the resolvent

(ζ I − P)−1 = ∑
n

ζ−n−1Pn,

convergent for |ζ| > sp-rad(P). Since Pn = P, n ≥ 1, we may sum the series to get

R(ζ) := (ζ I − P)−1 =
1
ζ
(I − P) + ∑

n
ζ−n−1P =

1
ζ
(I − P) +

1
ζ − 1

P, (21.3)

which is well defined for all ζ ∈ C \ {0, 1}.

Exercise 21.5. Check that the r.h.s. of (21.3) is equal to (ζ I − P)−1 for ζ ̸= 0, 1. □
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Now suppose A ∈ A and

σ(A) = ∪N
j=1σj

with σj disjoint. Then we can define

Pj =
1

2πi

∮
Cj

(ζ I − A)−1dζ

with Cj any contour that winds once around σj and zero times around σi, i ̸= j.
Theorem 21.8.

(1) Pj are projections
(2) PjPi = 0 for i ̸= j
(3) ∑j Pj = I.
(4) The spectrum of Pj APj = APj = Pj A, as an element of the algebra PjAPj, is

σPjAPj(Pj APj) = σj.

Remark. The spectrum of Pj APj in A is σj ∪ {0}.

PROOF. Note that Pj = f j(A) with f j an analytic function that is 1 in a neighborhood of
σj and 0 in a neighborhood of σi for i ̸= j. Thus (1), (2) and (3) follow from the functional
calculus. □

The projections Pj are known as “Riesz projections.” For matrices, they give the pro-
jection onto generalized eigenspaces. To see this, let us compute an example. Consider
the matrix

A =

(
0 1
1 0

)
.

The spectrum of A is {−1,+1}. If we write down the resolvent

(ζ I − A)−1 =
1

ζ2 − 1

(
ζ 1
1 ζ

)
,

then we may compute

P± =
1

2πi

∮
z=±1+eiθ

1
ζ2 − 1

(
ζ 1
1 ζ

)
dζ =

1
2

(
1 ±1
±1 1

)
.

Exercise 21.6. Verify that P2
± = I and AP± = P±A = ±P±.

More generally, the matrix may have non-trivial blocks in it’s Jordan form.

Exercise 21.7. Compute the resolvent and Riesz projections for1 2 3
0 1 2
0 0 2

 .
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Exercise 21.8. Show that

f




λ 1 0 · · · 0

λ 1
...

. . . . . . 0
. . . 1

λ


︸ ︷︷ ︸

n×n


=



f (λ) f ′(λ) 1
2 f ′′(λ) · · · 1

(n−1)! f (n−1)(λ)

f (λ) f ′(λ) . . . ...
. . . . . . 1

2 f ′′(λ)
. . . f ′(λ)

f (λ)


In infinite dimensions the Riesz projections may not be related to generalized eigen-

vectors. For instance the shift operator

S(a0, a1, · · · ) = (a0, a1, · · · )
on ℓ2 has spectrum

σ(S) = {|z| ≤ 1}.
Thus S has only one Riesz projection — the identity map.

Exercise 21.9. S corresponds to the infinite matrix

S ∼

0 1
0 1

. . . . . .

 .

Show that, if f is analytic in a neighborhood of {|z| ≤ 1} then f (S) corresponds to the
infinite matrix

S ∼


f (0) f ′(0) 1

2 f ′′(0) · · · 1
n! f (n)(0) · · ·

f (0) f ′(0) 1
2 f ′′(0) · · · 1

n! f (n)(0) · · ·
. . . . . . . . . . . .

. . . . . . . . . . . .

 .

In other words, if a = (a0, a1, a2, · · · ) then

[ f (S)a]j = jth entry of f (S)a =
∞

∑
n=0

1
n!

f (n)(0)aj+n.



LECTURE 22

Commutative Banach Algebras

Reading: Chapter 18 in Lax
We will now specialize to spectral theory in an algebra A with a unit I and such that the

multiplication is commutative: AB = BA for all A, B ∈ A. The theory we will develop here
is due to Gelfand 1941. Throughout this lecture all Banach algebras will be commutative
and have a unit.

Definition 22.1. A multiplicative functional p on a Banach algebra A is a homomorphism
of A into C.

So p : A → C is a linear functional and p(AB) = p(A)p(B). This definition is purely
algebraic. In particular, it is not assumed that p is bounded. However we have

Theorem 22.2. Every multiplicative functional p on a commutative Banach algebra is a contrac-
tion: |p(A)| ≤ ∥A∥.

PROOF. Since p(A) = p(IA) = p(I)p(A) ∀A ∈ A we have either p(A) = 0 for all A
or p(I) = 1. In the first case it is clear that p is a contraction. In the second case, if A is
invertible then

p(A−1)p(A) = p(I) = 1,
and so

Lemma 22.3. If p ̸= 0 is a multiplicative functional on a Banach algebra and A is invertible then
p(A) ̸= 0.

Now suppose |p(A)| > ∥A∥ for some A. Let

B =
A

p(A)
.

Then ∥B∥ < 1. Thus I − B is invertible, and

p(I − B) = p(I)− p(A)

p(A)
= 0,

which is a contradiction. □

There is a lot of interplay between algebraic and analytic notions in the context of
commutative Banach algebras.

Definition 22.4. A subset I of a commutative Banach algebra A is called an ideal if
(1) I is a linear subspace of A
(2) AI ⊂ I for any A ∈ A
(3) I ̸= 0,A.

Again, this is a purely algebraic notion. The following is a standard algebraic fact:
127
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Proposition 22.5. Let A and B be commutative algebras with units and q : A → B a homomor-
phism. Suppose that q

(1) is not an isomorphism, and
(2) is not the zero map.

Then the
ker q = {A ∈ A : q(A) = 0}

is an ideal in A. Conversely any ideal in A is the kernel of a homorphism satisfying (1) and (2)

SKETCH OF PROOF. It is easy to see that ker q is an ideal. Given an ideal I , to construct
the homorphism, we let B = A/I . That is

B = {equivalence classes for A ∼ B iff A − B ∈ I}.

Check that B is an algebra with addition or multiplication given by addition or multipli-
cation of any pair of representatives. Now let q : A → B be the map

q(A) = [A] = equivalence class containing A. □

An ideal cannot contain any invertible elements. Indeed if A is invertible and A were
in I , then A−1A = I would be in I which would imply AI = A ∈ I for all A, that is
I = A. On the other hand

Lemma 22.6. Every non-invertible element B of A belongs to an ideal.

PROOF. If B = 0 it is in every ideal, since ideals are, in particular, vector spaces. If
B ̸= 0 then BA = {BA : A ∈ A} is an ideal and contains B.

Exercise 22.1. Show that BA is an ideal if B is not invertible.

□

Definition 22.7. A maximal ideal is an ideal that is not contained in a larger ideal.

The space of ideals in A can be partially ordered by inclusion. It is easy to see that the
union of an arbitrary collection of ideals is itself an ideal. Thus Zorn’s lemma gives

Lemma 22.8. Every ideal is contained in a maximal ideal. In particular, every non-invertible
element B ∈ A belongs to a maximal ideal.

Lemma 22.9. Let M be a maximal ideal in A. Every non-zero element of A/M is invertible.

Remark. That is, A/M is a division algebra.

PROOF. Suppose [B] ∈ A/M is not invertible. Then [B]A/M = (BA) /M is an ideal.
Let

I = {A ∈ A : [A] ∈ [B]A/M} ,
that is

I = {A ∈ A : A = BK + M for some K ∈ A and M ∈ M} .

Exercise 22.2. Show that I is an ideal.

Since I is an ideal and clearly I ⊃ M, we must have M = I . Since B = BI + 0 ∈ I ,
it follows that B ∈ M. That is, [B] = 0. □

So far we have done no analysis on ideals. To proceed we need an analytic result:
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Theorem 22.10 (Gelfand-Mazur). Let A be a Banach algebra with unit that is a division algebra.
Then A is isomorphic to C.

PROOF. Let B ∈ A. The spectrum of B is non-empty. Thus there is ζ ∈ C such that
ζ I − B is non-invertible. Since A is a division algebra, ζ I = B. Thus every element of A is
a multiple of the identity. The map B → ζ is the isomorphism onto C. □

We would like to conclude from Thm. 22.10 that A/M ∼= C for any maximal ideal M.
Indeed, we have seen that A/M is a division algebra. However, we are not done as we
have not shown it is a Banach algebra. (There are division algebras not isomorphic to C.
For example, the algebra of rational functions on C.)

To show that A/M is a Banach algebra, we must show in particular that it is a Banach
space. That this is true follows because

Lemma 22.11. Let I be an ideal in a commutative Banach algebra. Then the closure I of I is an
ideal. In particular, a maximal ideal M is closed.
Exercise 22.3. Prove this lemma.

Thus A/M is a quotient of Banach spaces. It follows that it is a Banach space in the
following norm:

∥[B]∥ = inf
M∈M

∥B + M∥.

(See Lax 2002, Chapter 5.)
Lemma 22.12. Let I be a closed ideal in a commutative Banach algebra A. Then A/I is a Banach
algebra.
Exercise 22.4. Prove this lemma

Thus, given a maximal ideal M, the quotient A/M is a Banach division algebra and,
thus, naturally isomorphic to C by Mazur’s theorem. In particular, the quotient map

p(B) = [B]

is a multiplicative functional. In fact,
Theorem 22.13. Let A be a commutative Banach algebra. There is a one-to-one correspondence
between non-zero multiplicative functionals and maximal ideals given by

M 7→ pM(B) = [B] , pM : A → A/M ∼= C,

and
p 7→ ker p.

PROOF. We have already seen that the quotient map associated to any maximal ideal
is a multiplicative functional, so it remains to show that ker p is a maximal ideal for any
multiplicative functional. This is a general algebraic fact. Since p is a non-zero linear
functional, ker p is a subspace of co-dimension 1. Thus any subspace V ⊃ ker p satisfies
V = A or V = ker p. Since any ideal M ⊃ ker p is a subspace with M ̸= A, we conclude
that M = ker p is a maximal ideal. □

Corollary 22.14. An element B of a commutative Banach algebra with unit is invertible if and
only if p(B) ̸= 0 for all multiplicative functionals.

PROOF. We have already seen that B invertible =⇒ p(B) ̸= 0 for all multiplica-
tive functionals. Conversely, if B is singular it is contained in a maximal ideal M. Then
pM(B) = 0. □
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1. Spectral theory in commutative Banach Algebras

Theorem 22.15. Let A be a commutative Banach algebra and let B ∈ A. Then

σ(B) = {p(B) : p is a multiplicative linear functional} .

PROOF. ζ ∈ σ(B) if and only if ζ I − B is not invertible. We have seen that this happens
if and only if p(ζ I − B) = 0 for some multiplicative functional p. That is if and only if
ζ = p(B). □

The set J = {maximal ideals in A} is called the spectrum of the algebra A. Using
the correspondence M ∼ pM between maximal ideals and multiplicative functionals
established last time, we have a natural correspondence between A and an algebra of
functions on J , namely

A 7→ fA(M) = pM(A), (22.1)
where pM is the multiplicative functional with kernel M. This map is called the Gelfand
representation of A.
Theorem 22.16.

(1) The Gelfand representation is a homomorphism of A into the algebra of bounded functions
on J .

(2) | fA(M)| ≤ ∥A∥ for all A ∈ A and M ∈ J .
(3) The spectrum of A is the range of fA.
(4) The identity I is represented by f I = 1.
(5) The functions fA separate points of J : if M ̸= M′ are maximal ideals, then there is

A ∈ A such that
fA(M) ̸= fA(M′).

PROOF. The proofs of (1), (2), (3), and (4) are left as exercises. To see (5) note that given
A ∈ M\M′ we have fA(M) = 0 and fA(M′) ̸= 0. □

Definition 22.17. The natural topology on J is the weakest topology in which all the func-
tions fA, A ∈ M, are continuous. It is called the Gelfand topology.

Theorem 22.18. J is a compact Hausdorff space in the Gelfand topology.

PROOF. The proof is based on Tychonoff’s theorem. Let

P = ∏
A∈A

D∥A∥,

with D∥A∥ the closed disk of radius ∥A∥ in C. By Tychonoff’s theorem P is compact in the
product topology. By part (2) of the first theorem

fA(M) ∈ D∥A∥,

so
Φ(M)A = fA(M)

defines a map from J → P. By (5) this map is injective.

Exercise 22.5. Check that the Gelfand topology is the same as the topology induced on J
by this embedding.

Since P is compact, it suffices to show that Φ(J ) is closed.
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Exercise 22.6. Show that Φ(J ) is closed. Namely, show that any point t = t· in the closure
of Φ(J ) is a homomorphism

tA+cB = tA + ctB and tAB = tAtB.

The Hausdorff property for J follows since fA separate points. □

The Gelfand representation need not be injective. For example

A =

{(
z w
0 z

)
: z, w ∈ C

}
is a commutative Banach algebra, with identity. (Use the matrix norm, or∥∥∥∥(z w

0 z

)∥∥∥∥ = |z|+ |w|,

which is also sub-multiplicative.) It has a unique maximal ideal namely

M =

{(
0 w
0 0

)
: w ∈ C

}
.

The Gelfand homomorphism is the map(
z w
0 z

)
→ z, A → C.

In general, the kernel of the Gelfand representation is

R =
⋂

M∈J
M,

which is called the radical of A.

Proposition 22.19. A ∈ R if and only if σ(A) = {0}.

PROOF. This follows from the identity

σ(A) = {pM(A) : M ∈ J }. □

In particular, R contains all the nilpotent elements (if there are any). More generally, if

∥An∥
1
n → 0, so sp-rad(A) = 0, then A ∈ R.

Proposition 22.20. R is closed, and is an ideal if R ̸= 0.

Exercise 22.7. Prove this.

The radical is essentially the barrier to representing A as an algebra of functions. Since
R is closed, we may consider the quotient Banach algebra A/R, which has trivial radical.
The Gelfand representation shows that:

Theorem 22.21. If A is a commutative Banach Algebra, then there is a compact Hausdorff space
Ω and continuous (bounded) injective homomorphism of A/R into C(Ω).

Thus a commutative Banach Algebra with trivial radical may be thought of as a sub-
algebra of the continuous functions on a compact Hausdorff space, and in fact the algebra
determines the space.





LECTURE 23

C∗ algebras

The algebra of functions on a compact Hausdorff space has an additional structure
—complex conjugation —which is not present in commutative Banach algebras. What
happens if we put it there?

More generally, we can define

Definition 23.1. A ∗-operation on a Banach algebra A is a map A 7→ A∗ from A → A
satisfying

(1) (A∗)∗ = A
(2) (AB)∗ = B∗A∗

(3) (A + B)∗ = A∗ + B∗

(4) (wA)∗ = wA∗.

A C∗ algebra A is a Banach algebra together with a ∗-operation such that ∥A∥2 = ∥A∗A∥.

The prime example of a C∗ algebra is the algebra of bounded operators on a Hilbert
space. In fact, although we will not show this, any C∗ algebra is isometrically isomorphic
to a sub-algebra of the bounded operators on a Hilbert space. A second example is C0(Ω)
with Ω a locally compact Hausdorff space. This example is commutative. If Ω is compact
then C0(Ω) = C(Ω) has an identity. If Ω is non-compact then C0(Ω) does not have an
identity.

Proposition 23.2. If A is a C∗ algebra, then ∥A∥ = ∥A∗∥.

PROOF. Note that ∥A∥2 = ∥A∗A∥ ≤ ∥A∗∥∥A∥, so ∥A∥ ≤ ∥A∗∥. □

An isomorphism of C∗ algebras A and B is a bounded linear isomorphism T : A → B
that is multiplicative T(AB) = T(A)T(B) and a star map T(A)∗ = T(A∗). An isometric
isomorphism satisfies ∥T(A)∥ = ∥A∥ for all A.

Spectral Theory in C∗ algebras

Definition 23.3. An element of a C∗ algebra is self-adjoint if A∗ = A, is anti-self-adjoint if
A∗ = −A and is unitary if A∗A = I.

Theorem 23.4. If p is a multiplicative functional on a C∗ algebra then
(1) p(A) ∈ R if A is self-adjoint.
(2) p(A∗) = p(A).
(3) p(A∗A) ≥ 0.
(4) |p(U)| = 1 if U is unitary.

PROOF. We already have ∥p∥ ≤ 1. Let A be self adjoint and suppose p(A) = a + ib.
With Tt = A + itI, we have a2 + (b + t)2 = |p(Tt)|2 ≤ ∥Tt∥2. Since T∗

t = A − itI, we have
133
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T∗
t Tt = A2 + t2 I, and thus ∥Tt∥2 ≤ ∥A∥2 + t2. Therefore

a2 + (b + t)2 ≤ ∥A∥2 + t2.

This inequality can hold for all t if and only if b = 0. So p(A) = a ∈ R, and (1) follows.
For general A we may write

A =
1
2
(A + A∗) + i

1
2
(A − A∗),

and
A∗ =

1
2
(A + A∗)− i

1
2
(A − A∗),

so (2) follows from (1). (3) and (4) follow from (2) since p(A∗A) = p(A∗)p(A). □

Corollary 23.5. If A is a commutative C∗ algebra then
(1) If A is self adjoint σ(A) ⊂ R.
(2) If A is anti-self-adjoint σ(A) ⊂ iR
(3) If A is unitary σ(A) ⊂ {|z| = 1}.

PROOF. Use the Gelfand theory:

σ(A) = {p(A) : p is a multiplicative functional}. □

Given two Banach algebras A ⊂ B, both with an identity, and A ∈ A we can consider
the spectrum of A as an element of A or B. In general, these may be distinct. First of all
the identity elements of A and B may be distinct — we saw this above with the Banach
algebras PAP and A. But even if the algebras share the same identity, the spectrum can
change.

Example 23.6. Let T denote the unit circle, B = C(T), and

A = A(T) = {continuous functions on circle with an analytic extension to the interior} .

Both algebras have the same norm and A is a closed subalgebra of B. Consider the func-
tion f (z) = z ∈ A ⊂ B. As an element of B (which is a C∗-algebra), the spectrum of f (z)
is CB( f ) = T, which is the range of f . However, as an element of A = A(T), we have
σA( f ) = D = {|ζ| ≤ 1}. To see this, note that if g is analytic in the disc and (ζ − z)g(z) = 1
on T then (ζ − z)g(z) = 1 in D. Thus we must have |ζ| > 1. So D ⊂ σA( f ). That they are
equal follows from Lemma 23.8 below.

For C∗-algebras, this pheonomenonon does not occur:

Theorem 23.7. Let A ⊂ B be C∗ algebras with the same identity and norm. If A ∈ A then
σA(A) = σB(A).

We will need

Lemma 23.8. If A ⊂ B are Banach algebras with a common identity and A ∈ A then 1) σB(A) ⊂
σA(A) and 2) ∂σB(A) ⊂ ∂σA(A)

PROOF. Let I denote the identity in A and B. If (ζ I − A) is invertible in A, then since
the identity is the same in B and A, it is also invertible in B. (1) follows.

Now suppose that z ∈ ∂σA(A). We must show that z ∈ σB(A) — it follows from (1)
that then z ∈ ∂σB(A). Suppose on the contrary that there is R ∈ B such that

R(zI − A) = (zI − A)R = I .
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Since z ∈ ∂σA(A) there are zn → z with zn ∈ C \ σA(A). Thus (zn I − A)−1 ∈ A. It follows
that

(zn I − A)−1 → R in B .

Since A is a closed subspace of B we then have R ∈ A. This contradicts the fact that
z ∈ σA(A). (2) follows. □

PROOF OF THM. 23.7. First let A be self-adjoint and let C = C∗(A) = the algebra
generated by A. So C is a commutative C∗ algebra and C ⊂ A ⊂ B. Since C is commutative
and A is self-adjoint, we have σC(A) ⊂ R. Thus

σB(A) ⊂ σA(A) ⊂ σC(A) = ∂σC(A) ⊂ ∂σA(A) ⊂ ∂σB(A).

It follows that σB(A) = σA(A) = σC(A).
To prove the general statement, it suffices to show that if A is invertible in B it is

invertible in A. So suppose we have B ∈ B such that BA = AB = I. It follows that

(A∗A)(BB∗) = (BB∗)(A∗A) = I.

Since A∗A is self-adjoint, the first part of the proof implies that A∗A is invertible in A.
Thus BB∗ ∈ A. Thus

B = B(B∗A∗) = (BB∗)A∗ ∈ A. □

Thus in any C∗ algebra we can use the Gelfand theory to compute the spectrum, be-
cause the spectrum of an element A is the same as its spectrum in the smallest C∗ algebra
containing it

C∗(A) = algebra generated by A and A∗.

Definition 23.9. An element A in a C∗ algebra is called normal if AA∗ = A∗A.

Theorem 23.10. For normal A in a C∗ algebra,

sp-rad(A) = ∥A∥. (∗)

In particular, in a commutative C∗ algebra (∗) holds for every A.

PROOF. For self-adjoint A we have
∥∥A2

∥∥ = ∥A∥2. It follows that
∥∥∥A2k

∥∥∥ = ∥A∥2k
. Thus

sp-rad(A) = lim
n→∞

∥An∥
1
n = lim

k→∞

∥∥∥A2k
∥∥∥2−k

= ∥A∥.

If A is normal, then C∗(A) is commutative, so by the Gelfand theory we have

∥A∥2 = ∥A∗A∥ = sp-rad(A∗A) = sup
p

p(A∗A) = sup
p

|p(A)|2 = sp-rad(A)2,

where the sup is over multiplicative functionals on C∗(A). □

Functional Calculus

Theorem 23.11. If A is a commutative C∗ algebra with unit then there is a compact Hausdorff
space Ω and an isometric isomorphism Φ : A → C(Ω).
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PROOF. Let Ω be the maximal ideal space of A in the Gelfand topology, and let Φ :
A → C(Ω) be the Gelfand representation. By the previous theorem, sp-rad(A) = 0 =⇒
A = 0 so the radical of A is {0}. Thus the Gelfand representation is injective. Also,

∥A∥2 = sup
M

|pM(A)|2 = sup
M

|Φ(A)(M)|2,

so the Gelfand representation is an isometry.
It remains to show that the range of Φ is all of C(Ω). This follows from Stone-Weirstrass

since Φ(A) is closed, separates points, and is closed under conjugation. □



LECTURE 24

Continuous functional Calculus and Spectral Theorem for Self-Adjoint
Operators

1. The Continuous Functional Calculus

Theorem 24.1 (Continuous functional calculus). Let A be a C∗ algebra with unit. If A ∈ A
is normal, then there is a unique isometric isomorphism f 7→ f (A) of C(σ(A)) with C∗(A)
satisfying

1 7→ I and z 7→ A ,
where 1 denotes the constant function equal to 1 on σ(A) and z denotes the identity map z 7→ z
on σ(A). The mapping satisfies

p(A) = ∑
j,k

aj,k Aj(A∗)k (24.1)

for any polynomial p(A) = ∑j,k aj,kzjzk.

PROOF. Since A is normal C∗(A) is commutative and thus isomorphic to C(Ω) for
some compact Hausdorff space and A is isomorphic to some function ϕ : Ω → C with
ran ϕ = σ(A). Given f ∈ C(σ(A)), let f (A) ∈ C∗(A) be the element that corresponds to
f ◦ ϕ. The map f 7→ f (A) defined in this way is clearly linear and multiplicative (i.e., an
algebra homomorphism). Furthermore, it is a star map, i.e., f ∗(A) = f (A)∗, and

∥ f (A)∥ = ∥ f ◦ ϕ∥ = sup
x∈Ω

| f (ϕ(x))| = sup
z∈σ(A)

| f (z)| ,

so the map is an isometry.
It remains to show that the map is onto, i.e., that any element of C∗(A) can be expressed

as f (A) for some f ∈ C(σ(A)). To this end note that (24.1) holds for any polynomial in z
and z, since f 7→ f (A) is an ∗-algebra homomorphism. By Stone-Weierstrass polynomials
are dense in C(σ(A)). But we also have

C∗(A) = closure of{p(A)} ,

since the right hand side is C∗ algebra contained in any C∗ algebra containing A. □

The map f 7→ f (A) is called the continuous functional calculus for the normal operators.

Theorem 24.2 (Spectral Mapping Theorem). Let A be a C∗ algebra and let A ∈ A be normal.
The functional calculus satisfies

(1) ∥ f (A)∥ = supλ∈σ(A) | f (λ)|,
(2) σ( f (A)) = f (σ(A)),
(3) f (A) is normal for all f ∈ C(σ(A)),
(4) f (A) is self-adjoint if and only if f is real valued, and
(5) f (A) is unitary if and only if | f (z)| = 1 for all z ∈ σ(A).
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PROOF. content... □

2. Self-adjoint operators

Reading: Chapter 31
Recall that an operator A ∈ L(H), H a complex Hilbert space, is self-adjoint (or Her-

mitian or symmetric) if

⟨Ax, y⟩ = ⟨x, Ay⟩ for all x, y ∈ H.

We will assume unless mentioned otherwise that H is separable. So H is isomorphic either
to Cn or ℓ2.

If A is a self-adjoint matrix on CN then there is a orthonormal basis of eigenvectors for
A:

Aen = λnen, ⟨en, em⟩ = δn,m, span{en : n = 1, . . . , N} = H.
Thus given x ∈ H we have

x = ∑
n

anen, Ax = ∑
n

anλnen,

with an = ⟨xn, en⟩ .
An expansion into eigenvectors does not exist for an arbitrary self-adjoint operator.

For instance multiplication by x in L2(−1, 1),

M f (x) = x f (x)

has no eigenvectors in L2. In this case there are eigenvectors in the sense of distributions:

Mδ(x − λ) = λ, λ ∈ (−1, 1).

In some sense we have

f (x) =
∫ 1

−1
f (λ)δ(x − λ)dλ, M f (x) =

∫ 1

−1
f (λ)λδ(x − λ)dλ,

analogous to the above expression.
Thus for a general self-adjoint operator the eigenvectors may be quite singular. A

slightly better object to work with are projections onto the spaces spanned by eigenvectors
with eigenvalues in some set S. In the case of M f (x) = x f (x), we have

EM(S) f (x) = χS(x) f (x),

which is a non-zero projection if S is a set of positive Lebesgue measure in L2(−1, 1).
Let us rewrite, the expressions for a matrix A in this form. Let E({λn}) for the pro-

jection onto the subspace of eigenvectors with eigenvalue λn. For a general set S ⊂ R,
let

E(S) = ∑
λn∈S

E({λn}).

Proposition 24.3.
(1) E(S) is a projection for each S ⊂ R.
(2) E(S)E(S′) = E(S ∩ S′). In particular, if S ∩ S′ = ∅ then the ran E(S) ⊥ ran E(S′).
(3) If S1, . . . , Sn are disjoint then

E(S1 ∪ · · · ∪ Sn) = E(S1) + · · · E(Sn).
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(4) If Sj, j = 1, . . . , ∞, are disjoint then

E(∪jSj)x =
∞

∑
j=1

E(Sj)x

for each x ∈ H.
(5) The same properties hold for EM(S) provided we restrict our attention to Lebesgue mea-

surable sets.

Exercise 24.1. Prove this.

The maps S 7→ E(S), EM(S) are projection valued measures. Note that

A =
∫

λdE((−∞, λ]) M =
∫

λdEM((−∞, λ]),

with the integrals understood as Stieltje’s integrals in the strong operator topology. That
is, for every x ∈ H,

Ax = lim
n→∞

n

∑
j=1

λ
(n)
j E(−λ

(n)
j−1, λ

(n)
j )x,

with λ
(n)
j a partition of the interval [−∥A∥, ∥A∥], say, with mesh size → 0 as n → ∞.

Definition 24.4. A projection valued measure over H is a map E : Σ → L(H) defined on a
sigma algebra of sets on some measurable space with the following properties.

(1) E(S) is an orthogonal projection for every S.
(2) (finite additivity) E(S1) + E(S2) + · · · E(Sn) = E(S1 ∪ · · · Sn) if Sj are disoint.
(3) (strong countable additivity) If Sj, j = 1, . . . , ∞, are disjoint then

E(∪jSj)x =
∞

∑
j=1

E(Sj)x

for each x ∈ H.

Exercise 24.2. Derive E(S)E(S′) = E(S ∩ S′) from (1) and (2).

Associated to any projection valued measure on R, E(S), with compact support (E(R \
[−r, r]) = 0 for some r) there is a bounded self-adjoint operator

A =
∫

λdE((−∞, λ]).

Our ultimate goal is to show that the converse is true. This is the “spectral theorem.” (If E
does not have compact support, there is still a self-adjoint operator, but it is unbounded.
We will get to this.)

That is where we are headed, but it will take a little while.

Theorem 24.5. The spectrum of a bounded, self-adjoint operator M on a Hilbert space is a compact
subset of the real line and sp-rad(M) = ∥M∥.

PROOF. This follows from the results on C∗ algebras. □
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Given a self-adjoint operator A on a Hilbert space, the functional calculus f 7→ f (A)
is a bounded linear map from C(σ(A)) → L(H). As such, the maps

ℓx,y( f ) = ⟨ f (A)x, y⟩ ,

defined for every pair x, y ∈ H, are bounded linear functionals. According to the Riesz
representation theorem, then, to each pair x, y ∈ H there corresponds a complex regular
Borel measure on σ(A) such that

⟨ f (A)x, y⟩ =
∫

σ(A)
f (λ)dmx,y(λ).

Theorem 24.6.
(1) mx,y is sesquilinear in x, y (linear in x and conjugate linear in y).
(2) my,x = mx,y.
(3)

∥∥my,x
∥∥ ≤ ∥x∥∥y∥.

(4) The measures mx,x are non-negative.

Remark 24.7.
∥∥mx,y

∥∥ denotes the total variation norm of mx,y:∥∥mx,y
∥∥ = sup

f∈C(σ(A)) : | f (λ)|≤1

∣∣∣∣∫
σ(A)

f (λ)dmx,y(λ)

∣∣∣∣.
PROOF. (1), (2), and (3) are left as exercises. To prove (4) note that if f (λ) ≥ 0 on σ(A),

then
√

f ∈ C(σ(A)), so

⟨ f (A)x, x⟩ =
〈√

f (A)
√

f (A)x, x
〉
=
〈√

f (A)x,
√

f (A)x
〉
≥ 0.

Thus ∫
σ(A)

f (λ)dmx,x(λ) ≥ 0

if f ≥ 0. It follows from the Riesz theorem that mx,x is a non-negative measure. □

Thus for every Borel set S ⊂ σ(M) we have a quadratic form

QS(x, y) = mx,y(S),

which is bounded (|QS(x, y)| ≤ ∥x∥∥y∥), sesquilinear and skew-symmetric under inter-
change of x and y (QS(x, y) = |QS(y, x)|).

Theorem 24.8. Associated to any function B(x, y) on H × H which is bounded, sesquilinear and
skew-symmetric, there is a bounded self-adjoint operator M such that

B(x, y) = ⟨Mx, y⟩ .

PROOF. Fix y and consider B(x, y) as a function of x. This a bounded linear functional
on H, so by the Riesz-Frechet theorem there is w ∈ H such that

⟨x, w⟩ = B(x, y).

Let My = w. Since ∥w∥ ≤ c∥y∥, so M is bounded. Self-adjointness of M follows form the
skew-symmetry:

⟨x, My⟩ = B(x, y) = B(y, x) = ⟨y, Mx⟩ = ⟨Mx, y⟩ . □
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Thus to each Borel subset S ⊂ σ(A) is associated a bounded self-adjoint operator E(S)
so that

mx,y(S) = ⟨E(s)x, y⟩ .
Theorem 24.9.

(1) E(∅) = 0 and E(σ(A)) = I.
(2) If S ∩ T = ∅ then E(S ∪ T) = E(S) + E(T).
(3) E(S ∩ T) = E(S)E(T)
(4) Each E(S) is an orthogonal projection, and ran E(S) ⊥ ran E(T) if S, T are disjoint.
(5) [E(S), E(T)] = 0 and [E(S), A] = 0 for all S, T.
(6) E(S) is countably additive in the strong operator topology.

Remark. So E(S) is a projection valued measure as defined in Lecture 9.

PROOF. Clearly mx,y(∅) = 0 for all x, y, so E(∅) = 0. Likewise

mx,y(σ(A)) =
∫

σ(A)
dmx,y(λ) = ⟨Ix, y⟩ = δx,y,

so E(σ(A)) = I. Part (2) follows from the additivity of the measures mx,y.
Note that (3) is equivalent to

mx,y(S ∩ T) = mE(T)x,y(S) ∀x, y ∈ H, S, T ⊂ σ(A).

This in turn is equivalent to∫
T

f (λ)dmx,y(λ) = ⟨ f (A)E(T)x, y⟩ ∀x, y ∈ H, f ∈ C(σ(A)), T ⊂ σ(A),

which is equivalent to∫
σ(A)

g(λ) f (λ)dmx,y(λ) = ⟨ f (A)g(A)x, y⟩ ∀x, y ∈ H, f , g ∈ C(σ(A)),

which holds. Since E(S) is self-adjoint and E(S)2 = E(S), we see that E(S) is an orthogo-
nal projection. Since E(S)E(T) = 0 if S ∩ T = ∅, we conclude that ran E(S) ⊥ ran E(T).
The first part of (4) follows from (3).

Exercise 24.3. Show that [E(S), A] = 0.

Exercise 24.4. Show that E(S) is countably additive in the strong operator topology.

□

Thus,

Theorem 24.10. To each self-adjoint operator A, there corresponds a unique projection valued
measure E on σ(A) such that

f (A) =
∫

σ(A)
f (λ)dE,

for all f ∈ C(σ(A)), with the integral on the r.h.s. a norm convergent Riemann-Stieltjes integral.

PROOF. We have already constructed the P.V.M. The uniqueness follows form the unique-
ness in the Riesz theorem. If I1, . . . , In are subsets of σ(A) with ∪j Ij = σ(A) and Ij pairwise
disjoint then ∥∥∥∥∥∑j

ajE(Ij)

∥∥∥∥∥ ≤ max
j

∣∣aj
∣∣
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orthogonality of the ranges of E(Ij). It follows that, for continuous f , the oscillation of f
on the partition I1, . . . , In

Osc( f , {Ij}) =
∥∥∥∥∥∑j

sup
x,y∈Ij

| f (x)− f (y)|E(Ij)

∥∥∥∥∥
converges to zero as the mesh

∆ = max
j

diam(Ij) → 0.

In the standard way, one concludes the existence of the integral. □

In particular, we have

I =
∫

σ(A)
dE , A =

∫
σ(A)

λdE.

One can refine the spectral resolution a bit further. Every Borel measure on µ on the
line R can be written as a sum of three part:

µ = µ(p) + µ(sc) + µ(ac),

where
(1) µ(p) is the point measure: µ(p)(S) = ∑x∈S µ({x}).
(2) µ(ac) is the absolutely continuous measure: dµ(ac)(λ) = dµ

dλdλ.
(3) µ(sc) is everything else, and is singular continuous — it has no atoms (so F(λ) =

µ(sc)(−∞, λ) is a continuous function) but is supported on a set of measure 0 (so
F′(λ) = 0 almost everywhere).

Applying this decomposition to the measures mx,y we obtain three distinct projection val-
ued measures E(p), E(sc), and E(ac). The measures are orthogonal to one another, that is

H = H(p) ⊕ H(sc) ⊕ H(ac) H(♯) = ran E(♯)(σ(A)).

Exercise 24.5. Show that H(p) = closed linear span of the eigenvectors of A and that
E(p)(S) = ∑λ∈S E({λ}), where the sum runs over the eigenvectors of A and E({λ}) is the
projection onto the corresponding eigenspace.



LECTURE 25

Compact Operators

A subset S ⊂ X of a metric space X is pre-compact if S is compact.

Proposition 25.1. Let X be a complete metric space and S ⊂ X. The following are equivalent.
(1) S is pre-compact.
(2) every sequence in S has a Cauchy subsequence.
(3) S is totally bounded, i.e., for every ε > 0, S can be covered by fintely many ε-balls.

Corollary 25.2. Let X be a Banach space. Then
(1) If S1 and S2 are precompact subsets of X, then S1 + S2 is precompact.
(2) If S is precompact in X, then so is its convex hull.
(3) If S ⊂ X is precompact, and T ∈ L(X, Y) with Y a Banach space, then TS is precompact

in Y.

Definition 25.3. Let X and Y denote Banach spaces. A linear map T : X → Y is called
compact if CB1(X) is precompact in Y, where B1(X) is the unit ball in X. We denote the set
of compact maps from X to Y by C(X, Y).

Theorem 25.4. Let X and Y be Banach spaces.
(1) C(X, Y) is a closed linear sub-space of L(X, Y).
(2) Let T ∈ C(X, Y) and let Z be a Banach space. If M ∈ L(Y, Z), then MT ∈ C(X, Z). If

M ∈ L(Z, X), then TM ∈ C(Z, Y),

PROOF. ... □

We will write C(X) for C(X, X), the set of compact maps from a Banach space X to
itself.

Theorem 25.5. Let X be a Banach space, let M ∈ C(X), and let T = I − M, with I the identity
map. Then

(1) dim ker T is finite.
(2) Let Nj = ker T j. Then there is an integer i such that Nk = Ni for all k ≥ i.
(3) The range of T is closed

PROOF. If Tu = 0, then u = Mu. Thus ker T ∈ ran M. Since MB1(X) is pre-compact,
it follows that B1(ker T) = B1(X) ∩ ker T is compact. Thus, by Thm. 3.9, ker T is finite
dimensional. Part (2) follows immediately, since Nj+1 ⊂ Nj ⊂ ker T for all j. (Note that
Thm. 3.9 does not imply that ran M is finite dimensional, since this space is not closed —
so it is not a Banach space.)

To prove that ran T is closed, let yk ∈ ran T be a Cauchy sequence converging to a
limit y. So yk = xk − Mxk. Let dk = dist(xk, ker T). Let zk ∈ ker T with ∥wk∥ < 2dk,
wk = xk − xk. Since Tzk = 0, we have

Twk = Txk = yk .
143
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To obtain a contradiction, suppose that dk → ∞ (perhaps along a subsequence). Then,

1
dk

Twk → 0 .

Let uk =
1
dk

wk. Then ∥uk∥ ≤ 2 and Tuk → 0. Since (uk)k is bounded, there is a subsequence
along which Muk converges. Thus, along this subsequence, uk → u with Tu = 0 since
Tuk = uk − Muk → 0. But ∥uk − z∥ ≥ 1 for all z ∈ ker T. This is a contradiction, so
supk dk < ∞.

Using the sequence wk constructed above, we have Twk = wk − Mwk = yk → y. Since
dk is bounded, and ∥wk∥ < 2dk, we see that the sequence (wk)k is bounded. Thus by
compactness of M, there is a subsequence of Mwk that converges. But then, along this
subsequence, (wk)k also converges to a limit w which is easily seen to satisfy w − Mw =
Tw = y. Thus ran T is closed. □

Theorem 25.6. Let M ∈ C(X). Then T = I − C satisfies

ind T := dim ker T − codim ran T = 0 .

PROOF. Suppose that ker T = {0}. We must show ran T = X. Suppose, on the con-
trary, that ran T = X1 ⊊ X. Let Xj = T jX. Then we must have Xj ⊊ Xj−1 for all j (since
ker T = {0}). The map

T j = I +
j

∑
k=1

(
j
k

)
Ck

is of the form identity + compact. Thus Xj = ran T j is closed by the prior theorem. By
Riesz’s lemma 3.10, there is xj ∈ Xj with

∥∥xj
∥∥ = 1 and dist(xj, Xj+1) >

1
2 . If k > j, then

Mxj − Mxk = xj − Txj − xk + Txk ,

where the last three terms on the right hand side all belong to Xj+1. Thus
∥∥M(xj − xk)

∥∥ >
1
2 , which contradicts the compactness of M. Thus ran T = X1 = X and ind T = 0.

In the general case, with ker T ̸= {0}, let Nj = ker T j. As shown above, there is an
index i such that Nj = Ni for all j ≥ i. Let N = Ni. Then TN ⊂ N and so MN ⊂ N.
Let M̃ ∈ L(X/N) be defined by M(x + N) = Mx + N (this makes sense because N is an
invariant subspace for M).

Exercise 25.1. Prove that M̃ is a compact map.

Let T̃ = I − M̃. It follows that ker T̃ = 0. Indeed, suppose not. Then there is x ̸∈ N
such that Tx ∈ N = ker Ti. Then Ti+1x = 0, so x ∈ Ni+1 = Ni = N. Thus we can apply
the trivial kernel case to conclude that codim ran T̃ = 0. Thus for every y ∈ X there are
x ∈ X and z ∈ N such that y = Tx+ z. Thus X = ran T + N. If i = 1 then ran T ∩ N = {0}.
However, if i > 1, then N ∩ ran T = Ni−1. By basic linear algebra, we have

dim N = dim ran T ∩ N + dim ker T .

Thus

codim ran T = codim ran T̃ + dim N − dim ran T ∩ N = dim ker T . □
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1. Spectral Theory

Theorem 25.7 (F. Riesz). Let X be an infinite dimensional Banach space and M ∈ C(X). Then
(1) σ(M) consists of a finite or countable set of complex numbers {λn} whose only possible

accumulation point is 0.
(2) Each non-zero λ ∈ σ(M) is an eigenvalue of M, of finite algebraic and geometric multi-

plicity. That is
(a) dim ker(M − λI) is finite, and
(b) there is an integer i such that ker(M − λI)k = ker(M − λI)i for all k ≥ i.

(3) The resolvent (ζ I − M) has a pole at each nonzero λ ∈ σ(M).

Remarks. 1) If X is finite dimensional, then the theorem remains true with the exception
that the spectrum need not have 0 as a limit point. 2) If X is infinite dimensional, it follows
that 0 ∈ σ(M).

PROOF. Let T(ζ) = I − ζ−1M for ζ ̸= 0. Then we have either ran T(ζ) = X or
ker T(ζ) ̸= {0} — this is the so-called "Fredholm alternative." Thus every non-zero point
in the spectrum is an eigenvalue. Part (2) follows from the previous theorem.

If σ(M) is finite, then it has no accumulation points. Suppose that (λn)∞
n=1 is a se-

quence of distinct eigenvalues with eigenvectors xn. Define Yn = span(x1, . . . , xn). Then
Yn ⊊ Yn+1. Using Riesz’s lemma 3.10, we may find yn ∈ Yn \ Yn−1 with ∥yn∥ = 1 and
dist(yn, Yn−1) >

1
2 . Now yn = ∑n

j=1 an
j xj. Thus

Myn − λnyn =
n−1

∑
j=1

(λj − λn)an
j xj ∈ Yn−1 .

Thus for n > m, we have

Myn − Mym = λnyn − y y ∈ Yn−1 .

Thus, by definition of the yn’s, we have

∥Myn − Mym∥ ≥ 1
2 |λn| .

Since (Myn)n is pre-compact, it follows that λn → 0.
Because 0 is the only possible accumulation point of σ(M) it follows that this set is

either finite or countable.
To show that the resolvent has a pole at non-zero λ ∈ σ(M), take ζ ∈ {0 < |z− λ| < ε}

with ε small enough that no other eigenvalue is in this punctured disc. If (ζ I − M)−1x = u
then x = ζT(ζ)u. Let i be large enough that Ni+1 = Ni = N with Ni = ker(λ − M)i. Then
N is an invariant subspace and we may consider the reduced operator M̃ on X/N. We
claim that λ is in the resolvent set of this operator. If it weren’t, then it would be an
eigenvalue since M̃ is compact. So we would have x ∈ X with Mx = λx + y with y ∈ N.
But then x ∈ Ni+1 = Ni. It follows that (λ − M̃) is invertible and therefore that (ζ − M̃) is
invertible for |ζ − λ| small enough.

We have shown that for x ∈ X and ζ in the puncture disc, we can find vζ ∈ X and
yζ ∈ N such that

ζvζ − Mvζ = x − yζ .
Furthermore, we may choose the solution such that

∥∥vζ

∥∥ ≤ C∥x∥, uniformly in the punc-
tured disc.
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We claim that we can find u ∈ N such that

ζu − Mu = y .

Because N is a finite dimensional invariant subspace, this amounts to a finite dimensional
linear algebra problem. As such the solution may be represent, e.g., by Kramer’s rule, as
a rational function of ζ with a pole of order at most dim N at ζ = λ (where the determinant
vanishes). □

Let us look at the last theorem in light of the spectral theory of commutative Banach
algebras. We can generate the Banach algebra B(M) as the smallest Banach sub-algebra of
L(X) containing M. This is precisely the limits of polynomials p(M). The radical of this
algebra
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Homework I

Exercise I.1.
(1) Let M be a (not necessarily closed) subspace of a Hilbert space H. Prove that

M⊥ = {x : ⟨x, y⟩ = 0 for y ∈ M}
is a closed subspace and that M = (M⊥)⊥. (Reed and Simon 1980, Ch. II,
Problem 6)

(2) Let M be a (not necessarily closed) subspace of a Banach space B. Prove that

M⊥ = {ℓ ∈ B⋆ : ℓ(x) = 0 for x ∈ M}
is a closed subspace of B⋆ and that

M = {x ∈ B : ℓ(x) = 0 for ℓ ∈ M⊥} .

Exercise I.2. Let X and Y be normed linear spaces and let B(X, Y) denote the set of all
bounded linear maps from X to Y.

(1) Prove that the operator norm (see Def. 4.4) is a norm and that B(X, Y) is a Banach
space.

(2) Let T ∈ B(X, Y) and let X, Y denote the completions of X and Y. Prove that there
is a unique linear map T : X → Y such that T|X = T.

(3) Prove that ∥T∥ =
∥∥T
∥∥ for any T ∈ B(X, Y) and thus that B(X, Y) and B(X, Y) are

isometric Banach spaces.

Exercise I.3. Let (X, µ) be a measure space and let 1 < p < ∞. Prove that Lp(µ) is
uniformaly convex.

Exercise I.4. Prove Prop. 10.13: If X is a locally compact Hausdorff space, then M(X) and
MR(X) are Banach spaces in the total variation norm.

Exercise I.5. Let Ω ⊂ Rd be an open set.
(1) Give L1

loc(Ω) the LCS topology generated by the semi-norms pK( f ) =
∫

K | f (x)|dx
for compact K ⊂ Ω. Show that L1

loc(Ω) is a Fréchet space.
(2) Show that (L1

loc(Ω))⋆ ∼= L∞
c (Ω), where

L∞
c (Ω) = { f ∈ L∞(Ω) : ∃ compact K ⊂ Ω such that f (x) = 0 for a.e. x ̸∈ K} .

(3) Define a suitable inductive limit topology on L∞
c (Ω) and prove that it is a com-

plete LCS in this topology.
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Exercise I.6. (Reed and Simon 1980, Ch. V, Problem 46)
(a) Suppose X is the strict inductive limit of (Xn)∞

n=1 and that (Yn)∞
n=1 is an increasing

family of subspaces of X so that for any n, there is N with Xn ⊂ YN. Prove that X
is the strict inductive limit of (Yn)∞

n=1.
(b) Let K ⊂ Ω ⊂ Rd with K compact and Ω open. Prove that if C∞

c (Ω) has the induc-
tive limit topology given by (C∞

c (Kn))∞
n=1 for some increasing family (Kn)∞

n=1 of
comapct sets with

⋃
n Kn = Ω, then the restriction of this topology to C∞

0 (K◦) is
the Fréchet topology for C∞

0 (K◦) defined in Lecture 13.
(c) Prove that the inductive limit topology on C∞

c (Ω) is independent of the choice of
the increasing family (Kn)∞

n=1 of compact sets.

Exercise I.7. In this exercise you will prove the following generalization of Thm. 3.9: If X
is a locally compact, locally convex space, then X is finite dimensional.

(1) Let U ∋ 0 be an open set with U compact. Prove that there are x1, . . . , xn ∈ U such
that U ⊂ ⋃n

i=1(xi +
1
2U). Conclude that there is a finite dimensional space M such

that U ⊂ M + 1
2U.

(2) If U is also convex, prove that U ⊂ M + 1
2n U for any n and thus that U ⊂ M.

Conclude that M = X = M.

Exercise I.8. Let X be a locally convex space. A subset E ⊂ X is called bounded if for any
open neighborhood U ∋ 0 we have E ⊂ nU for some n.

(1) Prove that E is bounded if and only if supx∈E p(x) < ∞ for any continuous semi-
norm p : X → [0, ∞)

(2) Prove that X is a normed space (has a topology generated by a single norm) if and
only if the topology on X is generated by finitely many semi-norms.

(3) Prove that X is a normed space if and only if there is a bounded open neighbor-
hood of 0.
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APPENDIX A

The Zorn-Kuratowski Lemma

The proof of the Zorn-Kuratowski Lemma (Thm. 1.16) uses ordinals. Informally, an
ordinal is the order type of a well-ordered set. (Recall that an ordered set is well-ordered
if every subset has a minimal element.) Von-Neumann proposed an alternative, more
formal, definition of ordinals:

Definition A.1. A set S is an ordinal if every element of S is a subset of S and S is well-
ordered by with respect to inclusion.

Thus any element R ∈ S is also a subset R ⊂ S. The order relation on elements is
R ≤ R′ if and only if R ⊂ R′. Finally given any subset T ⊂ S (which may not be an
element of S), there is a unique element R ∈ T such that R ⊂ R′ for all R′ ∈ T. The
smallest ordinal is the emptyset ∅, which is typically denoted 0. The ordinal 1 is

1 = {0} = {∅},

the ordinal 2 is
2 = {0, 1} = {∅, {∅}},

the ordinal 3 is
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}.

Note that 2 ∈ 3 and 2 ⊂ 3, since 2 = {0, 1}. More generally, a natural number n is the
ordinal

n = {0, 1, . . . , n − 1}.

The set of all natural numbers is an ordinal, typically denoted ω:

ω = {0, 1, . . .}.

The ordinals do not stop here, there is an ordinal

ω + 1 = {0, 1, . . .} ∪ {ω}.

More generally, given any ordinal α we can define the successor of α by

α + 1 = α ∪ {α}.

The key facts we need about ordinals are the following:
(1) Given ordinals α and β, either α ⊂ β or β ⊂ α. We define α ≤ β if α ⊂ β.
(2) Given ordinals α and β, we have α < β, so α ≤ β and α ̸= β, if and only if α ∈ β.
(3) The class of all ordinals is not a set.1

1Assuming it to be a set leads to the Burali-Forti paradox: If there were a set S containing all ordinals, it
would be an ordinal. Then the successor of S would be an ordinal. Thus, by definition of S, we would have
S + 1 ∈ S. But then we must have S < S + 1 and S + 1 < S, a contradiction.
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Any ordinal α satisfies:
α =

⋃
β<α

β.

An ordinal α is a limit ordinal if α ̸= 0 and α is not a successor to any ordinal. For example,
ω is a limit ordinal.

Key tools in the proof of Zorn-Kuratowski lemma are transfinite recursion and transfinite
induction. Transfinite recursion is used to define an object Oα for each ordinal α by first
defining O0 and then showing how Oα can be defined in terms of Oα′ for α′ < α. Transfinite
induction demonstrates that a collection of statements Sα indexed by ordinals is true for
every ordinal by proving S0 and proving that ∀α′ < α, S′

α implies Sα. This proof may
look complicated because of words like transfinite. However, it does not involve any hard
analysis.

PROOF OF THE ZORN-KURATOWSKI LEMMA. We prove the contrapositive: If S is a
partially ordered set with no maximal element, then S has a totally ordered subset without an
upper bound.

Suppose S is a poset with no maximal element. Let T denote the collection of totally
ordered subsets of S. If R ∈ T is bounded, then there is a ∈ S such that a ̸∈ R and x ≤ a
for all x ∈ R. (To see this, first choose an upper bound b for R. If b ̸∈ R we are done. If
b ∈ R, then there is a with b < a since b is not maximal.) Thus, by the axiom of choice, we
may define a function F on T as follows:

(1) If R ∈ T is not bounded, then F(R) = ∅ if R ∈ T .
(2) If R ∈ T is bounded, then F(R) = {a} where x < a for all x ∈ R.

Note that R ∪ F(R) is totally ordered for each R ∈ T and that R ∪ F(R) ̸= R if and only if
R is bounded.

We now use transfinite recursion to define, for each ordinal α, an element Rα ∈ T such
that Rα′ ⊂ Rα if α′ ≤ α. First, note that ∅ ∈ T , so we may define

R0 := ∅.

Next, given Rα, let
Rα+1 := Rα ∪ F(Rα).

Finally, for a limit ordinal α, let
Rα :=

⋃
α′<α

Rα′ .

Fix α. One can verify, using transfinite induction, that Rα ⊂ Rα′ whenever α ≤ α′. If
Rα, then Rα ̸= Rα′ for α < α′.

Now let β be an ordinal with cardinality strictly larger than the cardinality of T . Con-
sider the function ϕ : β → T given by ϕ(α) = Rα. By the pigeon-hole principle, ϕ is
not injective. Thus we have α < α′ < β such that Rα = Rα′ . It follows that Rα is not
bounded! □
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