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Abstract
The problem of solving partial differential equations (PDEs) can be formulated into a
least-squares minimization problem, where neural networks are used to parametrize PDE
solutions. A global minimizer corresponds to a neural network that solves the given
PDE. In this paper, we show that the gradient descent method can identify a global
minimizer of the least-squares optimization for solving second-order linear PDEs with
two-layer neural networks under the assumption of overparametrization. We also analyze
the generalization error of the least-squares optimization for second-order linear PDEs
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and two-layer neural networks, when the right-hand-side function of the PDE is in a
Barron-type space and the least-squares optimization is regularized with a Barron-type
norm, without the overparametrization assumption.
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gence, Generalization error
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1 Introduction

Deep learning, originated in computer science, has revolutionized many fields
of science and engineering recently. This revolution also includes broad appli-
cations of deep learning in computational and applied mathematics, e.g., many
breakthroughs in solving partial differential equations (PDEs) (Dissanayake and
Phan-Thien, 1994; Lagaris et al., 1998; Rudd and Ferrari, 2015; Carleo and
Troyer, 2017; Han et al., 2018; E et al., 2017; Berg and Nyström, 2018; Khoo
et al., 2019; Raissi et al., 2019; Sirignano and Spiliopoulos, 2018; Huang et
al., 2020; Gu et al., 2020b). The key idea of these approaches is to reformulate
the PDE solution into a global minimizer of an expectation minimization prob-
lem, where deep neural networks (DNNs) are applied for discretization and the
stochastic gradient descent (SGD) is adopted to solve the minimization prob-
lem. These methods probably date back to the 1990s (e.g., see Dissanayake and
Phan-Thien, 1994; Lagaris et al., 1998) and were revisited recently (Rudd and
Ferrari, 2015; Han et al., 2018; E et al., 2017; Berg and Nyström, 2018; Khoo
et al., 2019; Sirignano and Spiliopoulos, 2018; Raissi et al., 2019) due to the
significant development of GPU computing that accelerates DNN computation.
Though these approaches have remarkable empirical successes, their theoretical
justification remains vastly open.

For simplicity, let us use a PDE defined on a domain � in a compact form
with equality constrains to illustrate the main idea, e.g.,{

Lu = f in �,

Bu = g on ∂�,
(1.1)

where L is a differential operator and B is the operator for specifying an appro-
priate boundary condition. In the least squares-type methods, DNNs, denoted as
φ(x; θ) with a parameter set θ , are applied to parametrize the solution space of
the PDE and a best parameter set θD is identified via minimizing an expectation
called the population risk (also known as the population loss):

θD = arg min
θ

RD(θ)

:= Ex∼U(�) [�(Lφ(x; θ), f (x))] + γEx∼U(∂�) [�(Bφ(x; θ), g(x))] ,
(1.2)
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with a positive parameter γ and a loss function typically taken as �(y, y′) =
1
2 |y − y′|2, where the expectations are taken with uniform distributions U(�)

and U(∂�) over � and ∂�, respectively. To implement the expectation mini-
mization above using the gradient descent method (GD), a discrete set of sam-
ples are randomly drawn to obtain an empirical risk (or empirical loss) function

RS(θ) := 1

n

∑
{xi }ni=1⊂�

�(Lφ(xi; θ), f (xi )) + γ
1

n

∑
{xi }ni=1⊂∂�

�(Bφ(xi; θ), g(xi ))

(1.3)
used in each GD iteration to update θ . The set of random samples is usually
renewed per iteration resulting in the SGD algorithm for minimizing (1.2). In
this paper, we will focus on the case when these samples are fixed in all itera-
tions. There are mainly three theoretical point of view to study the above deep
learning-based PDE solver:

1. Approximation theory: given a budget of the size of DNNs, e.g. width m

and depth L, or a budget of the total number of parameters Npara, what is the
accuracy of φ(x; θD) approximating the solution of the PDE?

2. Optimization convergence: under what condition can gradient descent con-
verges to a global minimizer of (1.2) and (1.3)?

3. Generalization analysis: if only finitely many samples are available, how
good is the global minimizer of (1.3) compared to the global minimizer of
(1.2)?

Deep network approximation theory has shown that DNNs admit powerful
approximation capacity. First, DNNs can approximate high-dimensional func-
tions with an appealing approximation rate, e.g., Barron spaces (Barron, 1993; E
et al., 2019b,a), Korobov spaces (Montanelli and Du, 2019), band-limited func-
tions (Chen and Wu, 2019; Montanelli et al., 2019), compositional functions
(Poggio et al., 2017; E et al., 2019c), smooth functions (Yarotsky and Zhevn-
erchuk, 2019; Lu et al., 2020a; Montanelli and Yang, 2020), solution spaces of
certain PDEs (Hutzenthaler et al., 2019), and even general continuous functions
(Shen et al., 2021b,a). Second, DNNs can achieve exponential approximation
rates, i.e., the approximation error exponentially decays when the number of
parameters increases, for target functions in the polynomial spaces (Yarotsky,
2017; Montanelli et al., 2019; Lu et al., 2020a), the smooth function spaces
(Montanelli et al., 2019; Liang and Srikant, 2016), the analytic function space
(E and Wang, 2018), the function space admitting a holomorphic extension to
a Bernstein polyellipse (Opschoor et al., 2019), and even general continuous
functions (Shen et al., 2021b). Theories in deep network approximation have
provided attractive upper bounds of the accuracy of φ(x; θD) approximating
the solution of the PDE in various function spaces. In realistic applications, it
might be more interesting to characterize deep network approximation in terms
of m and L simultaneously than the characterization in terms of Npara. We refer
reader to Shen et al. (2019, 2020); Lu et al. (2020a); Shen et al. (2021b); Yang
and Wang (2020) for examples in terms of m and L.
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Though DNNs are powerful in terms of approximation theory, obtaining the
best DNN φ(x; θD) in (1.2) to approximate the PDE solution is still challeng-
ing. It is conjectured that, under certain conditions, SGD is able to identify an
approximate global minimizer of (1.2) with accuracy depending on Npara and
the sample size n. Though deep learning-based PDE solvers have been proposed
since the 1990s, there might be no existing literature to investigate this conjec-
ture, to the best of our knowledge. In this paper, assuming that the same set of
random samples are used in minimizing (1.3), it is shown that GD can converge
to a global minimizer of (1.3), denoted as θS , for second-order linear PDEs and
two-layer neural networks, as long as Npara is sufficiently large depending on n,
i.e., in the overparametrization regime. Furthermore, we will quantify how good
the global minimizer θS of the empirical loss in (1.3) is compared to the global
minimizer θD of the population loss in (1.2), when the empirical loss is regu-
larized with a penalty term using the path norm of θ and the PDE solution is in
a Barron-type space, a variant of the Barron-type space in Barron (1993); E et
al. (2019b). Our analysis is an extension of the seminal work of neural tangent
kernels (Jacot et al., 2018; Du et al., 2018, 2019) and the generalization analysis
in Barron (1993); E et al. (2019b) for function regression problems to the case
of PDE solvers.

Though the convergence of deep learning-based regression under the over-
parametrization assumption has been proposed recently (Jacot et al., 2018;
Du et al., 2018; Mei et al., 2018; Du et al., 2019; Lu et al., 2020b), we
would like to emphasize that the minimization of solving a PDE via (1.2) is
more difficult and technical. In the case of solving PDEs, differential opera-
tors have changed the optimization objective function considered in the liter-
ature. Balancing between the differential operator and the boundary operator
makes it more challenging to solve the optimization problem. For example,
we consider a second order elliptic equation with variable coefficients, i.e.,
Lu = f where Lu =∑d

α,β=1 Aαβ(x)uxαxβ . Given a two-layer neural network

φ(x; θ) =∑m
k=1 akσ (w

ᵀ
k x) with an activation function σ(z) = max{0, 1

6z3} to
parametrize the PDE solution, solving the original PDE via deep learning is
equivalent to solving a regression problem with another type of neural net-
work f (x; θ) := Lφ(x; θ) = ∑m

k=1 akw
ᵀ
k A(x)wkσ

′′(wᵀ
k x) to fit f (x). Note

that σ ′′(z) = ReLU(z) = max{0, z}. Thus, the dependence of f (x; θ) on wk

is essentially cubic rather than linear (more precisely, positive homogeneous).
The generalization analysis of deep learning-based regression under the

overparametrization assumption was studied recently in Jacot et al. (2018); Cao
and Gu (2019); Chen et al. (2019). The generalization analysis with a regulariza-
tion term based on the path norm without the overparametrization assumption
was proposed in E et al. (2019b,a, 2020). In the case of PDE solvers, differen-
tial operators have enhanced the nonlinearity of the generalization analysis and
hence make it more difficult to analyze. In the case of Linear Kolmogorov Equa-
tions and parabolic PDEs, examples of generalization analysis of PDE solvers
were presented in Berner et al. (2018); Han and Long (2018). In the case of
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linear second-order elliptic and parabolic type PDEs, the generalization error of
the physics-informed neural network was analyzed in Shin et al. (2020). How-
ever, the generalization analysis for generic PDEs is vastly open. Our attempt
is for second-order linear PDEs with variable coefficients. Let us consider the
second order elliptic equation with variable coefficients in the above paragraph
again. The variable coefficients Aαβ(x) lead to highly nonlinearity in the net-
work f (x; θ) depending on x, since we do not make any assumption on the
smoothness of A(x). We develop new analysis of the Rademacher complex-
ity to overcome these difficulties. Unlike existing work, our a priori estimates
do not require any truncation on f (x; θ) (or φ(x; θ)). This is important be-
cause a common truncation trick does not lead to the boundedness of f (x; θ)

in our PDE solver. In fact, if one considers the standard truncation on φ(x; θ),
e.g., T[0,1]φ(x; θ) := min{max{φ(x; θ),0},1}, then L[T[0,1]φ(x; θ)] might still
be unbounded because L is a second order differential operator. Another naive
trick is to truncate f (x; θ), i.e., T[0,1]f (x; θ) := min{max{f (x; θ),0},1}. But
this does not make sense since we want to find a solution satisfying Lφ(x; θ) ≈
f (x) instead of T[0,1]Lφ(x; θ) ≈ f (x).

This paper will be organized as follows. In Section 2, deep learning-based
PDE solvers will be introduced in detail. In Section 3, our main theorems for
the convergence and generalization analysis of GD for minimizing (1.3) will
be presented. In Section 4, the proof of the GD convergence theorems will be
shown. In Section 5, the proof of the generalization bound will be given. Finally,
we conclude our paper in Section 6.

2 Deep learning-based PDE solvers

We will introduce deep learning-based PDE solvers with necessary notations in
this paper in preparation for our main theorems in Section 3.

2.1 Notations, definitions, and basic lemmas

The main notations of this paper are listed as follows.

• Vectors and matrices are denoted in bold font. All vectors are column vectors.
• For a parameter set 
, vec{
} denotes the vector consists of all the elements

of 
.
• [n] denotes {1,2, . . . , n}.
• ‖ · ‖1 and ‖ · ‖∞ represent the �1 and �∞ norms of a vector, respectively.
• Big “O” notation: for any functions g1, g2 : R → R

+, g1(z) = O(g2(z)) as
z → +∞ means that g1(z) ≤ Cg2(z) for some constants C, z0 and any z ≥ z0.

• Small “o” notation: for any functions g1, g2 : R → R
+, g1(z) = o(g2(z)) as

z → +∞ means that limz→∞ f (z)
g(z)

= 0.

• Let σ : R → R denote the activation function, e.g., σ(x) = max{0, 1
6x3} is

the activation function used in this paper. With the abuse of notations, we
define σ : Rd → R

d as σ(x) = (max{0, x1}, . . . ,max{0, xd})ᵀ for any x =
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(x1, . . . , xd)ᵀ ∈R
d , where ᵀ denotes the transpose of a matrix. Similarly, for

any function f defined on R and vector x ∈R
d , f (x) = [f (x1), . . . , f (xd)]ᵀ.

Mathematically, DNNs are a form of function parametrization via the com-
positions of simple nonlinear functions (Goodfellow et al., 2016). Let us focus
on the so-called fully connected feed-forward neural network (FNN) defined
below. The FNN is a general DNN structure that includes other advanced struc-
tures as its special cases, e.g., convolutional neural network (Goodfellow et al.,
2016), ResNet (He et al., 2015), and DenseNet (Huang et al., 2016).

Definition 2.1 (Fully connected feed-forward neural network (FNN)). An FNN
of depth L defined on R

d is the composition of L simple nonlinear functions as
follows:

φ(x; θ) := aᵀh[L] ◦ h[L−1] ◦ · · · ◦ h[1](x),

where h[l](x) = σ
(
W [l]x + b[l]) with W [l] ∈ R

ml×ml−1 , bl ∈ R
ml for l =

1, . . . ,L, a ∈ R
mL , m0 = d , and σ is a nonlinear activation function. Each h[l]

is referred as a hidden layer, ml is the width of the l-th layer, and L is called the
depth of the FNN. θ := vec{a, {W [l],b[l]}Ll=1} denotes the set of all parameters
in φ.

Without loss of generality, we consider FNNs omitting b[l]’s. In fact, for

a network with b[l]’s, one can simply set x̃ = (xᵀ,1)ᵀ and W̃
[l] = (W [l],b[l])

for each l ∈ [L], and work on θ = vec{a, {W̃ [l]}Ll=1} by noting that W̃
[l]

x̃ =
W [l]x + b[l]. In this paper, we will focus on networks with L = 1.

To analyze PDE solvers, we introduce a new kind of Barron functions with
their associated Barron norm, and a path norm defined below.

Definition 2.2 (Path norm). The path norm of a two-layer neural network

φ(x; θ) =
m∑

k=1

akσ (w
ᵀ
k x),

with an activation function σ and a parameter set θ is defined as

‖θ‖P :=
m∑

j=1

|aj |‖wj‖3
1.

Definition 2.3. A function f : � →R is called a Barron-type function if f has
an integral representation

f (x) = E(a,w)∼ρa[wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx) + c(x)σ (wᵀx)]
for all x ∈ �,
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where ρ is a probability distribution over Rd+1. The associated Barron norm of
a Barron-type function is defined as

‖f ‖B := inf
ρ∈Pf

(
E(a,w)∼ρ |a|2‖w‖6

1

)1/2
,

where Pf = {ρ | f (x) = E(a,w)∼ρa[wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx) +
c(x)σ (wᵀx)],x ∈ �}. The Barron-type space is defined as B(�) = {f : � →
R | ‖f ‖B < ∞}.

Since RD(θ) cannot be realized in realistic applications due to the fact that
the empirical loss RS(θ) of finitely many samples is actually used in the com-
putation, an immediate question is: how well φ(x; θS) ≈ φ(x; θD)? Here θS is
a global minimizer when we minimize the empirical loss of RS(θ). This is the
generalization error analysis of deep learning-based PDE solvers and we will
use the Rademacher complexity below to estimate the generalization error in
terms of |RD(θS) − RS(θS)|.
Definition 2.4 (The Rademacher complexity of a function class F). Given a
sample set S = {z1, . . . , zn} on a domain Z , and a class F of real-valued func-
tions defined on Z , the empirical Rademacher complexity of F on S is defined
as

RadS(F) = 1

n
Eτ

[
sup
f ∈F

n∑
i=1

τif (zi)

]
,

where τ1, . . . , τn are independent random variables drawn from the Rademacher
distribution, i.e., P(τi = +1) = P(τi = −1) = 1

2 for i = 1, . . . , n.

The Rademacher complexity is a basic tool for generalization analysis. In
our analysis, we will use several important lemmas and theorems related to it.
For the purpose of being self-contained, they are listed as follows.

First, we recall a well-known contraction lemma for the Rademacher com-
plexity.

Lemma 2.1 (Contraction lemma (Shalev-Shwartz and Ben-David, 2014)). Sup-
pose that ψi : R → R is a CL-Lipschitz function for each i ∈ [n]. For any y ∈
R

n, let ψ(y) = (ψ1(y1), · · · ,ψn(yn))
ᵀ. For an arbitrary set of functions F on

an arbitrary domain Z and an arbitrary choice of samples S = {z1, . . . ,zn} ⊂
Z , we have

RadS(ψ ◦F) ≤ CLRadS(F).

Second, the Rademacher complexity of linear predictors can be character-
ized by the lemma below.

Lemma 2.2 (Rademacher complexity for linear predictors (Shalev-Shwartz and
Ben-David, 2014)). Let 
 = {w1, · · · ,wm} ∈ R

d . Let G = {g(w) = wᵀx :
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‖x‖1 ≤ 1} be the linear function class with parameter x whose �1 norm is
bounded by 1. Then

Rad
(G) ≤ max
1≤k≤m

‖wk‖∞
√

2 log(2d)

m
.

Finally, let us state a general theorem concerning the Rademacher complex-
ity and generalization gap of an arbitrary set of functions F on an arbitrary
domain Z , which is essentially given in Shalev-Shwartz and Ben-David (2014).

Theorem 2.1 (Rademacher complexity and generalization gap (Shalev-Shwartz
and Ben-David, 2014)). Suppose that f ’s in F are nonnegative and uniformly
bounded, i.e., for any f ∈ F and any z ∈ Z , 0 ≤ f (z) ≤ B. Then for any δ ∈
(0,1), with probability at least 1 − δ over the choice of n i.i.d. random samples
S = {z1, . . . ,zn} ⊂ Z , we have

sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

f (zi ) −Ezf (z)

∣∣∣∣∣≤ 2ESRadS(F) + B

√
log(2/δ)

2n
,

sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

f (zi ) −Ezf (z)

∣∣∣∣∣≤ 2RadS(F) + 3B

√
log(4/δ)

2n
.

2.2 Expectation minimization

We will focus on the least-squares method in (1.2) for the boundary value prob-
lem (BVP) in (1.1) to discuss the expectation minimization, though the expecta-
tion minimization can either be formulated from the least-squares method (Berg
and Nyström, 2018; Sirignano and Spiliopoulos, 2018; Raissi et al., 2019) or
the variational formulation (E and Yu, 2018; Liao and Ming, 2019). As we shall
see in the next subsection, an initial value problem (IVP) can also be formulated
into a BVP and solved by the expectation minimization in this subsection.

The objective function in (1.2) consists of two parts: one part for the PDE
operator in the domain interior and another part for the boundary condition at
the boundary. Therefore, GD has to balance between these two parts and its per-
formance heavily relies on the choice of the parameter γ in (1.2). To remove
the hyperparameter γ and solve the balancing issue, we will introduce special
DNNs in Gu et al. (2020b,a) satisfying various boundary conditions by design,
i.e., Bφ(x; θ) = g(x) is always fulfilled on ∂�. Then the expectation minimiza-
tion in (1.2) is reduced to

θD = arg min
θ

RD(θ) := Ex∈� [�(Lφ(x; θ), f (x))] . (2.1)

Special neural networks for three types of boundary conditions will be intro-
duced. Without loss of generality, we will take the example of one-dimensional
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problems on the domain � = [a, b]. Networks for more complicated boundary
conditions in high-dimensional domains can be constructed similarly.

Case 1. Dirichlet Boundary Conditions: u(a) = a0, u(b) = b0.

In this case, two special functions h1(x) and h2(x) are used to augment
a neural network φ̃(x; θ) to construct the final neural network φ(x; θ) as the
solution network:

φ(x; θ) = h1(x)φ̃(x; θ) + h2(x).

h1(x) and h2(x) are chosen such that φ(x; θ) automatically satisfies the Dirich-
let boundary conditions no matter what θ is. Then φ(x; θ) is trained to satisfy
the differential operator in the interior of the domain � by solving (2.1).

To achieve this goal, h1(x) and h2(x) are constructed for two purposes:
1) construct h1(x) such that h1(x)φ̃(x; θ) satisfies the homogeneous Dirich-
let boundary condition; 2) construct h2(x) such that h2(x) satisfies the given
inhomogeneous Dirichlet boundary conditions. Therefore, h1(x) can be set as

h1(x) = (x − a)pa (x − b)pb ,

where 0 < pa , pb ≤ 1, and h2(x) can be chosen as

h2(x) = (b0 − a0)(x − a)/(b − a) + a0.

Note that pa and pb should be chosen appropriately to avoid introducing a sin-
gular function that φ̃(x; θ) needs to approximate. For instance, if the exact PDE
solution is u(x) = (x −a)s(x −b)sv(x)+h1(x) with v(x) as a smooth function
and s > 0, pa = pb > s results in φ̃(x; θ) ≈ (x −a)s−pa (x −b)s−pbv(x), which
makes the approximation very challenging.

Case 2. Mixed Boundary Conditions: u′(a) = a0, u(b) = b0.

Similar to Case 1, two special functions h1(x) and h2(x) are used to augment
a neural network φ̃(x; θ) to construct the final neural network φ(x; θ) as the
solution network:

φ(x; θ) = h1(x)φ̃(x; θ) + h2(x).

h1(x) and h2(x) are chosen such that φ(x; θ) automatically satisfies the mixed
boundary conditions no matter what θ is. Then φ(x; θ) is trained to satisfy the
differential operator in the interior of the domain � by solving (2.1).

To achieve this goal, h1(x) and h2(x) are constructed as

h1(x) = (x − a)pa

with 1 < pa ≤ 2 and h2(x) can be chosen as

h2(x) = −(b − a)pa φ̃(b; θ) + a0x + b0 − a0b.
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Case 3. Neumann Boundary Conditions: u′(a) = a0, u′(b) = b0.

Similar to Cases 1 and 2, we augment a neural network φ̃(x; θ) to construct
the final neural network φ(x; θ , c1, c2) as the solution network:

φ(x; θ , c1, c2) = exp(
pax

a − b
)(x − a)pa

(
(x − b)pb φ̃(x; θ) + c2

)+ c1

+ (b0 − a0)

2(b − a)
(x − a)2 + a0x,

where 1 < pa,pb ≤ 2, c1 and c2 are two parameters to be trained together with
θ . Then φ(x; θ , c1, c2) automatically satisfies the Neumann boundary condi-
tions no matter what parameters are and φ(x; θ, c1, c2) is trained to satisfy the
differential operator in the interior of the domain � by solving (2.1).

2.3 Scope of analysis and applications

In Section 2.2, we have simplified the optimization problem from (1.2) to (2.1)
for BVP in (1.1). Now we will show that various initial/boundary value prob-
lems can be formulated as a BVP in the form of (1.1). This helps us to simplify
the optimization convergence and generalization analysis of deep learning-based
PDE solvers to the case of BVP in (1.1) solved by (2.1). The analysis of a larger
scope of applications has been naturally included in the analysis of BVPs.

Let us assume that the domain � ⊂ R
d is bounded. Typical PDE problems

of interest can be summarized as:

• Elliptic equation:

Lu(x) = f (x) in �,

Bu(x) = g0(x) on ∂�.
(2.2)

• Parabolic equation:

∂u(x, t)

∂t
−Lu(x, t) = f (x, t) in � × (0, T ),

Bu(x, t) = g0(x, t) on ∂� × (0, T ),

u(x,0) = h0(x) in �.

(2.3)

• Hyperbolic equation:

∂2u(x, t)

∂t2 −Lu(x, t) = f (x, t) in � × (0, T ),

Bu(x, t) = g0(x, t) on ∂� × (0, T ),

u(x,0) = h0(x),
∂u(x,0)

∂t
= h1(x) in �.

(2.4)
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In the above equations, u is the unknown solution function; f , g0, h0, h1 are
given data functions; L is a spatial differential operator with respect to x; B is a
boundary operator specifying a certain type of boundary conditions.

As discussed in Gu et al. (2020b), when the temporal variable t is treated
as an extra spatial coordinate, we can unify the above initial/boundary value
problems in (2.2)-(2.4) in the following form

Lu(y) = f (y) in Q,

Bu(y) = g(y) in �,
(2.5)

where y includes the spatial variable x and possibly the temporal variable t ;
Lu = f represents a generic time-independent PDE; Bu = g specifies the orig-
inal boundary condition on x and possibly the initial condition of t ; Q and �

are the corresponding new domains of the equations. For the purpose of conve-
nience, we will still use the BVP in (1.1) instead of (2.5) afterwards.

Though deep learning-based PDE solvers work for high-order differential
equations in general domains, we consider second order differential equations
with variable coefficients in � = [0,1]d in our analysis. The generalization to
high-order differential equations and other domains follows straightforwardly
and we leave it as future work. We will use the second order differential operator
L in a nondivergence form

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ +
d∑

α=1

bα(x)uxα + c(x)u. (2.6)

If L is in a divergence form, e.g.,

Lu =
d∑

α,β=1

(
Aαβ(x)uxα

)
xβ

+
d∑

α=1

bα(x)uxα + c(x)u,

then we can represent it in a nondivergence form as

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ +
d∑

α=1

b̂α(x)uxα + c(x)u

with

b̂α = bα +
d∑

β=1

∂Aαβ

∂xβ

.

Recall that we introduce two functions h1(x) and h2(x) to augment a neural
network φ̃(x; θ) to construct the final neural network

φ(x; θ) = h1(x)φ̃(x; θ) + h2(x)
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as the solution network that automatically satisfies given Dirichlet boundary
conditions, which makes it sufficient to solve the optimization problem in (2.1)
to get the desired neural network. In this case, Lφ(x; θ) = f (x) is equivalent to
L̃φ̃(x; θ) = f̃ (x), where

L̃ =
d∑

α,β=1

Ãαβ(x)uxαxβ +
d∑

α=1

b̃α(x)uxα + c̃(x),

Ãαβ(x) = Aαβ(x)h1(x),

b̃α(x) = bα(x)h1(x) +
d∑

β=1

(
Aαβ(x) + Aβα(x)

)
∂xβ h1(x),

c̃(x) =
d∑

α,β=1

Aαβ(x)∂xα ∂xβ h1(x) +
d∑

α=1

bα(x)∂xαh1(x) + c(x)h1(x),

and

f̃ (x) = f (x) −L(h2(x)).

Therefore, the optimization convergence and generalization analysis of (2.1) is
equivalent to

θD = arg min
θ

RD(θ) := Ex∈�

[
�(L̃φ̃(x; θ), f̃ (x))

]
, (2.7)

which gives

φ(x; θD) = h1(x)φ̃(x; θD) + h2(x)

as a best solution to the PDE in (1.1) parametrized by DNNs. The corresponding
empirical risk is

RS(θ) := 1

n

∑
{xi }ni=1⊂�

�(L̃φ̃(xi; θ), f̃ (xi )), (2.8)

which gives θS = arg minθ RS(θ) and

φ(x; θS) = h1(x)φ̃(x; θS) + h2(x).

Similarly, in the case of other two types of boundary conditions, the corre-
sponding optimization problem in (1.2) can also be transformed to (2.7) and its
discretization in (2.8) with an appropriate differential operator L̃ and a right-
hand-side function f̃ .

In sum, the discussion in Section 2.2 and here indicates that the optimization
and generalization analysis of deep learning-based PDE solvers for various IVPs
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and BVPs with different boundary conditions can be reduced to the analysis of
(2.7) and (2.8) with L̃ in a nondivergence form. In the next section, we will
present our main theorems for this analysis. For simplicity, we will still use the
notation of L and f instead of L̃ and f̃ in our analysis afterwards.

3 Main results

In this section, we introduce our main results on the convergence of GD and
the generalization error of neural network-based least-squares solvers for PDEs
using two-layer neural networks on � = [0,1]d . Throughout our analysis, we
assume |f | ≤ 1 and focus on second-order differential operators L given in (2.6)
satisfying the assumption below.

Assumption 3.1 (Symmetry and boundedness of L). Throughout the analysis
of this paper, we assume L in (2.6) satisfies the condition: there exists M ≥ 11

such that for all x ∈ � = [0,1]d , α,β ∈ [d], we have Aαβ = Aβα

|Aαβ(x)| ≤ M, |bα(x)| ≤ M, and |c(x)| ≤ M. (3.1)

First, we show that, under suitable assumptions, the empirical risk RS(θ) of
the PDE solution represented by an overparametrized two-layer neural network
converges to zero, i.e., achieving a global minimizer, with a linear convergence
rate by GD. In particular, as discussed in Section 2, it is sufficient to prove the
convergence for minimizing the empirical loss

θS = arg min
θ

RS(θ) := 1

n

∑
S={xi }ni=1⊂�

�(Lφ(xi; θ), f (xi )), (3.2)

where S := {xi}ni=1 is a given set of i.i.d. samples with the uniform distribution
D over � = [0,1]d , and the two-layer neural network used here is constructed
as

φ(x; θ) =
m∑

k=1

akσ (w
ᵀ
k x), (3.3)

where for k ∈ [m], ak ∈ R, wk ∈ R
d , θ = vec{ak,wk}mk=1, and σ(x) =

max{ 1
6x3,0}. Our main result of the linear convergence rate is summarized in

Theorem 3.1 below.

Theorem 3.1 (Linear convergence rate). Let θ0 := vec{a0
k ,w

0
k}mk=1 at the GD

initialization for solving (3.2), where a0
k ∼ N (0, γ 2) and w0

k ∼ N (0, I d) with

1 The upper bound M is not necessarily greater than 1. We set this for simplicity.
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any γ ∈ (0,1). Let Cd := E‖w‖12
1 < +∞ with w ∼ N (0, I d) and λS be a posi-

tive constant in Assumption 4.1. For any δ ∈ (0,1), if

m ≥ max

{
512n4M4Cd

λ2
Sδ

,
200

√
2Md3n log(4m(d + 1)/δ)

√
RS(θ0)

λS

, (3.4)

223M3d9n2(log(4m(d + 1)/δ))4
√

RS(θ0)

λ2
S

}
, (3.5)

then with probability at least 1 − δ over the random initialization θ0, we have,
for all t ≥ 0,

RS(θ(t)) ≤ exp

(
−mλSt

n

)
RS(θ0).

Remark 3.1. For the estimate of RS(θ0), see Lemma 4.2. In particular, if γ =
O( 1√

m(logm)2 ), then RS(θ0) = O(1). One may also use the Anti-Symmetrical
Initialization (ASI) (Zhang et al., 2019), a general but simple trick that ensures
RS(θ0) ≤ 1

2 .

Second, we prove that the a posteriori generalization error |RD(θ) − RS(θ)|
is bounded by O

(
‖θ‖2

P log‖θ‖P√
n

)
, where ‖θ‖P is the path norm introduced in

Definition 2.2, and the a priori generalization error RD(θS,λ) is bounded by

O

(
‖f ‖2

B
m

)
+ O

(
‖f ‖2

B log‖f ‖B√
n

)
, where ‖f ‖B is the Barron norm for Barron-

type functions f (x) introduced in Definition 2.3, and θS,λ is a global minimizer
of a regularized empirical loss using the path norm. Our results of the general-
ization errors can be summarized in Theorems 3.2 and 3.3 below.

Theorem 3.2 (A posteriori generalization bound). For any δ ∈ (0,1), with prob-
ability at least 1 − δ over the choice of random samples S := {xi}ni=1 in (3.2),
for any two-layer neural network φ(x; θ) in (3.3), we have

|RD(θ) − RS(θ)| ≤ (‖θ‖P + 1)2

√
n

2M2(14d2
√

2 log(2d)

+ log[π(‖θ‖P + 1)] +√2 log(1/3δ)).

Theorem 3.3 (A priori generalization bound). Suppose that f (x) is in the Bar-
ron-type space B([0,1]d) and λ ≥ 4M2[2 + 14d2

√
2 log(2d) +√2 log(2/3δ)].

Let

θS,λ = arg min
θ

JS,λ(θ) := RS(θ) + λ√
n
‖θ‖2

P log[π(‖θ‖P + 1)].
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Then for any δ ∈ (0,1), with probability at least 1− δ over the choice of random
samples S := {xi}ni=1 in (3.2), we have

RD(θS,λ) := Ex∼D 1
2 (Lφ(x; θS,λ) − f (x))2

≤ 6M2‖f ‖2
B

m
+ ‖f ‖2

B + 1√
n

(4λ + 16M2)

×
{

log[π(2‖f ‖B + 1)] + 14d2
√

log(2d) +√log(2/3δ)
}

. (3.6)

The proof of Theorem 3.1 will be given in Section 4 and the proofs of The-
orems 3.2 and 3.3 will be presented in Section 5.

4 Global convergence of gradient descent

In this section, we will prove the global convergence of GD with a linear con-
vergence rate for deep learning-based PDE solvers as stated in Theorem 3.1. We
will first summarize the notations and assumptions for the proof of Theorem 3.1
in Section 4.1. Several important lemmas will be proved in Section 4.2. Finally,
Theorem 3.1 is proved in Section 4.3.

4.1 Notations and main ideas

Let us first summarize the notations and assumptions used in the proof of The-
orem 3.1.

Recall that we use the two-layer neural network φ(x; θ) in (3.3) with
θ = vec{ak,wk}mk=1. In the GD iteration, we use t to denote the iteration or
the artificial time variable in the gradient flow. Hence, we define the following
notations for the evolution of parameters at time t :

at
k := ak(t), wt

k := wk(t), θ t := θ(t) := vec{at
k,w

t
k}mk=1.

In the analysis, we also use āt
k := āk(t) := γ −1ak(t) with 0 < γ < 1, e.g., γ =

1√
m

or γ = 1
m

. θ̄(t) means vec{āt
k,w

t
k}mk=1. Similarly, we can introduce t to other

functions or variables depending on θ(t). When the dependency of t is clear, we
will drop the index t . In the initialization of GD, we set

a0
k := ak(0) ∼ N (0, γ 2), w0

k := wk(0) ∼ N (0, I d),

θ0 := θ(0) := vec{a0
k ,w

0
k}mk=1.

(4.1)

Note that we use σ(x) = max{ 1
6x3,0} as the activation of our two-layer

neural network. Therefore, σ ′(x) = max{ 1
2x2,0}, and σ ′′(x) = ReLU(x) =

max{x,0}. For simplicity, we define

fθ (x) := f (x; θ) := Lφ(x; θ)
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=
m∑

k=1

ak[wᵀ
k A(x)wkσ

′′(wᵀ
k x) + bᵀ(x)wkσ

′(wᵀ
k x) + c(x)σ (w

ᵀ
k x)],

(4.2)

which can be treated as a special two-layer neural network for a regression prob-
lem fθ (x) ≈ f (x).

For simplicity, we denote ei = fθ (xi ) − f (xi ) for i ∈ [n] and e =
(e1, e2, . . . , en)

ᵀ. Then the empirical risk can be written as

RS(θ) = 1

2n

n∑
i=1

(fθ (xi ) − f (xi ))
2 = 1

2n
eᵀe.

Hence, the GD dynamics is

θ̇ = −∇θRS(θ), (4.3)

or equivalently in terms of ak and wk as follows:

ȧk = −∇ak
RS(θ)

= −1

n

n∑
i=1

ei

[
w

ᵀ
k A(xi )wkσ

′′(wᵀ
k xi ) + bᵀ(xi )wkσ

′(wᵀ
k xi )

+ c(xi )σ (w
ᵀ
k xi )

]
,

ẇk = −∇wk
RS(θ)

= −1

n

n∑
i=1

eiak

[
2A(xi )wkσ

′′(wᵀ
k xi ) + w

ᵀ
k A(xi )wkσ

(3)(w
ᵀ
k xi )xi

+ σ ′(wᵀ
k xi )b(xi ) + bᵀ(xi )wkσ

′′(wᵀ
k xi )xi + c(xi )σ

′(wᵀ
k xi )xi

]
.

Adopting the neuron tangent kernel point of view (Jacot et al., 2018), in the
case of a two-layer neural network with an infinite width, the corresponding
kernels k(a) for parameters in the last linear transform and k(w) for parameters
in the first layer are functions from � × � to R defined by

k(a)(x,x′) := Ew∼N (0,I d )g
(a)(w;x,x′),

k(w)(x,x′) := E(a,w)∼N (0,I d+1)g
(w)(a,w;x,x′),

where

g(a)(w;x,x′)
:= [wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx) + c(x)σ (wᵀx)

]
· [wᵀA(x′)wσ ′′(wᵀx′) + bᵀ(x′)wσ ′(wᵀx′) + c(x′)σ (wᵀx′)

]
,
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g(w)(a,w;x,x′)
:= a2[2A(x)wσ ′′(wᵀx) + wᵀA(x)wσ (3)(wᵀx)x + σ ′(wᵀx)b(x)

+ bᵀ(x)wσ ′′(wᵀx)x + c(x)σ ′(wᵀx)x
] · [2A(x′)wσ ′′(wᵀx′)

+ wᵀA(x′)wσ (3)(wᵀx′)x′ + σ ′(wᵀx′)b(x′)
+ bᵀ(x′)wσ ′′(wᵀx′)x ′ + c(x)σ ′(wᵀx′)x′].

These kernels evaluated at n × n pairs of samples lead to n × n Gram matrices
K(a) and K(w) with K

(a)
ij = k(a)(xi ,xj ) and K

(w)
ij = k(w)(xi ,xj ), respectively.

Our analysis requires the matrix K(a) to be positive definite, which has been
verified for regression problems under mild conditions on random training data
S = {xi}ni=1 and can be generalized to our case. Hence, we assume this as fol-
lows for simplicity.

Assumption 4.1. We assume that

λS := λmin

(
K(a)

)
> 0.

For a two-layer neural network with m neurons, the n × n Gram matrix
G(θ) = G(a)(θ)+G(w)(θ) is given by the following expressions for the (i, j)-th
entry

G
(a)
ij (θ) := 1

m

m∑
k=1

g(a)(wk;xi ,xj ),

G
(w)
ij (θ) := 1

m

m∑
k=1

g(w)(ak,wk;xi ,xj ).

Clearly, G(a)(θ) and G(w)(θ) are both positive semi-definite for any θ . By using
the Gram matrix G(θ), we have the following evolution equations to understand
the dynamics of GD:

d

dt
fθ (xi ) = −1

n

n∑
j=1

Gij (θ)(fθ (xj ) − f (xj ))

and

d

dt
RS(θ) = −‖∇θRS(θ)‖2

2 = − m

n2
eᵀG(θ)e ≤ − m

n2
eᵀG(a)(θ)e. (4.4)

Our goal is to show that the above evolution equation has a solution fθ (xi )

converging to f (xi ) for all training samples xi , or equivalently, to show
that RS(θ) converges to zero. These goals are true if the smallest eigenvalue
λmin

(
G(a)(θ)

)
of G(a)(θ) has a positive lower bound uniformly in t , since in
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this case we can solve (4.4) and bound RS(θ) with a function in t converging to
zero when t → ∞ as shown in Lemma 4.4. In fact, a uniform lower bound of
λmin

(
G(a)(θ)

)
can be 1

2λS , which can be proved in the following three steps:

• (Initial phase) By Assumption 4.1 of K(a), we can show λmin
(
G(a)(θ(0))

)≈
λS in Lemma 4.3 using the observation that K

(a)
ij is the mean of g(w;xi ,xj )

over the normal random variable w, while G
(a)
ij (θ(0)) is the mean of

g(w;xi ,xj ) with m independent realizations.
• (Evolution phase) The GD dynamics results in θ(t) ≈ θ(0) under the as-

sumption of overparametrization as shown in Lemma 4.5, which indicates
that

λmin

(
G(a)(θ(0))

)
≈ λmin

(
G(a)(θ(t))

)
.

• (Final phase) To show the uniform bound λmin
(
G(a)(θ(t))

) ≥ 1
2λS for all

t ≥ 0, we introduce a stopping time t∗ via

t∗ = inf{t | θ(t) /∈M(θ0)}, (4.5)

where

M(θ0) :=
{
θ | ‖G(a)(θ) − G(a)(θ0)‖F ≤ 1

4
λS

}
, (4.6)

and show that t∗ is in fact equal to infinity in the final proof of Theorem 3.1
in Section 4.3.

4.2 Proofs of lemmas for Theorem 3.1

In this subsection, we will prove several lemmas in preparation for the proof of
Theorem 3.1.

Lemma 4.1. For any δ ∈ (0,1) with probability at least 1 − δ over the random
initialization in (4.1), we have

max
k∈[m]

{
|ā0

k |, ‖w0
k‖∞

}
≤
√

2 log
2m(d + 1)

δ
,

max
k∈[m]

{
|a0

k |
}

≤ γ

√
2 log

2m(d + 1)

δ
.

(4.7)

Proof. If X ∼ N (0,1), then P(|X| > ε) ≤ 2e− 1
2 ε2

for all ε > 0. Since ā0
k ∼

N (0,1), (w0
k)α ∼ N (0,1) for k ∈ [m], α ∈ [d], and they are all independent, by

setting

ε =
√

2 log
2m(d + 1)

δ
,
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one can obtain

P

(
max
k∈[m]

{
|ā0

k |,‖w0
k‖∞

}
> ε

)

= P

⎛
⎝
⎛
⎝ ⋃

k∈[m]

{
|ā0

k | > ε
}⎞⎠⋃

⎛
⎝ ⋃

k∈[m],α∈[d]

{
|(w0

k)α| > ε
}⎞⎠
⎞
⎠

≤
m∑

k=1

P

(
|ā0

k | > ε
)

+
m∑

k=1

d∑
α=1

P

(
|(w0

k)α| > ε
)

≤ 2me− 1
2 ε2 + 2mde− 1

2 ε2

= 2m(d + 1)e− 1
2 ε2

= δ,

which implies the conclusions of this lemma.

Lemma 4.2. For any δ ∈ (0,1) with probability at least 1 − δ over the random
initialization in (4.1), we have

RS(θ0) ≤ 1

2

(
1 + 32γ

√
mMd3

(
log

4m(d + 1)

δ

)2

×
(√

2 log(2d) +√2 log(8/δ)
))2

,

Proof. From Lemma 4.1 we know that with probability at least 1 − δ/2,

|ā0
k | ≤

√
2 log

4m(d + 1)

δ
and ‖w0

k‖1 ≤ d

√
2 log

4m(d + 1)

δ
.

Let

H = {h(ā,w;x) | h(ā,w;x) =ā
[
wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx)

+ c(x)σ (wᵀx)
]
,x ∈ �}.

Note that A, b, and c are known functions of x. Each element in the above set
is a function of ā and w while x ∈ � = [0,1]d is a parameter. Since ‖x‖∞ ≤ 1,
we have

|h(ā0
k ,w

0
k;x)| ≤ |ā0

k |
[
M‖w0

k‖3
1 + 1

2
M‖w0

k‖3
1 + 1

6
M‖w0

k‖3
1

]
≤ 2M|ā0

k |‖w0
k‖3

1

≤ 8Md3
(

log
4m(d + 1)

δ

)2

.
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Then with probability at least 1 − δ/2, by the Rademacher-based uniform con-
vergence theorem, we have

1

γm
sup
x∈�

|fθ0(x)| = sup
x∈�

∣∣∣∣∣ 1

m

m∑
k=1

h(ā0
k ,w

0
k;x) −E(ā,w)∼N (0,I d+1)h(ā,w;x)

∣∣∣∣∣
≤ 2Rad

θ̄
0(H) + 24Md3

(
log

4m(d + 1)

δ

)2
√

2 log(8/δ)

m
,

where

Rad
θ̄

0(H) := 1

m
Eτ

[
sup
x∈�

m∑
k=1

τkh(ā0
k ,w

0
k;x)

]
≤ I1 + I2 + I3,

I1 = 1

m
Eτ

[
sup
x∈�

m∑
k=1

τkā
0
kw

0ᵀ
k A(x)w0

kσ
′′(w0ᵀ

k x)

]
,

I2 = 1

m
Eτ

[
sup
x∈�

m∑
k=1

τkā
0
kb

ᵀ(x)w0
kσ

′(w0ᵀ
k x)

]
,

I3 = 1

m
Eτ

[
sup
x∈�

m∑
k=1

τkā
0
k c(x)σ (w

0ᵀ
k x)

]
,

where τ is a random vector in N
m with i.i.d. entries {τk}mk=1 following the

Rademacher distribution.
We only prove for I1. It can be straightforwardly extended to I2 and I3.

I1 = 1

m
Eτ

[
sup
x∈�

m∑
k=1

τkā
0
kw

0ᵀ
k A(x)w0

kσ
′′(w0ᵀ

k x)

]

≤ 1

m
Eτ

[
sup

x,y∈�

m∑
k=1

τkā
0
kw

0ᵀ
k A(y)w0

kσ
′′(w0ᵀ

k x)

]

= 1

m
Eτ

⎡
⎣ sup

x,y∈�

m∑
k=1

d∑
α,β=1

τkā
0
k (w

0ᵀ
k )αAαβ(y)(w0

k)βσ ′′(w0ᵀ
k x)

⎤
⎦

≤
d∑

α,β=1

1

m
Eτ

[
sup

x,y∈�

m∑
k=1

τkā
0
k (w

0ᵀ
k )αAαβ(y)(w0

k)βσ ′′(w0ᵀ
k x)

]
. (4.8)

For any α,β ∈ [d], we have

Eτ

[
sup

x,y∈�

m∑
k=1

τkā
0
k (w

0ᵀ
k )αAαβ(y)(w0

k)βσ ′′(w0ᵀ
k x)

]
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≤ Eτ

[
sup

x,y∈�

∣∣Aαβ(y)
∣∣ ∣∣∣∣∣

m∑
k=1

τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

∣∣∣∣∣
]

≤ MEτ

[
sup
x∈�

∣∣∣∣∣
m∑

k=1

τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

∣∣∣∣∣
]

≤ MEτ

[
sup
x∈�

m∑
k=1

τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

]

+ MEτ

[
sup
x∈�

m∑
k=1

−τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

]

= 2MEτ

[
sup
x∈�

m∑
k=1

τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

]
, (4.9)

where in the third inequality, we have used the fact that σ ′′(w0ᵀ
k x) = 0 for x = 0

and for any w0
k . Applying Lemma 2.1 with ψk(yk) = āk(w

0ᵀ
k )α(w0

k)βσ ′′(yk)

for k ∈ [m], whose Lipschitz constant is

(√
2 log 4m(d+1)

δ

)3

, we have for all

α,β ∈ [d]

Eτ

[
sup
x∈�

m∑
k=1

τkā
0
k (w

0ᵀ
k )α(w0

k)βσ ′′(w0ᵀ
k x)

]

≤
(√

2 log
4m(d + 1)

δ

)3

Eτ

[
sup
x∈�

m∑
k=1

τkw
0ᵀ
k x

]
. (4.10)

Therefore, combining (4.8), (4.9), and (4.10), we obtain

I1 ≤ 2Md2

m

(√
2 log

4m(d + 1)

δ

)3

Eτ

[
sup
x∈�

m∑
k=1

τkw
0ᵀ
k x

]

≤ 2Md3

√
m

(√
2 log

4m(d + 1)

δ

)4√
2 log(2d)

≤ 8Md3
√

2 log(2d)√
m

(
log

4m(d + 1)

δ

)2

,

where the second inequality is by the Rademacher bound for linear predictors in
Lemma 2.2. For I2 and I3, we note that σ(z) = 1

6z2σ ′′(z) and σ ′(z) = 1
2zσ ′′(z).

Then by a similar argument, we have

I2 ≤ 4Md2
√

2 log(2d)√
m

(
log

4m(d + 1)

δ

)2

,
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I3 ≤ 4Md
√

2 log(2d)

3
√

m

(
log

4m(d + 1)

δ

)2

,

Rad
θ̄

0(H) ≤ 16Md3
√

2 log(2d)√
m

(
log

4m(d + 1)

δ

)2

.

So one can get

sup
x∈�

|fθ0(x)| ≤ 32γMd3√m
√

2 log(2d)

(
log

4m(d + 1)

δ

)2

+ 24γ
√

mMd3
(

log
4m(d + 1)

δ

)2√
2 log(8/δ)

≤ 32γ
√

mMd3
(

log
4m(d + 1)

δ

)2 (√
2 log(2d) +√2 log(8/δ)

)
.

Then

RS(θ0) ≤ 1

2n

n∑
i=1

(
1 + |fθ0(xi )|

)2

≤ 1

2

(
1 + 32γ

√
mMd3

(
log

4m(d + 1)

δ

)2

×
(√

2 log(2d) +√2 log(8/δ)
))2

,

where the first inequality comes from the fact that |f | ≤ 1 by our assumption of
the PDE.

The following lemma shows the positive definiteness of G(a) at initialization.

Lemma 4.3. For any δ ∈ (0,1), if m ≥ 256n4M4Cd

λ2
Sδ

, then with probability at least

1 − δ over the random initialization in (4.1), we have

λmin

(
G(a)(θ0)

)
≥ 3

4
λS,

where Cd := E‖w‖12
1 < +∞ with w ∼ N (0, I d).

Proof. We define �ij := {θ0 | |G(a)
ij (θ0) − K

(a)
ij | ≤ λS

4n
}. Note that

|g(a)(w0
k;xi ,xj )| ≤

(
M‖w0

k‖3
1 + 1

2
M‖w0

k‖3
1 + 1

6
M‖w0

k‖3
1

)2

≤ 4M2‖w0
k‖6

1.

So

Var
(
g(a)(w0

k;xi ,xj )
)

≤ E

(
g(a)(w0

k;xi ,xj )
)2 ≤ 16M4

E‖w0
k‖12

1 = 16M4Cd,
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and

Var
(
G

(a)
ij (θ0)

)
= 1

m2

m∑
k=1

Var
(
g(a)(w0

k;xi ,xj )
)

≤ 16M4Cd

m
.

Then the probability of the event �ij has the lower bound:

P(�ij ) ≥ 1 −
Var

(
G

(a)
ij (θ0)

)
[λS/(4n)]2 ≥ 1 − 256M4n2Cd

λ2
Sm

.

Thus, with probability at least

(
1 − 256M4n2Cd

λ2
Sm

)n2

≥ 1 − 256M4n4Cd

λ2
Sm

, we have

all events �ij for i, j ∈ [n] happen. This implies that with probability at least

1 − 256M4n4Cd

λ2
Sm

, we have

‖G(a)(θ0) − K(a)‖F ≤ λS

4

and

λmin

(
G(a)(θ0)

)
≥ λS − ‖G(a)(θ0) − K(a)‖F ≥ 3

4
λS.

For any δ ∈ (0,1), if m ≥ 256n4M4Cd

λ2
Sδ

, then with probability at least 1 −
256M4n4Cd

λ2
Sm

≥ 1 − δ over the initialization θ0, we have λmin
(
G(a)(θ0)

) ≥ 3
4λS .

The following lemma estimates the empirical loss dynamics before the stop-
ping time t∗ in (4.5).

Lemma 4.4. For any δ ∈ (0,1), if m ≥ 256n4M4Cd

λ2
Sδ

, then with probability at least

1 − δ over the random initialization in (4.1), we have for any t ∈ [0, t∗)

RS(θ(t)) ≤ exp

(
−mλSt

n

)
RS(θ0).

Proof. From Lemma 4.3, for any δ ∈ (0,1) with probability at least 1 − δ over
initialization θ0 and for any t ∈ [0, t∗) with t∗ defined in (4.5), we have θ(t) ∈
M(θ0) defined in (4.6) and

λmin

(
G(a)(θ)

)
≥ λmin

(
G(a)(θ0)

)
− ‖G(a)(θ) − G(a)(θ0)‖F

≥ 3

4
λS − 1

4
λS

= 1

2
λS.
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Note that Gij = 1
m

∇θfθ (xi ) · ∇θfθ (xj ) and ∇θRS = 1
n

∑n
i=1 ei∇θfθ (xi ), so

‖∇θRS(θ(t))‖2
2 = m

n2 eᵀG(θ(t))e ≥ m

n2 eᵀG(a)(θ(t))e,

where the last equation is true by the fact that G(w)(θ(t)) is a Gram matrix and
hence positive semi-definite. Together with

m

n2
eᵀG(a)(θ(t))e ≥ 2m

n
λmin

(
G(a)(θ(t))

)
RS(θ(t)) ≥ m

n
λSRS(θ(t)),

then finally we get

d

dt
RS(θ(t)) = −‖∇θRS(θ(t))‖2

2 ≤ −m

n
λSRS(θ(t)).

Integrating the above equation yields the conclusion in this lemma.

The following lemma shows that the parameters in the two-layer neural net-
work are uniformly bounded in time during the training before time t∗.

Lemma 4.5. For any δ ∈ (0,1), if

m ≥ max

{
512n4M4Cd

λ2
Sδ

,
200

√
2Md3n log(4m(d + 1)/δ)

√
RS(θ0)

λS

}
,

then with probability at least 1 − δ over the random initialization in (4.1), for
any t ∈ [0, t∗) and any k ∈ [m],

|ak(t) − ak(0)| ≤ q, ‖wk(t) − wk(0)‖∞ ≤ q,

|ak(0)| ≤ γ η, ‖wk(0)‖∞ ≤ η,

where

q := 320Md3(log 4m(d+1)
δ

)3/2n
√

RS(θ0)

mλS

and

η :=
√

2 log
4m(d + 1)

δ
.

Proof. Let ξ(t) = max
k∈[m],s∈[0,t]{|ak(s)|,‖wk(s)‖∞}. Note that

|∇ak
RS(θ)|2 =

{
1

n

n∑
i=1

ei

[
w

ᵀ
k A(xi )wkσ

′′(wᵀ
k xi ) + bᵀ(xi )wkσ

′(wᵀ
k xi )

+ c(xi )σ (w
ᵀ
k xi )

]}2
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≤ 8M2‖wk‖6
1RS(θ)

≤ 8M2d6(ξ(t))6RS(θ),

and

‖∇wk
RS(θ)‖2∞

=
∥∥∥1

n

n∑
i=1

eiak

[
2A(xi )wkσ

′′(wᵀ
k xi ) + w

ᵀ
k A(xi )wkσ

(3)(w
ᵀ
k xi )xi

+ σ ′(wᵀ
k xi )b(xi ) + bᵀ(xi )wkσ

′′(wᵀ
k xi )xi + c(xi )σ

′(wᵀ
k xi )xi

]∥∥∥2

∞

≤ |ak|22RS(θ)
(

2M‖wk‖2
1 + M‖wk‖2

1 + 1

2
M‖wk‖2

1

+ M‖wk‖2
1 + M

1

2
‖wk‖2

1

)2

≤ 50M2‖wk‖4
1|ak|2RS(θ)

≤ 50M2d4(ξ(t))6RS(θ).

From Lemma 4.4, if m ≥ 512M4n4Cd

λ2
s δ

, then with probability at least 1 − δ/2 over

initialization

|ak(t) − ak(0)| ≤
∫ t

0
|∇ak

RS(θ(s))|ds

≤ 2
√

2Md3
∫ t

0
ξ3(t)

√
RS(θ(s))ds

≤ 2
√

2Md3ξ3(t)

∫ t

0

√
RS(θ0) exp

(
−mλSs

2n

)
ds

≤ 4
√

2Md3n
√

RS(θ0)

mλS

ξ3(t)

≤ pξ3(t),

where p := 10
√

2d3Mn

√
RS(θ0)

mλS
. Similarly,

‖wk(t) − wk(0)‖∞ ≤
∫ t

0
‖∇wk

RS(θ(s))‖∞ ds

≤ 5
√

2Md2
∫ t

0
ξ3(t)

√
RS(θ(s))ds

≤ 5
√

2Md2ξ3(t)

∫ t

0

√
RS(θ0) exp

(
−mλSs

2n

)
ds
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≤ 10
√

2Md2n
√

RS(θ0)

mλS

ξ3(t)

≤ pξ3(t).

So

ξ(t) ≤ ξ(0) + pξ3(t). (4.11)

From Lemma 4.1 with probability at least 1 − δ/2,

ξ(0) = max
k∈[m]{|ak(0)|,‖wk(0)‖∞}

≤ max

{
γ

√
2 log

4m(d + 1)

δ
,

√
2 log

4m(d + 1)

δ

}

≤
√

2 log
4m(d + 1)

δ
= η. (4.12)

Since

m ≥ 200
√

2Md3n log(4m(d + 1)/δ)
√

RS(θ0)

λS

= 10mpη2,

then p ≤ 1
10

(
2 log 4m(d+1)

δ

)−1 = 1
10η−2 and p(2η)2 ≤ 2

5 . Let

t0 := inf{t | ξ(t) > 2η}.

We will prove t0 ≥ t∗ by contradiction. Suppose that t0 < t∗. For t ∈ [0, t0), by
(4.11), (4.12), and ξ(t) ≤ 2η, we have

ξ(t) ≤ η + p(2η)2ξ(t) ≤ η + 2

5
ξ(t),

then

ξ(t) ≤ 5

3
η.

After letting t → t0, the inequality just above contradicts with the definition of
t0. So t0 ≥ t∗ and then ξ(t) ≤ 2η for all t ∈ [0, t∗). Thus

|ak(t) − ak(0)| ≤ 8η3p

‖wk(t) − wk(0)‖∞ ≤ 8η3p.
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Finally, notice that

8η3p = 8
√

8

(
log

4m(d + 1)

δ

)3/2 10
√

2Md3n
√

RS(θ0)

mλS

=
320Md3

(
log 4m(d+1)

δ

)3/2
n
√

RS(θ0)

mλS

= q,

(4.13)

which ends the proof.

4.3 Proof of Theorem 3.1

Proof of Theorem 3.1. From Lemma 4.4, it is sufficient to prove that the stop-
ping time t∗ in Lemma 4.4 is equal to +∞. We will prove this by contradiction.

Suppose t∗ < +∞. Note that

|G(a)
ij (θ(t∗)) − G

(a)
ij (θ(0))|

≤ 1

m

m∑
k=1

|g(a)(wk(t
∗);xi ,xj ) − g(a)(wk(0);xi ,xj )|.

(4.14)

By the mean value theorem,

|g(a)(wk(t
∗);xi ,xj ) − g(a)(wk(0);xi ,xj )|

≤ ‖∇g(a)
(
cwk(t

∗) + (1 − c)wk(0);xi ,xj

)‖∞‖wk(t
∗) − wk(0)‖1

for some c ∈ (0,1). Further computation yields

∇g(a)(w;xi ,xj )

=
[
2A(xi )wσ ′′(wᵀxi ) + wᵀA(xi )wσ (3)(wᵀxi )xi + σ ′(wᵀxi )b(xi )

+ bᵀ(xi )wσ ′′(wᵀxi )xi + c(xi )σ
′(wᵀxi )xi

]
×
[
wᵀA(xj )wσ ′′(wᵀxj ) + bᵀ(xj )wσ ′(wᵀxj ) + c(xj )σ (wᵀxj )

]
+
[
2A(xj )wσ ′′(wᵀxj ) + wᵀA(xj )wσ (3)(wᵀxj )xi + σ ′(wᵀxi )b(xi )

+ bᵀ(xj )wσ ′′(wᵀxj )xj + c(xj )σ
′(wᵀxj )xj

]
×
[
wᵀA(xi )wσ ′′(wᵀxi ) + bᵀ(xi )wσ ′(wᵀxi ) + c(xi )σ (wᵀxi )

]
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for all w. Hence, it holds for all w that

‖∇g(a)(w;xi ,xj )‖∞

≤ 2
[
2M‖w‖2

1 + M‖w‖2
1 + 1

2
M‖w‖2

1 + M‖w‖2
1 + 1

2
M‖w‖2

1

]
×
[
M‖w‖3

1 + 1

2
M‖w‖3

1 + 1

6
M‖w‖3

1

]
≤ 2(5M‖w‖2

1)(2M‖w‖3
1)

= 20M2‖w‖5
1.

Therefore, the bound in (4.14) becomes

|G(a)
ij (θ(t∗)) − G

(a)
ij (θ(0))|

≤ 20M2

m

m∑
k=1

‖cwk(t
∗) + (1 − c)wk(0)‖5

1‖wk(t
∗) − wk(0)‖1.

(4.15)

By Lemma 4.5,

‖cwk(t
∗) + (1 − c)wk(0)‖1 ≤ ‖wk(0)‖1 + ‖wk(t

∗) − wk(0)‖1

≤ d(η + q) ≤ 2dη,

where η and q are defined in Lemma 4.5. So, (4.15) and the above inequalities
indicate

|G(a)
ij (θ(t∗)) − G

(a)
ij (θ(0))| ≤ 20M2(2dη)5dq = 640M2d6η5q,

and

‖G(a)(θ(t∗)) − G(a)(θ(0))‖F ≤ 640M2d6nη5q

<
221M3d9n2(log 4m(d+1)

δ
)4
√

RS(θ0)

mλS

≤ 1

4
λS,

if we choose

m ≥ 223M3d9n2(log(4m(d + 1)/δ))4
√

RS(θ0)

λ2
S

.

The fact that ‖G(a)(θ(t∗)) − G(a)(θ(0))‖F ≤ 1
4λS above contradicts with the

definition of t∗ in (4.5). Hence, we have completed the proof.
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5 A priori estimates of generalization error for two-layer
neural networks

To obtain good generalization, instead of minimizing RS , we minimize the reg-
ularized risk of RS(θ):

JS,λ(θ) := RS(θ) + λ√
n
‖θ‖3

P (5.1)

to obtain

θS,λ = arg min
θ

JS,λ(θ). (5.2)

Our work is inspired by the seminal work in E et al. (2019b,a) and the proof
is a variant of the proof therein. But as we shall see, the differential operator
increases the technical difficulty in the analysis: extra nonlinearity in the param-
eters, which makes existing mean field analysis (Mei et al., 2018) not applicable.
We will use the path norm defined in Definition 2.2 adaptive to the PDE prob-
lem, instead of using the path norm in E et al. (2019b,a) for regression problems.
We will show that the PDE solution network φ(x; θS,λ) generalizes well if the
true solution is in the Barron-type space defined in Definition 2.3, which is also
a variance of the Barron-type space in E et al. (2019b,a). The generalization
error is measured in terms of how well f (x; θS,λ) := Lφ(x; θS,λ) ≈ f (x) gen-
eralizes from the random training samples S = {xi}ni=1 ⊂ � to arbitrary samples
in �.

Recall that f (x; θ), also denoted as fθ (x), is the result of the differential op-
erator L acting on a two-layer neural network φ(x; θ) in the domain �. In fact,
f (x; θ) is also a two-layer neural network as explained in (4.2). Hence, the gen-
eralization error analysis of deep learning-based PDE solvers is reduced to the
generalization analysis of the special two-layer neural network f (x; θ) fitting
f (x). The special structure of f (x; θ) leads to significant difficulty in analyz-
ing the generalization error compared to traditional two-layer neural networks
in the literature.

We will first summarize and prove several lemmas related to Rademacher
complexity in Section 5.1. The proofs of our main theorems for the generaliza-
tion bound in Theorems 3.2 and 3.3 are presented in Section 5.2.

5.1 Preliminary lemmas of Rademacher complexity

First, we define the set of functions

FQ =
{
f (x; θ) =

m∑
k=1

ak

[
w

ᵀ
k A(x)wkσ

′′(wᵀ
k x) + bᵀ(x)wkσ

′(wᵀ
k x)

+ c(x)σ (w
ᵀ
k x)

] | ‖θ‖P ≤ Q

}
.
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Second, we estimate the Rademacher complexity of the class of special two-
layer neural networks FQ.

Lemma 5.1 (Rademacher complexity of two-layer neural networks). The
Rademacher complexity of FQ over a set of n uniform distributed random sam-
ples of �, denoted as S = {x1, . . . ,xn}, has an upper bound

RadS(FQ) ≤ 4MQd2
√

2 log(2d)√
n

,

where M is the upper bound of the differential operator L introduced in (3.1).

Proof. Let ŵk = wk/‖wk‖1 for k = 1, · · · ,m and τ be a random vector in N
d

with i.i.d. entries following the Rademacher distribution. Then

nRadS(FQ)

= Eτ

{
sup

‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

ak[wᵀ
k A(xi )wkσ

′′(wᵀ
k xi ) + bᵀ(xi )wkσ

′(wᵀ
k xi )

+ c(xi )σ (w
ᵀ
k xi )]

}

≤ Eτ

[
sup

‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akw
ᵀ
k A(xi )wkσ

′′(wᵀ
k xi )

]

+Eτ

[
sup

‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akb
ᵀ(xi )wkσ

′(wᵀ
k xi )

]

+Eτ

[
sup

‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akc(xi )σ (w
ᵀ
k xi )

]

=: I1 + I2 + I3. (5.3)

We first estimate I1 as follows

I1 = Eτ

[
sup

‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

ak‖wk‖3
1ŵ

ᵀ
k A(xi )ŵkσ

′′(ŵᵀ
k xi )

]

≤ Eτ

[
sup

‖θ‖P≤Q,‖uk‖1=1,∀k

n∑
i=1

τi

m∑
k=1

ak‖wk‖3
1u

ᵀ
k A(xi )ukσ

′′(uᵀ
k xi )

]

≤ Eτ

[
sup

‖θ‖P≤Q,‖uk‖1=1,∀k

m∑
k=1

∣∣∣ak‖wk‖3
1

∣∣∣
∣∣∣∣∣

n∑
i=1

τiu
ᵀ
k A(xi )ukσ

′′(uᵀ
k xi )

∣∣∣∣∣
]

= Eτ

[
sup

‖θ‖P≤Q,‖u‖1=1

m∑
k=1

|ak|‖wk‖3
1

∣∣∣∣∣
n∑

i=1

τiu
ᵀA(xi )uσ ′′(uᵀxi )

∣∣∣∣∣
]
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≤ QEτ

[
sup

‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

∣∣∣∣∣
n∑

i=1

τip
ᵀA(xi )qσ ′′(uᵀxi )

∣∣∣∣∣
]

= QEτ

[
sup

‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

∣∣∣∣∣pᵀ
(

n∑
i=1

τiA(xi )σ
′′(uᵀxi )

)
q

∣∣∣∣∣
]

= QEτ

⎡
⎣ sup

‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

d∑
α,β=1

|pα||qβ |
∣∣∣∣∣

n∑
i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
⎤
⎦

≤ QEτ

[
sup

‖u‖1≤1
max

α,β∈[d]

∣∣∣∣∣
n∑

i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
]

≤ QEτ

⎡
⎣ sup

‖u‖1≤1

d∑
α,β=1

∣∣∣∣∣
n∑

i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
⎤
⎦

≤ QEτ

⎡
⎣ d∑

α,β=1

sup
‖u‖1≤1

∣∣∣∣∣
n∑

i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
⎤
⎦

= Q

d∑
α,β=1

Eτ

[
sup

‖u‖1≤1

∣∣∣∣∣
n∑

i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
]

. (5.4)

Note that σ ′′(uᵀxi ) = 0 for u = 0 and for any xi . For any α,β ∈ [d], we have

Eτ

[
sup

‖u‖1≤1

∣∣∣∣∣
n∑

i=1

τiAαβ(xi )σ
′′(uᵀxi )

∣∣∣∣∣
]

≤ Eτ

[
sup

‖u‖1≤1

n∑
i=1

τiAαβ(xi )σ
′′(uᵀxi )

]

+Eτ

[
sup

‖u‖1≤1

n∑
i=1

−τiAαβ(xi )σ
′′(uᵀxi )

]

= 2Eτ

[
sup

‖u‖1≤1

n∑
i=1

τiAαβ(xi )σ
′′(uᵀxi )

]
. (5.5)

Applying Lemma 2.1 with ψi(yi) = Aαβ(xi )σ
′′(yi) for i ∈ [n], whose Lipschitz

constant is M , we have for all α,β ∈ [d]

Eτ

[
sup

‖u‖1≤1

n∑
i=1

τiAαβ(xi )σ
′′(uᵀxi )

]
≤ MEτ

[
sup

‖u‖1≤1

n∑
i=1

τiu
ᵀxi

]
. (5.6)
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Therefore, combining (5.4), (5.5), and (5.6), we obtain

I1 ≤ 2MQd2
Eτ

[
sup

‖u‖1≤1

n∑
i=1

τiu
ᵀxi

]

≤ 2MQd2√n
√

2 log(2d),

where the last inequality comes from the Rademacher bound for linear predic-
tors in Lemma 2.2.

For I2 and I3, we note that σ(z) = 1
6z2σ ′′(z) and σ ′(z) = 1

2zσ ′′(z). Then by
similar arguments, we have

I2 ≤ MQd
√

n
√

2 log(2d),

I3 ≤ 1

3
MQ

√
n
√

2 log(2d).

These estimates for I1, I2, I3 combined with (5.3) complete the proof.

5.2 Proofs of generalization bounds

In the proofs of this section, we will first show in Proposition 5.1 that two-
layer neural networks f (x; θ) in (4.2) can approximate Barron-type functions

with an approximation error O

(
‖f ‖2

B
m

)
. Second, for an arbitrary f (x; θ) =

Lφ(x; θ), we show its a posteriori generalization bound |RD(θ) − RS(θ)| ≤
O

(
‖θ‖2

P log‖θ‖P√
n

)
in Theorem 3.2. Finally, the a priori generalization bound

RD(θS,λ) ≤ O

(
‖f ‖2

B
m

+ ‖f ‖2
B log‖f ‖B√

n

)
is proved in Theorem 3.3, where the first

and second terms come from the approximation error bound and the a posteriori
generalization bound.

First, the approximation capacity of two-layer neural networks f (x; θ) can
be characterized by Proposition 5.1 below.

Proposition 5.1 (Approximation Error). For any f ∈ B(�), there exists a two-
layer neural network f (x; θ̃) of width m with ‖θ̃‖P ≤ 2‖f ‖B,

RD(θ̃) := Ex∼D
1
2 (f (x, θ̃) − f (x))2 ≤ 6M2‖f ‖2

B
m

,

where M introduced in (3.1) controls the upper bound of the differential opera-
tor and m is the width of the neural network.

Proof. Without loss of generality, let ρ be the best representation, i.e., ‖f ‖2
B =

E(a,w)∼ρ |a|2‖w‖6
1. We set θ̄ = { 1

m
ak,wk}mk=1, where (ak,wk), k = 1, · · · ,m are
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independent sampled from ρ. Let

fθ̄ (x) = 1

m

m∑
k=1

ak[wᵀ
k A(x)wkσ

′′(wᵀ
k x) + bᵀ(x)wkσ

′(wᵀ
k x) + c(x)σ (w

ᵀ
k x)].

Recall the definition RD(θ̄) = Ex∼D 1
2 |fθ̄ (x) − f (x)|2. Then

2Eθ̄RD(θ̄)

= Ex∼DEθ̄ |fθ̄ (x) − f (x)|2

= Ex∼DVar{(ak,wk)}i.i.d.∼ρ

(
1

m

m∑
k=1

ak[wᵀ
k A(x)wkσ

′′(wᵀ
k x)

+ bᵀ(x)wkσ
′(wᵀ

k x) + c(x)σ (w
ᵀ
k x)]

)

= Ex∼D
1

m
Var(a,w)∼ρ

(
a[wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx)

+ c(x)σ (wᵀx)])
≤ 1

m
Ex∼DE(a,w)∼ρ

(
a[wᵀA(x)wσ ′′(wᵀx) + bᵀ(x)wσ ′(wᵀx)

+ c(x)σ (wᵀx)])2
≤ 1

m
Ex∼DE(a,w)∼ρ |a|2

(
M‖w‖3

1 + 1
2M‖w‖3

1 + 1
6M‖w‖3

1

)2

≤ 4M2

m
E(a,w)∼ρ |a|2‖w‖6

1

= 4M2‖f ‖2
B

m
.

Also, we have

Eθ̄‖θ̄‖P = E{(ak,wk)}i.i.d.∼ρ

1

m

m∑
k=1

|ak|‖wk‖3
1

= E(a,w)∼ρ |a|‖w‖3
1

≤ ‖f ‖B.

Define two events E1 := {RD(θ̄) <
6M2‖f ‖2

B
m

} and E2 := {‖θ̄‖P < 2‖f ‖B}. By
Markov inequality, we have

P(E1) = 1 − P

(
RD(θ̄) ≥ 6M2‖f ‖2

B
m

)
≥ 1 − Eθ̄RD(θ̄)

6M2‖f ‖2
B/m

≥ 2

3
,

P(E2) = 1 − P(‖θ̄‖P ≥ 2‖f ‖B) ≥ 1 − Eθ̄‖θ̄‖P
2‖f ‖B ≥ 1

2
.
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Thus

P(E1 ∩ E2) ≥ P(E1) + P(E2) − 1 ≥ 2

3
+ 1

2
− 1 > 0.

Second, we use Theorem 2.1 with F = HQ := {�(f (x), fθ (x)) | ‖θ‖P ≤ Q}
and Z = � to show the a posteriori generalization bound in Theorem 3.2.

Proof of Theorem 3.2. Let HQ := {�(f (x), fθ (x)) | ‖θ‖P ≤ Q}, then H =
∪∞

Q=1HQ. Note that

sup
x∈�

|fθ (x)|

= sup
x∈�

∣∣∣∣∣
m∑

k=1

ak[wᵀ
k A(x)wkσ

′′(wᵀ
k x) + bᵀ(x)wkσ

′(wᵀ
k x) + c(x)σ (w

ᵀ
k x)]

∣∣∣∣∣
≤

m∑
k=1

|ak|‖wk‖3
1

[
M + 1

2
M + 1

6
M

]

≤ 5

3
M‖θ‖P .

Therefore, for functions in HQ, since |f (x)| ≤ 1 by assumption, we have

0 ≤ �(f (x), fθ (x)) ≤ 1

2
(1 + |fθ (x)|)2

≤ 1

2

(
1 + 5

3
M‖θ‖P

)2

≤ 32

9
M2Q2 ≤ 4M2Q2

for all x ∈ � and all Q ≥ 1. For ‖θ‖P ≤ Q, we note that �(y, ·) is a Lips-
chitz function with a Lipschitz constant which is no larger than supx∈�|fθ (x)| ≤
5
3M‖θ‖P + 1. Let S′ be an arbitrary set of n samples of �, then

RadS′(HQ) ≤ (
5

3
M‖θ‖P + 1)RadS′(FQ) ≤ (

5

3
MQ + 1)RadS′(FQ).

Let us assume MQ ≥ 3
5 without loss of generality. By Lemma 5.1 and The-

orem 2.1, for any δ given in Theorem 3.2 and any positive integer Q with
probability at least 1 − δQ over S with δQ = 6δ

π2Q2 , we have

sup
‖θ‖P≤Q

|RD(θ) − RS(θ)|

≤ (
5

3
MQ + 1)2ES′RadS′(FQ) + 4M2Q2

√
log(2/δQ)

2n
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≤ 27M2Q2d2

√
2 log(2d)

n
+ 4M2Q2

√
log(π2Q2/3δ)

2n
.

For any θ ∈ R
m(d+1) given in Theorem 3.2, choose the integer Q such that

‖θ‖P ≤ Q ≤ ‖θ‖P + 1. Then we have

|RD(θ) − RS(θ)| ≤ 27M2Q2d2

√
2 log(2d)

n
+ 4M2Q2

√
log(π2Q2/3δ)

2n

≤ 27M2(‖θ‖P + 1)2d2

√
2 log(2d)

n

+ 4M2(‖θ‖P + 1)2

√
logπ(‖θ‖P + 1)

n
+ log(1/3δ)

2n

≤ 27M2(‖θ‖P + 1)2d2

√
2 log(2d)

n

+ 4M2(‖θ‖P + 1)2

{
log[π(‖θ‖P + 1)]√

n
+
√

log(1/3δ)

2n

}

≤ (‖θ‖P + 1)2

√
n

2M2(14d2
√

2 log(2d)

+ log[π(‖θ‖P + 1)] +√2 log(1/3δ)),

where we have used the facts that
√

a + b ≤ √
a + √

b for a, b > 0 and that√
a ≤ a for a ≥ 1.

The bound just above holds with probability 1 − δQ for any pair (θ ,Q) as
long as ‖θ‖P ≤ Q. By the definition δQ = 6δ

π2Q2 , we have
∑∞

Q=1 δQ = δ. There-

fore, for any θ ∈ R
m(d+1) given in Theorem 3.2, the above bound holds with

probability 1 − δ, which finishes the proof of Theorem 3.2.

Finally, based on the approximation bound in Proposition 5.1 and the a pos-
teriori generalization bound in Theorem 3.2, we show the a priori generalization
bound in Theorem 3.3.

Proof of Theorem 3.3. Note that

RD(θS,λ) = RD(θ̃) + [RD(θS,λ) − JS,λ(θS,λ)] + [JS,λ(θS,λ) − JS,λ(θ̃)]
+ [JS,λ(θ̃) − RD(θ̃)].

By definition, JS,λ(θS,λ) − JS,λ(θ̃) ≤ 0. By Proposition 5.1, there exists θ̃ such

that RD(θ̃) ≤ 6M2‖f ‖2
B

m
. Therefore,

RD(θS,λ) ≤ 6M2‖f ‖2
B

m
+[RD(θS,λ)−JS,λ(θS,λ)]+[JS,λ(θ̃)−RD(θ̃)]. (5.7)
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By Theorem 3.2, we have with probability at least 1 − δ/2,

RD(θS,λ) − JS,λ(θS,λ)

= RD(θS,λ) − RS(θS,λ) − λ√
n

‖θS,λ‖2
P log[π(‖θS,λ‖P + 1)]

≤ 1√
n

2M2(‖θS,λ‖P + 1)2{log[π(‖θS,λ‖P + 1)] + 14d2
√

2 log(2d)

+√2 log(2/3δ)} − λ√
n
‖θS,λ‖2

P log[π(‖θS,λ‖P + 1)]

≤ 1√
n

4M2(‖θS,λ‖2
P + 1){log[π(‖θS,λ‖P + 1)] + 14d2

√
2 log(2d)

+√2 log(2/3δ)} − λ√
n
‖θS,λ‖2

P log[π(‖θS,λ‖P + 1)]

≤ 1√
n

‖θS,λ‖2
P log[π(‖θS,λ‖P + 1)]

×
{

4M2[1 + 14d2
√

2 log(2d) +√2 log(2/3δ)] − λ
}

+ 4M2

√
n

log[π(‖θS,λ‖P + 1)] + 1√
n

4M2(14d2
√

2 log(2d) +√2 log(2/3δ))

≤ 1√
n

‖θS,λ‖2
P log[π(‖θS,λ‖P + 1)]

×
{

4M2[2 + 14d2
√

2 log(2d) +√2 log(2/3δ)] − λ
}

+ 1√
n

4M2
[
log(2π) + 14d2

√
2 log(2d) +√2 log(2/3δ)

]

≤ 1√
n

4M2
[
log(2π) + 14d2

√
2 log(2d) +√2 log(2/3δ)

]
, (5.8)

where we have used the facts that (a + b)2 ≤ 2a2 + 2b2 for all a, b ≥ 0 and that
λ ≥ 4M2[2 + 14d2

√
2 log(2d) +√2 log(2/3δ)] in the second and last inequal-

ities, respectively. By Theorem 3.2 again, with probability at least 1 − δ/2, we
have

JS,λ(θ̃) − RD(θ̃) ≤ 1√
n

2M2(‖θ̃‖P + 1)2{log[π(‖θ̃‖P + 1)]

+ 14d2
√

2 log(2d) +√2 log(2/3δ)}
+ λ√

n
‖θ̃‖2

P log[π(‖θ̃‖P + 1)]

≤ 1√
n

4M2(‖θ̃‖2
P + 1){log[π(‖θ̃‖P + 1)]

+ 14d2
√

2 log(2d) +√2 log(2/3δ)}
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+ λ√
n

‖θ̃‖2
P log[π(‖θ̃‖P + 1)]. (5.9)

Note that, by Proposition 5.1, we have ‖θ̃‖P ≤ 2‖f ‖B. Hence, the inequality
(5.9) becomes

JS,λ(θ̃) − RD(θ̃) ≤ 1√
n

4M2(4‖f ‖2
B + 1){log[π(2‖f ‖B + 1)]

+ 14d2
√

2 log(2d) +√2 log(2/3δ)}
+ 4λ√

n
‖f ‖2

B log[π(2‖f ‖B + 1)]. (5.10)

Adding the estimates in (5.7), (5.8), and (5.9) together completes the proof.

6 Conclusion

In this paper, we theoretically analyzed the optimization problem arising in deep
learning-based PDE solvers for second-order linear PDEs and two-layer neural
networks under the assumption of overparametrization (i.e., the network width
is sufficiently large). In particular, we show that gradient descent can identify a
global minimizer of the least-squares optimization problem for solving second-
order linear PDEs. Note that we have fixed the samples in the least-squares
optimization, while practical algorithms would randomly sample the PDE do-
main and its boundaries in every iteration of gradient descent. Hence, there is
still a gap between the optimization problem analyzed in this paper and the prac-
tical algorithm. This gap can be filled by studying the convergence behavior of
stochastic gradient descent, which will be left as future work.

We have also analyzed the generalization error of deep learning-based PDE
solvers for second-order linear PDEs and two-layer neural networks, when the
right-hand-side function of the PDE is in a Barron-type space and the least-
squares optimization is regularized with a Barron-type norm, without the over-
parametrization assumption. The Barron-type space and norm are adaptive to
PDE problems and are different from those for regression problems. The global
minimizer of the regularized least-squares problem can generalize well with a
scaling of order 1

m
+ 1√

n
, where m is the number of neurons and n is the num-

ber of data samples. Note that whether gradient descent methods can identify a
global minimizer of the regularized least-squares problem is still unknown. This
is left as interesting future work.
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