Causality

Talk 2: Directed acyclic graph (DAG) models

Yao Zhang

Intelligent Information Processing Research Group,
Faculty of Electrical Engineering and Computer Science,
Ningbo University

Note: The following slides are primarily adapted from the course materials 1.

Nov 26, 2025

Yao Zhang (EECS @ NBU)

Directed acyclic graph (DAG) models

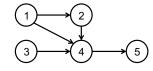
Causality Christina Heinze-Deml Spring 2021

Today

- Graph terminology
- Directed acyclic graph (DAG) models
- Markov properties
- d-separation

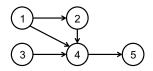
3/28

- A graph G = (V, E) consists of vertices (nodes) V and edges E
- There is at most one edge between every ordered pair of vertices

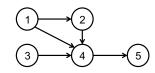


- Two vertices are adjacent if there is an edge between them
- If all edges are directed $(i \rightarrow j)$, the graph is called directed
- A path between i and j is a sequence of distinct vertices (i, ..., j) such that successive vertices are adjacent
- A directed path from i to j is a path between i and j where all edges are pointing towards j, i.e., $i \rightarrow \cdots \rightarrow j$

- A cycle is a path (i, j, ..., k) plus an edge between k and i
- A directed cycle is a directed path (i, j, ..., k) from i to k, plus an edge k → i
- A directed acyclic graph (DAG) is a directed graph without directed cycles



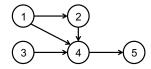
- If i → j, then i is a parent of j, and j is a child of i
- If there is a directed path from i to j, then i is an ancestor of j and j is a descendant of i



- Each vertex is also an ancestor and descendant of itself
- The sets of parents, children, descendants and ancestors of i in G are denoted by pa(i, G), ch(i, G), desc(i, G), an(i, G)
- We omit G if the graph is clear from the context

6/28

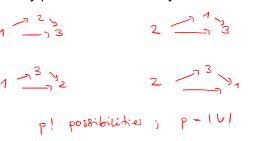
- We write sets of vertices in bold face
- The previous definitions are applied disjunctively to sets
 - Example: $pa(S) = \bigcup_{k \in S} pa(k)$

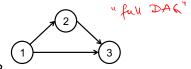


• The non-descendants of S are the complement of desc(S):

$$nondesc(S) := V \setminus desc(S)$$

- We call G fully connected if all pairs of nodes are adjacent
- How many possibilities for a fully connected DAG?

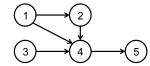




21

DAGs and random variables

- Each vertex represents a random variable: vertex i represents random variable X_i
- If $A \subseteq V$, then $X_A := \{X_i : i \in A\}$



 Edges denote relationships between pairs of variables (we will make this more precise)

9/28

Factorization of the joint density

- We can connect a distribution with density f to a DAG in the following way:
- We always have:

$$f(x_1, ..., x_p) = f(x_1) f(x_2 | x_1) ... f(x_p | x_1, ... x_{p-1})$$
 "chain rule"

- A set of variables $X_{pa(j)}$ is said to be Markovian parents of X_j if it is a minimal subset of $\{X_1, ..., X_{j-1}\}$ such that $f(x_j|x_1, ..., x_{j-1}) = f(x_j|x_{pa(j)})$
 - Note: Markovian parents depend on the chosen ordering of the variables

27

Factorization of the joint density

We always have:

$$f(x_1, ..., x_p) = f(x_1)f(x_2|x_1) ... f(x_p|x_1, ... x_{p-1})$$

- A set of variables $X_{pa(j)}$ is said to be Markovian parents of X_i if it is a minimal subset of $\{X_1, ..., X_{i-1}\}$ such that $f(x_i|x_1, ..., x_{i-1}) = f(x_i|x_{na(i)})$
- Then

- We can draw a DAG accordingly
- The distribution is said to factorize according to this DAG

Notes week 2 - I

Consider (X1, X2, X3) and suppose that X1 11 X2 | X2

is the only (conditional) independence:

$$f(x_1 | x_2, x_3) = f(x_1 | x_2)$$

 $f(x_3 | x_1, x_2) = f(x_3 | x_2)$

Then
$$f(x_1, x_2, x_3) = f(x_1) f(x_2 | x_1) f(x_3 | x_1, x_2)$$

$$= f(x_1) f(x_2 | x_2) f(x_3 | x_2)$$
DAG: $1 \rightarrow 2 \rightarrow 3$

Or
$$f(x_3, x_2, x_1) = f(x_3) f(x_2 | x_3) f(x_1 | x_2, x_3)$$

$$= f(x_3) f(x_2 | x_2) f(x_1 | x_2)$$

$$2 AG: 3 \rightarrow 2 \rightarrow 1$$

Or
$$f(x_1, y_2, y_2) = f(x_1) f(x_2) + f(x_2) f(x_2) + f(x_3)$$

DAG: $1 \longrightarrow 3 \longrightarrow 2$

Note: Narkorian farents depend on the chosen ordering of the variables

Factorization of the joint density

- A distribution can factorize according to several DAGs
- Every distribution factorizes according to a full DAG
 - Note: there are p! possibilities
- Sometimes a distribution factorizes according to a sparse DAG
 - I.e., a DAG with few edges
 - E.g. first-order Markov chain:
 - $f(x_1, ..., x_p) = f(x_1)f(x_2|x_1) ... f(x_p|x_1, ..., x_{p-1}) = f(x_1)f(x_2|x_1) ... f(x_p|x_{p-1})$
 - DAG: $1 \rightarrow 2 \rightarrow \cdots \rightarrow p$

31

DAG models

- A DAG model or Bayesian network is a combination (G, P), where G is a DAG and P is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Estimating the joint density

- Estimating the joint density of many variables is generally difficult
 - Example: The joint distribution of p binary variables requires $2^p 1$ parameters
- But if you know that the distribution factorizes according to a DAG, then you only need to estimate $f(x_i|x_{pa(i)})$ for i = 1, ..., p
- If the parent sets are small, this means we only need to estimate low order conditional densities

DAG models

- A DAG model or Bayesian network is a combination (G, P), where G is a DAG and P is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

Reading off conditional independencies: Markov property

First-order Markov models: the future is independent of the past given the present

$$1 \rightarrow 2 \rightarrow \cdots \rightarrow (t-1) \rightarrow t \rightarrow (t+1)$$

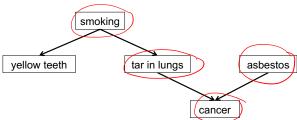
$$X_{t+1} \perp \{X_{t-1}, X_{t-2}, \dots, X_1\} \mid X_t$$

- In DAG models, we have a similar (local) Markov property
- Let S be any collection of nodes. Then:

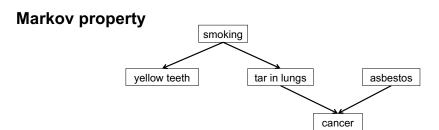
$$X_{\mathcal{S}} \perp \!\!\!\perp X_{\operatorname{nondesc}(\mathcal{S}) \setminus \operatorname{pa}(\mathcal{S})} \mid X_{\operatorname{pa}(\mathcal{S})}$$

17/28

Example



- Take S = {yellow teeth} and apply the local Markov property
- Then:
 - pa(yellow teeth) = {smoking}
 - nondesc(yellow teeth) = {smoking, tar, cancer, asbestos}
- Hence, yellow teeth # {tar, cancer, asbestos} | smoking in any distribution that factorizes according to this DAG



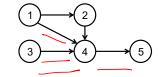
- Is tar ⊥ asbestos | cancer ?
- The local Markov property cannot be used to read off arbitrary conditional (in)dependencies
 - For this we have d-separation

41

- Need new terminology:
 - A non-endpoint node i is a collider on a path if the path contains $\rightarrow i \leftarrow$ (arrows collide at i)
 - Otherwise, it is a non-collider on the path
- - It is a collider on the path (3,4,1)

 4 is a non-collider (3,4,5)

 => collider status is always
 relative to a path.!



d-separation

- A path between i to j is blocked by a set S (not containing i or j) if at least one of the following holds:
 - There is a non-collider on the path that is in S; or
 - There is a collider on the path such that neither this collider nor any descendants are in S
- A path that is not blocked is active
- If all paths between $i \in A$ and $j \in B$ are blocked by S, then A and B are d-separated by S. Otherwise they are d-connected given S.
- Denote d-separation by ⊥

Global Markov property

Definition:

A distribution P with density p satisfies the global Markov property with respect to a DAG G if:

A and **B** are d-separated by **S** in $G \Rightarrow X_A \perp \!\!\! \perp X_B \mid X_S$ in P

Theorem (Pearl, 1988):

A distribution P with density p satisfies the global Markov property with respect to G if and only if p factorizes according to G.

Nov 26, 2025

Notes week 2 - II

- A dishibution P is said to satisfy
 - * the global Narkov property wet 6 if

 X2 IL X3 (X4

 and

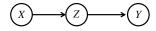
 X4 IL X4 (X2, X3
- * the Karker factoritation property wit 6 if $p(x_1, x_2, x_3, x_4) = p(x_3) p(x_1|X_3) p(x_2|x_1) p(x_4|X_2, x_3)$

Faithfulness

• Given a DAG G = (V, E), a distribution P on X_V is said to be faithful with respect to G if for all pairwise disjoint subsets A, B and S of V:

 $X_A \perp \!\!\!\perp X_B | X_S$ in $P \Rightarrow A$ and B are d-separated by S in G

Example



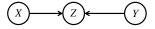
 $X \perp Y|Z$

e.g. fire \rightarrow smoke \rightarrow alarm



 $X \perp Y|Z$

e.g. shoe size ← age of child → reading skills



 $X \not\perp Y | Z$

e.g. talent → celebrity ← beauty

DAG models

- A DAG model or Bayesian network is a combination (G, P), where G is a DAG and P is a distribution that factorizes according to G
- DAG models can be used for various purposes:
 - Estimating the joint density from low order conditional densities
 - Reading off conditional independencies from the DAG
 - Probabilistic reasoning (expert systems)
 - Causal inference

26 / 28

Probabilistic reasoning

- Conditional probabilities are rather counterintuitive for many people
- DAGs allow us to obtain conditional probabilities efficiently, using a "message passing" algorithm
 - See R script 02 graphical models.R
 - We won't discuss the details behind these algorithms

Discussion

Any comments or questions?

We may not always find an answer, and since we're not very familiar with causality, we will need to dedicate more time to this topic.