
General Topology
Eugene Lerman

1. metric spaces, open balls, open sets, notion of a topology, differentmetrics may define the
same topology, some topologies cannot come from metrics

2. closed sets, epsilon-delta definition of continuity in metric spaces, continuity of functions
between topological spaces, subspace topology, bases

3. Composites of continuous maps are continuous, subbases, topology generated by a subset of
the power set, Cartesian products of sets

4. Products of pairs of topological spaces, homeomorphism, not every continuous bijection is a
homeomorphism, uniqueness of product topology

5. Products of families of topological spaces and their universal properties, box topology, open
and closed maps, coproducts

6. Quotient topology, limit points

7. Closure of a subset, limit points of a subset, convergence of sequences, limits of sequences lie
in the closure but not conversely, limits need not be unique

8. Interior of a subset, boundary. Interaction of closure, interior, boundary and complements.
First countable topological spaces

9. Preorders, directed sets, nets, convergence of nets, points in the closure and limits of nets,
continuity and convergence of nets, being Hausdorff and uniqueness of limits of nets

10. Subnets, subnet of a convergent net. Compactness: images of compact sets are compact,
closed subsets of compact sets are compact, compact subsets of Hausdorff spaces are closed,
if f: X → Y is a continuous bijection, X compact, Y Hausdorff, then f is a homeomorphism

11. Bolzano-Weirstrass, tube lemma, products of two compact spaces are compact, a subset of
Rn is compact iff it is closed and bounded; X compact, X → R continuous ⇒ f achieves max
and min on X

12. Finite Intersection Property (FIP) and compactness in terms of FIP, cluster/limit/accumilation
point of a net, a net has a cluster point iff it has a convergent subnet, a space is compact iff
a net has a cluster point iff a net has a convergent subnet

13. Tychonoff’s theorem: a product of compact spaces is compact. Lebesque lemma
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14. A metric space is compact iff every sequence has a convergent subsequence iff the space is
complete and totally bounded. Separation axioms

15. A Hausdorff space X is regular iff for every x in X any nbd N of x contains a closed nbd of x.
There is a Hausdorff space which is not regular. There are also regular spaces that are not
normal. Metric spaces are normal

16. Compact Hausdorff spaces are normal, completely regular and Tychonoff spaces. Urysohn’s
lemma

17. [0, 1]N is metrizable. Urysohn’s metrization theorem: second countable completely regular T1

spaces embed in [0, 1]N hence are metrizable

18. 2nd countable + regular ⇒ metrizable, Lindelof spaces, 2nd countable ⇒ Lindelof. Tietze
extension theorem

19. Moore plane is not normal. Local compactness. Manifolds. LCH (locally compact Hausdorff).
2nd countable LCH space is normal and metrizable. Compactifications and 1 point compactifications

20. X has a 1 point compactification ⇔ X is LCH and noncompact. 1 point compactifications
are unique. Proper maps. Continuous maps need not extend to continuous maps on 1 point
compactifications

21. a map f extends to a continuos map of 1-point compactifications ⇔ f is proper. Proper
continuous maps between LCH spaces are closed. Topological groups, continuous group
actions, orbit spaces, proper group actoins

22. Quotients of LCH groups acting on LCH spaces are Hausdorff. Notion of connectedness. [0,1]
is connected. X is connected ⇔ any continuous map from X to any discrete space is constant

23. Connected components of a space are connected and closed. A in X connected and E sits
between A and the closure of A then E is connected. Path connected ⇒ connected but there
are connected spaces that are not path connected

24. Path components. Connected and locally path connected spaces are connected. Manifolds
are locally path connected. Notions of partition of unity and paracompactness. A compact
Hausdorff manifold may be embedded in some RN

25. sigma-compactness. Locally compact sigma-compact Hausdorff spaces is paracompact. Paracompact
spaces are normal

26. Existence of partitions of 1 on a paracompact space. A manifold M is paracompact iff M is
a disjoint union of Hausdorff second countable manifolds
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27. Homotopy; homotopy classes of maps compose. Notion of a categroy

28. Isomorphisms in a category. Homotopy equivalence of spaces. Functors. Groupoids

29. Construction of the fundamental groupoid of a space. Fundamental groups. Fundamental
groupoid of a convex subset of Rn . Pair groupoid

30. The functor Π from spaces to groupoids. Natural transformations. Homotopies give rise to
natural transformations

31. Natural isomorphisms. Equivalent categories. Full, faithful and essentially surjective functors.
Equivalences of categories are full, faithful and essentially surjective

32. A fully faithful and essentially surjective functor is part of the equivalences of categories.
Pushouts

33. Uniqueness of pushouts. A space is a pushout of its cover. Statement of Brown-Seifert-van
Kampen: fundamental groupoid functor takes pushouts in Top to pushouts in Groupoid

34. Computation of the fundamental groupoid of the circle and the fundamental group of the
circle

35. Proof of B-S-v K theorem. Free products of groups

36. Pushouts in the category of groups = amalgamated free products. Proof of Seifert - van
Kampen from B.-S. v. K

37. Degree of a map from the circle to the circle. Fundamental Theorem of Algebra. Definition
of a compact-open topology

38. compact-open topology

39. uniform convergence on compact sets and compact-open topology

40. Stone-Čech compactification
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