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Abstract
We present a domain decomposition strategy for developing structure-preserving finite
element discretizations from data when exact governing equations are unknown. On
subdomains, trainable Whitney form elements are used to identify structure-preserving
models from data, providing a Dirichlet-to-Neumann map which may be used to globally
construct a mortar method. The reduced-order local elements may be trained offline to
reproduce high-fidelity Dirichlet data in cases where first principles model derivation is
either intractable, unknown, or computationally prohibitive. In such cases, particular care
must be taken to preserve structure on both local and mortar levels without knowledge of
the governing equations, as well as to ensure well-posedness and stability of the resulting
monolithic data-driven system. This strategy provides a flexible means of both scaling to
large systems and treating complex geometries, and is particularly attractive for multi-
scale problems with complex microstructure geometry. While consistency is traditionally
obtained in finite element methods via quasioptimality results and the Bramble-Hilbert
lemma as the local element diameter h → 0, our analysis establishes notions of accuracy
and stability for finite h with accuracy coming from matching data. Numerical experi-
ments and analysis establish properties for H(div) problems in small data limits (O(1)

reference solutions).

Keywords
Structure preservation, Mortar method, Domain decomposition, Whitney forms, Model
reduction, Data-driven modelling, Scientific machine learning

MSC Codes
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1 Introduction

We consider the problem of identifying a model from data when the govern-
ing equations are unknown, but the conservation structure is known. Namely,
one may know that fluxes associated with mass, momentum, or energy are con-
served, but be unable to derive specific expressions for those fluxes.

We assume a class of models of the form

∇ · u = −f on �,

u = h(p; θ) on �,

p = g on ∂�

(1.1)

where � ∈ Rd is a Lipschitz domain, f ∈ L2(�) forcing term, g Dirichlet data,
and h a closure for the flux of unknown functional form approximated by a fam-
ily of nonparametric regressors parameterized by θ . We demonstrate on � ∈ R2

exclusively, but the techniques shown here generalize to higher dimensions and
arbitrary manifolds. For this class of problems, data is provided in the form
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D = {
(uk, fk, hk, gk)

}N
k=1 and one identifies parameters θ which minimize er-

ror in a suitable norm, providing a model which may generalize by solving for
choices of f and h outside the training set.

By casting data-driven modeling in such a structure-preserving framework,
one aims to identify a model which balances a trade-off between rigorous preser-
vation of physical/algebraic/stability structure while maintaining “black-box”
approximation of as large a class of models as possible. This lies on a spec-
trum of methods in the literature spanning a trade-off between expressivity and
exploitable structure. For example, operator regression methods aim to directly
identify a solution map (f,h) → u via interpolation in unconstrained Hilbert
spaces (high expressivity), while PDE-constrained optimization (Biegler et al.,
2003; Hinze et al., 2008) assumes a known functional form for h which requires
only estimation of material parameters (highly structured with simplified analy-
sis).

For the purposes of this work we consider elliptic systems of H(div)-type
where structure-preservation amounts to preserving notions of flux continuity. In
the literature, preservation of other types of structure is a key challenge for data-
driven models: gauge invariances associated with nontrivial null-spaces (Trask
et al., 2022), geometric structure associated with bracket dynamics (Gruber et
al., 2023; Greydanus et al., 2019; Desai et al., 2021; Hernández et al., 2021),
group equivariance (Bergomi et al., 2019; Villar et al., 2021) and other structures
(Celledoni et al., 2021). Many of these approaches aim to enforce the invariances
by construction rather than rely on data or training to “learn” them, allowing
better performance in small-data limits and improved theoretical properties.

In our previous works (Actor et al., 2024; Trask et al., 2022), we have
developed structure-preserving machine learning frameworks generalizing the
discrete exterior calculus (DEC) and finite element exterior calculus (FEEC)
(see Subsection 2.1). Both frameworks pose the learning of physics as identi-
fying maps between cochains associated with a de Rham complex, and provide
a number of desirable theoretical guarantees: preservation of exact sequence
structure (e.g. ∇ · (∇×) = 0), exact local conservation of generalized fluxes,
an exact Hodge decomposition, a Lax-Milgram stability theory for Hodge
Laplacians, well-posedness theory for nonlinear problems, and a framework
for treating problems with nontrivial null-spaces (e.g. electromagnetism). In
the FEEC setting, a Dirichlet-to-Neumann map prescribing the exchange of
generalized fluxes between subdomains is expressed in terms of parameterized
Whitney forms, allowing the machine learning of geometric control volumes
which optimally admit integral balance laws. While effective for providing rig-
orous structure-preservation, the scheme provides poor computational scaling
whereby the number of degrees of freedom scale as O(Nk), where N is the
number of partitions and k is the order of the Whitney form.

The current work applies a divide-and-conquer strategy to mitigate this by
partitioning the domain into disjoint, nonoverlapping subdomains � = ∪i�i ,
whose exact specifications will be discussed later, and seeks local models re-
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stricted to each �i of the form

∇ · ui = −fi,

ui = h(pi; θi),

pi = gi on ∂�i,

(1.2)

with the subscript ·i denoting appropriate restrictions of fields to �i . The frame-
work for regressing local models is introduced in Section 3. To train subdomain
models, we can perform offline training over dataDi=

{
(ui,k,fi,k,hi,k,gi,k)

}Ni

k=1.
This can be obtained either by taking the restriction of global data onto the sub-
domain (gi = p|∂�), or by performing simulations directly on each subdomain
to identify the local response to a representative mortar space (e.g. gi ∈ Pm(∂�i)

the space of mth-order polynomials). After obtaining local models, a mortar
method is presented in Section 4 which is used to assemble local models into a
global model on �.

For this data-driven mortar strategy, we impose two desired requirements:

1. R1: Preservation of structure across both scales: For the H(div) problems
under consideration, the Whitney form construction admits interpretation as
an integral balance law where fluxes are discretely treated as equal and op-
posite, providing a local conservation principle on each subdomain �i . We
require that the mortar formulation be compatible with this, so that when
local elements are stitched together through the mortar we preserve conser-
vation globally on �.

2. R2: Stability of error at global scale: If, during pretraining, local models
may be obtained to a given optimization error, we would like to quantify the
error induced at a global level by the coupling process. Ideally this would
be bound by a constant independent of the number of subdomains, so that
the global error remains comparable to that of the locally trained models as
many elements are coupled together and performance does not degenerate in
the limit of many data-driven elements.

We demonstrate both requirements either in analytical proofs in Section 4, or via
numerical example in Section 5. Finally, the technical proofs and more details
regarding training are shown in Appendix 10.A.

2 Relation to previous work

The proposed strategy exploits a connection to structure-preserving PDE dis-
cretization to ensure that physics are enforced by construction, rather than
via the penalty formulation typically pursued in the physics-informed machine
learning literature. We summarize the relationship between this approach and
the literature, as well as how our strategy relates to classical domain decompo-
sition methods.
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2.1 Data-driven DEC/FEEC and Dirichlet-to-Neumann maps

In traditional numerical analysis the discrete exterior calculus (DEC) is a frame-
work for constructing and analyzing staggered finite volume schemes (Hirani,
2003; Nicolaides, 1992). The generalized Stokes theorem is used to define
discrete vector calculus operators (e.g. grad/curl/div) which map between dif-
ferential forms on a pair of primal/dual computational meshes. The finite ele-
ment exterior calculus (FEEC) generalizes DEC by constructing finite element
spaces which interpolate differential forms and provides variational extensions
(Arnold, 2018).

In the data-driven exterior calculus (DDEC) (Trask et al., 2022), DEC oper-
ators are parameterized in a manner allowing the learning of well-posed models
on graphs, where data is used to identify the inner-product associated with
codifferential operators. In Actor et al. (2024), it was shown that a family of
data-driven Whitney forms may be constructed from parameterized partitions-
of-unity (POUs). The Whitney forms admit a de Rham complex which encodes
POU geometry as differentiable control volumes and their higher order bound-
aries (faces/edges/etc) without reference to a traditional mesh. An inner-product
is induced by the geometry of the control volumes, supporting the discovery of
models in terms of control volume balances. This allows a data-driven FEEC
extension of DDEC which we use extensively in this work. Furthermore, by
posing integral balances as relationships between domains and fluxes on their
boundaries, we work with degrees of freedom which naturally conform to the
trace spaces necessary for a mortar strategy.

2.2 Structure-preserving ML vs. physics-informed ML

In the recent scientific machine learning literature, physics-informed methods
broadly encompass frameworks where physical constraints are incorporated by
adding (typically collocation) residuals to a loss function as a Tikhonov regu-
larization with a penalty parameter (Cai et al., 2021). This technique is simple
to implement and, when used together with automatic differentiation, admits
a simple treatment of inverse problems, discovery of “missing physics” or clo-
sures (Karniadakis et al., 2021; Patel et al., 2022), and uncertainty quantification
(Yang and Perdikaris, 2019; Zhang et al., 2019).

The flexibility of the framework comes at the expense of solving a multiob-
jective optimization problem whereby the physics residual must be empirically
weighted against the data loss, and can only be enforced to within optimization
error (Wang et al., 2021). For certain classes of problems it is necessary to en-
force physics to machine precision to obtain qualitatively correct answers; e.g.
subsurface transport and lubrication flows depend crucially on exact conserva-
tion of mass (Trask et al., 2018), while electromagnetic problems which fail
to provide an exactly divergence-free magnetic field predict qualitatively incor-
rect spectra (Arnold, 2018). In the context of physics-informed learning, some
works have pursued a penalty-based domain decomposition strategy with the
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goal of efficient distributed computation and more flexibility in neural network
approximation (Jagtap and Karniadakis, 2021). While effective, the collocation
scheme and penalty formulation complicate analysis and preclude exact con-
servation, respectively. Because the desired conservation structure only holds to
within optimization error, penalization may be insufficient for certain classes of
applications.

2.3 Choice of mortar scheme

Domain decomposition is a mature field, with many established options for how
to couple solutions across arbitrary finite element subdomains (Toselli and Wid-
lund, 2004; Smith, 1997). Representative rigorous methods range from (e.g.
finite element tearing and interconnecting (FETI) Farhat et al. (2001), mortar
methods Bernardi et al. (1993), and hybridizable discontinuous Galerkin meth-
ods Cockburn et al. (2009)) impose continuity of fluxes and state at subdomain
interfaces either strongly via Lagrange multipliers or weakly by using Nietsche’s
trick to introduce a variational penalty.

For the div-grad problem, there is also a choice of working in either H 1-
or H(div)-conforming spaces (e.g. P1/Nedelec or Raviart-Thomas/P0 mixed
spaces), and whether one chooses to apply a mortar on the state or flux variables.
Working in H(div) is perhaps most natural, as the mortar space admits inter-
pretation as a conservative flux that trivially preserves conservation structure
(Arbogast et al., 2007). However, this requires working with d- and (d − 1)-
dimensional Whitney forms. Our Whitney form construction scales with com-
putational complexity O(Nk), where N is the dimension of 0th-order Whitney
forms and k is the maximal order Whitney form. It is therefore preferable to
exploit primal/dual structure and work in H 1, meaning only 0th- and 1st-order
Whitney forms are used. This forces us to adopt an H 1 domain decomposi-
tion strategy similar to that developed by Glowinski and Wheeler (1987, §7).
Further extensions are needed to easily incorporate and analyze the case where
data-driven FEEC elements are used as the local solvers.

3 Local learning of Whitney form elements

For brevity, we discuss only the fundamental aspects of data-driven DEC/FEEC
necessary to describe the local element construction. For a complete exposition
we direct readers to references for: data-driven exterior calculus (Trask et al.,
2022), data-driven finite element exterior calculus (Actor et al., 2024), classi-
cal finite element exterior calculus for forward simulation (Arnold, 2018), and
Whitney forms (Gillette et al., 2016).

Given a compact domain ω ∈ R2 with finite open cover {Ui}Ni=1, a partition
of unity (POU) is a collection of functions φi : ω → [0,1] such that φi(x) ≥ 0,
supp(φi) ⊆ Ui , φi < ∞ and

∑
i φi(x) = 1 for all x ∈ ω. We assume access to
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FIGURE 1 To construct a PPOU, we first consider an underlying tensor product grid of B-splines
with trainable vertex locations. By taking a trainable convex combination of these shape functions,
we arrive at more complex geometries. Noting that B-splines form a partition of unity, and that
partitions of unity are closed under convex combination, this process provides a trainable partition of
unity which may be integrated exactly via a pull-back onto the fine grid. For purposes of illustration,
the underlying tensor product is shown to be uniform in the figure, but they are allowed to shift in
the general case.

a parameterized POU (PPOU)
{
φi(x; θ)

}N
i=1, which is continuous with respect

to a parameter θ .
To construct Whitney forms, any trainable PPOU may be used, although in

this work we adopt the same used in Actor et al. (2024). Starting with tensor-
product B-splines on the unit domain, we refer to trainable vertex locations
as fine-scale nodes/knots. To approximate complex geometries, we consider
a coarsening via convex combinations of the knots into our ultimate PPOU,{
φi(x; θ)

}N
i=1 where θ denotes parameters corresponding to both knot locations

and trainable entries of the convex combination tensor; see Fig. 1 for an illustra-
tive figure of this process.

In Actor et al. (2024), the tensor-product grid points are parameterized using
the distances between the grid points to avoid inversion of elements. In particu-
lar, we can define the grid points in one dimension {ti}ni=0 with t0 = 0 and t1 = 1
by parameterizing

σ (δ)i = ti+1 − ti , i ∈ {0, . . . , n − 1} (3.1)

where δi is a trainable parameter, and σ is a sigmoid activation enforcing pos-
itivity. To parameterize a map of convex combination of knots, we consider a



476 Numerical Analysis Meets Machine Learning

trainable two-tensor with softmax activation applied to each row; for details we
refer to Actor et al. (2024). In what follows we adopt the simplified notation
φi(x; θ) = φi .

We construct finite element spaces consisting of the 0th-, 1st- and 2nd-order
Whitney forms from φi :

V 0 := span
{
φi | 1 ≤ i ≤ N

}
,

V 1 := span
{
φi∇φj − φj∇φi | 1 ≤ i, j ≤ N

}
,

V 2 := span
{
φi∇φj×∇φk − φj∇φi×∇φk − φk∇φj×∇φi | 1 ≤ i, j, k ≤ N

}
,

(3.2)
adopting the notation ψj1,...,jK

∈ V k−1, to identify elements of spaces by their
constituent 0-forms (e.g. ψij ∈ V 1). As shown in Actor et al. (2024), the tensor
used to parameterize convex combinations of B-splines may be manipulated to
obtain modifications of these spaces with zero trace

V k
0 :=

{
u ∈ V k

∣∣u|∂ω = 0
}

. (3.3)

Consider now the variational form of divergence (q,∇ · u) and curl (v,∇ ×
w), where q ∈ V 0, u ∈ V 1

0 , v ∈ V 1, and w ∈ V 2
0 . After integration by parts,

Whitney forms induce the following discrete vector calculus operators (Actor et
al., 2024, §3)

(DIV)i,(ab) := (ψab,−∇ψi) =
∑
j �=i

(ψab,ψij ),

(CURL)(ij),(abc) := (ψabc,∇ × ψij ) = 2
∑
k �=i,j

(ψabc.ψijk).
(3.4)

These discrete exterior derivatives maintain a powerful connection to the
graph exterior calculus from combinatorial Hodge theory. Consider a complete
graph G = (V,E) with the vertex set V , edge set E , and higher-order k-cliques
denoted by the oriented tuples (i1, . . . , ik). The standard kth-order coboundary
operator δk is simply associated with the oriented incidence matrix between
k + 1- and k-cliques. Specifically, the graph gradient δ0 and graph curl δ1 are
defined by

(δ0u)ij = uj − ui

(δ1u)ijk = uij + ujk + uki,

where ui denote a scalar value associated with the node i, uij = −uji denotes
a scalar associated with the edge (i, j) ∈ E , and uijk a value associated with the
3-cliques (e.g. faces) which is antisymmetric with respect to the index ordering

uijk = −uikj = −ujik = −ukji = ukij = ujki .
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The adjoint of coboundary operators induces the so-called codifferential op-
erators, which in this setting provide definitions of graph divergence and curl:

(DIV u)i := (δT
0 u)i =

∑
j �=i

uij ,

(CURLu)ij := (δT
1 u)i =

∑
k �=i,j

uijk.
(3.5)

These graph operators have a number of properties mimicking the familiar vec-
tor calculus, but follow only from the topological properties of graphs. For
example, the exact sequence property DIV ◦ CURL = 0 discretely parallels
∇ · ∇× = 0, and conservation structure is reflected in DIV calculating the sum
of antisymmetric generalized fluxes.

The connection between the parameterized Whitney form space and the
combinatorial Hodge theory follows by rewriting (3.4) as

DIV = DIV M1, CURL = CURLM2

where (M1)(ij),(ab) = (ψab,ψij ) and (M2)(ijk),(abc) = (ψabc,ψijk) are mass
matrices associated with the finite element spaces V 1 and V 2, respectively.
Therefore, we see that the geometry of the PPOUs implicitly induces a weight-
ing on the graph exterior calculus, with the boundaries of learned partitions
inducing a topology associated with conservation structure.

We may finally revisit the original task of identifying a model of the form
(1.2). Let the Whitney forms associated with subdomain �i be V 0(�i) and
V 1(�i) by taking ω = �i . Mirroring (1.2), the model on each individual
subdomain is equivalent to the following variational problem: find (pi,ui ) ∈
V 0(�i) × V 1(�i) such that for all (wi,vi ) ∈ V 0

0 (�i) × V 1(�i),

(ui ,vi ) − (h(pi; θi),vi ) = 0

(ui ,∇wi) = (fi,wi)

with Dirichlet boundary condition pi = gi on ∂�, which is enforced by using a
standard lift.

Following the theory laid out in Trask et al. (2022), we could assume the
unknown fluxes take the form of a nonlinear perturbation of a diffusive flux
while maintaining a tractable stability analysis, e.g.

h(pi; θi) = ∇pi + N [pi; θi]

However in the current work, we will consider only the linear case (N [pi; θi] =
0). In this setting the Whitney forms will identify the geometry and properties
associated with material heterogeneities under an assumed diffusion process,
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providing the following variational problem on each element.

(ui ,vi ) − (∇pi,vi ) = 0

(ui ,∇wi) = (fi,wi).
(3.6)

Finally we substitute in the discrete exterior derivatives associated with the
PPOUs to obtain a discrete parametric model, posing the following equality
constrained optimization problem to calibrate the POU geometry to data,

min
W,B0,B1,D0D1

∥∥∥∥∥∥pdata −
∑

i

p̂iψi

∥∥∥∥∥∥
2

2

+ α2

∥∥∥∥∥∥Fdata −
∑
ij

F̂ijψij

∥∥∥∥∥∥
2

2

such that

⎡⎣ M1 −M1D−1
1 δ0D0

−B−1
0 δT

0 B1M1 0

⎤⎦[F̂
p̂

]
=
[

bD

−bf

], (3.7)

where Bk and Dk are diagonal matrices with trainable positive coefficients, bD ,
bf the terms arising from the Dirichlet boundary condition and forcing term
respectively, α a normalization parameter, and W the remaining weights asso-
ciated with the POUs such as the location of knots and the convex combination
tensor. As shown in Actor et al. (2024), Bk and Dk infer metric information from
data without impacting the topological structure of the model. For further details
regarding the specific construction of POUs we refer to Actor et al. (2024).

Remark 3.1. The Whitney form construction supports a number of theoreti-
cal constructions: a Hodge decomposition, Poincare inequality, a correspond-
ing Lax-Milgram theory, a well-posedness theory for certain nonlinear elliptic
problems, and discrete preservation of exact sequence properties which exactly
preserve conservation structure. When we use the Whitney form elements to
construct the subdomain spaces Vi in the mortar method in the following sec-
tion, we aim to carefully construct the mortar space so that this structure is not
lost at the global level.

4 Mortar method

After the local models are trained, we seek to construct a mortar method which is
flexible enough to couple FEEC elements on the different subdomains together.
Note that since the fine-scale knots are able to move during pretraining, the mor-
tar is necessarily nonconforming, with possible “hanging” mortar nodes which
do not coincide with the neighboring local element nodes; this necessitates an
analysis of stability associated with projecting between local and mortar spaces.
Furthermore, we would like the mortar method to preserve the conservation and
stability properties outlined in the introduction (R1, R2).

As discussed in Section 3, we assume that our data {(u(xk),p(xk)), gk}Nk=0
(with xk ∈ � sampled randomly) satisfy the following variational equation: seek
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FIGURE 2 Figure of a square domain � divided into four subdomains. The edge �3,4 is denoted
explicitly and the highlighted boundary is �1.

solution (u,p) ∈ (L2(�)2,H 1
g (�)) such that

(u,v) − (K∇p,v) = 0, ∀v ∈ L2(�)2

(u,∇w) = (f,w), ∀w ∈ H 1
0 (�)

(4.1)

where H 1 is the standard Sobolev space and H 1
g (�) = {u ∈ H 1(�) | u|∂� = gk}

(Braess, 2007), and the tensor K ∈ L∞ is a positive-definite matrix. Finally, we
assume the problem is of at least p ∈ H 3/2(�) regularity, which arises natu-
rally if, for example, f ∈ L2(�), g ∈ H 3/2(∂�) with Lipschitz coefficients K

and � is convex (Grisvard, 2011). We will see in our numerical results that the
above regularity result is a sufficient condition for the error analysis, and not a
necessary one.

Let � be divided into n nonoverlapping, polygonal subdomain blocks �i of
similar aspect ratios. Let �i be the edges of �i , � = ∪i�i the set of all bound-
aries of the subdomains (including those intersecting ∂�), and let �ij = �i ∩�j

for all i, j be the boundary between two adjacent subdomains. See Fig. 2 for an
illustrative figure.

Define

� := {v ∈ L2(�) | ∃u ∈ H 1(�),u|� = v} (4.2)

as the space of L2 functions on the interfaces which are the traces of H 1 func-
tions, and the subspaces

�0 := {λ ∈ � | λ|∂� = 0},
�g := {λ ∈ � | λ|∂� = g}.
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Note that since � consists of the trace of H 1 functions, we may endow � with
the H 1/2 norm on �.

4.1 Stability analysis for continuous case

Before proceeding to the model discovery problem and the discrete, we first con-
sider smooth solutions coming from solutions from diffusion problem to guide
the design of a suitable mortar method. It is straightforward to decompose (4.1)
into problems on the subdomains {�i}ni=1 by introducing a mortar representing
the pressure on the space �:

Lemma 4.1. For 1 ≤ i ≤ n, let (ui , pi, λ) ∈ (L2(�i)
2,H 1(�i),�g) such that

(ui ,vi )�i
− (K∇pi,vi )�i

= 0, ∀vi ∈ L2(�i)
2

(ui ,∇wi)�i
= (f,wi)�i

, ∀wi ∈ H 1
0 (�i)

(4.3)

with continuity of state and flux enforced via the boundary condition pi |�i
=

λ|�i
and weak flux continuity condition

n∑
i=1

(ui ,∇w)�i
= (f,w), ∀w ∈ H 1

0 (�). (4.4)

Then u =∑n
i=1 ui ∈ L2(�)2, p =∑n

i=1 pi ∈ H 1
g (�) solves (4.1).

Proof. The existence of functions (ui , pi) and λ comes trivially by restricting
the solution from (4.1) to the individual subdomains and mortar space.

To see that (4.3) and (4.4) implies (4.1), we note that L2(�)2 =⊕n
i=1 L2(�i)

2, and thus by summing the first equation of (4.3) and choosing
vi = v|�i

as test functions, we have⎛⎝ n∑
i=1

ui ,v

⎞⎠−
⎛⎝K∇

n∑
i=1

pi,v

⎞⎠= 0, ∀v ∈ L2(�)2

with
∑n

i=1 pi ∈ H 1
g (�) since continuity is enforced with λ. As for the test func-

tions arising in w ∈ H 1
0 (�), we simply decompose w into

∑n
i=1 wi + w0 where

wi ∈ H 1
0 (�i) for 1 ≤ i ≤ n and w0 := w −∑n

i=1 wi , so that the summation of
the second equation of (4.3) and (4.4) gives us the desired result.

The condition (4.4) can be simplified. Consider the space Hγ (�) satisfying
the decomposition

H 1(�) = H 1
0 (�1) ⊕ · · · ⊕ H 1

0 (�n) ⊕ Hγ (�) (4.5)
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with Hγ ⊥ H 1
0 (�i) relative to the H 1 norm for each i. Then, using to (4.3) and

(4.5), (4.4) can be rewritten as

n∑
i=1

(ui ,∇w) = (f,w), ∀w ∈ H
γ

0 (�) (4.6)

where H
γ

0 := {u ∈ Hγ (�) | u|∂� = 0}. We also define the subset H
γ
g := {u ∈

Hγ (�) | u|∂� = g}. The space Hγ corresponds to a minimal energy extension
(Toselli and Widlund, 2004) as the following lemma shows:

Lemma 4.2. For all u ∈ H 1(�), there exists a unique decomposition u = uγ +∑n
i=1 ui such that uγ ∈ Hγ (�), ui ∈ H 1

0 (�i). Furthermore, one has

∥∥uγ

∥∥
H 1(�)

= inf
v∈H 1(�),v|�=u

‖v‖H 1(�) �
n∑

i=1

∥∥uγ

∥∥
H 1/2(�i)

.

Proof. Given u, consider uI ∈ H 1
0 (�1)⊕ · · ·⊕H 1

0 (�n) such that for 1 ≤ i ≤ n,

(uI , vi)H 1(�i)
= (u, vi)H 1(�i)

, ∀vi ∈ H 1
0 (�i).

Then the decomposition is simply u = ∑n
i=1 uI |�i

+ uγ where uγ = u − uI .
The orthogonality is enforced since, for all wi in H 1

0 (�i) and 1 ≤ i ≤ n,

(uγ ,wi)H 1(�) = (u − uI ,wi)H 1(�i)
= (u,wi)H 1(�i)

− (uI ,wi)H 1(�i)
= 0.

As for the minimal condition, let v = uγ +∑n
i=1 vi with vi ∈ H 1

0 (�i) arbi-
trary, then by orthogonality

‖v‖2
H 1(�)

=∥∥uγ

∥∥2
H 1(�)

+
∥∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥∥
2

H 1(�)

≥∥∥uγ

∥∥2
H 1(�)

and the H 1/2 equivalence is well known (Bertoluzza and Kunoth, 2000; Cowsar
et al., 1995).

With the above decomposition, we can further reduce (4.1) to be a variational
problem only on Hγ and �. Let λ,μ ∈ Hγ , define the bilinear form and linear
functional

b(λ,μ) =
n∑

i=1

(u∗(λ),∇μ)�i
(4.7)

and

L(μ) = (f,μ)� −
n∑

i=1

(ū,∇μ)�i
(4.8)
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where (u∗(λ),p∗(λ)) ∈ (L2(�)2,H 1(�)) solves the local problems, for 1 ≤
i ≤ n,

(u∗(λ),v) − (K∇p∗(λ),v) = 0, ∀v ∈ L2(�i)
2

(u∗(λ),∇w) = 0, ∀w ∈ H 1
0 (�i)

(4.9)

with boundary condition p∗(λ)|�i
= λ|�i

, and where (ū, p̄) ∈ (L(�)2,H 1
0 (�))

solves, for 1 ≤ i ≤ n,

(ū,v) − (K∇p̄,v) = 0, ∀v ∈ L2(�i)
2

(ū,∇w) = (f,w), ∀w ∈ H 1
0 (�i)

(4.10)

with boundary condition p̄|�i
= 0. The bilinear form and linear functional

closely resemble those of the H(div) case from Arbogast et al. (2007, 2000).
Note that the problems (4.9) and (4.10) above are local in nature and can be
solved in parallel.

The following lemma shows that one can recover the original variational
equations by working with the above bilinear form:

Lemma 4.3. Let λ ∈ H
γ
g be the solution to the variational equation,

b(λ,μ) = L(μ), ∀μ ∈ H
γ

0 (4.11)

then u := u∗(λ) + ū, p := p∗(λ) + p̄ is the solution to (4.1).

Proof. Summing (4.9) and (4.10) results in

(u,v) − (K∇p,v) = 0, ∀v ∈ L2(�i)
2

(u,∇w) = (f,w), ∀w ∈ H 1
0 (�i)

with p|� = λ for each 1 ≤ i ≤ n.
It remains to check (4.6), but this is simply because if (4.11) holds, then

n∑
i=1

(u,∇μ)�i
= (f,μ)

for all μ ∈ H
γ

0 and the results follows from Lemma 4.1 and (4.6).

Finally, we note that the variational equation (4.11) is well-defined as the bi-
linear form is coercive as shown in the following lemma, whose proof is delayed
until the appendix:

Lemma 4.4. The bilinear form (4.7) is symmetric and coercive on �0.
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FIGURE 3 Sketch of a 4 element mortar �H and its two adjacent subdomains. The colors on
the subdomains represent the PPOUs constructed as convex combinations of a fine-scale B-splines.
We note that while the mortar matches the fine-scale nodes on �2, it is disjoint from �1, requiring
analysis of a remap/projection between the two meshes. Because the FEEC fine-scale nodes on �i

evolve during training, they will generally not coincide with mortar nodes.

4.2 Discretized case

The discrete case is more technical, since both the spaces and the bilinear form
are discretized as (4.9) and (4.10) cannot be solved exactly. Further, care must be
taken to treat the nonconforming grids that emerge naturally as nodes between
adjacent subdomains evolve.

In what follows, the subscripts h, H will denote a discretized version of a
continuous space. On each subdomain �i , let Whi , V hi be the discretized ver-
sions of H 1(�i), L2(�i)

2 respectively. We require the standard inf-sup compat-
ibility between Whi , V hi , which in this case is simply the condition ∇Whi ⊆ V hi

(Arnold, 2018; Braess, 2007). In particular, we can choose Whi and V hi to be the
spaces V 0 and V 1 defined in (3.2) in the case of FEEC elements; by construc-
tion then we have ∇V 0 = V 1. We will also use the case where local elements
are taken to be traditional finite elements to show convergence; in this case we
will consider V 0 and V 1 as continuous Q1 and lowest-order Nedelec elements,
respectively. Finally, we let Whi,0 be the subspace with homogeneous Dirichlet
boundary condition (e.g. (3.3)).

On the interfaces, we choose �H ⊂ � to be the space of continuous, piece-
wise linear functions. Let �H,0 := {μH ∈ �H | μH |∂� = 0} ⊂ �0 and similarly
let �H,g ⊂ �g be the subset whereby the boundary is equal to g. We allow the
discretization between two subdomains to be different and also allow for the
mortars to be nonmatching. See Fig. 3 for a simplified figure where there are
nonmatching tensor-product grids.
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We define a projection for each subdomain Qi : �H → Whi such that for all
λH ∈ �H

(λH − QiλH ,ph)L2(�i )
= 0, ∀ph ∈ Whi |�i

(4.12)

and

(QiλH ,w)H 1(�i)
= 0, ∀w ∈ Whi,0.

The first condition simply defines the boundary of QiλH using the L2-
projection1 on �i while the second condition means that it is the discrete
harmonic extension into �i given the boundary QiλH on �i (Toselli and Wid-
lund, 2004). We note that in general, the projections to the left and right of that
interface are different since the discretization can be different on either sides as
can be seen in Fig. 3.

With the above in hand, we can define the discretized bilinear operator and
linear functional similar to (4.7) and (4.8). For λH ,μH ∈ �H , let

bh(λH ,μH ) :=
n∑

i=1

(u∗
h(QiλH ),∇(QiμH ))�i

(4.13)

and

Lh(μH ) :=
n∑

i=1

(f,QiμH )�i
− (ūh,∇(QiμH ))�i

(4.14)

where p∗
h(QiλH ) ∈ ⊕n

i=1Whi , u∗
h(QiλH ) ∈ ⊕n

i=1V hi satisfies, for 1 ≤ i ≤ n,

(u∗
h(QiλH ),vh) − (K∇p∗

h(QiλH ),vh) = 0, ∀vh ∈ V hi (4.15)

(u∗
h(QiλH ),∇wh) = 0, ∀wh ∈ Whi,0 (4.16)

with p∗
h(QiλH ) = QiλH on �i , and p̄h ∈ ⊕n

i=1Whi , ūh ∈ ⊕n
i=1Vhi satisfying

(ūh,vh) − (K∇p̄h,vh) = 0, ∀vh ∈ V hi (4.17)

(ūh,∇wh) = (f,wh), ∀wh ∈ Whi,0 (4.18)

with p̄h = 0 on �i . As before, the above problems are defined locally and can
be solved in parallel.

We state the discrete variational equation as follows. Find λH ∈ �H,g such
that

bh(λH ,μH ) = Lh(μH ), ∀μH ∈ �H,0. (4.19)

1 We found in our numerical examples that using the interpolant suffices, however we will carry
out the analysis using the projection.
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The well-posedness of the variational form can be deduced from Lax-Milgram
if the coercivity condition

bh(λH ,λH ) ≥ α

n∑
i=1

‖λH ‖2
H 1/2(�i )

(4.20)

is true. The coercivity condition (4.20) will require two assumptions which ex-
cludes pathological discretizations:

1. Assumption 1 (injectivity): for all λH ∈ �H , there exists a constant C such
that

n∑
i=1

‖QiλH ‖H 1/2(�i )
≥ C

n∑
i=1

‖λH ‖H 1/2(�i )
(4.21)

meaning we have unisolvency when projecting from the mortar space onto
the local subdomains.

2. Assumption 2 (strengthened triangle inequality): for each shared edge �ij

and for all λH ∈ �H , that

Cp∣∣�ij

∣∣∥∥QiλH − QjλH

∥∥2
L2(�ij )

≤ 1

2
(‖QiλH ‖2

H 1/2(�ij )
+∥∥QjλH

∥∥2
H 1/2(�ij )

)

(4.22)

where Cp is the Poincare constant arising in Brenner (2003, (1.3)) and
∣∣�ij

∣∣ is
the length of the shared edge. The condition means two adjacent subdomains
cannot have too large of a difference in their discretization parameter. In par-
ticular, if two adjacent subdomains have the same, symmetric discretization
parameters, then the left side of (4.22) is trivially zero.

In the case of data-driven elements, extra care must be paid to Assumption
1 since a training procedure might move the fine-scale nodes such that unisol-
vency is lost. However, this can be circumvented by either placing restrictions
on the movement of the nodes, or, as in some of our numerical examples, using
a very coarse mortar space.

With the above assumptions, we can now state the stability result:

Lemma 4.5. With the above two assumptions, the discretized bilinear form
(4.13) is coercive (e.g. (4.20)) over �H,0.

The proof of the above lemma is technical and is delayed to the appendix.
Lemma 4.5 means that one is allowed to apply Strang’s second lemma to

obtain error estimates. We assume that an a priori estimate exists: let δ be a
constant such that the discrete approximations on each subdomain 1 ≤ i ≤ n

satisfy∥∥p∗(λ) − p∗
h(Qiλ)

∥∥
�i

≤ δ,
∥∥u∗(λ) − u∗

h(Qiλ)
∥∥

�i
≤ δ (4.23)
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∥∥p̄ − p̄h

∥∥
�i

≤ δ ‖ū − ūh‖�i
≤ δ (4.24)

for all λ ∈ �. The constant δ corresponds to the ability of the local solvers to
solve for p∗, u∗ accurately for an arbitrary mortar. In the case where standard
FEM is used on the subdomain, then δ can be replaced with the respective a pri-
ori estimate whereas for the DDEC methods, this corresponds to an optimization
threshold.

We can now state a simple convergence guarantee R2 on the mortar space,
whose proof is delayed until the appendix:

Theorem 4.6. Suppose the solution to the (4.1) is such that p ∈ H 2(�) with
homogeneous Dirichlet boundary condition. Then there exists a constant C in-
dependent of λ∗ such that

n∑
i=1

∥∥λ∗ − λ∗
H

∥∥
H 1/2(�i )

≤ Cn
∣∣p∣∣

H 2(�)
(H + h + δ) (4.25)

where λ∗ is the true solution to (4.11), and λ∗
H is the solution to (4.19), and H ,

h are the maximal mesh sizes on �H and the boundary of the subdomains �i ,
respectively.

Remark 4.7. As mentioned, the constant δ associated with (4.23) corresponds
to the accuracy of the local solvers while the h term relates to the accuracy of
projecting the mortar to the local subdomains using (4.12), though in general
we can assume that h < H . We also note that (4.25) implies that a combination
of refinement of both the local solvers and the mortar space is needed to obtain
convergence.

Finally, we can easily bound the error on the pressure and velocity explicitly.

Lemma 4.8. With the same assumptions and constants as in Theorem 4.6, there
exists a constant C independent of u and p such that∥∥p − ph

∥∥
�

+‖u − uh‖� ≤ Cn
∣∣p∣∣

H 2(�)
(H + h + δ)

where u, p are the true solutions arising from (4.3) and uh =∑n
i=1 u∗

h(Qiλ
∗
H )+

ūh, ph =∑n
i=1 p∗

h(Qiλ
∗
H ) + p̄h.

Proof. By Lemma 4.3, we have

‖u − uh‖� ≤
n∑

i=1

∥∥u∗(λ∗) − u∗
h(Qiλ

∗
H )
∥∥

�i
+‖ū − ūh‖�i

.

The latter term on the right hand side is bounded by δ by assumption. Thus the
result follows by

n∑
i=1

∥∥u∗(λ∗) − u∗
h(Qiλ

∗
H )
∥∥

�i
≤

n∑
i=1

∥∥u∗(λ∗) − u∗(λ∗
H )
∥∥

�i
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+∥∥u∗(λ∗
H ) − u∗

h(Qiλ
∗
H )
∥∥

�i

≤ nδ +
n∑

i=1

∥∥u∗(λ∗ − λ∗
H )
∥∥

�i

≤ nδ +
n∑

i=1

∥∥λ∗ − λ∗
H

∥∥
H 1/2(�i )

where we used standard regularity estimates at the last step. The same estimates
also follow for the pressure and the result follows from applying Theorem 4.6.

The above error analysis partially shows that requirement R2 from the in-
troduction is met, as the total error is indeed controlled by a combination of
the local optimization error, and coupling error from the mortars. However, due
to the use of crude bounds on the sum, it is not independent with the number
of subdomains, though we will later observe it holds numerically (cf. Subsec-
tion 5.4).

4.3 Data-driven elements with mortar method

Classical finite elements such as Nedelec elements can be used for the local
solvers in (4.15) and (4.17) on the subdomains �i in a straightforward manner
(see Subsection 5.1 for an example). However, the true strength of the above
mortar method is its ability to interface with the data-driven structure-preserving
models discussed in Section 3. We briefly discuss combining the usage of the
Whitney form elements with the mortar method.

As before, we assume the data is of the form {(u(xk),p(xk)), gk}Nk=0 with
xk sampled randomly on �. This can either be supplied via physical data or
high-fidelity PDE solvers. Let M be the total number of unique boundary con-
ditions gk (e.g. M = 1 if all data points originate from the same boundary value
problem). We assume � is divided into subdomains �i . As with most data-
driven applications, a large number of data points N is needed, however, only
one boundary condition M is needed (see Subsection 5.4.3 for an example with
M = 1), though more is always better.

The iterative solving process for the mortar (4.19) involves different Dirich-
let boundary conditions λH being passed into (4.15), meaning that the ability
for the data-driven Whitney form solvers to be able to correctly respond to dif-
ferent Dirichlet data is important. Ideally M is large so that a good sampling of
Dirichlet conditions around each �i is achieved.

In cases where simulations on each �i are possible, one should perform
simulations to obtain responses to a possible mortar boundary conditions. In
particular, in our numerical examples, we choose to use either nodal functions
{(1 − x)(1 − y), x(1 − y), (1 − x)y, xy} or edge Bernstein polynomials. The
Bernstein polynomials are chosen as they provide a complete basis on ∂�i
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and their gradients are very smooth, however other boundary conditions can
be chosen. We note that these data are usually cheaper to generate since the
subdomains are smaller than �, and they can be performed in parallel.

However, the ability to perform these simulations on each subdomain is not
always possible. In this case, a simple approach consisting of taking gk := p|�i

and the corresponding data points (u(xk),p(xk)) restricted to each �i can be
done. While easier, this does lead to higher errors due to undersampling from
certain mortar modes. Nevertheless, the structure-preserving nature of the data-
driven elements ensures adherence to the underlying invariance.

With the data on each �i chosen, we then solve the minimization problem
(3.7) giving us fine-scale nodes, and a coarsening to POUs. These data-driven
elements are then used as the local solvers for (4.15) and (4.17). Some care
must be exercised to ensure that Assumption 1 is satisfied; the projection from
the mortar space onto the local solvers must be unique. One can mix and match
the local solvers, and only use the data-driven elements where the fluxes are
unknown and use traditional finite elements elsewhere; see Subsection 5.3 for
an example. Specific details regarding the training process for the numerical
examples are given in Appendix 10.A.

4.4 Neumann boundary conditions and conservation

We briefly discuss modifications needed to solve the pure Neumann problem u ·
�n = g on ∂�, and show that the critical conservation and compatibility property
of ∫

�

f +
∫

∂�

g = 0 (4.26)

is satisfied by the discrete mortar method. Such conservation is exhibited in the
FEEC elements also Actor et al. (2024), and thus by showing the mortar method
exhibits this behavior as well, requirement R1 is satisfied.

The assumed global model is now to find (u,p) ∈ (L2(�)2,H 1(�)) satis-
fying

(u,v) − (K∇p,v) = 0, ∀v ∈ L2(�)2

(u,∇w) = (f,w) + (g,w)∂�, ∀w ∈ H 1(�)
(4.27)

with the condition that (p,1) = 0 for uniqueness.
Due to the differences in boundary conditions, a slightly different choice of

spaces and decomposition akin to (4.5) is needed. Define

H
γ

B (�) := {u ∈ Hγ | u|�i\∂� = 0,∀1 ≤ i ≤ n} (4.28)

and let H
γ

D be such that

Hγ = H
γ

D ⊕ H
γ

B . (4.29)
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The space H
γ

B is simply the subspace which vanishes on the interior mortar
spaces, while H

γ

D is its complement. Finally, for each 1 ≤ i ≤ n, let

H 1
D(�i) := {u ∈ H 1(�i) | u|�i\∂� = 0}, (4.30)

the set of H 1 functions vanishing only on the interior boundary. Note that all
functions in H

γ

B can be written as a sum of functions in H 1
D(�i). Hence, a new

decomposition can be written

H 1(�) = H 1
D(�1) ⊕ · · · ⊕ H 1

D(�n) ⊕ H
γ

D(�). (4.31)

With the spaces above, we can introduce a mortar that is equivalent to (4.27),
up to a constant: for 1 ≤ i ≤ n, let (ui , pi, λ) ∈ (L2(�i)

2,H 1(�i),H
γ

D(�))

satisfy

(ui ,vi ) − (K∇pi,vi ) = 0, ∀vi ∈ L2(�i)
2

(ui ,∇wi) = (f,wi) + (g,wi)�i∩∂�, ∀wi ∈ H 1
D(�i)

(4.32)

with the boundary condition that p|�i\∂� = λ|�i\∂�, and

n∑
i=1

(ui ,∇w)�i
= (f,w) + (g,wi)∂�, ∀w ∈ H

γ

D(�). (4.33)

Finally, we can impose
∫
�

λ = 0 for uniqueness. The proof is similar to that of
Lemma 4.1 and is omitted.

With the above, it’s easy to define the variational problem as before. Small
changes are needed in the bilinear form (4.7) and linear functional (4.8): the
definition of (u∗(λ),p∗(λ)), (ū, p̄) should be changed to

(u∗(λ),v) − (K∇p∗(λ),v) = 0, ∀v ∈ L2(�i)
2

(u∗(λ),∇w) = 0, ∀w ∈ H 1
D(�i)

(4.34)

with boundary conditions p∗(λ)|�i\∂� = λ|�i\∂�, and

(ū,v) − (K∇p̄,v) = 0, ∀v ∈ L2(�i)
2

(ū,∇w) = (f,w) + (g,w)�i∩∂�, ∀w ∈ H 1
D(�i)

(4.35)

with boundary condition p̄|�i\∂� = 0. We note that (4.34) and (4.35) are both
well-defined for all subdomains due to the Dirichlet boundary conditions on the
mortar space, except for the degenerate case where there is only one subdomain.
Finally, the variational form is similar, where we seek λ ∈ H

γ

D

n∑
i=1

(u∗(λ),∇μ)�i
= (f,μ)� + (g,μ)∂� −

n∑
i=1

(ū,∇μ)�i
, ∀μ ∈ H

γ

D.
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Turning to the discrete case, let Whi , V hi be as before and let Whi,D be
the discretization of H 1

D(�i). Let �H,D ⊂ �H be the discretized mortar space
consisting of continuous, piecewise linear functions that vanish where H

γ

D is
zero. The projection Qi should be changed to Qi : H

γ

D → Whi with the same
alteration to (4.12).

Thus, the discretized bilinear form and linear functional is similar to before,
with the exception that p∗

h(QiλH ) ∈ ⊕n
i=1Whi , u∗

h(QiλH ) ∈ ⊕n
i=1V hi satisfies,

for 1 ≤ i ≤ n,

(u∗
h(QiλH ),vh) − (K∇p∗

h(QiλH ),vh) = 0, ∀vh ∈ V hi (4.36)

(u∗
h(QiλH ),∇wh) = 0, ∀wh ∈ Whi,D (4.37)

with p∗
h(QiλH ) = QiλH on �i \ ∂�, and p̄h ∈ ⊕n

i=1Whi , ūh ∈ ⊕n
i=1Vhi satis-

fying

(ūh,vh) − (K∇p̄h,vh) = 0, ∀vh ∈ V hi (4.38)

(ūh,∇wh) = (f,wh) + (g,wh)∂�, ∀wh ∈ Whi,D (4.39)

with p̄h = 0 on �i \ ∂�i . The variational form (written explicitly) is to find
λH ∈ �H,D , with mean zero, such that

n∑
i=1

(u∗
h(QiλH ),∇(QiμH ))�i

=
n∑

i=1

(f,QiμH )�i
+ (g,QiμH )�i∩∂�

− (ūh,∇(QiμH ))�i
, ∀μH ∈ �H,D.

(4.40)
Turning to (4.26) and R1, it’s easy to see that for a function μH ∈ �H,D , the

projection is exact QiμH |�i\∂� = μH |�i\∂� if μH is constant on the interior
edges (e.g. μH = C on �i \ ∂�). Without loss of generality, let �H,D � μH = 1
on all �i \ ∂�, then we can choose wh such that wh + QiμH = 1 on Whi,D

for each 1 ≤ i ≤ n. Thus, adding (4.37) and (4.39) for 1 ≤ i ≤ n to (4.40) and
rearranging, we obtain

n∑
i=1

(u∗
h(QiλH ) + ūh,∇(wh + QiμH ))�i

=
n∑

i=1

(u∗
h(QiλH ) + ūh,∇1)�i

=
n∑

i=1

(f,wh + QiμH )�i
+ (g,wh + QiμH )∂�

=
n∑

i=1

(f,1)�i
+ (g,1)∂� = 0,

meaning (4.26) is valid even in the discrete case with nonmatching mortars.
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FIGURE 4 Figure illustrating the initial mesh, the corresponding mortar space, and their first
refinement for the example in Subsection 5.1.

5 Numerical results

In this section, we present numerical results obtained from applying the above
mortar method to several representative examples. All except the first exam-
ple will involve using pretrained FEEC elements as local subdomain solvers as
discussed in Section 3.

5.1 Example 1: pure finite elements

We start by validating the accuracy and well-posedness of the mortar method in
the classical setting by using only finite element solvers on each subdomain. In
particular, no model training is used for this particular example and we only seek
to show that the above mortar method converges in the forward problem. We
examine the problem (4.1) with true solution p(x, y) = xy + y2 on the domain
� = [0,2]2 with

K =
⎛⎝ (x + 1)2 0.5

0.5 y2 + 1

⎞⎠ . (5.1)

The domain is subdivided into four equal squares. Our initial mesh is depicted in
Fig. 4 with only one degree of freedom on the mortar (with the remaining four
fixed due to the homogeneous Dirichlet boundary condition). For refinement,
we divide each subdomain diameter and the mortar diameter by half; see the
right hand side of Fig. 4 for a figure of the first refinement.

On each subdomain, we will use the standard Q1 space for pressure
with Nedelec elements of the lowest order for the velocity. The quantities in
Lemma 4.8 can be replaced with results from standard FEM a priori estimates
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(Roberts and Thomas, 1991). As a result, we obtain a convergence result of

‖u − uh‖� +∥∥p − ph

∥∥
�

≤ CH (5.2)

where H is the size of the mortar. The O(H) convergence in the velocity is
clearly illustrated in Table 1 while we obtain O(H 2) superconvergence in the
pressure, which was observed in smooth solutions using mortar methods (Ar-
bogast et al., 2007, 2000). Furthermore, since the estimate in Lemma 4.8 is in
the H 1/2 norm, we expect convergence of O(H 3/2) as we are measuring the L2

norm but we also observe a level of superconvergence.

TABLE 1 Table illustrating the absolute errors,
and the convergence rates for Example 1. The
rates are in agreement with Lemma 4.8.

H
∥
∥p − ph

∥
∥

�
‖u − uh‖� ‖λ − λh‖L2(�)

1 2.73E-01 4.66E+00 2.44E-01

1/2 6.23E-02 2.16E+00 5.75E-02

1/4 1.49E-02 1.04E+00 1.43E-02
1/8 3.66E-03 5.12E-01 3.56E-03

1/16 9.07E-04 2.54E-01 8.91E-04

1/32 2.31E-04 1.26E-01 2.41E-04

Rate O(H 2.04) O(H 1.04) O(H 2.00)

5.2 Example 2: pure FEEC and pure FEM elements comparison

We now consider the data arising from the problem (4.1) with � = [0,3] ×
[0,3],

f := 2π2 cos(πx) sin(πy), K = I (5.3)

with boundary condition determined by the true solution p(x, y) =
cos(πx) sin(πy).

The domain � is split into 9 uniform squares whereby either a Q1 FEM or
a pretrained FEEC element is used in each subdomain. The FEEC element is
trained on 20,480 uniformly drawn points from [0,1]2 with 16 POUs on the
interior and 16 on the boundary with varying number of fine-scale knots. As
discussed in Actor et al. (2024), increasing the number of fine-scale grids is
akin to h-refinement in the FEM sense.

To train the FEEC elements, we use data arising from different boundary
conditions and forcing terms which corresponds to approximating (4.17) and
(4.15):

1. a problem with the same forcing term as in (5.3) but homogeneous zero
Dirichlet boundary condition. This corresponds to (4.17).
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2. Sixteen different boundary conditions consisting of the Bernstein polyno-
mials of fourth order on the boundary (e.g. x4y4,

(4
1

)
x4y(1 − y)3 etc) and

forcing term of f = 0. This is needed so that (4.15) can be approximated
accurately on the FEEC elements when different boundary conditions are
passed in from the mortar.

The solutions to the above boundary value problems were calculated by a low-
order finite element solver. For more details regarding the training, we refer the
reader to Subsection 10.A.2.

The mortar refinement level was chosen to be H = 4h in for the FEM case.
For the FEEC local solvers, we note that the fine-scale nodes can move, resulting
in nonuniform meshes; nevertheless, we still choose the same H as the FEM
case for comparison’s sake.

In Table 2 and Table 3, we show the error resulting from using purely
FEEC elements or purely FEM elements on all the subdomain respectively. The
convergence rates among the two different solvers are similar, and reflect su-
perconvergence due to the smoothness of the problem. In Fig. 5, we plot the true
solution and its fluxes, and the approximate solution and its fluxes on the whole
[0,3]2 domain solved using FEEC elements, while Fig. 6 plots the quantities on
the diagonal line from (0,0) through (3,3). In both cases, the true solution is
well-approximated.

TABLE 2 Table of absolute error for the sine-cosine problem Subsection 5.2
using trained FEEC elements as the subdomain solver. The convergence rates
are similar to the method using pure FEM elements. We note that the fine-
scale grid roughly corresponds to h-scaling in a standard FEM method (Actor
et al., 2024).

FEEC fine-scale grid and mortar size
∥
∥p − ph

∥
∥

�
‖u − uh‖� ‖λ − λH ‖L2(�)

8 × 8,H = 1/2 1.47E-01 1.48E+00 2.20E-01

12 × 12,H = 1/3 6.66E-02 8.97E-01 8.47E-02
16 × 16,H = 1/4 4.07E-02 5.41E-01 4.41E-02

20 × 20,H = 1/5 2.76E-02 4.40E-01 2.71E-02

24 × 24,H = 1/6 2.10E-02 3.97E-01 1.97E-02

O(h1.78) O(h1.25) O(h2.22)

5.3 Example 3: hybrid methods

We next showcase the ability to use a hybrid approach whereby standard finite
elements are interfaced to FEEC elements allowing for areas with unknown fea-
tures to be learned using FEEC elements, and smooth areas using classical FEM
methods.
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TABLE 3 Table of absolute error for the sine-cosine problem Subsection 5.2
with FEM elements as the local solvers.

FEM fine-scale grid and mortar size
∥
∥p − ph

∥
∥

�
‖u − uh‖� ‖λ − λH ‖L2(�)

8 × 8,H = 1/2 1.67E-01 1.54E+00 2.16E-01
12 × 12,H = 1/3 7.04E-02 8.54E-01 8.16E-02

16 × 16,H = 1/4 3.91E-02 5.76E-01 4.31E-02
20 × 20,H = 1/5 2.49E-02 4.30E-01 2.68E-02

24 × 24,H = 1/6 1.72E-02 3.41E-01 1.83E-02

28 × 28,H = 1/7 1.26E-02 2.82E-01 1.33E-02
32 × 32,H = 1/8 9.64E-03 2.40E-01 1.01E-02

36 × 36,H = 1/9 7.61E-03 2.08E-01 7.98E-03

40 × 40,H = 1/10 6.15E-03 1.84E-01 6.45E-03

O(h2.04) O(h1.31) O(h2.16)

FIGURE 5 Plot of the true (first row) and estimated (second row) solution for the sine-cosine
problem Subsection 5.2 with pure FEEC elements consisting of 24 × 24 fine scale nodes, and H =
1/6. As expected, the solution is well-approximated by the FEEC elements.

We assume data is obtained from the problem (4.1) on � = [−1.5,1.5]2 with
the parameters

f := 0, K(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
k 0

0 k

)
, ‖x‖ ≤ b(

1 0

0 1

)
, ‖x‖ > b

(5.4)
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FIGURE 6 Profile of the true and estimate solutions for the sine-cosine problem Subsection 5.2
on the line (0,0) to (3,3) using pure FEEC elements with 24 × 24 fine scale nodes and H = 1/6.
While there are small fluctuations in the FEEC approximation, it is clear that both the pressure and
fluxes are captured.

with b = .2, k = 10. The Dirichlet boundary imposed such that the true solution
is

u :=

⎧⎪⎪⎨⎪⎪⎩
x

(
1 − b2(k−1)

(k+1)
(
x2+y2

)) ‖x‖ > b

2
k+1x ‖x‖ ≤ b

This particular equation arises in electrostatics when examining the case where
a conducting cylinder with radius b and capacitance k is placed within a uniform
field of strength 1 (Smythe, 1989, §4.03). Note that outside of a radius around
the origin, the diffusion problem is easy to solve.

We split the domain into 9 congruent squares with the center square
[−0.5,0.5]2 consisting of a FEEC element to capture the change in material
coefficients while the remaining eight subdomains utilizing a simple, low-order
FEM space with 8 × 8 quads. The FEEC element is trained on 12 different
boundary conditions corresponding to the 12 third-order Bernstein polynomials
on the boundary as in the previous example. We note that in training, only the
solution and its fluxes are provided, meaning the material coefficient (5.4) is not
fully exposed to the FEEC element. A total of 16 POUs are used on the interior
and the boundary. We choose to use a mortar of H = 1/4.

We show the error over the whole domain in Table 4 from only refining the
fine-scale grid of the FEEC element in [−.5, .5]2. A full rate of convergence
is not expected since Theorem 4.6 requires both the mortar space and the local
subdomain solvers to be refined in tandem. We do not consider refinement with
the mortar here as Assumption 1 might be violated from either the movement of
fine-scale knots of the FEEC elements, or the fact that the mesh size of the FEM
solvers are fixed to be very coarse.

In Fig. 7, we plot the true and estimated solution to the problem. Note that
the trained FEEC element managed to resolve the circular inclusion and the sub-
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TABLE 4 Table of absolute and relative errors for the cylinder problem Sub-
section 5.3 using a hybrid approach. While we do not expect a full conver-
gence as we are only refining the singular FEEC element on [−.5, .5]2 while
keeping the mortar spaces and FEM spaces constant, we do observe that
using the finest FEEC element gives significantly better results.

FEEC fine-scale grid
∥
∥p − ph

∥
∥

�
‖u − uh‖� ‖λ − λH ‖L2(�)

8 × 8 5.69E-03 (0.224%) 1.64E-01 (5.48%) 6.41E-3

16 × 16 3.07E-03 (0.121%) 1.16E-01 (3.87%) 4.66E-3

24 × 24 2.01E-03 (0.079%) 8.29E-02 (2.77%) 2.50E-3

O(h.939) O(h.607) O(h.814)

tleties in the fluxes when the true solution is not explicitly given in the training
data. Furthermore, we plot the true and estimated solution profiles in Fig. 8.
From the plots, it is clear that while there are small spurious fluctuations in the
estimated solutions, that the error decreases as we refine the FEEC model. In
Fig. 9, we compare the FEEC profiles to the profile obtained using a 24 × 24
FEM on [−.5, .5]2 instead. Note that the oscillations are greatly reduced by us-
ing the FEEC elements due to the adaptivity of the fine-scale mesh.

FIGURE 7 Figure of the true solution and estimated value for the cylinder problem Subsection 5.3.
The estimated solution uses a single FEEC element with 24 × 24 fine-scale knots in the center-most
subdomain with the remaining subdomains using FEM of just 8 × 8 elements.
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FIGURE 8 Trace plot from [−1.5,−1.5] to [1.5,1.5] of the cylinder problem Subsection 5.3 for
FEEC models with different fine-scale nodes n in the subdomain [−.5, .5]2. As we refine the number
of fine-scale nodes we use, the jumps in the fluxes are increasingly more well-resolved with less
fluctuations.

5.4 Example 4: subdomain refinement with FEEC

In this next class of examples, we will consider three separate problems whereby
the number of subdomains is increased with no further refinement in either
the subdomain-level solver, or the number of mortar degrees of freedom per
subdomain. This is a nonstandard example case in the context of domain de-
composition methods, but is extremely useful in the case where machine-learned
elements are used.

We hypothesize that smaller subdomains means that there are fewer features
for each FEEC element to learn, meaning that the optimization procedure will
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FIGURE 9 Comparison between using FEM (left) and FEEC (right) solvers in the material dis-
continuity region [−.5, .5]2 for the cylinder problem Subsection 5.3. Note the overshoot in the
discontinuity in the x component of the flux for the pure finite elements case, resulting in a relative
error of over 25% near the discontinuity. On the other hand, the FEEC element is able to reduce that
fluctuation near the discontinuity to less than 5% using the same number of fine-scale knots due to
the adaptivity.

usually result in smaller local losses. The smaller number of features to capture
also means that we can use FEEC elements without as many fine-scale nodes,
decreasing computational costs in training. Furthermore, in the case with large
amount of data points, smaller subdomains means that one can speed up the
training tremendously as all the training points can now fit on a single GPU.

In the first two examples, we perform a similar training procedure as before
where on each subdomain, a suite of boundary conditions are used to train the
local Whitney elements. The last example is more representative of a possible
usage case where only a single reference solution is provided with realistic mul-
tiscale features.

5.4.1 Stripe problem

Consider data arising from the problem (4.1) with � = [0, n] × [0, n] for n a
positive integer,

f := 0, g := x, K = κiI (5.5)

where I is the R2×2 identity matrix, and where if �y� is even, then

κi =

⎧⎪⎪⎨⎪⎪⎩
1 0 ≤ y < .4

.4 .4 ≤ y < .8

.8 .8 ≤ y < 1
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otherwise,

κi =

⎧⎪⎪⎨⎪⎪⎩
.8 0 ≤ y < .2

.3 .4 ≤ y < .6

.9 .8 ≤ y < 1

While the true solution for the pressure is trivially p(x) = x for all n, the dif-
ficulty lies in the ability of the discrete solution to capture the discontinuous
velocities

u(x) :=
(

κi

0

)

which arises.
Two FEEC elements of size [0,1]2 are trained: one to capture the case where

�y� is even, and another for the odd case. For both FEEC elements, a total of
20 × 20 fine scale nodes were used, which was subsequently compressed down
to 14 POUs on the interior and 14 on the boundary. To train the two FEEC
systems, we minimize the MSE against only four PDEs corresponding to the
Laplace equation f = 0 with the boundary conditions xy, x(1 − y), (1 − x)y,
(1 − x)(1 − y) on 20,480 randomly sampled points on [0,1]2. As for the mortar
space, the lowest order space H = 1 is used. Note that in this case, Assumption
1 is trivially satisfied.

In Fig. 10, we show the solutions of the pressure for n = 2,3,5. We see that
we recover the true pressure easily as it is just a simple linear function. We note
that the notion of convergence is not applicable in this case since the domain
and problem itself are actually changing as we increase n.

FIGURE 10 Figure of the pressure solutions obtained for the stripes problem Subsection 5.4.1 for
on increasingly larger domain [0,2]2, [0,3]2, [0,5]2 using FEEC elements of 14 × 14 fine-scale
knots and a very coarse mortar of H = 1. Importantly, we note that, from left to right, the domain �

of the problem is being increased and we are not depicting a refinement process.

In Fig. 11, we show the x-component of the gradient; it is clear that the
stripes structure is well-preserved even as we introduce more subdomains into
the mortar space. While the error estimates Lemma 4.8 cannot support this
statement due to the usage of crude L∞ norms, this is indication that, at least
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numerically, requirement R2 is satisfied. We also plot the estimate solution pro-
file on the line (2.5,0) to (2.5,5) in Fig. 12 for the case of n = 5. From this
view, it’s clear that the actual numerical values are in good agreement with the
true solution.

FIGURE 11 Figure of the flux in x of the solutions obtained for the stripes problem Subsec-
tion 5.4.1 on [0,2]2, [0,3]3, [0,5]2 with FEEC elements of 14 × 14 fine-scale knots and H = 1. We
remark that the discontinuities are well-preserved using the FEEC elements even as the domain of
the problem is increased.

FIGURE 12 Profile on the line (2.5,0) to (2.5, n) for n = 5 of the fluxes of the estimated and true
stripes problem Subsection 5.4.1 obtained from the FEEC elements with 14 × 14 fine-scale knots
and H = 1 mortar space.

5.4.2 Path problem
Consider data arising from the problem (4.1) on � = [0,1] × [0,1] with f = 0,
g = x and

K =

⎧⎪⎪⎨⎪⎪⎩
1
5 I x ∈ �path

1
2 I x ∈ �circ

I x ∈ elsewhere

(5.6)

where �path is defined as the region lying in

R((0, .625), (.375, .875)) ∪ R((.375, .125), (.625, .875)) ∪ R((.625, .125),

(1, .375))
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with R(p1,p2) is the rectangle with lower left point p1 and upper right corner
p2, and �circ are two circles centered at (.125, .25) and (.875, .75) with radius
.075. See the first column of Fig. 13 for figures of the true solution.

FIGURE 13 Plot of the true solution (first column), and subdomain with 2 (second column) and 6
(third column) refinements for the path problem Subsection 5.4.2. Note that the features are increas-
ingly more refined and match the true solutions as the number of subdomains are increased.

Let our domain � be subdivided into n2 equal squares as our subdomains,
and let H = 1

4n
meaning each subdomain has a total of 16 mortar degrees of

freedom. On each of the subdomains, we train a FEEC element on 20,480 uni-
formly sampled points from the subdomain with 10 fine scale nodes and 14
POUs on the interior and boundary. As before, the FEEC elements are trained
on 12 total boundary conditions corresponding to the third order Bernstein poly-
nomials on squares. Rather than refining the mortar discretization relative to the
number of subdomains, or increasing the fine-scale nodes on the local solvers,
we strictly increase the number of subdomains in this study. We reiterate the
fact that as the number of subdomains increases, the number of mortar degrees
of freedom per subdomain remains the same at 16 and each FEEC element has
the same number of parameters (e.g. 10 fine scale nodes and 14 POUs on the
interior).

In Table 5, we show the average error resulting from increasing the number
of subdomains over five different random seeds for training. We note that while
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the error in the pressure is already captured quite accurately by a single FEEC
element owing to its almost linear nature on the whole domain, the error in
the gradient decreases much more dramatically, due to the higher resolution by
increasing the number of subdomains.

TABLE 5 Table of average absolute and relative er-
rors for the path problem Subsection 5.4.2 whereby
the domain is increasingly subdivided into finer
pieces. While the pressure does not exhibit conver-
gence, the flux converges at a rate of O(h) and so
does the full H 1 norm (see Fig. 14).

Subdomains Mean
∥
∥p − ph

∥
∥

�
Mean‖u − uh‖�

2 × 2 3.53E-03 (0.596%) 3.47E-02 (5.21%)

3 × 3 3.25E-03 (0.549%) 2.49E-02 (3.74%)

4 × 4 3.13E-03 (0.528%) 1.56E-02 (2.34%)

5 × 5 2.97E-03 (0.501%) 1.33E-02 (1.99%)

6 × 6 2.70E-03 (0.456%) 9.80E-03 (1.47%)

8 × 8 3.28E-03 (0.554%) 6.50E-03 (0.97%)

In Fig. 14, we plot the H 1 norm errors of both the individual seeds and
the mean. We observe a first-order convergence in the number of subdomains,
supporting the notion that our mortar method satisfies requirement R2 as we
increase the number of elements. Unfortunately, the error analysis performed in
the previous section is not fine enough to show convergence in this case where
we increase the number of subdomains due to the usage of crude triangle in-
equalities.

FIGURE 14 Plot of the absolute H 1 error resulting from refinement for the path problem Subsec-
tion 5.4.2. We observe a linear convergence rate by dividing the domain into increasingly smaller
domains for the FEEC problem.

5.4.3 Battery problem: single solution training
We now consider data from the problem (4.1) on � = [0,1] × [0,1] with
f = 0 and a nontrivial material data and boundary condition corresponding to
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a voltage difference across a lithium-ion battery. The true pressure and fluxes,
which are sampled at 5.89 million points, are provided via a high-fidelity solver
SIERRA/ARIA (Notz et al., 2016) and will be treated as the only source of
provided data with no additional methods of augmentation. In other words, we
assume a full simulation of the response for the subdomains to arbitrary mortars
is not available, meaning the local FEEC elements will have to extrapolate the
correct Dirichlet-to-Neumann maps. For a figure of the true pressure and flux,
see Fig. 15. More details regarding the data can be found in Appendix B of Ac-
tor et al. (2024); note that for simplicity, we consider the problem as a purely
Dirichlet boundary condition problem whilst (Actor et al., 2024) included Neu-
mann boundary conditions.

FIGURE 15 Figures of the given pressure/fluxes for the battery problem Subsection 5.4.3 in the
first row, and the approximation obtained from solving the Darcy’s flow problem in the second row
for 8 × 8 subdivisions. Overall, the estimated solution matches the data fairly accurately with many
most small details captured.

We again split the domain [0,1]2 into n2 uniform squares, but only employ
four mortar degrees of freedom per subdomain with H = 1

n
(i.e. the mortar

degrees of freedom lie on the corners of the subdomain).2 A FEEC element
with 12 fine scale nodes in both the x and y direction, and 12 POUs on the
interior and boundary are used on each subdomain.

Since only a single reference solution is provided, we train the FEEC el-
ement with boundary condition obtained from interpolating the given solution
and the data given (e.g. gi = p|∂�i

). For example, suppose n = 2, then the FEEC
element on subdomain corresponding to �′ = [0, .5]2 will have 5.89

4 ≈ 1.5 mil-

2 The coarsest mortar mesh is chosen since the fine scale nodes may move substantially, due to only
one training set, and violate assumption (4.21).
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lion data points, and boundary conditions corresponding to the nearest neighbor
interpolation of those points on ∂�′. This is unlike Subsection 5.4.2 or even
Subsection 5.4.1 where each FEEC element was provided with multiple exam-
ples to train on. Note that the number of training data points per FEEC element
decrease as we increase the number of subdomains, we have found that it can
lead to some instability in pretraining.

TABLE 6 Table of absolute and relative errors for the battery problem Sub-
section 5.4.3. The right “true mortar” (TM) columns essentially capture the
training error by simply fixing the mortar space to the true values, while the
left columns result from actually solving the Darcy’s flow equations. Similar
to Subsection 5.4.2, the error in pressure only decreases slightly with most
of the benefits arising from the convergence in the H 1-seminorm.

Subdomains L2(�) H 1-seminorm TM L2(�) TM H 1-seminorm
2 × 2 7.15E-03 (1.27%) 1.22E+00 (67.6%) 5.37E-03 1.39E+00

3 × 3 3.01E-03 (0.54%) 6.45E-01 (35.7%) 2.76E-03 6.03E-01

4 × 4 2.71E-03 (0.48%) 4.57E-01 (25.3%) 2.42E-03 3.27E-01

6 × 6 2.46E-03 (0.44%) 2.44E-01 (13.5%) 1.67E-03 1.37E-01

8 × 8 2.40E-03 (0.43%) 1.43E-01 (7.92%) 1.41E-03 1.19E-01

In Table 6, we show the absolute MSE of the L2 and the H 1 seminorm re-
sulting from solving the Darcy’s flow equation with the trained FEEC elements.
In the case of 2 × 2 refinement, the error is quite large since the mortar only has
one degree of freedom in the interior (cf. Fig. 4) and the boundary conditions
are not even well-resolved; however, it’s clear that as additional refinements are
made that the relative error decreases. In addition, we also show the absolute
MSE of the “true mortar” (TM) which is obtained by setting the mortar degrees
of freedom to be the interpolant from the data set. This “true mortar” indicates
how much of the error is due to the training procedure as no actual solves of
the bilinear form is performed and allows us to see how much error arises from
the actual mortar coupling. Since this true mortar errors are similar to the errors
obtained from solving the bilinear form, this suggests that very little error arises
due to the mortar coupling. In Fig. 16, we observe that the error obtained from
solving the Darcy flow equation decreases as we increase the number of subdo-
mains, with the finest level obtaining a better H 1 error than the errors obtained
in Actor et al. (2024).

Appendix 10.A Technical details

10.A.1 Technical proofs

Proof of Lemma 4.4. By (4.5), for any μ ∈ H
γ

0 (�), we can decompose it as

μ = p∗(μ) +
n∑

i=1

pi0
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FIGURE 16 Plot of the H 1 error and true mortar error resulting from refinement for the battery
problem Subsection 5.4.3. For an explanation of what the true mortar error is, we refer the reader
to the corresponding discussion Subsection 5.4.3. We note that the error is quite close to the true
mortar error, meaning that the coarse mortar space does not negatively effect the convergence that
much.

where p∗(μ) ∈ H 1
0 (�) satisfying (4.9) (hence p∗(μ)|� = μ|�) and pi0 ∈

H 1
0 (�i) are bubble functions.

Thus,

b(λ,μ) =
n∑

i=1

⎛⎝u∗(λ),∇p∗(μ) +
n∑

i=1

∇pi0

⎞⎠
�i

=
n∑

i=1

(
u∗(λ),∇p∗(μ)

)
�i

=
n∑

i=1

(
K∇p∗(λ),∇p∗(μ)

)
�i

(10.A.1)

since (4.9) implies the inner products of u∗(λ) with the gradient of bubble
functions are zero. From the above, the bilinear form is clearly symmetric and
positive definite.

For coercivity, using (10.A.1), Poincare inequality and trace inequality
(Evans, 2022),

b(λ,λ) ≥∥∥∇p∗(λ)
∥∥2 ≥ 1

C

∥∥p∗(λ)
∥∥2

H 1(�)
= 1

C

n∑
i=1

∥∥p∗(λ)
∥∥2

H 1(�i)

≥ 1

C

n∑
i=1

‖λ‖2
H 1/2(�i )

,

meaning b(λ,λ) ≥ α
∑n

i=1‖λ‖2
H 1/2(�i )

∼ α‖λ‖2
Hγ for some constant α indepen-

dent of λ.

The remaining proofs are for the coercivity and the error estimate for the dis-
crete mortar. We introduce the shorthand notation p∗

h(QλH ) :=
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∑n
i=1 p∗

h(QiλH ), and let ‖·‖� denote the L2 norm over the domain � unless
otherwise stated. Before proceeding, we define the inclusion map Pi : �H ⊂
� → Hγ |�i

through the isomorphism. We need a preparatory lemma:

Lemma 10.A.1. Let δ := 2
Cp+1 , where Cp is the constant arising from Corol-

lary 6.3 of Brenner (2003), then

δ

2

∥∥p∗
h(QλH )

∥∥2
H 1(�)

≤
⎡⎢⎣∥∥∇p∗

h(QλH )
∥∥2

�
+ Cp

Cp + 1

∑
�ij

1∣∣�ij

∣∣∥∥QiλH − QjλH

∥∥2
L2(�ij )

⎤⎥⎦ .

Proof. By a simple application of Corollary 6.3 of Brenner (2003):∥∥p∗
h(QλH )

∥∥2
H 1(�)

≤ Cp

⎡⎢⎣(1 + 1

Cp

)
∥∥∇p∗

h(QλH )
∥∥2

�
+
∑
�ij

1∣∣�ij

∣∣2
(∫

�ij

QiλH − QjλH ds

)2
⎤⎥⎦

≤ Cp

⎡⎢⎣(1 + 1

Cp

)
∥∥∇p∗

h(QλH )
∥∥2

�
+
∑
�ij

1∣∣�ij

∣∣∥∥QiλH − QjλH

∥∥2
L2(�ij )

⎤⎥⎦
where we used Cauchy-Schwarz inequality on (

∫
σ

f )2 ≤|σ |∥∥f ∥∥2
.

Proof of Lemma 4.5. An identity like (10.A.1) can also be verified for the dis-
crete version as well since on any subdomain i and μH ∈ �H , QiμH =
p∗

h(QiμH ) + phi where phi ∈ Whi,0 bubble functions, one has

bh(λH ,μH ) =
n∑

i=1

(
u∗

h(QiλH ),∇p∗
h(QiμH ) + ∇phi

)
�i

=
n∑

i=1

(
u∗

h(QiλH ),∇p∗
h(QiμH )

)
�i

=
n∑

i=1

(
K∇p∗

h(QiλH ),∇p∗
h(QiμH )

)
�i

.

(10.A.2)

Thus, the bilinear form bh is symmetric, and, at least, positive semidefinite.
Coercivity requires a bit more work.
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Since for each subdomain i, p∗
h(QiλH )|�i

= QiλH |�i
, we add by zero and

expand to obtain

bh(λH ,λH ) =
n∑

i=1

(
K∇p∗

h(QiλH ),∇p∗
h(QiλH )

)
�i

+ δ〈QiλH − p∗
h(QiλH ),QiλH 〉H 1/2(�i)

≥
n∑

i=1

∥∥∇p∗
h(QiλH )

∥∥2
�i

+ δ‖QiλH ‖2
H 1/2(�i )

− δ

2

∥∥p∗
h(QiλH )

∥∥2
H 1/2(�i )

− δ

2
‖QiλH ‖2

H 1/2(�i)

≥
n∑

i=1

∥∥∇p∗
h(QiλH )

∥∥2
�i

+ δ

2
‖QiλH ‖2

H 1/2(�i )

− δ

2

∥∥p∗
h(QiλH )

∥∥2
H 1(�i)

=∥∥∇p∗
h(QλH )

∥∥2
�

− δ

2

∥∥p∗
h(QλH )

∥∥2
H 1(�)

+
∑
�ij

δ

2
(‖QiλH ‖2

H 1/2(�ij )
+∥∥QjλH

∥∥2
H 1/2(�ij )

)

by using Cauchy-Schwarz, the trace inequality, and the trivial inequality ab ≤
2a2 + 2b2.

Now, using the assumption (4.22)

bh(λH ,λH ) ≥∥∥∇p∗
h(QλH )

∥∥2 − δ

2

∥∥p∗
h(QλH )

∥∥2
H 1(�)

+
∑
�ij

δCp

2
∣∣�ij

∣∣∥∥QiλH − QjλH

∥∥2
L2(�ij )

+
∑
�ij

δ

4
(‖QiλH ‖2

H 1/2(�ij )
+∥∥QjλH

∥∥2
H 1/2(�ij )

)

=∥∥∇p∗
h(QλH )

∥∥2 − δ

2

∥∥p∗
h(QλH )

∥∥2
H 1(�)

+
∑
�ij

Cp

(Cp + 1)
∣∣�ij

∣∣∥∥QiλH − QjλH

∥∥2
L2(�ij )

+
∑
�ij

δ

4
(‖QiλH ‖2

H 1/2(�ij )
+∥∥QjλH

∥∥2
H 1/2(�ij )

)



508 Numerical Analysis Meets Machine Learning

Then, by Lemma 10.A.1 and the assumption (4.21)

bh(λH ,λH ) ≥
∑
�ij

δ

4
(‖QiλH ‖2

H 1/2(�ij )
+∥∥QjλH

∥∥2
H 1/2(�ij )

)

≥
n∑

i=1

δ

4
‖QiλH ‖2

H 1/2(�i )
≥ δ

4

n∑
i=1

‖λH ‖2
H 1/2(�i )

.

For the sake of notation, we assume that‖·‖H 1/2 denote the sum of the H 1/2

norms over all the �i unless otherwise denoted:

Proof of Theorem 4.6. By Strang’s second lemma, there exists a constant C

such that∥∥λ∗ − λ∗
h

∥∥
H 1/2

≤ C

(
inf

μH ∈�0

∥∥λ∗ − μH

∥∥
H 1/2 + sup

μH ∈�0

∣∣bh(λ
∗,μH ) − Lh(μH )

∣∣∥∥μH

∥∥
H 1/2

)
.

The first term, otherwise known as the approximation error, is bounded by our
assumption that

∣∣p∣∣
H 2 < ∞, meaning that the traces on the interior are at least

in H 3/2(�i) for all 1 ≤ i ≤ n, hence

inf
μH ∈�0

∥∥λ∗ − μH

∥∥
H 1/2 ≤ H

n∑
i=1

∥∥λ∗∥∥
H 3/2(�i )

≤ H
∣∣p∣∣

H 2(�)

by standard approximation results.
For the consistency error, we substitute the definition into the definition of

our bilinear form and linear functional in, and noting that −∇K∇p = f by
definition of our problem, we have for all μH ∈ �0∣∣bh(λ

∗,μH ) − Lh(μH )
∣∣∥∥μH

∥∥
H 1/2

=
∣∣∑n

i=1(u
∗
h(Qiλ

∗) + ūh,∇(QiμH )) − (f,QiμH )
∣∣∥∥μH

∥∥
H 1/2

=
∣∣∑n

i=1(K∇(ph(λ
∗)−p),∇QiμH )+(K∇p,∇QiμH )−(−∇K∇p,QiμH )

∣∣∥∥μH

∥∥
H 1/2

=
∣∣∣∑n

i=1(K∇(ph(λ
∗) − p),∇QiμH ) − ∫

�i
K∇pQiμH · ni ds

∣∣∣∥∥μH

∥∥
H 1/2
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where ni is the outward normal to the subdomain �i , and ph(λ
∗) := p∗(Qiλ

∗)+
p̄. The first term can be estimate using Cauchy-Schwarz inequality,∣∣∑n

i=1(K∇(ph(λ
∗) − p),∇QiμH )

∣∣∥∥μH

∥∥
H 1/2

≤
∑n

i=1

∥∥K∇(ph(λ
∗) − p)

∥∥
�i

∥∥∇QiμH

∥∥
�i∥∥μH

∥∥
H 1/2

≤ nmax
i

∥∥K∇(ph(λ
∗) − p)

∥∥
�i

∑n
i=1

∥∥∇QiμH

∥∥
�i∥∥μH

∥∥
H 1/2

≤ Cnmax
i

∥∥K∇(ph(λ
∗) − p)

∥∥
�i

≤ Cnδ,

where we use the fact that

∥∥∇QiμH

∥∥
�i

≤∥∥QiμH

∥∥
H 1(�i)

≤ C
∥∥QiμH

∥∥
H 1/2(�i)

≤ C
∥∥μH

∥∥
H 1/2(�i )

where we used the properties of discrete harmonic extensions (Toselli and Wid-
lund, 2004), and the fact that L2 projection is stable in H 1/2 due to interpolation
(Bramble and Xu, 1991).

As for the second term, we note that if two subdomains �i , �j are adjacent,
then ni = −nj meaning

∣∣∣∑n
i=1

∫
�i

K∇pQiμH · ni ds

∣∣∣∥∥μH

∥∥
H 1/2

≤
∑

�ij

∣∣∣∫�ij
K∇p(QiμH − QjμH ) · n

∣∣∣
i∥∥μH

∥∥
H 1/2

≤
∑

�ij

∥∥K∇p · ni

∥∥
H 1/2(�ij )

∥∥QiμH − QjμH

∥∥
H−1/2(�ij )∥∥μH

∥∥
H 1/2

≤ Cn
∣∣p∣∣

H 2(�)
max

i

∥∥(I − Qi)μH

∥∥
H−1/2(�ij )∥∥μH

∥∥
H 1/2

≤ Cn
∣∣p∣∣

H 2(�)
max

i
hi

where we used the inequality
∥∥Qi − Qj

∥∥ ≤‖I − Qi‖ +∥∥I − Qj

∥∥, the trace
inequality on normal derivatives (Grisvard, 2011, Thm. 1.5.1.2), L2 projection
approximation properties (Arbogast et al., 2007, (3.5)), and where hi denotes
the maximal mesh-size on each subdomain �i .
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FIGURE 17 Plots illustrating some of the training data used for Subsection 5.3 with pressure, flux
of x and flux of y in the columns respectively. The data is generated from a low order FEM method
with h = 1/100. The key differences between each data set are that the boundary conditions are
varied so that the element can respond to the different mortars.
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10.A.2 FEEC element training

For each of the FEEC elements used in Examples 2 through 4 with the exception
of the battery example (discussed below), a “monolithic” approach is used. For
concreteness, we will exposit the details fully for Example 3 as the other exam-
ples only differ by model hyperparameters described in the relevant section and
the training data.

The data used to train the FEEC elements are generated from 20,480 ran-
domly sampled points from [0,1]2 evaluated by interpolating the solution of an
elementary finite element solver. In the case of the FEEC element in Example 3,
a grand total of 12 different solutions each with different boundary conditions,
corresponding to the third-order Bernstein polynomials on the boundary (e.g.
x3y3,

(3
1

)
x3y2(1 − y),

(3
2

)
x3y(1 − y)2 etc), are used alongside the forcing term

of f = 0. The Bernstein polynomials were used instead of simple hat functions
as we found the additional smoothness meant pretraining of the FEEC element
was more stable. In Fig. 17, we plot the first five, out of twelve, of the training
data we generated for Subsection 5.3.

Let ξ correspond to all the hyperparameters in the FEEC model (e.g. knot
location, POU coefficients, scaling coefficients). The loss function we use is

min
ξ

12∑
k=1

∥∥pξ,k − pdata,k
∥∥

MSE∥∥pdata,k
∥∥

�2

+
∥∥uξ,k − udata,k

∥∥
MSE∥∥udata,k

∥∥
�2

+ 0.001
(10.A.3)

where pξ,k , uξ,k are the FEEC solutions with the kth boundary condition, and
pdata,k , udata,k are the data for the kth boundary condition subject to the con-
straint. This is exactly (3.7), except we summed over all the different boundary
conditions and minimized against all the boundary conditions in a single epoch
(e.g. a monolithic approach). The computation of the loss is efficient since pξ,k

for k = 1, . . . ,12 can be solved with a single linear solver step because their sys-
tems only differ in their right hand sides from the boundary conditions. Thus,
the expensive stiffness matrix generation only has to be performed once at each
optimization step. The standard Adams optimizer were used in each case as
discussed in Actor et al. (2024).

As a result of the monolithic training and the basis generation of FEEC, the
FEEC element will be able to accurately solve for the flux and pressure even
when faced with Dirichlet boundary conditions which it has not seen before.
For example, in Fig. 18, we plot the true and predicted solution of (5.4) with a
boundary condition of y. Note that, while the boundary condition was never ex-
plicitly given in the training data, that the FEEC element was able to reproduce
the behavior around the material discontinuity quite accurately.

As noted in Subsection 5.4.3, the battery example assumes only a single
data set is available, with no additional data generation with varying boundary
conditions as above. The data for each subdomain are simply obtained via a
restriction operator, and the loss is exactly (3.7).
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FIGURE 18 Plot of the true (first row) and predicted using a 24 × 24 fine-scale FEEC element
(second row) solution to (5.4) with the boundary condition y on the domain [−.5, .5]2. Note that
while the boundary condition is not explicitly included in the training data, but rather a linear com-
bination, we are able to reproduce the true solution accurately due to training against a large suite
of boundary conditions.
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