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§ Graph terminology
§ Directed acyclic graph (DAG) models
§ Markov properties
§ d-separation
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§ A graph 𝐺 = 𝑽, 𝑬 consists of 
vertices (nodes) 𝑽 and edges 𝑬

§ There is at most one edge between 
every ordered pair of vertices

§ Two vertices are adjacent if there is an edge between them
§ If all edges are directed (𝑖 → 𝑗), the graph is called directed
§ A path between 𝑖 and 𝑗 is a sequence of distinct vertices (𝑖, … , 𝑗) such that 

successive vertices are adjacent
§ A directed path from 𝑖 to 𝑗 is a path between 𝑖 and 𝑗 where all edges are 

pointing towards 𝑗, i.e., 𝑖 → ⋯ → 𝑗
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§ A cycle is a path (𝑖, 𝑗, … , 𝑘) plus an edge 
between 𝑘 and 𝑖

§ A directed cycle is a directed path 
(𝑖, 𝑗, … , 𝑘) from 𝑖 to 𝑘, plus an edge 𝑘 → 𝑖

§ A directed acyclic graph (DAG) is a 
directed graph without directed cycles
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§ If 𝑖 → 𝑗, then 𝑖 is a parent of 𝑗, and 
𝑗 is a child of 𝑖

§ If there is a directed path from 𝑖 to 𝑗, 
then 𝑖 is an ancestor of 𝑗 and 𝑗 is a 
descendant of 𝑖

§ Each vertex is also an ancestor and descendant of itself
§ The sets of parents, children, descendants and ancestors of 𝑖 in 𝐺 are 

denoted by pa(𝑖, 𝐺), ch(𝑖, 𝐺), desc(𝑖, 𝐺), an 𝑖, 𝐺
§ We omit 𝐺 if the graph is clear from the context
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§ We write sets of vertices in bold face
§ The previous definitions are applied 

disjunctively to sets
§ Example:  pa 𝑺 = ⋃!∈𝑺pa(𝑘)

§ The non-descendants of 𝑺 are the complement of desc 𝑺 :
nondesc 𝑺 ≔ 𝑽 ∖ desc(𝑺)
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§ We call 𝐺 fully connected if all pairs of nodes are 
adjacent

§ How many possibilities for a fully connected DAG?
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§ Each vertex represents a random variable: 
vertex 𝑖 represents random variable 𝑋!

§ If 𝑨 ⊆ 𝑽, then 𝑋𝑨 ≔ {𝑋!: 𝑖 ∈ 𝑨}

§ Edges denote relationships between pairs of variables 
(we will make this more precise)
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§ We can connect a distribution with density 𝑓 to a DAG in the following way: 
§ We always have:

𝑓 𝑥#, … , 𝑥$ = 𝑓 𝑥# 𝑓 𝑥% 𝑥# …𝑓 𝑥$ 𝑥#, … 𝑥$&#

§ A set of variables 𝑋'((*) is said to be Markovian parents of 𝑋* if it is a minimal 
subset of {𝑋#, …𝑋*&#} such that 𝑓 𝑥* 𝑥#, … , 𝑥*&# = 𝑓 𝑥* 𝑥'( *
§ Note: Markovian parents depend on the chosen ordering of the variables
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§ We always have:
𝑓 𝑥#, … , 𝑥$ = 𝑓 𝑥# 𝑓 𝑥% 𝑥# …𝑓(𝑥$|𝑥#, … 𝑥$&#)

§ A set of variables 𝑋'((*) is said to be Markovian parents of 𝑋* if it is a minimal 
subset of {𝑋#, …𝑋*&#} such that 𝑓 𝑥* 𝑥#, … , 𝑥*&# = 𝑓 𝑥* 𝑥'( *

§ Then 

𝑓 𝑥#, … , 𝑥$ =F
*,#

$
𝑓(𝑥*|𝑥'( * )

§ We can draw a DAG accordingly
§ The distribution is said to factorize according to this DAG
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§ A distribution can factorize according to several DAGs
§ Every distribution factorizes according to a full DAG 

§ Note: there are p! possibilities

§ Sometimes a distribution factorizes according to a sparse DAG
§ I.e., a DAG with few edges 
§ E.g. first-order Markov chain:

§ 𝑓 𝑥!, … , 𝑥" = 𝑓 𝑥! 𝑓 𝑥# 𝑥! …𝑓 𝑥" 𝑥!, … , 𝑥"$! = 𝑓 𝑥! 𝑓 𝑥# 𝑥! …𝑓(𝑥"|𝑥"$!)
§ DAG: 1 → 2 → ⋯ → 𝑝
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§ A DAG model or Bayesian network is a combination (𝐺, 𝑃), where 𝐺 is a DAG 
and 𝑃 is a distribution that factorizes according to 𝐺

§ DAG models can be used for various purposes:  
§ Estimating the joint density from low order conditional densities
§ Reading off conditional independencies from the DAG
§ Probabilistic reasoning (expert systems)
§ Causal inference 
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§ Estimating the joint density of many variables is generally difficult
§ Example: The joint distribution of 𝑝 binary variables requires 2$ − 1 parameters

§ But if you know that the distribution factorizes according to a DAG, then you 
only need to estimate 𝑓 𝑥! 𝑥'((!)) for 𝑖 = 1,… , 𝑝

§ If the parent sets are small, this means we only need to estimate low order 
conditional densities
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§ A DAG model or Bayesian network is a combination (𝐺, 𝑃), where 𝐺 is a DAG 
and 𝑃 is a distribution that factorizes according to 𝐺

§ DAG models can be used for various purposes:  
§ Estimating the joint density from low order conditional densities
§ Reading off conditional independencies from the DAG
§ Probabilistic reasoning (expert systems)
§ Causal inference 
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§ First-order Markov models: the future is independent of the past given the 
present 

1 → 2 → ⋯ → 𝑡 − 1 → 𝑡 → 𝑡 + 1

𝑋89# ⫫ {𝑋8&#,𝑋8&%, … , 𝑋#} | 𝑋8

§ In DAG models, we have a similar (local) Markov property
§ Let 𝑺 be any collection of nodes. Then:

𝑋𝑺 ⫫ 𝑋;<;=>?@ 𝑺 \'( 𝑺 | 𝑋'((𝑺)
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§ Take 𝑺 = yellow teeth and apply the local Markov property
§ Then:

§ pa yellow teeth = smoking
§ nondesc yellow teeth = {smoking, tar, cancer, asbestos}

§ Hence, yellow teeth ⫫ {tar, cancer, asbestos} | smoking in any distribution that 
factorizes according to this DAG
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§ Is tar ⫫ asbestos | cancer ?
§ The local Markov property cannot be used to read off arbitrary conditional 

(in)dependencies
§ For this we have d-separation
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§ Need new terminology:
§ A non-endpoint node 𝑖 is a collider on a path if the path contains → 𝑖 ← (arrows collide at 𝑖)
§ Otherwise, it is a non-collider on the path

§ Is 4 a collider in the given graph? 
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§ A path between 𝑖 to 𝑗 is blocked by a set 𝑺 (not containing 𝑖 or 𝑗) if at least one 
of the following holds:
§ There is a non-collider on the path that is in 𝑺; or
§ There is a collider on the path such that neither this collider nor any descendants are in 𝑺

§ A path that is not blocked is active

§ If all paths between 𝑖 ∈ 𝑨 and 𝑗 ∈ 𝑩 are blocked by 𝑺, then 𝑨 and 𝑩 are d-
separated by 𝑺. Otherwise they are d-connected given 𝑺.

§ Denote d-separation by ⟘
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§ Definition: 
A distribution 𝑃 with density 𝑝 satisfies the global Markov property with respect 
to a DAG 𝐺 if:

𝑨 and 𝑩 are d-separated by 𝑺 in 𝐺 ⇒ 𝑋𝑨 ⫫ 𝑋𝑩| 𝑋𝑺 in 𝑃

§ Theorem (Pearl, 1988): 
A distribution 𝑃 with density 𝑝 satisfies the global Markov property with respect 
to 𝐺 if and only if 𝑝 factorizes according to 𝐺.
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§ Given a DAG 𝐺 = (𝑽, 𝑬), a distribution 𝑃 on 𝑋𝑽 is said to be faithful with 
respect to 𝐺 if for all pairwise disjoint subsets 𝑨,𝑩 and 𝑺 of 𝑽:

𝑋𝑨 ⫫ 𝑋𝑩|𝑋𝑺 in 𝑃 ⇒ 𝑨 and 𝑩 are d-separated by 𝑺 in 𝐺

Faithfulness
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Example

X Z Y

X Z Y

X Z Y

X Z Y

𝑋 ⊥ 𝑌|𝑍 e.g. fire → smoke → alarm

𝑋 ⊥ 𝑌|𝑍 e.g. shoe size ← age of child → reading skills

𝑋 ⊥ 𝑌|𝑍 e.g. talent → celebrity ← beauty
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§ A DAG model or Bayesian network is a combination (𝐺, 𝑃), where 𝐺 is a DAG 
and 𝑃 is a distribution that factorizes according to 𝐺

§ DAG models can be used for various purposes:  
§ Estimating the joint density from low order conditional densities
§ Reading off conditional independencies from the DAG
§ Probabilistic reasoning (expert systems)
§ Causal inference 
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§ Conditional probabilities are rather counterintuitive for many people
§ DAGs allow us to obtain conditional probabilities efficiently, using a “message 

passing” algorithm
§ See R script 02_graphical_models.R
§ We won’t discuss the details behind these algorithms
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Discussion

Any comments or questions?

We may not always find an answer, and since we’re not very familiar with causality, we will need to dedicate more time to

this topic.

Yao Zhang (EECS @ NBU) Causality Nov 26, 2025 28 / 28


