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Causal Inference

Causal Inference the science of why. They invented the language of Causality
roughly 30 years ago.
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Causal Inference
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Tentative course outline

Background and frameworks

Methods using the known causal structure
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Tentative course outline

= Background and framework
= Controlled experiments vs. observational studies
= Simpson’s paradox
= Graphical models
= Causal graphical models
= Structural equation models
= Interventions
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Tentative course outline

= Methods using the known causal structure
= Covariate adjustment
= Instrumental variables
= Counterfactuals

Y = fy(parents(Y), noisey)
X1 = fi(parents(X1), noise; )
@/‘>® \ X i

= fo(parents(X2), noises)

X, = fp(parents(Xp), noise,)
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Tentative course outline

= Learning the causal structure
= Constraint-based methods
= Score-based methods
= |nvariant causal prediction

L

210 1 2

01 2 3 4
M

02468
L

(EECS @ NBU) C ity : 10 /15



Observational studies

= Example:
= Smoking is associated with disease
= But does it cause diseases?
= Cannot force people to smoke
= Potential confounders: Gender, age, ...

= What to do?
= Compare similar subgroups
= i.e. males who smoke vs. males who don’t
= “Controlling for confounders”
= What should we control for?
= Covered in detail later

(EECS @ NBU) Causality Nov 26



Controlled experiments vs. observational studies

STUDIES

v N
CoNTZoLS NO ColNTEoLS

VA >
coN Tev\(?oE_MUé miToRLCA L

;T
§ >

CoNTro LD BXPoRAMENT 0RsTEVA-TIONAL KTuma

L/, \) = i) course? SW
£ANDONVZED NOT RANDO MAZED coad  tltents basedl o
‘ N oksarvoRNoral date
DEURLE OTHER

ELIND

(S Solcl Stardasdl %( comsel «;«f}mm )

Yao Zhang (EECS @ NBU) Causality Nov 26, 2025



Simpson’s paradox

- Simpson (1951), in an example similar to this one:

Male 50/100 150/500 “The treatment can hardly be rejected as valueless
Female 50/500 0/100 to the race when it is beneficial when applied to
males and to females.”

Total 100/600 150/600 -+
= conbrol (e gurdf uie o hreedmoud
Vv pressure. L'E’P); e 9-03,
A0, SN _
|| Treatment | Placebo |
‘m 50/100 150/500 Simpson (1951), in an example similar to this one:
“..., yet it is the combined table which provides
50/500 07100 what we would call the sensible answer...”
Total 100/600 150/600 - don't arirel (%7( gp( don'+ we 4,
'}\-@c\ww

EECS @ NBU) g ity Nov 26, 2025



Simpson’s paradox and causal diagrams

= Same numbers, different conclusions....
= Must use additional information: “story behind the data”, causal assumptions

= Consider total causal effect of treatment on recovery
= Possible scenarios:

gender / BP\
treatment —— recovery treatment —— recovery Or.....
gender is a confounder; BP is an intermediate variable;

control for gender don’t control for BP




Discussion

Any comments or questions?

We may not always find an answer, and since we’re not very familiar with causality, we will need to dedicate more time to

this topic.
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