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Abstract
This survey discusses Neural Galerkin schemes that leverage nonlinear parametriza-
tions such as deep networks to numerically solve time-dependent partial differential
equations (PDEs) in a variational sense. Neural Galerkin schemes build on the Dirac-
Frenkel variational principle to train networks by minimizing the residual sequentially
over time, which is in contrast to many other methods that approximate PDE solution
fields with deep networks globally in time. Because of the sequential-in-time training,
Neural Galerkin solutions inherently respect causality and approximate solution fields lo-
cally in time so that often fewer parameters are required than by global-in-time methods.
Additionally, the sequential-in-time training enables adaptively sampling the spatial do-
main to efficiently evaluate the residual objectives over time, which is key for numerically
realizing the expressive power of deep networks and other nonlinear parametrizations in
high dimensions and when solution features are local such as wave fronts.
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1 Introduction

Partial differential equations (PDEs) are broadly used in science and engineering
to model systems of interest. Because analytic solutions of PDEs are available
only in limited settings, one often has to resort to numerical computations to
obtain approximate solutions.

1.1 Linear parametrizations in numerical analysis

A typical approach to numerically solving PDEs in numerical analysis is to first
parametrize the PDE solution field with a finite number of parameters and then
to derive a system of algebraic equations to solve for the parameters such that
the parametrization approximates the PDE solution in some numerical sense.
Common parametrizations are linear combinations of basis functions with local
supports centered on grid points (Ern and Guermond, 2004). However, there
are classes of PDEs for which linear parametrizations are inefficient in the
sense that the best-approximation error decays slowly with increasing numbers
of parameters. One important class of PDEs for which linear approximations
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on grid points become inefficient is given by PDEs that are formulated over
high-dimensional spatial domains, which are often affected by the curse of di-
mensionality so that an exponential increase in the number of grid points—and
thus typically computational costs—with the dimension is required to maintain
the same accuracy. Another class is given by PDEs with slowly decaying Kol-
mogorov n-widths (Ohlberger and Rave, 2016; Greif and Urban, 2019; Arbes et
al., 2023), which, e.g., provides a lower bound on the error that can be achieved
with linear approximations in model reduction (Antoulas, 2005; Rozza et al.,
2008; Benner et al., 2015; Antoulas et al., 2021; Kramer et al., 2024). In gen-
eral, examples of PDEs that lead to slowly decaying n-widths are often found
when modeling transport-dominated problems (Peherstorfer, 2022).

1.2 Nonlinear parametrizations for discretizing PDE solution fields

One approach to overcome the limitations of linear approximations is to use
parametrizations that have a nonlinear dependence on the parameters. Nonlin-
ear parametrizations are given by, for example, deep neural networks (LeCun
et al., 2015), tensor networks (Orús, 2019), and Gaussian wave packets (Lu-
bich, 2008). While nonlinear parametrizations can achieve faster error decays
than linear ones under certain assumptions from an approximation-theoretic per-
spective, these results are mostly existence results that fall short of providing
methods for numerically computing the parameters (DeVore et al., 1989, 1993;
Cohen et al., 2022; DeVore et al., 2021; Daubechies et al., 2022).

1.3 Neural Galerkin schemes

The purpose of this survey is to discuss Neural Galerkin schemes (Bruna et
al., 2024; Berman and Peherstorfer, 2023; Wen et al., 2024) that leverage non-
linear parametrizations to numerically solve time-dependent PDEs in a vari-
ational sense. The focus of this survey is on computational aspects rather than
approximation theory. Neural Galerkin schemes build on the Dirac-Frenkel vari-
ational principle (Dirac, 1930; Frenkel, 1934; Lubich, 2008) to train networks
by minimizing the residual sequentially over time, which is in contrast to many
other methods that leverage deep networks that are global in time (Dissanayake
and Phan-Thien, 1994; Sirignano and Spiliopoulos, 2018; Raissi et al., 2019;
Berg and Nyström, 2018); see also Du and Zaki (2021); Anderson and Faraz-
mand (2022); Kast and Hesthaven (2023); Zhang et al. (2024) for other, related
sequential-in-time training methods. Because of the sequential-in-time training,
Neural Galerkin solutions inherently respect causality. Furthermore, because
solution fields are approximated only locally in time, often fewer parameters
(e.g., networks with lower number of weights) are sufficient to provide accu-
rate approximations when compared to global-in-time methods (Berman and
Peherstorfer, 2023). In particular, locally in time, the network weights typically
are of low rank, which can be leveraged via randomized sparse updates (Berman
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and Peherstorfer, 2023) and pretraining schemes (Berman and Peherstorfer,
2024). Additionally, the sequential-in-time training enables adaptively sampling
the spatial domain to efficiently evaluate the residual objectives over time. The
adaptive sampling is guided by the dynamics described by the PDE, which
means that samples are placed where they are needed to efficiently evaluate
the residual objective function as the solution field evolves. In fact, the numer-
ical results in Bruna et al. (2024); Wen et al. (2024), which are also reported
in this survey, show that the adaptive sampling of Neural Galerkin schemes is
key for numerically realizing the expressive power of deep networks and other
nonlinear parametrizations.

1.4 Literature overview

There are several other numerical methods that can leverage nonlinear param-
etrizations in PDE settings. Besides the large body of work on global-in-time
methods such as Dissanayake and Phan-Thien (1994); Sirignano and Spiliopou-
los (2018); Raissi et al. (2019); Berg and Nyström (2018), there are methods
that leverage specific properties of classes of PDEs (E et al., 2017; Han et al.,
2018) and focus on other, related approximation tasks such as learning commit-
tor functions (Khoo et al., 2018; Li et al., 2019; Rotskoff et al., 2022), closure
modeling (Bar-Sinai et al., 2019; Kochkov et al., 2021; Wang et al., 2020), and
de-noising (Rudy et al., 2019).

One major motivation for Neural Galerkin schemes is to circumvent the Kol-
mogorov barrier (Berman and Peherstorfer, 2024), which is a challenge in model
reduction (Peherstorfer, 2022). There are other model reduction methods that
can overcome the Kolmogorov barrier, and we survey several of them now. First,
there are localized model reduction methods that learn a dictionary of candidate
basis functions and then adaptively select a subset of basis functions (Jens et al.,
2011; Dihlmann et al., 2011; Amsallem et al., 2012; Eftang and Stamm, 2012;
Maday and Stamm, 2013; Peherstorfer et al., 2014; Kaulmann et al., 2015; Gee-
len and Willcox, 2022). By relying on a fixed dictionary, such localized model
reduction methods restrict their flexibility in terms of what functions to approxi-
mate. In particular, all dynamics must have been seen in the pretraining (offline)
phase. Another class of methods uses nonlinear maps to transform the solu-
tion fields such that the solution manifolds induced by the solution fields are
not affected by a slowly decaying Kolmogorov n-width anymore (Rowley and
Marsden, 2000; Ohlberger and Rave, 2013; Reiss et al., 2018; Ehrlacher et al.,
2020; Qian et al., 2020; Papapicco et al., 2022; Issan and Kramer, 2023; Tad-
dei et al., 2015; Cagniart et al., 2019). Related to transformations are methods
based on nonlinear embeddings such as autoencoders (Lee and Carlberg, 2020;
Kim et al., 2022; Romor et al., 2023). In the works (Geelen et al., 2023; Barnett
and Farhat, 2022; Geelen et al., 2024; Sharma et al., 2023; Schwerdtner and Pe-
herstorfer, 2024), approximations on quadratic manifolds have been proposed,
which rely on a polynomial feature map to achieve a nonlinear parametrization.
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Closer to Neural Galerkin schemes are online adaptive methods that aim to
adapt basis functions over time (Koch and Lubich, 2007; Sapsis and Lermusi-
aux, 2009; Iollo and Lombardi, 2014; Gerbeau and Lombardi, 2014; Carlberg,
2015; Peherstorfer and Willcox, 2015; Zahr and Farhat, 2015; Peherstorfer,
2020; Black et al., 2020; Billaud-Friess and Nouy, 2017; Ramezanian et al.,
2021), where a particular challenge is to achieve online updates of the basis
functions efficiently (Peherstorfer and Willcox, 2015; Zimmermann et al., 2018;
Peherstorfer, 2020; Huang and Duraisamy, 2023; Singh et al., 2023). Especially
dynamic low-rank approximations (Koch and Lubich, 2007; Musharbash et al.,
2015; Einkemmer and Lubich, 2019; Einkemmer et al., 2021; Musharbash and
Nobile, 2017, 2018; Hesthaven et al., 2022) have been widely used, of which
many build on the Dirac-Frenkel variational principle (Dirac, 1930; Frenkel,
1934; Lubich, 2008), just as Neural Galerkin schemes.

1.5 Outline

This manuscript is organized as follows. We first discuss the need for nonlin-
ear parametrizations in Section 2. Neural Galerkin schemes are described in
Section 3. Adaptive sampling (active data acquisition) is an important part of
Neural Galerkin schemes that is discussed in Section 4. A randomized sparse
extension of Neural Galerkin schemes is presented in Section 5. It numerically
achieves faster runtimes and stabler approximations. Conclusions are drawn in
Section 6.

2 The need for nonlinear parametrizations in approximating
solution fields of PDEs

2.1 Setup

Consider a time-dependent PDE of the form

∂tq(t,x) = f (t,x, q) , x ∈ �, t ∈ (0, T ] , (1)

with the spatial domain � ⊆ R
d and the solution field q : [0, T ] × � → R. The

right-hand side function f depends on time t ∈ [0, T ], the spatial coordinate
x ∈ �, and the field q. The function f can depend on partial derivatives of
q as well. For example, we obtain an advection-diffusion-reaction equation by
setting

f (t,x, q) = b(t,x) · ∇q(t,x) + div(a(t,x)∇q(t,x)) + g(t,x, q(t,x))

for coefficient functions b : [0,∞) × � → R
d and a : [0,∞) × � → R

d × R
d

and a source term g : [0,∞) × � ×R → R. In the following, we only consider
situations where the function q(t, ·) : � → R over the spatial domain � is in
an appropriate Hilbert spaceV with inner product 〈·, ·〉V at all times t ∈ [0, T ].
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We focus exclusively on Dirichlet and periodic boundary conditions, which can
be imposed by restricting the space V so that all functions in V satisfy the
boundary conditions. The initial conditions of (1) are denoted as q0 : � → R

and are elements of the setV(0) ⊆V.
Let now M be the set of solutions of (1), which formally is just a set of

functions defined as

M= {q(t, ·)|t ∈ [0, T ], q0 ∈V(0)} ⊂V . (2)

The set (2) does not necessarily have to have a manifold structure but the con-
vention is to call it the solution manifold and we stick to this convention in the
following. We also note that typically solutions of PDEs are considered in a vari-
ational sense rather than in a classical sense as in (2); however, the formulation
via the classical solutions in (2) will be sufficient to demonstrate the limitations
of linear parametrizations in the following.

2.2 Linear parametrizations of solution fields

Let us now consider linear parametrizations with a finite number of parameters
of the solution field q, which we can write as

q̃(θ(t),x) =
n∑

i=1

θi(t)ϕi(x) . (3)

There are n parameters θ1(t), . . . , θn(t) ∈ R, which depend on time t . We col-
lect the parameters in the vector θ(t) = [θ1(t), . . . , θn(t)]T ∈ R

n. The functions
ϕ1, . . . , ϕn span a subspace of V of dimension at most n, in which the solu-
tion field q is approximated. Linear combinations of basis functions such as (3)
are widely used in scientific computing. For example, finite-element methods
(Ern and Guermond, 2004) typically discretize the spatial domain � with a grid
and place the basis functions ϕ1, . . . , ϕn at the grid points. The basis functions
are often chosen with a local support in the context of finite-element methods.
Another example is given by model reduction methods that build on linear com-
binations (3) with basis functions ϕ1, . . . , ϕn that have global support (Antoulas,
2005; Rozza et al., 2008; Benner et al., 2015; Antoulas et al., 2021; Kramer et
al., 2024).

The best-approximation error that can be achieved with parametrizations of
the linear type (3) can be described with the concept of the Kolmogorov n-width
(Pinkus, 1985). We consider the following version of the Kolmogorov n-width:

dn(M) = inf
Vn⊂V

dim(Vn)≤n

sup
q(t,·)∈M

inf
q̃∗∈Vn

‖q(t, ·) − q̃∗‖ . (4)

The Kolmogorov n-width as given in (4) is the lowest worst-case error that any
n-dimensional subspace Vn of V can achieve over the elements of M. Note
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that (4) gives no indication how to construct a sequence of subspaces (Vn)n
that achieves dn(M).

The decay rate of dn(M) has been studied for solution manifolds induced
by certain classes of PDEs. The work by Maday et al. (2002) shows an expo-
nential decay of dn(M) forM induced by specific elliptic coercive PDEs over
a single parameter. Additional results are given in Cohen and DeVore (2016).
The works by Binev et al. (2011); Buffa et al. (2012); Cohen et al. (2020) show
how to construct sequences of subspaces that achieve an exponential decay rate.
The class of equations for which the Kolmogorov n-width decays exponentially
fast are well suited for classical model reduction with linear parametrizations
(Antoulas, 2005; Rozza et al., 2008; Benner et al., 2015; Antoulas et al., 2021;
Kramer et al., 2024).

2.3 The Kolmogorov barrier

Let us now move from elliptic PDEs to hyperbolic ones and more generally to
models that describe transport phenomena. It has been shown in Ohlberger and
Rave (2016) that the linear advection equation can lead to a solution manifold
that has a slowly decaying n-width. To see this, consider the equation

∂tq(t, x) + ∂xq(t, x) = 0 , x ∈ (0,1), t ∈ (0,1] , (5)

with initial condition

q0(x) =
{

1 , x ≤ 0

0 , else .

The solution to (5) is given by q(t, x) = q0(x − t) and thus the solution manifold
M consists of the step functions that have a discontinuity in the spatial domain
[0,1]. Ohlberger and Rave (2016) show the lower bound

dn(M) ≥ c
1√
n

, (6)

for a constant c > 0 independent of n. The bound (6) means that there cannot
exist a sequence of subspaces (Vn)n of V that achieves a faster error decay
in the sense of (4) than 1/

√
n, which is a slow rate compared to the expo-

nential rate achieved for some PDEs of the elliptic type. Lower bounds with
similarly slow decay rates have been shown in Arbes et al. (2023) for the linear
advection equation with smoother initial conditions, where the smoothness of
the initial condition determines the decay rate. A slow decay of 1/

√
n has also

been shown for instances of the wave equation (Greif and Urban, 2019). Addi-
tionally, it is empirical observed that models that describe transport phenomena
can lead to matrices of coefficient vectors with slowly decaying singular values,
which is insufficient to draw conclusions about the decay of the Kolmogorov
n-width but it provides indication that linear parametrizations are inefficient for
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such transport-dominated problems (Rowley and Marsden, 2000; Ohlberger and
Rave, 2013; Reiss et al., 2018; Huang and Duraisamy, 2023; Peherstorfer, 2020;
Uy et al., 2024). The slow decay of the Kolmogorov n-width is often referred
to as the Kolmogorov barrier of linear parametrizations; see also the survey by
Peherstorfer (2022).

2.4 Numerical illustrations of limitations of linear parametrizations

Let us consider a numerical experiment to illustrate the limitations of linear
parametrizations. The following results are taken from Peherstorfer (2022). As
a prototypical model of a diffusion-dominated problem, let us consider the heat
equation

∂tq(t, x) − ∂2
xq(t, x) = 1 , x ∈ �, (7)

with spatial domain � = (0,1) ⊂ R. The boundary conditions are of homoge-
neous Dirichlet type and the initial condition is the zero function. We set end
time to T = 0.4 and discretize on N = 1024 linear finite elements in space and
with the implicit Euler method with time-step size 10−3 in time. Denote with
q(tk) ∈ R

1024 the coefficient vector of the finite-element approximation at time
step tk = δtk for k = 0, . . . ,400 = K . In Fig. 1a we show the numerical solution
over the time-space domain.

We now collect snapshots q(t1), . . . ,q(tK) over time and assemble the snap-
shot matrix Q = [q(t0),q(t1), . . . ,q(tK)] ∈ R

1024×401. Recall that the decay of
the singular values of the snapshot matrix Q indicates how well the snapshots
can be approximated in the space spanned by the first few left-singular vectors.
Fig. 1b shows the singular values, which we normalized so that the largest sin-
gular value is one. Only about 20 singular vectors are sufficient to approximate
the snapshots up to double precision. A space of dimension 20 is therefore suffi-
cient for achieving double precision even though the dimension of the snapshot
vectors is N = 1024. It is important to note that the decay of the singular values
does not allow to draw conclusions about the Kolmogorov n-width decay of the
corresponding solution manifold; however, the singular values can serve as a nu-
merical indication if classical methods with linear approximations in subspaces
can be efficient.

Let us now consider a transport-dominated problem modeled by the linear
advection equation (5) with spatial domain � = (0,1), time domain (0,0.4]
and periodic boundary conditions. We choose the Gaussian probability density
function with mean 0.1 and standard deviation 1.5 × 10−2 as initial condition.
The solution is plotted over time and space in Fig. 1c. Analogously to the ex-
ample with the heat equation, we collect snapshot data and plot the decay of
the normalized singular values in Fig. 1d. The singular values decay orders
of magnitude slower, which provides further indication that solution fields of
transport-dominated problems can be challenging to approximate with linear
approximations in subspaces. Even though this is just a numerical illustration,
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FIGURE 1 For diffusion-dominated problems such as the heat equation in this example, the sin-
gular values of snapshot matrices typically decay exponentially fast. In contrast, if dynamics are
dominated by transport such as with models given by the linear advection equation, the singular val-
ues of snapshot matrices can decay orders of magnitude slower, which motivates the use of nonlinear
parametrizations in model reduction for transport-dominated problems (Peherstorfer, 2022). (First
published in Notices of the American Mathematical Society in 69, Number 5 (2022), published by
American Mathematical Society. © 2022 American Mathematical Society.)

it is representative of the challenges of linear approximations for transport-
dominated problems; see the survey by Peherstorfer (2022).

2.5 Nonlinear parametrizations

The Kolmogorov barrier can be circumvented with nonlinear parametrizations
(DeVore et al., 1989, 1993; Cohen et al., 2022). We call a parametrization non-
linear if the representation can depend on the element ofM that one wants to
approximate, which is in contrast to the linear parametrizations discussed in
Section 2.2, where the representation ϕ1, . . . , ϕn is fixed for all elements inM.

2.5.1 Generic nonlinear parametrizations
Consider the generic nonlinear parametrization

q̃(θ(t),x) =
n∑

i=1

βi(t)ϕi(x;α(t)) , (8)

with the parameter vector θ(t) = [α(t);β(t)] ∈ R
p that consists of the fea-

ture vector α(t) = [α1(t), . . . , αn′(t)]T with n′ components and the vector
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β(t) = [β1(t), . . . , βn(t)]T of n coefficients that enter q̃ linearly. The represen-
tation given by the functions ϕ1(·;α(t)), . . . , ϕn(·;α(t)) depends on the time-
dependent feature vector α(t) and thus can change over time t based on the
element q(t, ·) ∈M of the solution manifold. In other words, the representation
ϕ1, . . . , ϕn can be adapted based on the element q(t, ·) that is to be approxi-
mated and thus (8) is a nonlinear parametrization. In this sense, adaptive mesh
refinement in scientific computing, which was introduced for hyperbolic prob-
lems in Berger and Colella (1989); Berger and LeVeque (1998), is also a form
of nonlinear parametrization because the basis functions are adapted based on
how the solution fields evolve over time.

2.5.2 Examples of nonlinear parametrizations

The nonlinear parametrization given in (8) is generic and we now consider spe-
cific instances of it. Let us first consider dictionary approaches, which we can
write as (8) by restricting us to have only a finite number L ∈ N of feature
vectors α(1), . . . ,α(L) ∈ R

n′
that are independent of time t . Each feature vec-

tor α(i) corresponds to a representation ϕ
(i)
1 = ϕ1(·;α(i)), . . . , ϕ

(i)
n = ϕn(·;α(i))

and a corresponding subspaceV(i)
n ⊂V for i = 1, . . . ,L. Based on a classifica-

tion function such as I :V→ {1, . . . ,L}, one of the representations is selected
based on the element of M that is to be approximated. Because the represen-
tation is chosen based on the element that is to be approximated, it provides a
nonlinear parametrization. Such nonlinear parametrizations with a finite number
of feature vectors have been studied extensively in the context of model reduc-
tion under the umbrella term of localized model reduction (Jens et al., 2011;
Dihlmann et al., 2011; Amsallem et al., 2012; Eftang and Stamm, 2012; Maday
and Stamm, 2013; Peherstorfer et al., 2014; Kaulmann et al., 2015; Geelen and
Willcox, 2022). Localized model reduction is closely related to dictionary ap-
proaches, because the combination of all functions ϕ

(1)
1 , . . . , ϕ

(1)
n , ϕ

(2)
1 , . . . , ϕ

(L)
n

can be considered as the dictionary from which an indicator function selects n

elements.
Another type of nonlinear parametrizations that is widely used in model re-

duction is building on nonlinear transformations. For example, if the manifold
M describes solution fields with moving coherent structures in the spatial do-
main, then the functions ϕ1, . . . , ϕn in (8) can account for this transport via the
feature vector α(t). A frequently given example is the linear advection equation
(5), which has as solution q(t, x) = q0(x − t) and thus setting n = 1 and n′ = 1
with α1(t) = −t so that ϕ1(x,α(t)) = q0(x − t) provides an exact representation
of the solution field; see also Peherstorfer (2022). More sophisticated transfor-
mations can be constructed either analytically (Rowley et al., 2004; Ehrlacher
et al., 2020) or via optimization (Reiss et al., 2018; Taddei, 2020; Taddei and
Zhang, 2021).
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FIGURE 2 The classical method of lines first discretizes the spatial domain of time-dependent
partial differential equations to obtain a system of ODEs, which is then integrated in time to obtain
approximate coefficient vectors for linear combinations of basis functions that represent the solution
field. Neural Galerkin schemes are also sequentially in time approximating solution fields but allow
to use nonlinear parametrizations such as deep networks.

2.5.3 Nonlinear parametrizations via time-dependent parameters

In this survey, we consider nonlinear parametrizations with time-dependent pa-
rameters θ(t). In the following, there is no need to distinguish between features
α(t) and coefficients β(t) and thus we can consider the nonlinear parametriza-
tion as just depending on a p-dimensional vector θ(t) as

q̃(θ(t), ·) : � →R . (9)

Examples of such parametrizations are given by dynamic low-rank approxi-
mations (Koch and Lubich, 2007; Sapsis and Lermusiaux, 2009), deep neural
networks with time-dependent weights (Bruna et al., 2024; Du and Zaki, 2021;
Finzi et al., 2023), tensor networks (Orús, 2019), Gaussian wave packets (Lu-
bich, 2008), and other nonlinear parametrizations (Black et al., 2020).

3 Neural Galerkin schemes based on the Dirac-Frenkel
variational principle and deep networks

We now discuss Neural Galerkin schemes (Bruna et al., 2024) that provide dy-
namical systems for the time-dependent parameters θ(t) so that the nonlinear
parametrizations q̃(θ(t), ·) solve the PDEs of interest in a variational sense; see
Fig. 2. The two key building blocks of Neural Galerkin schemes are the Dirac-
Frenkel variational principle (Lasser and Lubich, 2020, Section 3.8) for deriving
the dynamical systems and deep networks with time-dependent weights for pro-
viding the nonlinear parametrizations.
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FIGURE 3 The time derivative θ̇(t) of the parameter θ(t) is given by approximating the right-
hand side function f (t, ·, q̃(θ(t), ·)) in the tangent space of the parametrization manifoldM	 at the
current solution q̃(θ(t), ·) in a least-squares sense, which is the Dirac-Frenkel variational principle
(Lasser and Lubich, 2020, Section 3.8).

3.1 The Dirac-Frenkel variational principle

Recall the nonlinear parametrizations with p parameters described in (9). Let us
drop the time dependence of θ for now to obtain

q̃(θ , ·) : � → R , (10)

with θ ∈ 	 ⊆ R
p. The parametrization (10) induces the manifold

M	 = {q̃(θ , ·) | θ ∈ 	} ,

which is different from the manifoldM induced by the PDE solutions; see Sec-
tion 2.1. The manifoldM	 is depicted in Fig. 3a. The tangent space ofM	 at a
point q̃(θ , ·) ∈M	 is spanned by the component functions of the gradient ∇θ q̃,

Tq̃(θ ,·)M	 = span
{
∂θ1 q̃, . . . , ∂θp q̃

}
. (11)

Let us now make the parameter θ(t) depend on time t again so that we
can consider the time derivative of q̃(θ(t), ·). Notice that time t enters the
parametrization q̃ only via the parameter vector θ(t). We thus apply the chain
rule to obtain

∂t q̃(θ(t), ·) = ∇θ q̃(θ(t), ·) · θ̇(t) , (12)

where θ̇(t) is a vector in R
p, which we interpret as the time derivative of the

parameter vector θ(t). Eq. (12) shows that the time derivative ∂t q̃(θ(t), ·) is an
element of the tangent space Tq̃(θ(t),·)M	 ofM	 at q̃(θ(t), ·), which is spanned
by the component functions of the gradient ∇θ q̃(θ(t), ·).

Let us now consider the PDE given in (1) again so that we can define the
residual function at time t as

rt (θ(t), θ̇(t), ·) = ∂t q̃(θ(t), ·)︸ ︷︷ ︸
∇θ q̃(θ(t),·)·θ̇(t)

−f (t, ·, q̃(θ(t), ·)) , (13)
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where we plugged q̃(θ(t), ·) into (1). Notice that the residual function rt has the
parameter vector θ(t) as well as the time derivative θ̇(t) as arguments. We now
discuss multiple options to seek θ̇(t), which all will result in the same dynamics
and thus be equivalent. One option is to project the right-hand side function
f onto the tangent space and then to seek a θ̇(t) that sets the corresponding
residual to zero. Because we know that the time derivative ∂t q̃(θ(t), ·) is in the
tangent space (11), such a θ̇(t) can be found, which closes the equation,

∂t q̃(θ(t), ·) = Pθ(t)f (t, ·, q̃(θ(t), ·)) (14)

with the projection with respect to an L2 inner product 〈·, ·〉ν with measure ν

Pθg = ∇θ q̃ · 〈∇θ q̃, g〉ν ,

for g ∈V. Eq. (14) is found in a wide range of literature that builds on the Dirac-
Frenkel variational principle (Dirac, 1930; Frenkel, 1934; Lubich, 2008; Koch
and Lubich, 2007; Sapsis and Lermusiaux, 2009; Hesthaven et al., 2022; Du and
Zaki, 2021; Anderson and Farazmand, 2022). Another option, that will result
in the same equation (14), can be derived by imposing Galerkin conditions for
finding θ̇(t) so that the residual rt is orthogonal to the tangent space with respect
to the inner product 〈·, ·〉ν ,

〈∂θi
q̃(θ(t), ·), rt (θ(t), θ̇(t), ·)〉ν = 0 , i = 1, . . . , p . (15)

Yet another option is to minimize the squared residual norm locally over time,
which once more will lead to the same equation dynamics; see Section 3.2.

Transformations show that (14) and equivalently (15) provide the dynamics
of the parameter vector θ(t) as

M(t, θ(t))θ̇(t) = F(t, θ(t)) , θ(0) = θ (0) , (16)

with

M(t, θ) =
∫

�

∇θ q̃(θ ,x) ⊗ ∇θ q̃(θ ,x)dν(x) ,

F (t, θ) =
∫

�

∇θ q̃(θ ,x)f (t,x, q̃(θ , ·))dν(x) ,

and an initial condition θ (0) ∈ 	. The symbol ⊗ means the outer product of
the gradients. We refer to (16) as the Neural Galerkin equations because they
use deep networks as a parametrization and correspond to the Galerkin condi-
tions (15). But we stress that analogous equations have been derived for various
other parametrizations as well as deep networks under various names (Lubich,
2008; Koch and Lubich, 2007; Sapsis and Lermusiaux, 2009; Hesthaven et al.,
2022; Du and Zaki, 2021; Anderson and Farazmand, 2022). Because the matrix
M(t, θ) in (16) can become singular, the dynamical system can have multiple
solutions θ(t); see Section 5 for a more detailed discussion.
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3.2 An optimization perspective of the Dirac-Frenkel variational
principle

Many methods in machine learning are motivated via an optimization perspec-
tive rather than the Galerkin projection perspective often found in scientific
computing. Let us now derive the dynamical system given by the Dirac-Frenkel
variational principle by starting with an objective function

Ht(θ , η) = Ex∼ν

[
|rt (θ , η,x)|2

]
, (17)

as in Du and Zaki (2021). We then seek θ̇(t) that minimizes objective Ht at time
t with respect to η,

min
η∈	

Ht(θ(t), η)

Problem (17) does not necessarily have a unique global optimum. We only ask
for first-order optimality so that it is sufficient to set the gradient of Ht with
respect to η to zero,

∇ηJt (θ(t), θ̇(t)) = 0 , (18)

which leads to the dynamical system for θ(t) given in (16).
A remark is in order. The optimization perspective given by introducing

the dynamical system (16) via the objective function (17) clearly contrasts the
present approach to widely used time-space discretizations, which parametrize
the whole time-space domain with a neural network (Raissi et al., 2019). In
this sense, Neural Galerkin schemes can be interpreted as being nonlinear ex-
tensions of the classical method of lines (Zafarullah, 1970; Verwer and Sanz-
Serna, 1984) for solving time-dependent PDEs, where first the spatial domain
is discretized to obtain a semidiscrete system of ordinary differential equations
(ODEs). The system of ODEs is then discretized in time and numerically inte-
grated. Similarly, Neural Galerkin schemes first parametrize the spatial domain
of the PDEs with time-dependent parametrizations, which are then numerically
computed by integrating a dynamical system in time. Again, this is in contrast
to time-space approximations with deep networks as Raissi et al. (2019).

3.3 Least-squares formulation and discretization in time

The dynamical system (16) for θ(t) describes the normal equations of the least-
squares problem

min
θ̇(t)∈	

‖∇θ q̃(θ(t), ·) · θ̇(t) − f (t, ·, q̃(θ(t), ·))‖ν . (19)

Numerically it thus is often beneficial with respect to the condition of the prob-
lem to work with the least-squares problem (19) rather than the dynamical
system (16). An important insight is that the unknown θ̇(t) enters linearly in
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the least-squares problem (19), even though the parametrization q̃ depends non-
linearly on the parameter vector θ(t).

We can now discretize (19) in time. Consider therefore K ∈ N time steps
with 0 = t0 < t1 < · · · < tK = T . At each time step k = 0, . . . ,K − 1, we obtain
a parameter vector θk ∈ R

p, which is an approximation of the time-continuous
parameter θ(tk) at time step tk . If we take an explicit time integration scheme
such as forward Euler, we obtain the least-squares problems

min
θk+1∈	

‖∇θ q̃(θk, ·) · (θk+1 − θk) − δtf (tk, ·, q̃(θk, ·))‖ν , k = 0, . . . ,K − 1 .

(20)
Because we used an explicit time integration scheme, the linearity of the time-
continuous least-squares problem (19) is preserved in (20): At each time step
k = 0, . . . ,K − 1, a linear least-squares problem has to be solved. In contrast,
if we take an implicit time integration scheme such as backward Euler, then we
obtain

min
θk+1∈	

‖∇θ q̃(θk+1, ·) · (θk+1 − θk) − δtf (tk+1, ·, q̃(θk+1, ·))‖ν ,

k = 0, . . . ,K − 1 ,
(21)

where now the unknown θk+1 enters nonlinearly via the parametrizations q̃.
Thus, at each time step, a nonlinear optimization problem has to be solved,
which can be computationally more expensive than solving the linear least-
squares problems corresponding to the explicit schemes. The observation that
explicit time integration schemes lead to computationally cheaper time steps
than implicit ones is often the case in numerical analysis and scientific comput-
ing and reflects that Neural Galerkin schemes are rooted in numerical analysis.
As a side remark, we state that constraints can be added to (19) and their dis-
crete counterparts to conserve mass, momentum, Hamiltonians (Schwerdtner
et al., 2023); see also Anderson and Farazmand (2022) for a method based on
nonlinear parametrizations with conserving quantities.

4 Adaptive sampling in Neural Galerkin schemes

To numerically solve for the parameter θ(t) in Neural Galerkin schemes, the ob-
jective of the least-squares problem (19) has to be numerically evaluated, which
is the topic of this section.

4.1 The sampling challenge

The least-squares problem (19) and its discrete counterparts (20) and (21) are
formulated with objectives that depend on the norm ‖ · ‖ν with measure ν over
the spatial domain �. To numerically optimize for the parameter θ(t), it is nec-
essary to numerically estimate the objectives and thus to evaluate the norm ‖ · ‖ν

via the inner product 〈·, ·〉ν . If we can draw samples x1, . . . ,xm ∼ ν from the
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distribution corresponding to the measure ν, then we can estimate the objective
of (19) via a Monte Carlo estimator as

1

m

m∑
i=1

|∇θ q̃(θ(t),xi ) · θ̇(t) − f (t,xi , q̃(θ(t), ·))|2 . (22)

Efficiently evaluating objective functions with Monte Carlo estimators such as
(22) is a pervasive challenge in machine learning, where it is typically referred
to as estimating the population loss with the empirical loss (Vapnik, 1991).

Analogously, in scientific computing, inner products have to be evaluated
in, e.g., finite-element methods to assemble systems of equations correspond-
ing to Galerkin conditions. Linear parametrizations such as linear combinations
of basis functions centered on grid points allow in many cases to precompute
inner products of local basis elements, which then can be re-used to efficiently
evaluate inner products globally (Ern and Guermond, 2004). In case of nonlin-
ear parametrizations, the superposition principle of linear approximations is lost
and thus the inner product needs to be evaluated explicitly at each time step. The
evaluation of the objective can be a major numerical runtime bottleneck when
working with nonlinear parametrizations (Wen et al., 2024).

In certain limited cases, objectives can be evaluated analytically (Lubich,
2008; Lasser and Lubich, 2020). In other settings, it has been proposed to build
on quadrature rules (Du and Zaki, 2021; Schwerdtner et al., 2023), which can be
sufficient for problems with low-dimensional spatial domains. But even in low
dimensions, local features such as wave fronts can make nonadaptive quadra-
ture rules inefficient. Another common option therefore is falling back to Monte
Carlo estimators that simply sample from the measure ν in the spatial domain
to estimate the objectives. However, in particular for transport-dominated prob-
lems where local features such as wave fronts move through the spatial domain,
a static sampling from a measure that is fixed over all times t means that these lo-
cal features that change over time t need to be discovered without guidance; see
Rotskoff et al. (2022); Bruna et al. (2024); Wen et al. (2024). For example, con-
sider the linear advection equation with a Gaussian bump as initial condition, for
which we plotted the solution field over the time-space domain in Fig. 1. A uni-
form sampling of the domain quickly reveals that many samples are required to
resolve the local Gaussian bump as it is transported through the spatial domain.
Thus, even though the nonlinear parametrization can be expressive, evaluating
the objective function to numerically find parameters that realize the expressive-
ness can still be challenging.

4.2 Objectives with time-dependent measures

The works by Bruna et al. (2024); Wen et al. (2024) propose to consider time-
dependent inner products 〈·, ·〉μt for formulating the least-squares problem (19)
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to obtain

min
θ̇(t)∈	

‖∇θ q̃(θ(t), ·) · θ̇(t) − f (t, ·, q̃(θ(t), ·))‖μt (23)

in continuous time. The inner product depends on time via the time-dependent
measure μt , which is in contrast to the formulation (19) that builds on a measure
ν that is fixed in time. As shown in Wen et al. (2024), if the parametrization is so
rich that the residual is zero, then the optima of the objective of (19) are invariant
to the measure as long as the measure has full support in the spatial domain. If a
zero residual is not reached, then this insight serves as a heuristic when the norm
of residual is small. Notice that we are indeed interested in cases where the norm
of the residual is small because otherwise it would mean we incur large errors
during time integration. Thus, in this sense, we are free to choose measure μt as
long as it is fully supported on the spatial domain �.

The goal is now to choose a measure μt such that the objective of (23) can
be estimated accurately with few samples. We set μt ∝ exp(−Vθ(t),θ̇(t)) with the
potential

Vθ(t),θ̇(t)(x) = |rt (θ(t), θ̇(t),x)|2 , (24)

where rt is the residual function defined in (13). The measure μt defined via (24)
distributes mass proportional to the magnitude of the residual, which agrees with
the intuition that one should sample where the residual is high.

The time-dependent measure μt is then coupled to the dynamics of the pa-
rameter vector θ(t) because the potential Vθ(t),θ̇(t) of μt depends on θ(t) and
vice versa. Thus, the parameter vector θ(t) and the measure μt are updated to-
gether over time via the coupled dynamical system

M(t, θ(t))θ̇(t) =F(t, θ(t)) ,

∂tμt =γ∇ · (∇μt + μt∇Vθ(t),θ̇(t)) ,
(25)

where γ is a scaling parameter that controls how much faster the measure μt

moves forward in time versus the parameter vector θ(t); details can be found in
Wen et al. (2024).

Note that other options than sampling proportional to the squared residual
are possible such as sampling proportional to the magnitude of the solution field
q̃, which can be useful if the solution field itself is a density as in the case when
the PDE (1) is a Fokker-Planck equation.

4.3 A computational procedure for adaptive sampling based on
particles and Stein variational gradient descent

Let us discretize the time-dependent measure μt introduced in the previous sec-
tion with an empirical measure μ̃t that depends on a set of particles {xi (t)}mi=1
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at time t

μ̃t = 1

m

∑m

i=1
δxi (t) .

We can evaluate gradients of the potential V , which means we can evaluate the
score of the density of μt ,

∇ logμt .

Building on Stein variational gradient descent (SVGD) with a kernelK (Liu
and Wang, 2016), we obtain a system of ODEs for the particles,

d

dτ
x

(τ )
i (tk) = E

x′∼μ̃
(τ )
tk

[
K(x′,x(τ )

i (tk))∇ logμtk (x
′) + ∇1K(x′,x(τ )

i (tk))
]

,

where τ is an artificial time in which the particles move, which is different from
the physical time t . The relation between the artificial time τ and the physical
time t is controlled by the parameter γ in the dynamics (25); see Wen et al.
(2024) for details. Other sampling techniques than SVGD can be used such
as Langevin and Markov chain Monte Carlo methods. In discrete time, it is
beneficial to initialize the empirical measure at time tk+1 with the empirical
measure from time tk and thus particle methods are particularly well suited here.

4.4 Using adaptive samples in least-squares formulations of Neural
Galerkin schemes

Recall the time-dependent sampling points, which we called particles in the
previous section,

x1(t), . . . ,xm(t) ∼ μt .

We use the samples to form the batch gradient J t (θ(t)) ∈R
m×p as

J t (θ(t)) =

⎡
⎢⎢⎣

— ∇θ q̃(θ(t),x1(t))
T —

...

— ∇θ q̃(θ(t),xm(t))T —

⎤
⎥⎥⎦ , (26)

and the batch right-hand side f t (θ(t)) ∈R
m as

f t (θ(t)) =

⎡
⎢⎢⎣

f (t,x1(t), q̃(θ(t), ·)
...

f (t,xm(t), q̃(θ(t), ·)

⎤
⎥⎥⎦ . (27)

If we now discretize with the explicit Euler method in time, we obtain the re-
gression problems

min
δθk∈	

‖Ĵ tk (θk)δθk − f̂ tk
(θk)‖2

2
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over time steps k = 0, . . . ,K − 1, where Ĵ tk and f̂ tk
are the time-discrete coun-

terparts of J t and f t , respectively. At each time step k = 0, . . . ,K − 1, we
update θk+1 = θk + δtkδθk . Notice that the time-step size δtk > 0 can depend
on the time step, which allows adaptively choosing the time-step size. We alter-
nate between taking a time step to compute θk+1 from θk and updating the set
of particles from {x(tk)}mi=1 to {x(tk+1)}mi=1; see Wen et al. (2024) for details.

4.5 Example: Fokker-Planck equations in moderately high
dimensions

We report the experiment of Bruna et al. (2024) here. Consider a system
of d = 8 particles that are attracted by a time-varying trap. The positions
X1(t) . . . ,Xd(t) ∈ R of the particles are governed by the stochastic differential
equation

dXi = −(Xi − a(t))dt − α

d

∑d

j=1
(Xi − Xj)dt +

√
2β−1dWi , i = 1, . . . , d ,

with the Wiener processes Wi , α = 1/4, β = 102, and transport coefficient

a(t) = 5/4(sin(πt) + 3/2) .

The density of the particle positions is governed by the Fokker-Planck equa-
tion over the d = 8 dimensional spatial domain. As the particles get trapped,
the density concentrates, which leads to local features in high dimensions. We
solve for the density function with Neural Galerkin schemes, with a shallow
network with Gaussian units and 30 nodes per layer. Time is discretized with
Runge-Kutta 4 and time-step size δt = 10−3. The adaptive sampling is based on
m = 1000 particles. The particles are adapted by sampling proportional to the
magnitude of the current solution function. Details of the numerical setup are
provided in Bruna et al. (2024).

Fig. 4 shows the positions of particles X1, X4, X8 as well as of particles
X6, X7, X8. A benchmark solution is computed, which is indicated via black
dots. The Neural Galerkin solution with adaptive sampling closely matches the
benchmark, whereas the static sampling over the spatial domain leads too poor
approximations of the particle positions. A quantitive comparison is shown in
Fig. 5. The relative error in the mean particle position is on the order of 10−3

with adaptive sampling, whereas a static sampling leads to a relative error larger
than one. The covariance of the particle distribution is approximated to a relative
error of about 10−2 in this example.

Because we compute the density function, we can compute quantities of in-
terest that require more than just the moments, as provided by Monte Carlo
methods. We thus can compute the entropy of the system, which we show in
Fig. 6a. Comparing to a Monte Carlo sampling with subsequent density esti-
mation shows that the Neural Galerkin approximation leads to more accurate
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FIGURE 4 Neural Galerkin schemes with adaptive sampling accurately predict the positions of
the physics particles, whereas using the same network as in the Neural Galerkin solution but with a
static, uniform sampling fails to provide accurate predictions of the particle positions. (Figure from
Bruna et al. (2024).)

FIGURE 5 Neural Galerkin schemes with adaptive sampling achieve accurate approximations of
the mean and covariance of the particle density, whereas a static, uniform sampling leads to large
relative errors. (Figure from Bruna et al., 2024.)

entropy estimates. We also show in Fig. 6b the entropy computed for an ahar-
monic trap; details in Bruna et al. (2024). It is known that such a system has an
oscillating entropy, which agrees with the prediction of Neural Galerkin in this
case.

5 Randomized sparse Neural Galerkin schemes

The work by Berman and Peherstorfer (2023) introduces randomized sparse
Neural Galerkin (RSNG) schemes that update only sparse subsets of the com-
ponents of θ(t) and randomize which components of θ(t) are updated. Updating
only a sparse subset is sufficient because many nonlinear parametrizations lead
to batch gradients J t (θ) that are of low rank, which indicates that components of
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FIGURE 6 With Neural Galerkin schemes in this example, we approximate the particle density
function rather than only moments. We thus can compute quantities such as the entropy. In contrast,
to estimate the entropy with Monte Carlo-based methods, the density function has to be estimated,
which is challenging and leads to less accurate results in this example than the Neural Galerkin
schemes. (Figure from Bruna et al., 2024.)

the time derivative θ̇(t) are redundant and can be ignored for updating θ(t) with-
out losing expressiveness. Additionally, the randomization can be interpreted
analogously to dropout (Srivastava et al., 2014; Sung et al., 2021; Zaken et al.,
2022), which helps preventing overfitting locally in time.

5.1 The importance of the tangent spaces of the parametrization
manifold

The tangent spaces play a critical role in the error of Neural Galerkin schemes
(Zhang et al., 2024). To see this, let us assume there exists an ε : [0, T ] →
[0,∞) that bounds the projection error of the right-hand side function f onto
the tangent space Tq̃(θ(t),·)M	 at the current field q̃(θ(t), ·),

‖f (t, ·, q̃(θ(t), ·)) − Pθ(t)f (t, ·, q̃(θ(t), ·))‖ν ≤ ε(t) .

Under standard assumptions (Lubich, 2005, 2008; Lasser and Lubich, 2020;
Zhang et al., 2024) on f and q̃, the error in the Neural Galerkin solution is
bounded as

‖q(t, ·) − q̃(θ(t), ·)‖ν ≤ eCt

(
e0 +

∫ t

0
e−Csε(s)ds

)
, (28)

where C > 0 is a constant independent of the time t and e0 is the error in repre-
senting the initial condition in the parametrization,

e0 = ‖q(0, ·) − q̃(θ(0), ·)‖ν .

The bound (28) shows that the error is driven by the bound on the projection
error ε(t) of projecting the right-hand side function onto the tangent space. The
bound (28) underlines the importance of the tangent spaces.
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FIGURE 7 The low-rankness of the batch gradient J t in Neural Galerkin schemes motivates a
randomized sparse version of Neural Galerkin (Berman and Peherstorfer, 2023) that updates only a
subset of s � p of the total number of p parameters in the deep network at each time step, which
leads to speedups and has a regularization effect. (Figure from Berman and Peherstorfer, 2023.)

5.2 Tangent space collapse

Nonlinear parametrizations tend to lead to low-rank batch gradients J t ∈R
m×p

as defined in (26). The space spanned by the columns of J t therefore is of lower
rank than min{m,p}, which is a phenomenon that is referred to as tangent space
collapse in Zhang et al. (2024); see Fig. 7a. Consequently, if the right-hand side
function (or the batch right-hand side function (27)) cannot be represented well
anymore in the spanned space, then this leads to a quick deterioration of the
accuracy of Neural Galerkin solutions because of the bound given in (28).

The low-rankness of the batch gradient additionally means that there are
multiple trajectories θ(t) that solve the dynamical system (16) because the ma-
trix M(t, θ(t)) can become singular. Adding a regularization term can enforce
a unique solution; however, it is unclear if such a regularization can prevent the
collapsing tangent space phenomenon and thus avoid the loss of expressiveness.
In particular, only local moves in the parameter domain are made via the time
stepping rather than global jumps, which means the scheme can get stuck in
poor parameter regions despite regularization. Detailed discussions about the
collapsing tangent phenomena and local moves are provided in Zhang et al.
(2024); Berman and Peherstorfer (2023).

5.3 Leveraging low-rankness of batch gradients with subsampling

Let us recall the least-squares problem from (23), the batch gradient J t (θ(t))

defined in (26), and the batch right-hand side f t (θ(t)) given in (27). In contin-
uous time, we obtain the least-squares problem

min
θ̇(t)∈Rp

‖J t (θ(t))θ̇(t) − f t (θ(t))‖2 , (29)
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FIGURE 8 Randomized sparse Neural Galerkin schemes update only a subset of s � p parameters
of the deep network at each time step, which is motivated by the low-rankness of the batch gradient.
(Figure from Berman and Peherstorfer, 2023.)

where the batch gradient and the batch right-hand side are obtained by sampling
from the measure ν. The low-rankness of the batch gradient J t means that con-
sidering a subset of the columns of J t is sufficient in the least-squares problem
(29); see Fig. 8. Motivated by this, the work by Berman and Peherstorfer (2023)
proposes to update only s � p components of θ(t) over time t .

Consider therefore the subsampled parameter vector

θ s(t) = ST
t θ(t) ,

where St ∈R
p×s subselects s components out of the p components of θ(t). The

subsampled parameter vector is called θ s(t) ∈R
s . It is then proposed in Berman

and Peherstorfer (2023) to solve the sketched least-squares problem

min
θ̇ s (t)∈Rs

‖J t (θ(t))St θ̇ s(t) − f t (t, ·, q̃(θ(t), ·))‖ν , (30)

where the sketching happens over the parameter vector θ(t). Notice that the
columns of the batch gradient that correspond to indices of the parameter vector
θ(t) that are not selected can be ignored because they are multiplied with zeros
in the objective of (30). It is found in Berman and Peherstorfer (2023) that one
way to prevent the tangent spaces from collapsing is to randomly select the s

components that are updated over time t . Thus, the matrix St becomes a random
matrix that uniformly draws s out of p components of θ(t).

Updating only s � p components per time step leads to lower runtimes be-
cause the number of unknowns in the randomly sketched least-squares problem
(30) is lower than in the least-squares problem (29) that densely updates all com-
ponents of θ(t). In particular, if a direct, dense numerical linear algebra method
is used to solve the least-squares problems such as based on the singular value
decomposition or the QR decomposition, then the speedup scales quadratically
in 1/s.
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FIGURE 9 Randomized sparse Neural Galerkin schemes achieve orders of magnitude lower er-
rors because the randomization of the parameters that are updated has a regularization effect, as
plot (a) shows. Even though the number of parameters s � p that is updated at each time step is
low, randomized sparse Neural Galerkin schemes leverage the increasing expressiveness as the total
number of parameters p of the network is increased, as plot (b) shows. (Figure from Berman and
Peherstorfer, 2023.)

5.4 Numerical experiments with randomized sparse Neural
Galerkin schemes

We report two numerical experiments from Berman and Peherstorfer (2023). Let
us first consider the Allen-Cahn equation with a quadratic potential over a one-
dimensional spatial domain as well as a fully connected feedforward network
with rational activation functions; the details of the setup are given in Berman
and Peherstorfer (2023). Fig. 9a compares the error obtained with a three-layer
network for which all parameters are updated at each time step (“dense”) versus
a seven-layer network where only a sparse subset of the parameters are updated
so that the size of the sparse subset is the same as the total number of param-
eters in the three-layer network. The plot in Fig. 9a shows that two orders of
magnitude improvement in the relative error is achieved with the sparse updates
compared to dense updates. Fig. 9b keeps the number of parameters s that are
updated per time step fixed at s = 757 but increases the number of layers in the
network from which the s parameters are taken. The plot shows that the error
decays and thus the increasing expressiveness of the larger, ambient network
can be leveraged even though the same number of parameters s are updated at
each time step.

Besides reducing the error with sparse updates, we also obtain speedups
compared to updating all parameters in the network; see Fig. 10. The bars
with label “direct” correspond to dense updates with direct least-squares solvers
based on the singular value decomposition. The bars with “iterative” correspond
to iterative methods as described in Berman and Peherstorfer (2023). And the
bars with “RSNG” show sparse updates with a direct least-squares solver, which
achieves the lowest runtime by orders of magnitude.

6 Conclusions
Nonlinear parametrizations have been shown to achieve faster best-approxima-
tion error decays than linear parametrizations, which can be interpreted as them
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FIGURE 10 Because randomized sparse Neural Galerkin schemes update only s � p out of the
total of p parameters of the deep network, speedups of almost two orders of magnitude can be
achieved compared to dense updates with direct least-squares solvers and about one order of mag-
nitude compared to iterative least-squares solvers. (Figure from Berman and Peherstorfer, 2023.)

being more expressiveness with the same number of parameters than linear
parametrizations. However, from a computational mathematics and numerical
analysis perspective, major challenges remain regarding the development and
analysis of numerical methods that can leverage that increased expressiveness
and realize it numerically. In this survey, we discussed Neural Galerkin schemes
that are motivated by the success of the method of lines from numerical anal-
ysis with linear parametrizations. The key building block is the Dirac-Frenkel
variational principle to derive dynamical systems for the time-dependent, finite-
dimensional parameter vectors of the nonlinear parametrizations. Another key
ingredient is adaptive sampling to efficiently evaluate the residual objective. The
numerical results in this survey and in the original publications where they have
been presented first indicate that sequential-in-time approaches can be beneficial
in terms of inherently providing causal numerical solutions, enforcing physics
constraints, and requiring fewer parameters to well approximate solution fields
compared to global-in-time methods. However, major challenges lie ahead to
develop numerical methods for nonlinear parametrizations that are as rigorously
analyzable, stable, robust, and efficient as today’s numerical methods for linear
parametrizations.
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