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Unsupervised Learning for Salient Object Detection
via Minimization of Bilinear Factor Matrix Norm

Min Li , Yao Zhang, Mingqing Xiao , Senior Member, IEEE, Weiqiang Zhang, and Xiaoli Sun

Abstract— Saliency detection is an important but challenging
task in the study of computer vision. In this article, we develop a
new unsupervised learning approach for the saliency detection by
an intrinsic regularization model, in which the Schatten-2/3 norm
is integrated with the nonconvex sparse l2/3 norm. The l2/3-norm
is shown to be capable of detecting consistent values among
sparse foreground by using image geometrical structure and
feature similarity, while the Schatten-2/3 norm can capture the
lower rank of background by matrix factorization. To improve
effective performance of separation for Schatten-2/3-norm and
l2/3-norm, a Laplacian regularization is adopted to the fore-
ground for the smoothness. The proposed model essentially
converts the required nonconvex optimization problem into the
convex one, conducted by splitting the objective function based on
singular value decomposition on one much smaller factor matrix
and then optimized by using the alternating direction method
of the multiplier. The convergence of the proposed algorithm is
discussed in detail. Extensive experiments on three benchmark
datasets demonstrate that our unsupervised learning approach
is very competitive and appears to be more consistent across
various salient objects than the current existing approaches.

Index Terms— Alternating direction method of multiplier
(ADMM), l2/3-norm, low-rank matrix, matrix decomposition,
salient object detection, Schatten-q-norm.

I. INTRODUCTION

SALIENT object detection is one of the fundamental
tasks in the study of computer vision, aiming to localize

and segment the foreground objects from the background.
It appears in a wide range of applications, such as in the study
of psychology, neurobiology, brain bionics, medical image,
and so on.
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During past decades, many different approaches for salient
object detection have been proposed in order to improve
detection effectiveness. Among them, the deep learning-based
method [1]–[5], the bottom-up method [6]–[11], the top-down
method [1], [12], and the method by combining bottom-up
cues with top-down priors [13]–[20] are the most commonly
seen in the literature.

In this article, we present a new approach by formulating the
low-rank and sparse decomposition for salient object detection.
More specifically, let image X be represented as a combination
of the background Z and the foreground E . The background
Z often tends to be highly redundant and lies in a low-
dimensional subspace. Hence, the background Z usually is
characterized by a low-rank feature matrix. The foreground E
is a distinctive salient object that is often sparse and deviates
from the low-rank subspace. Therefore, the foreground E can
be represented by a sparse sensory matrix. Mathematically,
this problem generally can be formulated as (see [14])

min
Z,E

rank(Z)+ λ�E�0 s.t. X = Z + E (1)

where �·�0 denotes the l0-norm by convention, which repre-
sents the number of nonzero matrix entries, and λ is positive
regularization parameter. However, model (1) by nature is
a nonconvex NP-hard problem. Consequently, this results in
the emergence of many relaxation models in which both
nonconvex terms are replaced by their convex envelopes (i.e.,
the nuclear norm �·�∗ and the l1-norm, respectively) so that
the minimization problem becomes computationally feasible.

The drawback for adopting the convex envelope as relax-
ation is the existence of a gap between the rank function/sparse
metric and its convex envelope, which may result in the
solution being undesirable [20]–[23]. As shown in Fig. 1, for
example, some common issues by convex approaches can be
seen, such as the backgrounds appear to be cluttered and the
foreground targets show to be scattered and incomplete (as
shown in ULR1 and SLR2 of Fig. 1), or in some other cases,
the salient target contains the entire image because the loss of
the sparse property (as shown in SMD3 and WLRR4 of Fig. 1).
While our proposed nonconvex approach (as shown ours
in Fig. 1) in this article provides a desirable solution in these
cases. Therefore, compared with the nonconvex approach,

1Shen and Wu [15] proposed a unified low-rank matrix recovery, which is
referred to as ULR for short.

2Zou et al. [17] presented the segmentation guided low-rank method for the
matrix recovery, which is referred to as SLR for short.

3Peng et al. [18] gave a structured matrix decomposition approach, which
is referred to as SMD for short.

4Tang et al. [19] proposed the weighted low-rank matrix recovery, which is
referred to as WLRR for short.
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Fig. 1. Examples of salient object detection from typical existing models,
compared with ours in this article. GT stands for the ground truth. The
approaches under the convex framework appear to be problematic.

the convex relaxation setting for the low-rank approximation
appears its limitation in capturing the salient object from
its background effectively and often generates undesirable
outcomes.

Besides, many numerical algorithms for the low-rank-based
models are associated with high-computational complexity
since they are based on singular value decomposition (SVD)
on the full matrix [24]. This leads to a low efficiency for
handling very large-scale datasets, which often is undesirable
in real-time applications. To address the issue in terms of
effectiveness and efficiency for salient object detection, in this
article, we propose the unsupervised learning approach for
the saliency detection, in which the nonconvex Schatten-
2/3 norm as the regularization is used to retain the back-
ground detail, and the nonconvex l2/3-norm is exploited
to capture the sparsity of foreground object. The reason
for choosing these two particular norms is elaborated on
next.

Comparing with the widely used nuclear norm, the Schatten-
2/3 norm, which is equivalent to the l2/3-norm on singular
values, is better in capturing the rank function structure since
the q = 2/3 value scales each singular value accordingly,
maintaining the convexity in its factors. This adopted regular-
ization, as shown in this article, can make the background
adequately lie in its corresponding subspace, allowing the
low-rank approximation of the background and providing
a cleaner background image than other existing low-rank
approaches.

Regarding the l1-norm, the nonconvex l2/3-norm is tractable
in the sparse approximation than the unfeasible l0-norm. And
this setting appears to be effective in sharing the desired
consistency within the same image patches due to taking into
account both image geometrical structure and feature simi-
larity among image patches. Moreover, from the experimental
perspective, the similar appearance between the salient objects
and the background could affect the accuracy of detection.
To identify the difference between the foreground and the
background, we adopt the Laplacian term, as shown in [18],
that can promote the object completeness as much as possible
(as shown in Fig. 1).

In addition, the unified surrogate for Schatten-2/3 quasi-
norm can be represented as Frobenius/nuclear hybrid norm,
and the nonconvex l2/3 norm permits an analytic solution for
the objective function by searching the roots of a quadratic
polynomial as other problems [25], [26]. Therefore, the factor-
ization formulation for Schatten-2/3 quasi-norm requires far
less memory, only requiring to compute the SVD on a much

small factored matrix, as contrary to the full matrix in the other
low-rank-based methods. Most recently, the bilinear factor
matrix norm in literature is adopted for image inpainting,
alignment, data completion, and recovery [24], [27], [28]. This
article is the first study to apply Schatten-2/3 and l2/3 norms to
the salient object detection problem, which requires a different
but subtle study, in particular, for the optimization process.

The remainder of this article is organized as follows:
Section II provides some preliminary introduction and some
recent related works. The proposed framework is illustrated in
Section III. Section IV develops the corresponding minimiza-
tion algorithm. The detailed analysis of both convergence and
complexity of our proposed algorithm is given in Section V.
Extensive experiment results are provided in Section VI. This
article ends with concluding remarks in Section VII.

II. RELATED APPROACHES

Salient object detection has been extensively studied during
recent years. Due to the inherent nature, low-rank represen-
tation (referred to as LRR for short) [29] is the most typical
method, which uses a low-rank coefficient matrix multiplied
by a dictionary to represent the background and utilize l2,1

norm to characterize sparse components (i.e., the salient
objects). The formulation is given by

min
Z,E
�Z�∗ + λ�E�21 s.t. X = X Z + E (2)

where X is the input image, X Z represents the background
detail, which can be reconstructed independently, Z is the set
of reconstruction coefficients, E is the salient objects, �·�∗ is
the nuclear norm, and �·�21 is used to characterize the sparsity
of the columns of E .

The single LRR approach, however, is not ideal in modeling
visual multiple features, as shown in the literature, because of
its simple structure. Thus, by integrating multifeature with top-
down priors, LRR is generalized as a multitask sparsity pursuit
method (referred to as MSP for short) [16]. The approach is
formulated by combining multiple features as

min
Z1,··· ,Z J

E1,··· ,E J

J∑
i=1

�Zi�∗ + λ�E�21

s.t. Xi = Xi Zi + Ei , i = 1, . . . , J. (3)

However, the norm �·�21 of the sparse matrix E does
not match nuclear norm well due to the absence of spatial
relations and the feature affinities, leading to the generation
of inaccurate saliency object. Hence, in order to promote the
ULR to absorb the low-level features and to generate the high-
level guidance, the following setting is proposed [15]:

min
Z,E
||Z ||∗ + λ||E ||1 s.t. X = Z + E . (4)

Experimentally, the ULR approach results in the nonuni-
formly highlighted salient object due to the lack of spatial
relations and feature similarities of patches. To address this
issue, SLR developed an unsupervised model by leveraging
the low-rank matrix recovery and the segmentation priors [17].
SMD established a matrix decomposition approach based on
a tree-structured sparsity and a Laplacian regularization [18].
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Fig. 2. Flowchart of the proposed approach, where background is charac-
terized by the Schatten-2/3 quasi-norm and foreground is approximated by
l2/3-norm.

As an extension of the SMD model, WLRR constructed
a weighted low-rank regularization based on the high-level
background prior map [19].

Although many improvements have been achieved in terms
of the existing models, the background detail is mainly charac-
terized by the nuclear norm. It is a common consensus that the
minimization based on the nuclear norm usually over shrinks
the background features when it is used to approximate the
rank function. On the other hand, l1-norm for foreground over
penalizes large entries of vector and leads to a biased solution,
whereas the structured-tree sparse constraint on fine feature in
SMD destroys the spatial relationship of the salient object.
Therefore, to address these issues, the nonconvex Schatten-
2/3 quasi-norm and the l2/3-norm, respectively, are adopted
for background and foreground in this article. The advantages
of this proposed approach will be illustrated in detail later.
A flowchart of the proposed model can be shown in Fig. 2.

III. UNSUPERVISED DECOMPOSITION MODEL VIA

MINIMIZATION OF BILINEAR FACTOR MATRIX NORM

A. Formulation of Unsupervised Decomposition Model

Given an input image, we conduct the oversegmentation
and extract the basic features. Consequently, a feature matrix
X can be decomposed into redundancy part L and spare
one S and can be characterized with different regularizations
respectively. Specifically, the optimization problem for the
salient object detection can be formulated as the following
general framework:

min
L ,S

f (L)+ λg(S)+ γ h(L, S)

s.t. X = L + S (5)

where f (L) is the spectral regularization for background L
which ensures low-rank, and g(S) is a sparse constraint.
h(L, S) is an interactive regularization term which is intro-
duced to improve performance when clutter appears in the
background. And λ, γ are positive parameters that tradeoff
among these three terms.

B. Schatten-q Quasi-Norm for Background Detail

It is known that background, in general, is located in a low-
dimensional subspace, lying in the given structural datasets;
thus, how to find the suitable rank to capture the background
is the crux of this problem. Technically, the rank function can

be relaxed by its convex envelope [13]–[19], [29], i.e., nuclear
norm, which is the sum of singular values, and also is the
Schatten-1 norm (or the trace norm) [24]. Unfortunately, there
is always a gap between the nuclear norm and the (nonconvex)
rank function,5 which causes to over-penalize rank compo-
nents of a low-rank matrix and results in a deviation from
the original solution. Therefore, many new strategies based
on nonconvex rank relaxation have been explored to fill this
gap (see, [21], [24], [27], [28], [30], [31]).

Among them, the nonconvex Schatten-q prenorm can reduce
the gap between rank function (q = 0) and nuclear norm
(q = 1) by setting 0 < q < 1, which has superiority
in providing an increasingly tight approximation to low-rank
matrix requiring only the weaker restricted isometry property.
Since the background is dominated by a few factors, which
always shows low-rank property. Thereupon, we propose this
flexible nonconvex regularization for the background, which
can effectively describe the lower rank structure of back-
ground. To be specific, the Schatten-q norm of a matrix
L ∈ R

m×n is defined as

||L||Sq =
⎛
⎝min{m,n}∑

j=1

σ
q
j (L)

⎞
⎠

1/q

(6)

where σ j (L) is the j th singular value of L.
Obviously, the nonconvex Schatten-q norm (0 < q < 1) is

in essence the lq-norm on singular values. And the common
forms of Schatten-q norm in existing models are summarized
in Table I for q ∈ [0, 2]. To reduce computation complexity
and better handle large-scale tasks of computer vision, matrix
factorization has been proposed to solve the models based on
Schatten-q norm [24], [27], [28], [31]. Especially, the unified
surrogates for the Schatten-q norm can be characterized as
follows.

Lemma 1 (Bi-Schatten-q Norm Surrogate [28]): Given
matrices U ∈ R

m×d, V ∈ R
n×d, and L ∈ R

m×n with
rank(L) = r ≤ d, the following equality holds:

1

q
||L||qSq

= min
U,V :L=U V T

1

q1
||U ||q1

Sq1
+ 1

q2
||V ||q2

Sq2
(7)

where q, q1, and q2 > 0, which satisfy (1/q) = (1/q1) +
(1/q2).

To the best of our knowledge, Schatten-1/2 norm and
Schatten-2/3 norm [24], [27], [28], [31] have been recently
used widely in matrix completion and robust principal com-
ponent analysis, respectively. Here, we focus on the specific
values of q = 2/3 due to its decomposable formulation and
better experimental performance for the background. In fact,
the Schatten-2/3 norm is, in essence, equivalent to Frobe-
nius/nuclear hybrid norm. Hence, it follows from Lemma 1
that the Frobenius/nuclear hybrid norm can be described as
the following theorem.

5The rank of a matrix is to count the number of nonzero singular values.
Low-rank is equivalent to seeking the sparsity of the singular values of a
matrix. Thus, rank minimization is an important regularization for a low-rank
solution. However, rank minimization is hard. The common numerical strategy
is to find the nuclear norm as a substitute, which in fact sums the amplitude
of nonvanishing singular values. Thereupon, a gap between the nuclear norm
and the rank function emerges naturally.
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TABLE I

COMMON FORMS FOR SCHATTEN-q QUASI-NORM
AND lp -NORM WHEN p, q ∈ [0, 2]

Fig. 3. Comparison results between the nuclear norm commonly used for
background in the literature and the Schatten-2/3 norm used in this article.

Lemma 2 (Frobenius/Nuclear [24], [28]): Given
L ∈ R

m×n with rank (L) = r ≤ d, L can be factorized into
two much smaller matrices U ∈ R

m×d and V ∈ R
n×d such

that L = U V T . The Frobenius/nuclear norm of L can be
denoted as

||L||F/N = ||L||S2/3 := min
L=U V T

||U ||∗||V ||F

= min
U,V :L=U V T

[
2

3
||U ||∗ + 1

3
||V ||2F

] 3
2

(8)

where �·�∗ is nuclear norm and �·�F is the Frobenius norm.
Based on Lemmas 1 and 2, the nonconvex and nonsmooth

regularization for background is transformed into a convex and
smooth one, which is not only tractable but also feasible for
the required optimization. The factorization formulation (8)
only requires to compute SVD on a much smaller matrix U
as compared with the full matrix L. Fig. 3 gives the intuitive
results from ablation experiments for the background, respec-
tively, in which the second column of images are obtained
by using nuclear norm only and the third column of images
are given via Schatten-2/3 regularization. It is clear that the
decomposed background results of � · �2/3

S2/3
are significantly

better than that of nuclear norm visually.6

C. Nonconvex l2/3 Norm for Foreground and Laplacian
Constraint

It is expected that a valid regularization for the foreground
can extract the complete information from the salient regions.

6To quantitatively highlight that Schatten-2/3 norm can approximate
low-rank more accurately, we calculate the nuclear norm and Schatten-2/3
norm of the background for the second row of images in Fig. 3, respectively.
Suppose that the rank of background is 40, which can be treated as the
representative of low rank. By setting the saliency object to zero, we extract the
background matrix L . The nuclear norm and Schatten-2/3 norm for the first
40 values of SVD of L , respectively, can be denoted as ||L||∗ = 3.769× 104

and ||L||
2
3
2
3
= 3.2 × 103. Thus, we have ||L||∗ − 40 ≈ 3.77 × 104 and

||L||
2
3
2
3
− 40 ≈ 3.2×103. Obviously, 3.2×103 < 3.77×104, which coincides

with our original motivation of choosing Schatten-2/3 norm for background.

Due to being sparse, the foreground usually exhibits a heavy-
tailed distribution, we impose the hyper-Laplacian priors to
the salient part S, i.e., the nonconvex l p norm, which can
maintain the sparse feature of the corresponding matrix more
effectively. Technically, this regularization can be uniformly
formulated in the following form:

g(S) = �S�p
lp
. (9)

In the standard framework, for p ∈ [0, 2], the regularized
term �·�lp

is shown in Table I. Compared with l1-norm,
the nonconvex surrogates listed in Table I give not only a
better but also tractable approximation than the l0 norm. Thus,
the nonconvex l p-norm takes the full advantage of the spatial
contiguity and feature similarity among all image patches so
that they have more accurate and consistent representation.
On the other hand, an analytic solution can be found for the
specific values p = 2/3 by seeking the roots of a quadratic
polynomial [25], [26], and l 2

3
-norm can obtain competitive

performance for decomposition of foreground as verified in
experiments VI. In addition, it has been known that the
corresponding algorithm is more efficient than many existing
algorithms, as shown in [25]. Thus, in this article, we focus
on the nonconvex l2/3 norm detecting the foreground which is
represented by identifying spatially localized sparse residuals.
Fig. 4 gives the comparative examples for sparsity term,
in which the second column of images are obtained by � · �1

and the third column of images are acquired via � · �2/3
l2/3

.

As demonstrated in our experiments later, � · �2/3
l2/3

appears to
be desirable in characterizing the sparsity.

To effectively promote the performance of Schatten-q
norm under cluttered background, the Laplacian regularization
Tr(SMF ST ) is introduced for the salient object S, where a
Laplacian matrix MF consists of an affinity matrix character-
izing the similar features among image patches. This term is
based on the local invariance assumption, which can improve
the consistency of foreground, as shown in Fig. 5.

In summary, the proposed nonconvex model for the salient
object detection can be formulated as

min
L ,S
||L||2/3

S2/3
+ λ||S||2/3

l2/3
+ γ T r

(
SMF ST

)
s.t. X = L + S. (10)

The problem (10) can be solved by various algorithms.
However, most of existing algorithms often rely on iteration
involving SVD, which incurs the largest computational com-
plexity [21], [24], [27], [28]. Therefore, using factorization
formulation (8), the model (10) can be further reformulated as

min
U,V,S

1

3

(
2�U�∗ + �V �2

F

)+ λ�S�2/3
l2/3
+ γ T r

(
SMF ST

)
s.t. X = L + S, L = U V T . (11)

It follows from the model (11) that the norms of bilinear
factor matrix (i.e., �U�∗ and �V�F ) are convex, which cor-
responds to the problem of minimizing norm combination on
two much smaller factor matrices. Obviously, the model (11)
based on factorization has a lower computation cost than the
minimization of (10) by directly computing the SVD on a full
matrix.
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Fig. 4. Comparison results from using the different sparse regularization:
l1-norm and l2/3-norm.

Fig. 5. Comparison of using Laplacian and non-Laplacian.

IV. OPTIMIZATION

In this section, the proposed model (11) can be optimized by
the alternating direction method of multipliers (ADMMs) [32].
To solve (11), we introduce the auxiliary variables to split the
interdependent terms so that they can be solved independently.
Based on that, the problems (11) can be formulated as the
following equivalent form:

min
U,V,S,T,M

1

3

(
2�T �∗ + �V�2

F

)
λ�S�2/3

l2/3
+ γ T r

(
MMF MT

)
s.t. X = L + S, L = U V T , T = U, M = S (12)

where T and M are the corresponding auxiliary variables.
To remove the equality constraints, Lagrange multipli-

ers Y1, Y2, Y3, and Y4 are introduced. Thus, the augmented
Lagrangian function for problem (12) is constructed as

L2/3(U, V , L, S, T, M, Y1, Y2, Y3, Y4, μ)

= 1

3

(
2�T�∗ + �V �2

F

)+ λ�S�2/3
l2/3
+ γ T r

(
MMF MT

)
+�Y1, F−L − S� + 〈

Y2, L − U V T
〉+ �Y3, T −U�

+ �Y4, S − M� + μ

2

(
�F−L − S�2

F +
∥∥L −U V T

∥∥2

F

+�T −U�2
F + �S − M�2

F

)
(13)

where μ > 0 is a penalty parameter. To solve Eq.(13), we seek
the optimal U, V , L, S, T , and M by a suitable iteration
as shown in Algorithm 1. To be specific, we consider the
following subproblems in sequence.

A. Updating U

With respect to U , the corresponding optimization problem
is

arg min
U

∥∥∥∥L − U V T + Y2

μ

∥∥∥∥
2

F

+
∥∥∥∥T−U + Y3

μ

∥∥∥∥
2

F

. (14)

Since (14) is a least squares problem, the optimal solution
can be written as

U∗ =
(

LV + M + Y2V + Y3

μ

)(
V T V + I

)−1
. (15)

B. Updating V

Fixing the other variables, V can be given by

arg min
V

1

3
�V�2

F +
μ

2

∥∥∥∥LT − V U T + Y T
2

μ

∥∥∥∥
2

F

. (16)

Thus, we have

V ∗ = (
μLT U + Y T

2 U
)(2

3
I + μU T U

)−1

. (17)

C. Updating L

With respect to L, we consider the following subproblem:

arg min
L

∥∥∥∥F−L−S + Y1

μ

∥∥∥∥
2

F

+
∥∥∥∥L −U V T + Y2

μ

∥∥∥∥
2

F

. (18)

Hence, we obtain the corresponding solution as follows:

L∗ = 1

2

(
U V T + F−S + Y1 − Y2

μ

)
. (19)

D. Updating S

To update S, the minimization problem becomes

arg min
S

λ�S�2/3
l2/3
+ μ

2

(∥∥∥∥S −
(

F−L + Y1

μ

)∥∥∥∥
2

F

+
∥∥∥∥S −

(
M − Y4

μ

)∥∥∥∥
2

F

)
. (20)

Set A = (F−L + H/2) + (Y1 + Y4/2μ) and τ = (λ/μ),
and the problem (20) can be translated into the following
form:

arg min
S

λ

μ
�S�2/3

l2/3
+ (�S − A�2

F

)
.

Thus, this problem can be solved by Theorem 1, as shown
in the following.

Theorem 1: [24], [33] For any matrix A, X ∈ R
m×n,

solution of the flowing minimization

min
X
�X − A�2

F + τ�X�2/3
l2/3

(21)

is T (A), where the two-thirds-thresholding operator T (·) is

Tτ (a)=

⎧⎪⎨
⎪⎩

sgn(a)
(
ϕτ(a)+

√
2|a|

ϕτ (a)
−ϕ2

τ (a)
)3

8
, |a| > 2 4

√
3τ 3

3
0, else

(22)

where

ϕτ (a) = 2√
3

√√√√√√τ cosh

⎛
⎝arccos h

(
27a2

16 τ−
3
2

)
3

⎞
⎠.
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Algorithm 1 Problem (13) Solved by ADMM

Input: F, d, α, β and μ M0 = Y 0
2 = 0, N0 = Y 0

3 = 0, S0 =
H0 = Y 0

1 = Y 0
4 = 0, μmax = 1010, ρ = 1.1 and k = 0

1: while not converged do
2: update Uk+1 by (15)
3: update Vk+1 by (17)
4: update Lk+1 by (19)
5: update Sk+1 by (22)
6: update Tk+1 by (25)
7: update Mk+1 by (28)
8: update Yi , 1 ≤ i ≤ 4 by the following forms, i.e.

Y1 ← Y1 + μ(F−L − S)

Y2 ← Y2 + μ
(
L −U V T

)
Y3 ← Y3 + μ(T −U )

Y4 ← Y4 + μ(S − M)

9: μk+1 by μ← min(ρμ,μmax)
10: k by k ← k + 1
11: end while
Output: L and S

E. Updating T

Fixing the other variables, with respect to T , we have

arg min
T

2

3
�T �∗ + μ

2

∥∥∥∥T −
(

U − Y3

μ

)∥∥∥∥
2

F

. (23)

In general, (23) can be represented as

min
T

τ�T �∗ + 1

2
�T − C�2

F (24)

where C = U − (Y3/μ) and τ = (2/3μ). Thus, the opti-
mization (24) is nuclear norm regularized least squares prob-
lem, which can be solved by the singular value thresholding
(SVT) [34](refer Theorem 2).

Theorem 2 (SVT [34]): Let the SVD of C can be written
as C = U
V T , then the optimal solution for problem (24) is
given by

T = Dτ (C) = USτ (
)V T (25)

where Dε is the SVT operator and Dε is the soft thresholding
operator, which is defined as

Sε(x) =

⎧⎪⎨
⎪⎩

x − ε, x > ε

x + ε, x < −ε

0, else.

(26)

F. Updating M

Finally, fixing the other variables, and updating M leads to
the following problem:

arg min
M

γ Tr
(
MMF MT

)+ μ

2

∥∥∥∥S−M + Y4

μ

∥∥∥∥
2

F

. (27)

Then, we have

M∗ = (μS + Y4)(2γMF + μI )−1. (28)

For Algorithm 1, we perform SVD on a much smaller
factored-matrix as a contrary to the full matrix used in
WLRR [19], SMD [18], ULR [15], SLR [17], and LRR [16].
Thus, complexity analysis for Algorithm 1 can be summarized
in the following.

Remark 1: Given an m × n matrix (m � n), the cost for
the inverse of d × d matrix, the multiplication of m × d
matrix, and d × n matrix are O

(
mn2

)
, O

(
d3
)
, and O(mdn),

respectively. In terms of WLRR [19], SMD [18], ULR [15],
SLR [17], and LRR [16], the cost is O

(
mn2

)
since the thin

SVD of an m× n matrix with m � n is performed. While for
Algorithm 1, the dominant cost of each iteration for updating
U ∈ R

m×d , V ∈ R
n×d , and T ∈ R

m×d using (15), (17),
and (25) is O

(
6mnd + 2d3 + md2 + nd2

)
. Thus, it is easy

to observe that O
(
6mnd + 2d3 + md2 + nd2

)� O
(
mn2

)
for

m, n � d , which implies that our proposed algorithm is more
efficient.

V. ALGORITHM ANALYSIS

According to the definition of the critical point for non-
convex functions [53], the variable sequence generated by
Algorithm 1 can converge to a limiting point satisfy-
ing the Karush–Kuhn–Tucker (KKT) condition. Specifically,
the detailed description can be summarized as Theorem 29.

Theorem 3: Let
{(

U k, V k, Lk, Sk, T k, Mk,
{
Y k

i

})}
be a

sequence generated by Algorithm 1. Suppose that the sequence{
Y k

i

}
is bound, μk is nondecreasing, and

∑∞
k=0(μk+1/μ

M
k ) <

∞, then the limit point (U∞, V∞, L∞, S∞, T∞, M∞) of
the above-mentioned sequence satisfies the following KKT
conditions:

0 ∈ 2

3
∂�T∞�∗ + Y∞3 ,

0 ∈ λ∂�S∞�2/3
l2/3
+ Y∞1 + Y∞4 ,

0 ∈ γ
(
M∞M T

F + M∞MF
)+ Y∞4 ,

L∞ = U∞V T
∞, T∞ = U∞, S∞ = M∞, L∞ + S∞ = X∞.

The proof of theorem can be found in the Appendix of
this article. The conditions for nondecreasing μk and the
boundedness of sequence

{
Y k

i

}
are given in [24]. Theorem 29

is established through an iteration algorithm in the inner loop
(i.e., ADMM algorithm). When the inner loop is solvable
exactly, the proof of convergence becomes relatively simple.

However, Theorem 29 cannot guarantee the global conver-
gence, which is an essential issue in terms of the effectiveness
of the proposed solvers for Algorithm 1. Recent studies [54],
[55] provide the global convergence analysis under certain
assumptions named coercivity, feasibility, Lipschitz submin-
imization paths, and objective regularity (see [55, Th. 1]).
Inspired by these approaches and our own analysis, the global
convergence for the proposed nonconvex model is shown in
the following theorem.

For the ease of analysis, we first reformulate the proposed
model (10) as a standard form coinciding with [54] and [55].
Hence, we have the augmented Lagrangian function

Lβ(L, S, ω) = Φ(L, S)+�ω, X−L−S�+ β

2
||X − L − S||2F

(29)
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TABLE II

RESULTS ON DATASET ECSSD IN TERMS OF FOUR METRICS BY 27 METHODS

TABLE III

RESULTS ON DATASET ICOSEG IN TERMS OF FOUR METRICS BY 27 METHODS

TABLE IV

RESULTS ON DATASET MSRA10K IN TERMS OF FOUR METRICS BY 27 METHODS

where Φ(L, S) = ||L||2/3
S2/3
+ T r(SMF ST )+||S||2/3

l2/3
, ω is dual

variable and β is a penalty parameter. Using ADMM, sequence(
Lk, Sk, ωk

)
is generated by (29). The convergence analysis

can be summarized as follows.
Theorem 4: For a sufficiently large β, the sequence(

Lk, Sk, ωk
)

converges globally to the limit point of the
augmented Lagrangian function Lβ .
For easy reading, the proof of the Theorem 4 is included in
the Appendix. In addition, some curve of convergence based
on three datasets can be found in the Supplementary Materials
[see the curve of WF, overlapping ratio (OR), the area under
receiver operating characteristic curve (AUC), and the mean
absolute error (MAE)] to further analyze algorithm 1.

VI. EXPERIMENTS

In this section, we conduct a variety of experiments for the
salient object detection problem to evaluate the effectiveness
of the proposed model. All experiments were implemented in
MATLAB R2017a on laptop with the Intel Core i5 2.30-GHz
processor and 8.0 GB of RAM.

A. Datasets, Baseline Algorithms, and Settings

Three standard benchmark datasets are used in our exper-
iments, i.e., MSRA10K [9], iCoSeg [56], and ECSSD [41].
The MSRA10K dataset contains a total of 10 000 images
with a single object. The iCoSeg dataset includes a total
of 643 images with multiple objects and various complex
backgrounds, while the ECSSD dataset involves a total
of 1000 images with various objects, structurally complex
natural images.

To better demonstrate the advantage of our approach,
we compare it with the latest 26 state-of-the-art models.
Among them, five approaches are based on low rank, which are
WLRR [19], SMD [18], ULR [15], SLR [17], and LRR [16],
respectively. In addition, we choose 21 representative meth-
ods used for salient object detection, which are DRFI [35],
RBD [36], HCT [37], DSR [38], MC [39], MR [40], HS [41],
PCA [42], TD [43], GC [44], RC [9], SVO [45], GS [46],
SF [47], CB [48], CA [7], SS [8], SEG [49], FT [50], SR [51],
and LC [52], respectively. In the Supplementary Material,
the pros and cons of the proposed method with the two models
based on deep learning (i.e., DCL7 and NLDF8) are discussed
in detail.

In the proposed algorithm, we set the bandwidth δ2 = 0.05,
and the parameters λ = 0.1, γ = 0.05, and d = 25,
respectively. For the other comparative algorithms, we adopt
the same parameters introduced in the original articles.

We use six metrics [18], [50] to measure the detection
performances, which include the precision-recall (PR) curve,
the ROC curve, the weighted F-measure curve (WF), AUC,
OR, and MAE, respectively.

B. Comparison With the Existing Approaches

To evaluate the performance of our proposed model,
we systematically compare it with the 26 recently developed

7Li and Yu [57] presented deep contrast learning for salient object detection,
which is referred to as DCL for short.

8Luo et al. [58] gave nonlocal deep features for salient object detection,
which is referred to as NLDF for short.
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Fig. 6. ROC curve comparison.

Fig. 7. PR curve comparison.

methods. The ROC and PR curves on three datasets are shown
in Figs. 6 and 7, respectively. The scores about WF, OR, AUC,
and MAE are given in Tables II–IV. Besides, Fig. 8 shows
the overall qualitative comparisons.

Compared with the competing methods, the proposed model
achieves the best results in terms of the four metrics (i.e.,
WF, AUC, OR, and MAE) on the ECSSD datasets, which
is shown in Table II. In the ROC curves (the first row of
Fig. 6), our model and WLRR [19] are the best two among
those competing models. However, for PR curves (the first
row of Fig. 7), our method gives the best performance. These
results demonstrate that our model has the desired capacity
in detecting the complete foreground from various complex
scenes.

From Table III, we can find that our method achieves the
best results with the highest OR and the lowest MAE, while
SMD [18] and WLRR [19] obtain the highest WF and AUC,

respectively. From ROC and PR curves (the second row of
Figs. 6 and 7), we can see that our model outperforms the
low-rank-based methods. It is worth noting that our approach
is also comparable to the other representative models in most
cases across different criteria.

The last comparison is conducted on MSRA10K [9] with
a single object. As shown in Table IV, our model provides
the second-best in terms of WF, AUC, and OR, the third in
MAE. The ROC and PR curves are entangled with DRFI [35]
and SMD [18] in a wide range (the third rows of Figs. 6
and 7). Especially, the result of DRFI [35] is only a reference,
which is a supervised top-down model. These results represent
that the proposed model has better consistency in terms of
performance.

Fig. 8 gives the qualitative comparisons from the best
methods in the experiments. For single-object images (e.g.,
the images in the first three rows), salient maps of the
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Fig. 8. Visual quality comparison of saliency maps from 13 methods.

new model represent the complete salient object with a few
scattered and incomplete patches. For the object with different
representations (e.g., the images from the fourth row to the
sixth row), salient maps of the new model possess consistent
values within the same foreground. For the images with vari-
ous complex scenes (e.g., image in the last three rows), several
other methods miss the detecting parts (such as ULR [15],
SLR [17], DSR [38], and SMD [18]) or confuse background
with the foreground (e.g., DRFI [35] and WLRR [19]).
By contrast, the proposed method successfully identifies all
desirable salient objects with consistent values. For the images
whose foreground and background share similar appearance
(such as images in the third and the fourth row), our new
approach is more capable of detecting the complete foreground
from the background in a consistent way. These outcomes
clearly demonstrate the effectiveness of our algorithm in
handling images with various complex scenes.

VII. CONCLUSION

In this article, we propose an unsupervised learning model
for salient object detection by using the bilinear factor matrix
norm. Different from the currently existing literature, the non-
convex Schatten-2/3 norm is adopted to characterize the
background information and is shown to be better in capturing
the low-rank structure of the background details, leading to a
better background representation. The nonconvex l2/3 norm
is incorporated to formulate the sparsity and consistency of

foreground. To promote the further performance of Schatten-
2/3 norm and nonconvex l2/3 norm, a Laplacian constraint is
adopted to the salient object. It is worth noting that the choice
of p = q = 2/3 makes the optimization to be tractable and
reduces the required computational complexity. In addition,
under our framework by splitting the balanced variables,
the optimization process, associated with the ADMM, requires
computing the SVD on a much small factored matrix, and
thus, greatly reduces the computational cost. Meanwhile,
the convergence of the algorithm is mathematically analyzed
and validated. Experiments on the MSRA10K, ECSSD, and
iCoSeg datasets show that the proposed model has performed
well and appears to be highly consistent for detecting various
salient objects.

A further direction of our future work is to study the
salient object detection problem under the tensor framework
and to explore the tensor rank by conducting multiscale low-
rank decomposition. Besides, the adaptive selection of tradeoff
parameters is also an important subject of study. Such studies
will be reported elsewhere.

APPENDIX

PROOF OF THEOREM 29

Proof: We first show that
{
U k

}
,
{
V k

}
,
{

Lk
}
,
{

Sk
}
,
{

T k
}
,

and
{

Mk
}

are convergent Cauchy sequences.
According to boundedness of multipliers and some vari-

ables produced by alternating direction method of multiplier
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(ADMM) (we can refer to [24]), the corresponding Lagrange
parameter

{
Y k

i

}
is bounded. Due to μk is nondecreasing,∑∞

k=0(μk+1/μ
2
k) <∞ and

Y k+1
3 = Y k

3 + μk
(
T k+1 −U k+1)

one can have

∞∑
k=0

∥∥T k+1 −U k+1
∥∥

F

=
〈

Y k+1
3 − Y k

3

μk
,

Y k+1
3 − Y k

3

μk

〉1/2

=
∞∑

k=0

1

μk

∥∥Y k+1
3 − Y k

3

∥∥
F
≤
∞∑

k=0

μk+1

μ2
k

∥∥Y k+1
3 − Y k

3

∥∥
F

<∞.

Similarly, we can obtain

∞∑
k=0

∥∥Lk+1 + Sk+1 − Xk+1
∥∥

F

≤
∞∑

k=0

μk+1

μ2
k

∥∥Y k+1
1 − Y k

1

∥∥
F

<∞
∞∑

k=0

∥∥∥U k+1(V k+1)
T − Lk+1

∥∥∥
F

≤
∞∑

k=0

μk+1

μ2
k

∥∥Y k+1
2 − Y k

2

∥∥
F

<∞
∞∑

k=0

∥∥Sk+1 − Mk+1
∥∥

F

≤
∞∑

k=0

μk+1

μ2
k

∥∥Y k+1
4 − Y k

4

∥∥
F

<∞

which implies that

lim
k→∞

∥∥Lk+1 + Sk+1 − Xk+1
∥∥

F
= 0

lim
k→∞

∥∥∥U k+1(V k+1)
T − Lk+1

∥∥∥
F
= 0

lim
k→∞

∥∥T k+1 −U k+1
∥∥

F
= 0

lim
k→∞

∥∥Sk+1 − Mk+1
∥∥

F
= 0. (30)

Thus,
{(

U k, V k, Lk, Sk , T k, Mk
)}

approximates to a feasi-
ble solution.

Since

Y k
2 = Y k−1

2 + μk−1
(
Lk − U k(V k)T

)
(31)

and

Y k
3 = Y k−1

3 + μk−1
(
T k −U k

)
(32)

the minimization problem (14) can be converted to seek the
corresponding first-order optimal condition for U . That is(

Lk −U k+1(V k
)T + μ−1

k Y k
2

)
V k + (

T k − U k+1 + μ−1
k Y k

3

)
= T k −U k+1 +U k − U k + μ−1

k Y k
3

+
(

U k(V k)
T + Y k

2 − Y k−1
2

μk−1
−U k+1

(
V k

)T + μ−1
k Y k

2

)
V k

= Y k
3 − Y k−1

3

μk−1
−U k+1 +U k + μ−1

k Y k
3

+
(

U k(V k)
T + Y k

2 − Y k−1
2

μk−1
−U k+1(V k

)T + μ−1
k Y k

2

)
V k

= (
U k −U k+1

)(
I + V k

(
V k

)T
)

+ Y k
3 − Y k−1

3

μk−1
+ μ−1

k Y k
3 +

(
Y k

2 − Y k−1
2

μk−1
+ μ−1

k Y k
2

)
V k

= 0.

Therefore, we arrive at

U k+1 −U k

=
(

I + (
V k

)T
V k

)−1

·
[

Y k−1
3 − Y k

3

μk−1
− μ−1

k Y k
3 +

(
Y k−1

2 −Y k
2

μk−1
−μ−1

k Y k
2

)
V k

]
.

Let

r1 = max
k∈Z+,k=1,2,···

{∥∥∥∥(I + (
V k

)T
V k

)−1
∥∥∥∥

F

· (∥∥Y k
3

∥∥
F + μ−1

k−1μ
−1
k

∥∥Y k
3−Y k−1

3

∥∥
F

+ (
μ−1

k−1μ
−1
k

∥∥Y k−1
2 −Y k

2

∥∥
F
+ ∥∥Y k

2

∥∥
F

)∥∥V k
∥∥

F

)}
,

due to
∑∞

k=0(μk+1/μ
2
k) <∞, we have the estimates

∞∑
k=0

∥∥U k+1 −U k
∥∥

F
≤
∞∑

k=0

μ−1
k r1 ≤

∞∑
k=0

μk+1

μ2
k

r1 <∞.

Thus, we obtain

lim
k→∞

∥∥U k+1 −U k
∥∥

F
= 0. (33)

This shows that
{
U k

}
is convergent Cauchy sequence.

Similarly, for
{
V k

}
,
{

Lk
}
,
{

Sk
}
,
{

T k
}
, and

{
Mk

}
, one can

get

lim
x→∞

∥∥V k+1 − V k
∥∥

F
= 0

lim
x→∞

∥∥Lk+1 − Lk
∥∥

F
= 0

lim
x→∞

∥∥Sk+1 − Sk
∥∥

F
= 0

lim
x→∞

∥∥T k+1 − T k
∥∥

F
= 0

lim
x→∞

∥∥Mk+1 − Mk
∥∥

F
= 0 (34)

which indicates that they are also convergent Cauchy
sequences.

Next, we prove that the limit point of sequence{(
U k, V k, Lk, Sk, T k, Mk

)}
satisfies the Karush–Kuhn–

Tucker conditions.
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Suppose (U�, V�, L�, S�, T�, M�) is the critical point of
optimization problem (13). According to Fermat’s rule [24],
the first-order optimal conditions for subproblems (19), (22),
and (26) are given by

0 ∈ 2

3
∂�T��∗ + Y �

3

0 ∈ λ∂�S��2/3
l2/3
+ Y �

1 + Y �
4

0 ∈ γ (M�M
T
F + M�MF )+ Y �

4

L� = U�V T
� , T� = U�, S� = M�, L� + S� = X�. (35)

Let U∞, V∞, L∞, S∞, T∞, and M∞ be the limit points
of the above-mentioned sequence, the limit points satisfy the
following first-order optimal conditions:

0 ∈ 2

3
∂�T∞�∗ + Y∞3

0 ∈ λ∂�S∞�2/3
l2/3
+ Y∞1 + Y∞4

0 ∈ γ (M∞M T
F + M∞MF)+ Y∞4

L∞ = U∞V T
∞, T∞ = U∞, S∞ = M∞, L∞ + S∞ = X∞

and thus, the proof is completed. �

PROOF OF THEOREM 4

Proof: It is well known that Lβ(Lk, Sk, ωk) decreases
monotonically due to Lβ(Lk, Sk, ωk) ≥ Lβ(Lk+1, Sk+1, ωk+1).
Next, we first give that Lβ(Lk, Sk , ωk) is lower bounded.

Since Φ(L, S) is the restricted prox-regular function, some
properties named, respectively, coercivity, feasibility, and Lip-
schitz subminimization paths hold for this objective function
[55]. By Lipschitz subminimization paths, there exists S� such
that X = Lk + S� and S� = H (S�) (where H is a Lipschitz
continuous map). Using coercivity, feasibility, and Lipschitz
subminimization paths of objective function, for dk

S ∈ ∂ΦS,
we have

Lβ

(
Lk, Sk, ωk

)
= Φ

(
Lk, Sk

)+ 〈
ωk, X − Lk − Sk

〉
+ β

2
||X − Lk − Sk ||2F

= Φ
(
Lk, Sk

)+ 〈
dk

S, S� − Sk
〉+ β

2
||S� − Sk ||2F

≥ Φ
(
Lk, S�

)+ β

4
||X − Lk − Sk ||2F > −∞. (36)

This shows that Lβ

(
Lk, Sk, ωk

)
is low bounded, where

upper bound is Lβ

(
L0, S0, ω0

)
. From the property of coer-

civity, we know that (Lk, Sk, ωk) is bounded. Hence, there
exist a convergent subsequence and a limit point, denoted by
(Lki , Ski , ωki )i∈N → (L∗, S∗, ω∗) as i → +∞.

Second, we show that Lβ(Lk, Sk, ωk) is descent

Lβ

(
Lk, Sk , ωk

)− Lβ

(
Lk+1, Sk+1, ωk+1)

= Φ(Lk, Sk)−Φ(Lk+1, Sk+1)+ 〈
ωk+1, Lk − Lk+1〉

+ 〈ωk+1, Sk − Sk+1 〉+ 〈
ωk − ωk+1, X − Lk − Sk

〉
+ β

2
||Lk+1 − Lk ||2F −

β

2
||Sk+1 − Sk ||2F

≥ − 1

β
||ωk − ωk+1||2F +

β − LΦ M

2
× {||Lk − Lk+1||2F + ||Sk − Sk+1||2F

}
(37)

where M and LΦ are Lipschitz constants. Since ωk = −∂ΦS

for any k, we obtain the following inequality:
||ωk−ωk+1||F ≤ LΦ

(||Lk−Lk+1||F+||Sk−Sk+1||F
)
. (38)

In summary, we have

Lβ

(
Lk, Sk, ωk

)− Lβ

(
Lk+1, Sk+1, ωk+1)

≥
(

β − LΦ M

2
− LΦ M

β

)
||Lk − Lk+1||2F

+
(

β − LΦ M

2
− LΦ M

β

)
||Sk − Sk+1||2F (39)

where β > max{1, 3LΦ M}. From (39), we know that
Lβ(Lk, Sk, ωk) is descent. Therefore, ||Lk− Lk+1||F → 0 and
||Sk − Sk+1||F → 0 as k → 0.

Third, we give subgradient bound and limiting continuity
for Lβ(Lk, Sk, ωk). Since Φ is the Lipschitz differentiable,
these two properties are trivial. In fact, subgradient bound can
be written as

||∂LLβ

(
Lk+1, Sk+1, ωk+1)||F

≤ (β + 2LΦ M)
(||Lk+1 − Lk ||F + ||Sk+1 − Sk ||F

)
||∂ωLβ

(
Lk+1, Sk+1, ωk+1

)||F
≤ LΦ M

β

(||Lk+1 − Lk ||F + ||Sk+1 − Sk ||F
)

||∂SLβ

(
Lk+1, Sk+1, ωk+1)||F

≤ LΦ M
(||Lk+1 − Lk ||F + ||Sk+1 − Sk ||F

)
. (40)

Therefore, there exists dk ∈ ∂Lβ(Lk, Sk , ωk) such that
||dk||F → 0. In particular, ||dk

i ||F → 0 as i → 0.
Based on the Lipschitz differentiable function, if (L∗, S∗, ω∗)
is the limit point of a subsequence (Lki , Ski , ωki )i∈N , then
Lβ(L∗, S∗, ω∗) = limiLβ(Lki , Ski , ωki ). By definition of sub-
gradient, we obtain 0 ∈ ∂Lβ(L∗, S∗, ω∗).

Finally, we check that Lβ is a Kurdyka–Lojasiewicz func-
tion (abbreviated as KL function), which is central to the
global convergence analysis. We know that functions satisfying
the KL inequality are, respectively, real-analytic functions,
semi-algebraic functions, and locally strongly convex func-
tions [59].9 Since Lβ is the sum of real-analytic and semi-
algebraic functions, Lβ satisfies the KL inequality. Hence,
the sequence

(
Lk, Sk, ωk

)
converges globally to the limit point

under the KL assumption.10 �
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