
Chapter 7

Computability of optimizers for
AI and data science
Yunseok Leea, Holger Bocheb,c,d,e,f, and Gitta Kutynioka,g,h,i,∗
aLudwig-Maximilians-Universität München, Munich, Germany, bTechnical University of Munich,
Munich, Germany, cRuhr University Bochum, Bochum, Germany, dMunich Center for Quantum

Science and Technology, Munich, Germany, eMunich Quantum Valley, Munich, Germany, fBMBF

Research Hub 6G-life, Munich, Germany, gMunich Center for Machine Learning, Munich,

Germany, hUniversity of Tromsø, Tromsø, Norway, iGerman Aerospace Center, Oberpfaffenhofen,

Germany
∗Corresponding author: e-mail address: kutyniok@math.lmu.de

The fundamental question underlying all computing is ‘What can be (efficiently)
automated’?

–Computing as a discipline (Denning et al., 1989)

Contents
1 Introduction 360

1.1 Overview 361
1.2 Numerical computations on

digital hardware 362
1.3 Computability and hardware 362

1.3.1 Turing machines 362
1.3.2 Blum-Shub-Smale

machines 363
1.3.3 Quantum computers 363
1.3.4 Neuromorphic

computing 363
2 Basic notions 363

2.1 Search for the optimal value 364
2.2 Computability 365

2.2.1 Turing machines 366
2.2.2 Computable numbers and

sequences 366
2.2.3 Computable continuous

functions 367
2.2.4 Decidable sets 368

3 Deep learning as a key technique of
artificial intelligence 369

3.1 Essence of deep learning 369
3.2 Drawbacks of deep learning 370

4 Computability of optimal values and
existence of computable
optimizers 371
4.1 One-dimensional optimization 371
4.2 Computability of convex

optimizers in higher
dimensions 374

4.3 Example of multidimensional
optimization in information
theory 375
4.3.1 Communication model 375
4.3.2 Blahut-Arimoto 376

4.4 Other computable and
noncomputable functions 377

5 Finding the optimizer is not effectively
solvable 378
5.1 General noncomputability

theorem 378
5.2 Noncomputability of neural

networks and other optimizers 379

Handbook of Numerical Analysis, Volume 25, ISSN 1570-8659, https://doi.org/10.1016/bs.hna.2024.05.005
Copyright © 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

359

mailto:kutyniok@math.lmu.de
https://doi.org/10.1016/bs.hna.2024.05.005

360 Numerical Analysis Meets Machine Learning

5.2.1 Neural networks 379
5.2.2 Financial mathematics -

information theory 380
5.2.3 Optimal input distribution -

information theory 381
5.3 Wasserstein distance 382

5.4 Lattice problem for cryptographic
applications 384

5.5 Inverse problems 385
Acknowledgments 386
References 386

Abstract
Artificial Intelligence (AI) and Data Science stand as pivotal innovations that revolution-
ize methods and processes across a multitude of industries. In unison, they facilitate the
management, storage, transmission, and analysis of vast data volumes. A significant por-
tion of these challenges are articulated as optimization problems. The potency of AI and
Data Science is deeply rooted in the successful resolution of these optimization problems,
which are prevalent in areas such as machine learning model fine-tuning, operational re-
search, and logistics.
However, it is crucial to acknowledge that solutions to these optimization problems do
not always come with guarantees. This does not necessarily imply that research is lacking
in this direction. Instead, it is often a manifestation of the constraints imposed by the
nature of the digital hardware used for calculations.
Digital hardware is bound by physical limitations, including constraints on processing
power, storage capacity, and time. A key limitation, however, is its inherent binary nature,
which can handle only discrete values precisely and may struggle with mathematical
functions on real variables. This chapter aims to summarize key results from the field of
computability and highlight critical, yet lesser-known issues in optimization theory.

Keywords
Optimization, Artificial Intelligence, Computability, Turing machine, Digital computing,
Information theory, Portfolio optimization, Cryptography

MSC Codes
65G50, 68Q05, 68T01, 49J99

1 Introduction

Artificial Intelligence (AI) is a branch of computer science that aims to create
systems capable of performing tasks that would normally require human intel-
ligence. These tasks include learning from data, processing natural language,
recognizing patterns, and making decisions. Mathematically, AI often involves
optimization problems. For example, in deep learning (a subset of AI), we often
try to minimize a loss function that measures the difference between the model’s
predictions and the actual data. Often, an enormous amount of data is needed
to achieve satisfactory results. The process of gathering, transmitting, and an-
alyzing this data presents its own set of challenges, and is referred to as data
science.

Data Science is an interdisciplinary field that uses scientific methods, pro-
cesses, algorithms, and systems to extract knowledge and insights from struc-
tured and unstructured data. It involves various disciplines such as classical

Computability of optimizers for AI and data science Chapter | 7 361

statistics, data mining, AI, and database systems. AI plays a crucial role in data
science since it provides the means to automatically identify patterns in data
and make data-driven predictions or decisions. By using AI, data scientists can
create models that learn from data, and these models can be used to predict fu-
ture outcomes or discover underlying patterns. But data science is not just about
analyzing data, but also about its effective management. This involves the com-
munication, transfer, and safety-critical sharing, storing, and collecting of data.
Many of these challenges, including those related to data management, can be
formulated as optimization problems. For instance, when transferring data, we
might want to minimize the time it takes or the bandwidth used. When storing
data, we might want to minimize the storage space or the cost. Even privacy is
commonly formulated as an optimization problem with constraints.

Optimization plays a pivotal role in a multitude of domains, including but
not limited to artificial intelligence, data science, mathematics, natural sciences,
and engineering. The primary objective in these fields is to either minimize or
maximize a specific function, all while adhering to certain constraints. Further-
more, optimization finds extensive applications in diverse areas such as artificial
intelligence, medical imaging, and communication. In these fields, it serves as
a powerful tool to tackle complex and high-dimensional problems. However,
most optimization algorithms are designed and executed on digital devices, such
as computers, which can be mathematically modeled as Turing machines. This
means that they have inherent limitations in their ability to represent and manip-
ulate real numbers, which often require infinite precision. Therefore, most real
numbers have to be approximated by finite representations, such as floating-
point numbers, which introduce errors and uncertainties in the computation.
These errors can affect the performance and reliability of optimization algo-
rithms, depending on how they handle the approximation of inputs, that cannot
be exactly represented on any digital device.

In this chapter, we examine central questions of AI, like deep learning, and
of data science, like effective communication and security/cryptography. More
precisely, we survey these issues in the specific context of optimization. How-
ever, most optimization algorithms only focus on finding the optimal value of a
function that measures the quality of a solution. In many cases and applications,
the optimizer, which is the solution that achieves the optimal value instead of
the optimal value itself, is more important. Furthermore, we survey some of the
challenges of finding the optimizer on digital hardware and show examples of
optimizers that cannot be computed.

1.1 Overview

In Section 2, we delve into the core concepts of computability and examine
various hardware models. Section 3 is dedicated to the introduction of neural
networks and the underlying principles of deep learning. The discussion extends
into Section 4, where we explore a range of computability and noncomputability

362 Numerical Analysis Meets Machine Learning

results, emphasizing the intractability of certain functions or properties. Sec-
tion 5 establishes a general criterion for noncomputability. Subsequent sections
provide an analysis of specific instances of noncomputable problems of practi-
cal relevance, encompassing areas such as neural networks, inverse problems,
and information theory.

1.2 Numerical computations on digital hardware

Numerical computations are ubiquitous in modern science and engineering. One
of the most remarkable achievements of the past decade has been the emergence
of artificial intelligence and deep learning as powerful tools for solving various
problems. However, these methods also face significant challenges and limita-
tions that hinder their reliability, robustness, and applicability in critical domains
such as medical imaging or autonomous driving. For instance, deep learning
models are often unstable, untrustworthy, vulnerable to adversarial attacks, and
lack theoretical guarantees. We hypothesize that one of the possible reasons for
these difficulties is the inherent noncomputability of some optimization prob-
lems on digital hardware.

1.3 Computability and hardware

Algorithms are not just abstract entities, but also concrete implementations on
particular hardware devices. The way numerical data is handled by the hard-
ware, such as how π is represented and computed, can influence the behavior
and results of an algorithm. To fully describe an algorithm, one needs to account
for the details of how numbers are stored and processed on the hardware plat-
form. We focus on the distinction between digital and analog hardware. Digital
hardware makes use of discrete representation to store numbers, i.e., bits, while
analog hardware can store and manipulate real quantities directly.

1.3.1 Turing machines
The most fundamental and widely-known hardware model in computer science
is the notion of a (deterministic) Turing machine (Turing et al., 1936), which is
an abstract device that can perform any computation that can be expressed by
a finite set of instructions. A Turing machine operates on an unbounded tape
that contains symbols from a finite alphabet, and it can manipulate the tape ac-
cording to a transition function that depends on its current state and the symbol
under the tape head. Turing machines capture the essential features of real-world
computation and serve as a theoretical model for modern computers. Therefore,
they are a useful tool for studying the computational capabilities and limitations
of real machines. The finite alphabet of Turing machines—one might imagine
them as bits—is a crucial aspect of their functioning. As a consequence, the
number of states that Turing machines can attain is countable. Therefore they
are unable to accurately represent uncountable sets, for example, the set of real
numbers.

Computability of optimizers for AI and data science Chapter | 7 363

1.3.2 Blum-Shub-Smale machines
A Blum-Shub-Smale machine (Blum et al., 2000) is an analog extension of a
Turing machine (Turing et al., 1936), which allows for storage and manipula-
tion of real numbers. The stored numbers can be updated by applying functions
from a fixed set of operations, in our case addition, subtraction, multiplication,
division, and relations like “<”, “>”, and “=”. Blum-Shub-Smale machines can
also output real numbers as a result of their computations. By choosing different
sets of operations, one can obtain different classes of Blum-Shub-Smale ma-
chines with different computational power and complexity. We refer the reader
to Blum et al. (2000) for a comprehensive explanation of BSS machines.

1.3.3 Quantum computers
Quantum computers (Benioff, 1980) are a paradigm of computation that uses
the principles of quantum mechanics to perform operations. Quantum comput-
ers use quantum bits, or qubits, as the basic unit of information, which can,
unlike classical bits, exist in superpositions of two states, 0 and 1. Quantum
computers manipulate qubits by applying quantum logic gates, which are op-
erations that change the state of one or more qubits. By designing a sequence
of quantum gates, one constructs a Hamiltonian, which describes the evolution
of all qubits according to the Schrödinger equation. Through the clever choice
of those quantum gates, one can perform calculations more efficiently than a
Turing machine would be able to. Quantum computers also fall in the realm of
analog hardware models, since the “storage” of qubits is performed physically
and does not have to be truncated in its representation.

1.3.4 Neuromorphic computing
Inspired by the architecture and operation of biological cells, neuromorphic
hardware (Mead, 1990) is a new approach to computing that uses analog compo-
nents to mimic the behavior of neurons and synapses. Neuromorphic hardware
differs from traditional digital hardware, which relies on binary logic and dis-
crete states, by using chemical and electrical phenomena to process information.
The potential benefit of neuromorphic hardware might be its higher energy effi-
ciency. Neuromorphic hardware is a type of analog hardware since it encodes all
its internal values through the physical quantities that control the system, such
as electric current or voltage.

2 Basic notions

This chapter investigates optimization problems from the perspective of com-
putability theory and effective analysis, which are fields of mathematics that
study the boundaries and capabilities of computation and algorithmic approx-
imation. Optimization lies at the heart of AI and data science. Ultimately, the
extent to which these fields can be reliably applied hinges largely on our ability

364 Numerical Analysis Meets Machine Learning

to solve optimization problems reliably and effectively. The notation and con-
cepts required are explained in this section.

2.1 Search for the optimal value

By optimization problems, we refer to the minimization or maximization of
some functional F : X × Y → R over a solution space X ⊂ Rn and a parameter
space Y ⊂ Rm for n,m ∈N, i.e.,

min
x∈X(y)

F (x, y) or max
x∈X(y)

F (x, y), (1)

where y ∈ Y is a parameter in the parameter space and X(y) ⊂ X is a subset of
the solution space, depending on y. From now on, and without loss of generality,
we only consider maximization problems. This general form allows us to treat
most problems from applications (Boyd and Vandenberghe, 2004).

Two main problem settings can be identified in this context: The first asks
for the optimal value or an approximation of it, i.e.,

Optimal Value
Construct or approximate a function ϕ : Y → R such that

∀y∈Y : ϕ(y) = max
x∈X(y)

F (x, y). (2)

The second problem setting aims to find an optimizer, i.e.,

Optimizer
Construct or approximate a function G : Y → X such that

∀y∈Y : ϕ(y) = F(G(y), y) ∧ G(y) ∈ X(y), (3)

where ϕ is the function defined by Eq. (2).

It is evident that constructing a function G yields a construction of a function
ϕ. However, in general, the opposite direction does not hold. It is in this sense
that finding ϕ is “easier” than finding G.

Optimization problems suffer the same curse as many other problems of
wide interest, namely, there does in general not exist a closed-form solution
for either ϕ or G. Therefore, solutions usually have to be approximated by nu-
merical algorithms. For a wide variety of optimization problems, established
algorithms that aim to approximate the optimal solution do exist. A classical
class of approaches are iterative solvers, which construct a sequence of ap-
proximators. In some cases, it has been proven that this sequence does indeed
converge to the optimizer (Arimoto, 1972; Cover, 1984). Depending on the ap-
plication, either the function G or the function ϕ is of greater interest. Examples

Computability of optimizers for AI and data science Chapter | 7 365

for the former are portfolio optimization or compressed sensing and, for the lat-
ter, exemplary problems are computing the capacity of a channel or solving a
deep learning problem. In practice, one often approximates G by an iterative
scheme to obtain a sequence Gn : Y → X and, correspondingly, ϕn : Y → R

through ϕn(y) := F(Gn(y), y). Depending on the applied algorithm, one might
obtain one or a combination of the following guarantees:

• ∀y∈Y : ϕn(y) → ϕ(y) with or without known convergence speed,
• ∀y∈Y : Gn(y) → G(y) with or without known convergence speed.

Notice that in this case “known convergence speed” of a convergent Banach
space sequence an → a refers to having an explicit description of a function
f : N →R+ such that limn→∞ f (n) = 0 and ‖an − a‖ ≤ f (n) for all n ∈N.

Since finding ϕ is “easier” than finding G a significant amount of research
in optimization has (successfully) focused on finding ϕ over finding G. There
are numerous examples of iterative algorithms, which construct ϕn → ϕ with
known convergence speed, as well as Gn → G without known convergence
speed. A natural question arises if there is a way to bound the convergence
speed of Gn since this would give a stop criterion, which ensures a small error
of the computed optimizer to the true optimizer.

Usually, the existence of an optimizer is ensured through compactness of
X or X(y). Note that compactness only proves abstract existence, but does not
provide a description or approximation of the optimizer itself. In this chapter,
we use the following definition, if the optimization problem and its parameter
space are evident,

Opt(y) :=
{
x ∈ X(y)

∣∣∣∣F(x, y) = max
x′∈X(y)

F (x′, y)

}
.

Using this notation, the objective of computing an optimizer can be interpreted
as the process of identifying a function G : Y → X such that

∀y∈Y : G(y) ∈ Opt(y)

or an approximation of G, i.e., a function G∗ : Y → X such that G and G∗ are
close. In our case, we define closeness by the supremum norm

‖G − G∗‖∞ = sup
y∈Y

|G(y) − G∗(y)| < α

for some α > 0.

2.2 Computability

Computability theory studies the limitations and possibilities of various models
of computation, in this case, deterministic Turing machines. One of the earliest
and most influential results in this field was Turing’s introduction of the first

366 Numerical Analysis Meets Machine Learning

steps in effective analysis and his proof of the undecidability of the Entschei-
dungsproblem. This proof showed that no algorithm can decide whether every
Turing machine with a given input terminates after a finite amount of steps or
not. Building on this foundation, the theory of effective analysis, also called
computable analysis, emerged. This area focuses on real number functions and,
in contrast to other computability areas, is not entirely discrete. We follow the
definitions and notation from Pour-El and Richards (2017), which provides a
comprehensive introduction to computability theory and its applications.

2.2.1 Turing machines
Deterministic Turing machines are a theoretical model of computation used to
classify algorithmic tasks (Turing et al., 1936; Turing, 1938). They consist of a
finite set of states, a finite alphabet of symbols, a tape divided into cells that can
store one symbol each, a tape head that can read and write symbols on the tape,
and a transition function that determines the next state, symbol, and head move-
ment based on the current state and symbol. Deterministic Turing machines are
digital in nature because they only allow a finite alphabet of discrete symbols,
e.g., bits, and not analog because they cannot represent continuous values with
infinite precision.

Definition 1. A function f :N → N is called recursive or computable, if there
exists a Turing machine, which, given the input x ∈ N, leaves f (x) on its tape
after termination. With slight abuse of notation, we equate a recursive function
with its corresponding Turing machine.

2.2.2 Computable numbers and sequences
One of the main characteristics of Turing machines is the fact that they operate
on a finite alphabet. This means that only natural numbers, and by extension, ra-
tional numbers, can be represented exactly by Turing machines. However, many
real numbers, such as π or

√
2, are irrational and cannot be expressed as the ra-

tio of two integers. A possible approach is to use sequences of rational numbers
that converge to a real number. We say that a sequence of rational numbers is
computable if there exists a Turing machine that outputs this sequence.

Definition 2. A sequence of rational numbers (rn)n∈N is computable, if there
exist recursive functions s,p, q : N →N such that

∀k∈N : rk = (−1)s(k) p(k)

q(k)
.

Also, we adopt a notion of convergence, which is more natural for Turing
machines.

Definition 3. A sequence of real numbers (xn)n∈N does converge effectively to
a limit x ∈ R, if

∀n∈N : |xn − x| ≤ 2−n.

Computability of optimizers for AI and data science Chapter | 7 367

Using these definitions, one can say that a real number is computable if it
is the effective limit of a computable sequence of rational numbers. It turns out
that most commonly used numbers such as algebraic numbers, π and e are com-
putable. For instance, Chaitin’s constant, which is defined as the probability that
a randomly chosen Turing machine halts, is noncomputable because approxi-
mating it would violate the noncomputability of the Entscheidungsproblem.

Definition 4. A real number x ∈R is called computable, if there exists a ratio-
nal computable sequence (qn)n∈N, such that

qn → x,

where the convergence is effective. The sequence (qn)n∈N is called a represen-
tation of x. We refer to the set of computable real numbers Rc.

We can prove that the computable real numbers Rc form an algebraic field by
showing that each field operation can be computed by a Turing machine, given
the Turing machines that compute the operands. As we have also mentioned,
most of the commonly used numbers in mathematics and science, such as ra-
tional numbers, algebraic numbers, and transcendental numbers like π , and e

are computable. Therefore, the computable real numbers encompass a large and
rich class of relevant numbers. This explains the practical usefulness of Turing
machines for numerical analysis and optimization problems.

2.2.3 Computable continuous functions
A computable function is a function whose values can be calculated by a Turing
machine. We already established discrete computable functions on natural num-
bers. We extend this notion to the continuous setting of functions on computable
real numbers. For this, we begin with a formal definition of a computable func-
tion that is based on Turing’s original paper. The idea is straightforward: Given
any representation of an input, we can obtain a representation of the correspond-
ing output.

Definition 5. Let N,M ∈ N. A function f : RN
c → RM

c is Borel-Turing com-
putable, if there exists a Turing machine, which transforms all representations
(rn)n∈N of a vector x ∈RN

c to representations of f (x).

A more general notion of computability can be introduced by defining the
concept of computable real sequences. A real sequence is computable if there
exists a computable double sequence of rational numbers that converges effec-
tively to the real sequence:

Definition 6. A sequence of real numbers (xn)n∈N is computable, if there exists
a rational computable double sequence (rn,k)n,k∈N such that

∀k,n∈N : |qn,k − xn| ≤ 2−k.

368 Numerical Analysis Meets Machine Learning

Based on this definition, we can generalize the concept of computable func-
tions to a more technical level. A function is Banach-Mazur computable if it
maps computable real sequences to computable real sequences.

Definition 7. Let N,M ∈ N. A function f : RN
c → RM

c is Banach-Mazur
computable, if for every computable real vector-valued sequence (an)n∈N, the
sequence (f (an))n∈N ⊂ RM is computable.

Mazur (1963) established that every Borel-Turing computable function is
also Banach-Mazur computable, but the converse is not true in general.

Another important concept is the effective uniform continuity of a function.
This definition is a computable version of the widely used notion of uniform
continuity in calculus.

Definition 8. A function f : [a, b] → Rc with a, b ∈ Rc is effectively uni-
formly continuous if there exists a recursive function d : N →N s.t.

∀x,y∈[a,b] : ∀N∈N : |x − y| ≤ d(N)−1 ⇒ |f (x) − f (y)| ≤ 2−N.

The all-quantor ranges over every element in the interval, which includes
noncomputable numbers as well. Therefore, any function that is effectively uni-
formly continuous on this interval must also satisfy the standard definition of
uniform continuity.

2.2.4 Decidable sets
We next present the concept of decidable sets. A set is said to be decidable if, for
any given element, there exists a Turing machine that can determine whether it
belongs to the set or not. This notion is most widely used for subsets of natural
numbers, which we will start with.

Definition 9. A set A ⊂ N is called decidable, if the function 1A : N → N,
defined by

1A(n) :=
{

1, n ∈ A,

0, n ∈ Ac,

is recursive.

A relaxation of computable sets are semidecidable sets equipped with a par-
tial decision procedure. This means that there exists a Turing machine, that can
always confirm if a given element belongs to the set, but does not reject it if
it is not an element. In other words, the algorithm will halt and output yes if
the element is in the set, but does not terminate if the element is not in the set.
Therefore, one can never be certain whether an element is outside the set or the
algorithm is still computing.

Definition 10. A set A ⊂ N is called semidecidable, if there exists a Turing
machine TMA such that TMA(n) outputs 1, if n ∈ A, and TMA(n) does not
terminate, if n ∈ Ac.

Computability of optimizers for AI and data science Chapter | 7 369

The concept of (semi-)decidability can be readily applied to subsets of real
numbers, with a minor adjustment in the definition. Rather than testing if a given
element is part of a set, we take for granted that the element is already contained
in a bigger set, and we only have to determine if it is also included in a narrower
subset of that set.

Definition 11. Given B ⊂ Rn
c , a set A ⊂ B is called (semi-)decidable, if there

exists a Turing machine TMA such that TMA(x) outputs 1, if x ∈ A and
TMA(x) outputs 0 (resp. does not terminate), if x ∈ B\A. TMA(x) can ei-
ther output an arbitrary symbol or not terminate for x ∈ Bc.

One of the most famous noncomputable problems is the Entscheidungsprob-
lem, which involves deciding whether a given Turing machine will ever stop on a
given input or not. No algorithm can solve this problem for all Turing machines
and inputs (Turing, 1938). A direct implication of this result is the existence of
sets that are semidecidable but not decidable. This can be shown by identifying
the set of Turing machines T and the set of possible inputs I with the set of nat-
ural numbers, which is feasible since both T and I are countably infinite sets.
For this define

F := {(t, i) ∈ T × I |t (i) terminates} ⊂ T × I ∼= N,

the set of Turing machines and inputs, which do terminate. Then F is semide-
cidable using the Turing machine, which applies i on t for any (t, i) ∈ T × I

and outputs 1 if it terminates. By definition, this will output 1 if (t, i) ∈ F and
not terminate otherwise. But the noncomputability of the Entscheidungsproblem
implies there is no Turing machine, which can decide if (i, t) is in F or not.

3 Deep learning as a key technique of artificial intelligence

Artificial intelligence is a tremendously successful field that aims to create pro-
grams which perform tasks that normally require human intelligence. A key
component of AI is deep learning, which has achieved remarkable results in
many challenging domains, by now already surpassing human performance in
some cases. This section introduces the basic ideas of deep learning and dis-
cusses some of its drawbacks.

3.1 Essence of deep learning

Deep neural networks are composed of multiple layers of artificial neurons,
which are mathematical functions consisting of adjustable linear-affine func-
tions followed by a nonlinear activation function. By adjusting the parameters
of each neuron’s linear-affine function, the neural network is able to “learn” a
function. This learning process is facilitated by employing a variant of gradient
descent on a large data set.

370 Numerical Analysis Meets Machine Learning

Definition 12. A (feed-forward) neural network are functions � : Rn
c → Rm

c

of the form

�(x) := (AL ◦ ρ ◦ AL−1 ◦ . . . ◦ ρ ◦ A1)(x)

where L ∈ N and

∀l=1,...,L : Alx = Wlx + bl, Wl ∈ R
nl×nl−1
c , bl ∈Rnl

c

with n0 = n, nL = m and ρ :R → R is a (nonlinear) activation function, applied
component-wise. The coefficients of Wl are called weights and bl are called
biases.

For a more general theory on neural networks, we refer to Berner et al.
(2021).

The choice of activation functions plays an important role in the perfor-
mance of deep learning models. Among the commonly used activation func-
tions are ReLU, tanh, and sigmoid with the most popular being ReLU de-
fined as ρ(x) = max(0, x). Therefore, in this chapter, we will focus on the
analysis of neural networks using the ReLU activation functions. We define
NN as the set of all neural networks. Neural networks are optimized us-
ing a large dataset (xi, yi)i=1,...,n ⊂ Rn

c × Rc by minimizing a loss function
L : P(Rn

c × Rc) ×NN→ Rc, which measures the “fit” of the neural network
to the given data. For a simple regression task, a possible choice of loss function
is the L2-distance

L((xi, yi)i=1,...,n,�) = 1

n

n∑
i=1

(�(xi) − yi)
2.

Depending on the specific objective of the problem, such as classification or
more complex forms of regression, other loss functions are commonly em-
ployed. Given a dataset and a loss function, the goal then is to find the optimal
values of the weights and biases that minimize the loss. This is achieved by ap-
plying a variant of gradient descent, which is an iterative optimization algorithm.
The basic idea of gradient descent is to update each parameter λ by subtracting
a small fraction μ > 0 of the gradient of the loss function with respect to that
parameter

λ ← λ − μ
∂L
∂λ

((xi, yi)i=1,...,n,�).

The efficient calculation of the gradient is done by backpropagation.

3.2 Drawbacks of deep learning

Despite its impressive achievements in various fields, such as computer vision,
natural language processing, and speech recognition, deep learning also has se-
rious drawbacks, especially when it comes to safety-critical applications like

Computability of optimizers for AI and data science Chapter | 7 371

medical imaging and autonomous driving. Some of the current main challenges
of deep learning are:

1. Intransparency: Neural networks are often viewed as black boxes, meaning
that their internal mechanisms and reasoning processes are not clear or un-
derstandable. This poses a problem for explaining and validating the results
of deep learning models, as well as for detecting and fixing potential mis-
takes or biases.

2. Theory-to-Practice gap: Deep learning lacks rigorous theoretical founda-
tions that can guarantee its performance and robustness. It is not well under-
stood why deep learning works so well for some problems but not for others,
or under what conditions it will fail or degrade.

3. Instability: Neural networks are susceptible to showing inconsistent behav-
ior or poor generalization in some situations, even when they perform well
on average. For instance, they are vulnerable to adversarial attacks, which
are malicious inputs that are designed to fool or mislead the models by in-
troducing subtle perturbations that are imperceptible to humans.

In addition to the well-known challenges of deep learning, mentioned above,
there is another aspect that is sometimes overlooked: The computational limits
of running neural networks on digital hardware. As we explained in Section 2,
real numbers cannot be represented precisely by digital devices, which intro-
duces errors and uncertainties in the computations. This issue is not inherent to
neural networks themselves, but rather a consequence of the interplay of neural
networks with digital hardware. Thus, these issues could be reduced or avoided
on analog hardware.

4 Computability of optimal values and existence of
computable optimizers

Depending on the dimension and regularity of the functional we can make dif-
ferent statements about the computability of the maximum, the maximizer, and
if you can calculate the maximum and maximizer by computable means. We
present a collection of results, encompassing both computable and noncom-
putable optimal values and optimizers. Our survey begins with the simplest
one-dimensional scenario, before progressing to the more complex multidimen-
sional cases.

4.1 One-dimensional optimization

For the one-dimensional case, consider a computable function f : [a, b] → Rc

that is effectively uniformly continuous on a computable interval. Then by
Pour-El and Richards (2017, Theorem 7) maxx∈[a,b] f (x) is computable. Fur-
thermore, the proof of the theorem provides an extra insight. It is not only the
case that the maximum of every computable effectively uniformly continuous

372 Numerical Analysis Meets Machine Learning

function is computable, but also that there exists an algorithm for finding this
maximum. We present the proof here for completeness:

Theorem 1. Let a, b ∈ Rc with a < b and define F := {f : [a, b] → Rc| f

Borel-Turing computable and effectively uniformly continuous}. Then define
M : F → Rc by

M(f) = max
x∈[a,b]f (x).

For a function f ∈ F define Tf as the Turing machine, which given a represen-
tation of x ∈ Rc, outputs a representation of f (x). Then there exists a Turing
machine Tmax, which given a Turing machine Tf with f ∈ F , outputs a repre-
sentation of M(f).

Remark. We write with slight abuse of notation,

Tmax(Tf) outputs a representation of M(f).

Proof. Define the computable sequence

sn = max

{
f

(
a + j

n
(b − a)

)∣∣∣∣1 ≤ j ≤ n

}
.

By effective uniform continuity of f , there exists a recursive function d : N →
N, such that,

∀x,y∈[a,b] : ∀n∈N : |x − y| ≤ d(n)−1 ⇒ |f (x) − f (y)| ≤ 2−n. (4)

Let M ∈ N with M > b − a and e(n) := M · d(n). Next, we will show that

n ≥ e(N) ⇒ |sn − M(f)| ≤ 2−n.

Given n ≥ e(N), this implies

b − a

n
<

M

n
≤ M

e(N)
= 1

d(N)
.

Since each interval

Ij :=
[
a + j

n
(b − a), a + j + 1

n
(b − a)

]
, j = 0, . . . , n − 1

has length b−a
n

, we can deduce that

∀j=1...n−1 :
∣∣∣∣max
x∈Ij

f (x) − f

(
a + j

n
(b − a)

)∣∣∣∣ ≤ 2−n.

This immediately implies

∀n≥e(N) : |sn − M(f)| ≤ 2−n,

Computability of optimizers for AI and data science Chapter | 7 373

hence (4) is proven. Since (sn)n∈N is a computable sequence, it is a representa-
tion of M(f). Thus, one can use the Turing machine, which maps

f �→ (sn)n∈N

to construct M(f) for any f ∈ F .

This theorem is remarkable, as it guarantees the existence of a Turing ma-
chine that can calculate the maximal value for any computable and effectively
uniform continuous function on a compact interval. However, when we focus on
the maximizer instead, we encounter a surprising phenomenon. Specker showed
in Specker (1959) that there does exist a function whose maximal value is com-
putable, but whose maximizers are not. This circles back to the fact mentioned in
Subsection 2.2.1 of finding a maximal value being “easier” to solve (see Prob-
lem (2)) than constructing a maximizer as in Problem (3). As shown, this is
already observable in the one-dimensional case.

If a maximizer is at an isolated point though, the maximizer is always com-
putable.

Theorem 2. Let a, b ∈ Rc computable numbers with a < b and f : [a, b] → Rc

be a computable and effectively uniformly continuous function with an isolated
maximum,

∃x̂∈[a,b] : f (x̂) = max
x∈[a,b]f (x) ∧ ∀x∈[a,b]\{x̂} : f (x) < f (x̂).

Then x̂ ∈Rc is computable.

Proof. Define

F1(x) = max
τ∈[a,x]f (τ).

Then F1 is monotonously nondecreasing with ∀x<x̂ : F(x) < F(x̂) and ∀x≥x̂ :
F(x) = F(x̂). Also by Theorem 1, F1(x) is a computable and continuous func-
tion. Now for fixed n ∈ N and k = 0, . . . ,2n consider the computable numbers

lkn := F1

(
a + (b − a)k

2n

)
.

By comparing the (n + 2)th element of the representations of lkn and f (x̂) −
2−n+1 one can compare lkn and f (x̂) − 2−n+1 up to an error of 2−n+1, i.e., there
exists a Turing machine which can check if

lkn > f (x̂) − 2−n

holds or not. Next, define the computable sequence

xn := min

{
a + (b − a)k

2n

∣∣∣∣k ∈ {0, . . . ,2n} ∧ lkn > f (x̂) − 2−n

}
.

Then xn is a nondecreasing sequence with xn → x̂.

374 Numerical Analysis Meets Machine Learning

Now by choosing a subsequence (nk) one can construct a computable se-
quence (xnk

)k∈N that converges to x̂ effectively

∀k∈N : |xnk
− x̂| < 2−k.

So x̂ is computable.

For certain functions Theorem 2 implies the existence of a computable opti-
mizer x̂, which can be computed by a Turing machine Tx̂ . For every n ∈ N, this
Turing machine outputs a rational number rn with the property that

|x̂ − rn| ≤ 2−n.

But this does not imply that there is a Turing machine that can generate Tx̂

given a Turing machine that defines the matching function. On the contrary,
we will demonstrate later that this is not feasible in general. More examples of
computable and noncomputable functions can be found in Pour-El and Richards
(2017).

4.2 Computability of convex optimizers in higher dimensions

The previous sections focused on one-dimensional functions. However, many
real-world applications require functions of more than one variable. Therefore,
in this section, we extend the concepts and methods of optimization to multivari-
ate functions and present the similarities and differences to the univariate case.
Using the same proof as in 1 one can establish the multidimensional analogue
of Theorem 1.

Theorem 3. Let I ⊂ Rn
c be a computable rectangle and define F := {f : I →

Rc| f Borel-Turing computable and effectively uniformly continuous}. Then de-
fine M : F → Rc by

M(f) = max
x∈I

f (x).

For a function f ∈ F define Tf as the Turing machine, which given a represen-
tation of x ∈ Rn

c , outputs a representation of f (x). Then there exists a Turing
machine Tmax, which given a Turing machine Tf with f ∈ F , outputs a repre-
sentation of M(f).

The following theorem can be considered a generalization of Theorem 2. It
establishes the existence of a computable maximizer for convex functionals in
the multidimensional case.

Theorem 4 (Wong, 1996). Let I ⊂ Rn be a computable rectangle, and let f :
I → R be a convex, continuous, and Banach-Mazur computable. Then there
exists a computable x∗ ∈ I ∩Rn

c , which minimizes f , i.e.,

f (x∗) = min
x∈I

f (x).

Computability of optimizers for AI and data science Chapter | 7 375

We, again, remark that this theorem does not imply that the maximizer x∗
can be calculated by computable means given f and I .

4.3 Example of multidimensional optimization in information
theory

One way to generalize Theorem 4 is by relaxing the domain I to other ge-
ometries than computable rectangles or parameterizing I . For illustration, we
present the well-known convex optimization problem of channel capacity from
information theory.

Information theory plays a crucial role in AI. The sparse and compressed
representation of data is not just useful in storing and transmitting data but
also in designing efficient AI algorithms and neural network architectures. In
this subsection, we consider the case of optimal transmission capacity of data
through a discrete channel. The channel capacity is again described through
a maximization problem. The goal is to maximize the mutual information be-
tween the input and output of a discrete memoryless channel, which measures
the amount of information transmitted through the channel.

4.3.1 Communication model
In information theory, a point-to-point channel with one receiver and one trans-
mitter is modeled by two discrete random variables X and Y over the probability
spaces X and Y. If we choose X and Y to be finite, we are describing a discrete
memoryless channel (DMC). The channel itself is then given by a stochastic
matrix W ∈Rm×n, where |X| = n and |Y| = m. X, Y and W are related by

W(x) = P(Y |X = x).

We define the mutual information of two discrete random variables X, Y over
X, Y as

I (X,Y) =
∑
x∈X

∑
y∈Y

P(X,Y)(x, y) log

(
P(X,Y)(x, y)

PX(x)PY (y)

)
,

where P(X,Y) is the probability mass function of (X,Y), and PX and PY are the
probability mass functions of X and Y . Now the capacity C(W) of a DMC W

is the maximal mutual information over all possible distributions over X

C(W) := max
X∈P(X)

I (X,Y).

In this case P(X) can be modeled as a convex set

P(X) =
{

(P1, . . . Pn) ∈ Rn+

∣∣∣∣∣
∑

i

Pi = 1

}
.

The capacity of a DMC is well established and goes back to Shannon (1948).

376 Numerical Analysis Meets Machine Learning

4.3.2 Blahut-Arimoto
The Blahut-Arimoto algorithm (Blahut, 1972; Arimoto, 1972) establishes a
computable way to compute the capacity of any DMC. It works by iteratively
approximating an estimate of the input distribution. So given a channel W ,
Blahut-Arimoto outputs a sequence of probability distributions Xn ∈ P(X). It
is proven that the corresponding mutual information converges to the capacity

lim
n→∞ I (Xn,Y) = C(W).

Also, Xn do converge to a probability distribution X∗, which maximizes the
mutual information

lim
n→∞Xn = X∗ ∧ I (X∗, Y) = C(W).

However, there is a significant difference in the effectiveness of the convergence
of both quantities. On one hand, there is a stopping criterion for the capacity,
which guarantees arbitrarily small error, i.e., for any N ∈ N one can computably
choose n ∈N, such that,

‖I (Xn,Y) − C(W)‖ ≤ 2−N.

On the other hand, there is no computable stopping criterion known, that guaran-
tees arbitrarily small approximation error for X∗. The question if such a stopping
criterion exists has been answered lately in Boche et al. (2022) with a clear no.
More precisely, the authors proved that no Banach-Mazur computable function
exists at all, which maps all DMCs to an approximation of the optimal input
distribution X∗ with an arbitrarily small error. We refer to Theorem 9 for more
details.

This result is unexpected, as both the set we optimize over and the ob-
jective function of the optimization problem are convex. Convexity is usually
considered to be a desirable property that simplifies the analysis and solution
of optimization problems. However, we show that there exist convex optimiza-
tion problems that are not computable. On the contrary, we can use convexity
to prove the existence of computable optimizers, even though finding those
might not be computable. Define for the channel W the convex set of optimiz-
ers Popt (W) := {X ∈P(X)|I (X,Y) = C(W)} where Y is determined through
W and X.

Theorem 5 (Hinted at in Boche et al. (2022)). Given a computable stochastic
matrix W , there exists a X∗ ∈Popt (W), s.t. X∗ is computable, i.e., X∗

i ∈ Rc for
all i = 1, . . . , n.

Proof. If |Popt (W)| = 1, we can apply Theorem 3 on every dimension sepa-
rately, which finishes the proof.

Computability of optimizers for AI and data science Chapter | 7 377

If |Popt (W)| > 1, let X0,X1 ∈ Popt (W) with X0 �= X1. Since the mutual
information is convex, Popt (W) is convex, too. So for any λ ∈ [0,1] the follow-
ing distribution is also an optimizer Xλ := (1 − λ)X0 + λX1 ∈ Popt (W). Now
let i1 ∈ {1, . . . , n} be an index s.t. X0

i1
�= X1

i1
. So Xλ

i1
= (1 − λ)X0

i1
+ λX1

i1
∈

[min(X0
i1
,X1

i1
),max(X0

i1
,X1

i1
)]. Then there exists a λ∗ ∈ [0,1] s.t. Xλ∗

i1
∈ Rc

since Rc ⊂ R is dense.
Now consider the set P1

opt (W) := {X ∈ Popt (W)|Xi1 = Xλ∗
i1

} and the opti-

mizer X∗
1 := (X0

1, . . .X
0
i1−1,X

λ∗
i1

,X0
i1+1, . . .X

0
n) ∈P1

opt (W). Now we can repeat

the argument as before. If |P1
opt (W)| = 1, one can conclude that the only opti-

mizer is computable by applying Theorem 3 on every dimension separately.
If |P1

opt (W)| > 1, we can repeat the procedure by fixing X1,X2 ∈ P1
opt (W)

and choosing an index i2 ∈ {1, . . . , n} with i1 �= i2, s.t. X1
i2

�= X1
i2

. Then we can

construct an optimizer Xλ∗
, s.t., Xλ∗

i2
∈ Rc. After repeating this process k < n

times, we end up with a set of optimizer Pk
opt (W) with just one computable

element.

We note that this proof is an adaptation of the proof of Theorem 4 and again
does not provide any computable procedure to identify a computable optimizer,
just its existence. As can be seen from our adaptation, the assumption in Theo-
rem 4 of I of being a rectangle can be relaxed.

4.4 Other computable and noncomputable functions

Most commonly used functions are computable over any computable rectangle
as domain without a singularity. This includes ex , sinx, cosx,

√
x, log(x), and

(x) as well as its compositions. To prove this it suffices to consider the approx-
imation formulas of these functions commonly used in numerical mathematics
and confirming they have a computable stopping criterion, which ensures arbi-
trarily small approximation error. As an example we can prove computability of√

x using Heron’s formula (Schwarz and Köckler, 2013) for x∗ ∈Rc

xn+1 := 1

2

(
xn + x0

xn

)

with any suitable initial guess x0 ∈Rc. It is well-known that the relative error

rn := xn

x∗ − 1,

is always positive (assuming an appropriate initial guess) and decreases at least
exponentially, i.e., rn ≤ rn−1

2 . Using this convergence result one can calculate for
any N ∈N an index N0 ∈N s.t.

∀m>N0 : |√x∗ − xm| ≤ 2−N.

378 Numerical Analysis Meets Machine Learning

Also, definite integrals of computable, uniformly effective continuous functions
are computable. The derivative of a computable function is not computable in
general, even if the derivative exists. However computable functions in C2 do
have a computable derivative. For a comprehensive theory in computable anal-
ysis, we refer the reader to Pour-El and Richards (2017) and Weihrauch (2000).

5 Finding the optimizer is not effectively solvable

This section begins by addressing a key question: Does there exist a Turing
machine capable of outputting the optimizer when provided with a description
of the functional and the domain? Previously, we focused on determining which
optimal values and optimizers are computable. However, a subtly different yet
arguably more important question is whether a computable optimizer can be
discovered through computable methods. This section concentrates on results
addressing this question.

5.1 General noncomputability theorem

In order to determine whether optimizers can be computed, we examine gen-
eral optimization problems in multiple dimensions, as referenced in Section 2.
If the solving function, denoted as G, which is defined in Problem (3), exhibits a
certain type of computable discontinuity along with other technical properties,
it becomes impossible to efficiently calculate the optimizer. Interestingly, this
can occur even if the function F is both continuous and convex. More impor-
tantly, it has been established that not only is the calculation of the optimizer
noncomputable, but also its approximation. This implies that there will always
be at least one instance where any computable machine will fail to approximate
the optimizer by a fixed positive constant.

Theorem 6 (Main Theorem (Lee et al., 2023)). Let X, Y , X(y) and F be as
described in Section 2. Let G : Y → X such that, for all y ∈ Y , we have G(y) ∈
Opt(y). Now let Y1, Y2 ⊂ Y , y∗

1 ∈ Y1, y∗
2 ∈ Y2 and y∗ ∈ Y , and γ : [−1,1] → Y ,

a Turing computable, continuous path such that:

(i) Y1 ∩ Y2 = ∅ and G(Y1) ∩ G(Y2) = ∅,
(ii) inf

y1∈Y1y2∈Y2
‖y1 − y2‖ = 0,

(iii) inf
y1∈Y1y2∈Y2

‖G(y1) − G(y2)‖ = κ > 0,

(iv) γ (−1) = y∗
1 , γ (1) = y∗

2 , γ (t0) = y∗, for some t0 ∈ (−1,1),
(v) γ ([−1, t0)) ⊂ Y1 and γ ((t0,1]) ⊂ Y2,

(vi) G(Y1) ⊂ G(Y1) ∪ G(Y2) is decidable.

Then G cannot be Borel-Turing computable. In fact, there does not even exist a
Borel-Turing computable function, which can approximate G by up to an abso-
lute error of α < κ

2 , i.e. there does not exist a Borel-Turing computable function
G∗ : Y → X such that ‖G − G∗‖∞ ≤ α. If we replace condition (vi) by

Computability of optimizers for AI and data science Chapter | 7 379

(vii) Y1 ⊂ Y1 ∪ Y2 is decidable,

then G can even not be Banach-Mazur computable. In fact, there does not even
exist a Banach-Mazur computable function, which can approximate G by up to
an absolute error of α < κ

2 .

This theorem is noteworthy as it suggests the impossibility of computing an
optimizer, even when the optimizer is computable. This holds true even under
favorable conditions, such as the convexity of the domain and the function. As
we will discuss, this scenario occurs frequently in many practically relevant
cases.

5.2 Noncomputability of neural networks and other optimizers

The previous theorem is a powerful tool that can be applied to various optimiza-
tion problems. In this section, we demonstrate its effectiveness and generality
by presenting some selected examples from different fields of study.

5.2.1 Neural networks
Smale’s 1998 discussion on the limitations of AI (Smale et al., 1998) can be
seen as a precursor to the specific case of neural networks, which can be viewed
as an extension of these initial concepts (Colbrook et al., 2022). A remarkable
example of noncomputability in neural networks is the impossibility of find-
ing or approximating the optimal weights for a given loss function. Although
other noncomputability results exist for neural networks, these typically focus
on a particular application (Colbrook et al., 2022; Boche et al., 2023), or they
diverge from the domain of effective analysis by examining general functions
that are not tied to Turing machines (Grohs and Voigtlaender, 2023). For more
on the works by Colbrook et al. (2022); Boche et al. (2023) we refer to Subsec-
tion 2.6.5. The noncomputability of neural networks were demonstrated in Lee
et al. (2023) for a simple shallow neural network model with ReLU activation
function without biases. Of course more sophisticated and deeper architectures
exist, like convolutional neural networks, transformers, recursive neural net-
works, U-nets, and a whole zoo of combinations of these. Still, the most simple
case of a simple shallow neural network is “complicated enough” to lead to
noncomputability.

Theorem 7 (Neural Network (Lee et al., 2023)). Given d ≥ 14 and a data set
D= ∏d

i=1(xi, yi) ∈ (R3
c ×Rc)

d , consider the minimization problem

min
A∈R3×3

c

d∑
i=1

(‖ρ(Axi)‖1 − yi)
2.

Let G : (R3
c ×Rc)

d → R3×3
c such that, for allD ∈ (R3

c ×Rc)
d , we have: G(D) ∈

Opt(D). Then G is not Banach-Mazur computable.

380 Numerical Analysis Meets Machine Learning

All functions G∗ : (R3
c ×Rc)

d →R3×3
c satisfying

‖G − G∗‖∞ ≤ α < 4

are also not Banach-Mazur computable.

This theorem establishes that perfect loss-minimizing algorithms for neu-
ral networks cannot exist in the special case of a shallow neural network with
the architecture described above. While this conclusion does not necessarily
extend to wider and deeper neural networks, it is reasonable to expect similar
results in more complex scenarios. Intuitively, as the number of parameters in-
creases, finding loss-minimizing neural networks becomes more challenging.
Consequently, we anticipate that analogous results hold true for general neural
networks. It is essential to note that this theorem does not imply nonapprox-
imability of neural networks when interpreted as functions; rather, it pertains
specifically to the nonapproximability of their weights. Although some might
view this limitation as a drawback of the theorem—since researchers are often
more interested in the neural network’s function itself rather than its precise
weights—it serves as a caution against methods that directly manipulate or uti-
lize trained neural network weights. Examples include techniques like Dropout
(Hinton et al., 2012) and Layer-Wise Relevance Propagation (Montavon et al.,
2019).

Furthermore, the nonapproximability of weights highlights the delicate na-
ture of neural networks. It underscores the importance of ensuring that the
corresponding neural network function indeed approximates the desired func-
tion accurately. Interestingly, if there were a computable method to recover all
possible weight configurations from a given neural network function consis-
tently, it would imply nonapproximability of the neural network function itself.
We believe that additional noncomputability results for deep learning exist, and
inherent issues such as instability (Gottschling et al., 2020) may represent fun-
damental challenges for neural networks on digital hardware—one that cannot
be entirely overcome.

5.2.2 Financial mathematics - information theory
In portfolio optimization, the stock market can be modeled by a random vector
X ∈ Rm+, where each component describes a separate stock. A portfolio b ∈ Rm+
is a vector such that

∑
i bi = 1, which describes the allocation of the available

funds. The vector btX describes the evolution of the portfolio after one time
step. Due to the multiplicative nature of investments, it is natural to maximize
the convex functional (Cover, 1984; Latane, 1959)

max
b

E[log(btX)],

which is the expected return after one time step. A well-known approach to this
optimization problem is an iterative algorithm found by (Cover, 1984). Cover’s

Computability of optimizers for AI and data science Chapter | 7 381

algorithm uses similar ideas as the Blahut-Arimoto algorithm (Arimoto, 1972;
Blahut, 1972) from information theory.

We present the result of Lee et al. (2023) that even though such an effec-
tive algorithm exists, finding a maximizing portfolio is noncomputable in gen-
eral. This implies no approximation guarantee for optimal portfolios in Cover’s
algorithm—or any other algorithm—can be made.

We consider the case of a discrete random vector X(·) =∑n
i=1

∑m
j=1 pi,j δxi,j

(·)ej , where pi,j > 0 are probabilities, i.e.,
∑

i,j pi,j = 1,
and xi,j ∈ R+ are the possible outcomes. Also ej ∈ Rm are the standard basis
vectors and we assume ∀j,i1 �=i2 : xi1,j �= xi2,j . We define this set of discrete ran-
dom vectors as Dn,m, which is identified with the Euclidean space R2nm

c here
by equating pi,j and xi,j to vector entries.

Theorem 8 (Log-Optimal Portfolio). Let X ∈ Dn,m. Define W : {b ∈ Rm+|∑
i bi = 1} → R by

W(b) := E[log(btX)],
and consider the corresponding maximization problem. For all n,m ∈ N+ with
m > 1 define a function G :Dn,m → {b ∈ Rm+|∑i bi = 1} such that for all y ∈
Dn,m, it holds G(y) ∈ Opt(y). Then G is not Banach-Mazur computable.

All functions G∗ :Dn,m → {b ∈ Rm+|∑i bi = 1} satisfying

‖G − G∗‖∞ ≤ α < 1

are also not Banach-Mazur computable.

5.2.3 Optimal input distribution - information theory
In information theory, a point-to-point channel with one receiver and one trans-
mitter is modeled by two discrete random variables X and Y over the probability
spaces X and Y. If we choose X and Y to be finite, we are describing a discrete
memoryless channel (DMC). The channel itself is then given by a stochastic
matrix W ∈Rm×n, where |X| = n and |Y| = m. X, Y and W are related by

W(x) = P(Y |X = x).

We define the mutual information of two discrete random variables X, Y over
X, Y as

I (X,Y) =
∑
x∈X

∑
y∈Y

P(X,Y)(x, y) log

(
P(X,Y)(x, y)

PX(x)PY (y)

)
,

where P(X,Y) is the probability mass function of (X,Y), and PX and PY are the
probability mass functions of X and Y . Now the capacity C(W) of a DMC W

is the maximal mutual information over all possible distributions over X

C(W) := max
X∈P(X)

I (X,Y).

382 Numerical Analysis Meets Machine Learning

The capacity of a DMC is well established and goes back to Shannon (1948).
Also, more recently, the capacity has been considered in more complicated set-
tings (Boche et al., 2019b,a). Trying to find the capacity of a DMC is a classical
optimization problem for which a well-known approach using an iterative algo-
rithm with convergence guarantee exists (Arimoto, 1972; Blahut, 1972).

We will show that even though such an effective algorithm exists, it is still
impossible to compute a maximizing distribution in general or give an approxi-
mation guarantee. This was first proven in Boche et al. (2022) and again proven
as a special case of Theorem 6 in Boche et al. (2022).

Theorem 9 (Channel Capacity). Let X and Y be finite sets, such that |X| =
n ≥ 3 and |Y| = m ≥ 2 and W is a stochastic matrix. We define P(X) :=
{random variables in X} and P(Y) := {random variables in Y}. Since discrete
random vectors can be identified by their probabilities for each event, i.e., we
uniquely describe Y ∈ P(Y) by the vector (P (Y = y1), . . . ,P (Y = ym)) ∈ Rm

c ,
with slight abuse of notation we equate those two objects by

P(Y)=̂{(v1, . . . , vm) ∈ Rm
c |

m∑
i=1

vi = 1, ∀i : vi ≥ 0}

and analogously forP(X). Also, defineW as the set of all stochastic matrices in
Rm×n

c . Let G :W→P(X) be a function, such that, regarding the maximization
problem

max
X∈P(X)

I (X,Y),

for all W ∈W we have G(W) ∈ Opt(W). Then G is not Banach-Mazur com-
putable.

All functions G∗ :W→P(X) satisfying

‖G − G∗‖∞ ≤ α < 1

are also not Banach-Mazur computable.

5.3 Wasserstein distance

The Wasserstein-1 distance, originally formulated by Kantorovich (1960) and
Vaserstein (1969) to tackle optimal transport problems, is a metric defined on
the set of real probability distributions with finite first moment, i.e.,

P1 :=
{
π probability distributions

∣∣∣∣ inf
c∈R

∫
|x − c|dπ(x) < ∞

}
.

One way to define the Wasserstein-1 metric W1 is by

W1(π1,π2) := sup
f ∈Lip1

∣∣Ex∈π1 [f (x)] −Ex∈π2 [f (x)]∣∣ ,

Computability of optimizers for AI and data science Chapter | 7 383

where π1,π2 ∈P1 and

Lip1 := {f :R → R|∀x,y∈R : |f (x) − f (y)| ≤ |x − y|}.
This is the Kantorovich-Rubenstein duality formulation of the Wasserstein-1
distance. Recently this formulation of the Wasserstein distance came to partic-
ular interest in the context of Wasserstein-GANs (Arjovsky et al., 2017). The
basic idea is to train a neural network, which is able to discriminate between
the distribution of “nice” objects and the distribution of “adversarial” objects.
This is done by maximizing over

∣∣Ex∈π1 [f (x)] −Ex∈π2 [f (x)]∣∣, where f is the
neural network to be trained and adding some regularizer to ensure that the Lip-
schitz constant is close to 1. We consider the following relaxed setting. First, we
only consider probability distribution with computable density functions, sup-
ported in [− 1

2 , 1
2],

P([−1/2,1/2]) :=
{
f : [−1/2,1/2] →R+

∣∣∣∫
f = 1, f Borel-Turing computable

}
.

Second, we restrict ourselves to a function space F ⊂ Lip1, which is made of
Borel-Turing computable functions. The only additional assumption on F is:

∃f1,f2∈F : ∃c1,c2∈R : ∀x∈[−1/2,1/2] :f1(x) = x + c1 and

f2(x) = |x| + c2.

This assumption holds in the example case of normalized neural networks.
It was shown in Lee et al. (2023) that calculating such a Wasserstein maxi-

mizer, or even approximating it is not possible with a Turing machine in these
settings.

Theorem 10 (Wasserstein distance). We define

W′
1(π1,π2) := sup

f ∈F

∣∣Ex∈π1 [f (x)] −Ex∈π2 [f (x)]∣∣ .
Let p1,p2 ∈ P [− 1

2 , 1
2] be two computable probability densities. Then the

problem of finding a function f ∈ F, such that W′
1(π1,π2) = Ex∈π1 [f (x)] −

Ex∈π2 [f (x)] or |W′
1(π1,π2) − Ex∈π1 [f (x)] + Ex∈π2 [f (x)]| ≤ α <

√
5

8
√

3
is not

Banach-Mazur computable.

It might very well happen that such a maximizing function does not exist at
all. In this case, finding such a function is trivially noncomputable. However, it
was proven that finding such a maximizing function might not be computable
even in the case a computable maximizing function does exist.

384 Numerical Analysis Meets Machine Learning

5.4 Lattice problem for cryptographic applications

The basic idea of encryption is to apply a function F to a message m together
with a (secret) key k to obtain an encrypted message F(k,m) = e. Ideally, it is
hard to recover m from e without knowledge of k and easy to do with knowledge
of k. Usually, F is motivated by using problems that are hard or suspected to be
hard for all Turing machines to solve (Diffie and Hellman, 2022; Rivest et al.,
1978; Daemen and Rijmen, 2002). So complexity and computability questions
on Turing machines are central for well working encryption schemes. We focus
on the question of computability of one particular problem from the family of
lattice problems.

Lattice problems have become a topic of interest with the rising feasibility
of quantum computers. Since quantum computers are able to crack conventional
encryptions efficiently (Hallgren, 2007; Shor, 1999), lattice problems are seen
as a new viable source for encryptions. It is wildly believed, but not proven, that
lattice problems are hard to solve not only for Turing machines (Blömer and
Seifert, 1999) but also for quantum computers.

Different optimization problems are highly relevant candidates for post-
quantum cryptography, among others (Regev, 2009) are the shortest vector prob-
lem, the shortest independent vector problem, the closest vector problem, and
the short generator principal ideal problem. Since Regev’s discoveries (Regev,
2009), tremendous efforts have been made to solve the mentioned problems
(Eisenträger et al., 2014; Biasse and Song, 2016). We consider the shortest
independent vectors problem (SIVP), for which a randomized algorithm with
exponential runtime exists if the complexity of the input is bounded (Ajtai et al.,
2001).

To formulate the SIVP, we first have to define lattices over a field. Com-
monly, finite fields such as Z/pZ, where p ∈ N is a large prime number, are
considered for the message space. In the following, we consider lattices over the
field of real computable numbers Rc. As it was shown in Lee et al. (2023), the
transition from large p to the “continuous” field Rc is problematic, and the cor-
responding optimization problem becomes noncomputable on Turing machines,
while for finite fields there have been recent successes (Eisenträger et al., 2014;
Biasse and Song, 2016). Given n ∈ N and a basis B = {b1, . . . , bn} ⊂ Rn

c , we
define the corresponding lattice as

�(B) :=
{

n∑
i=1

λibi ∈ Rn
c |∀i=1,...,n : λi ∈ Z

}
.

Now define B(B) to be the set of bases in �(B):

B(B) = {β ⊂ �(B)|β is basis of Rn
c }.

Computability of optimizers for AI and data science Chapter | 7 385

The SIVP is described by the minimization problem

min
β∈B(B)

∑
b∈β

‖b‖2.

Theorem 11 (SIVP). Let n ∈ N and define V as the set of all bases in Rn. Let
G : V → V such that regarding SIVP and all bases B ∈ V we have G(B) ∈
Opt(B). Then G is not Banach-Mazur computable.

All functions G∗ : V → V satisfying

‖G − G∗‖∞ ≤ α <

√
2

2

are also not Banach-Mazur computable.

5.5 Inverse problems

Let A :Rn
c → Rm

c , x ∈ Rn, e ∈Rm, and y = Ax + e. Usually A is called the for-
ward operator, x the ground truth image, e the noise, and y the measurement. An
inverse problem is the task of recovering x only knowing A, y, and having in-
sufficient knowledge about e. Common examples of A are the identity operator
for denoising, the convolution operator for deblurring, the Radon transforma-
tion for computer-tomography, and the (subsampled) Fourier transformation for
magnet-resonance-tomography.

There are different approaches to solving inverse problems. Three of the
most popular ones are to formulate this as a minimization problem. In the spirit
of signal processing theory sparse solutions for x are often preferred, i.e. so-
lutions where ‖x‖0 is small. The idea of recovering sparse solutions is called
sparse recovery. We introduce three popular sparse recovery approaches.

Define the Basis Pursuit (BP) problem as

min
x

‖x‖l1 s.t. ‖Ax − y‖l2 ≤ ε.

For some λ > 0 define the Lasso problem as

min
x

λ‖x‖l1 + ‖Ax − y‖l2 .

For some λ > 0 define the quadratic Lasso problem as

min
x

λ‖x‖l1 + ‖Ax − y‖2
l2
.

These formulations are widely used in sparse recovery, but they have limitations
that were exposed by the impossibility results in Boche et al. (2023).

Theorem 12 (Boche et al., 2023). Fix the parameters n ≥ 2 and m < n as well
as ε ∈ (0, 1

4) ∩ Q and λ ∈ (0, 5
4) ∩ Q respectively. Consider the Basis Pursuit

386 Numerical Analysis Meets Machine Learning

problem and let K ≥ Cbp > 0 be sufficiently large. Let G∗ : Cm×n × Cm → X

be an arbitrary function with

sup
(A,y)Cm×n×C

m

‖A‖≤K,‖y‖≤1

‖G∗ − G‖l2 <
1

4
.

Then G∗ is not Banach-Mazur computable.

Now consider the Lasso problem and let K ≥ Cl > 0. Let G∗ : Cm×n ×
Cm → X be an arbitrary function with

sup
(A,y)Cm×n×Cm

‖A‖≤K,‖y‖≤1

‖G∗ − G‖l2 <
1

8
.

Then G∗ is not Banach-Mazur computable.

A different branch of noncomputability research in inverse problems was es-
tablished in Colbrook et al. (2022), where a different notion of algorithm was
used. The authors proved that for all three instances of sparse recovery, i.e.,
BP, Lasso, and quadratic Lasso, neural networks cannot achieve exact recovery.
They proved the existence of training sets that allow neural networks to approx-
imate the sparse solution up to N − 1 digits of precision, but not up to N digits,
regardless of the network architecture or parameters.

Acknowledgments
The work of Yunseok Lee was supported by the German Research Foundation under Grant
DFG-SPP-2298, KU 1446/32-1. The work of Holger Boche and Gitta Kutyniok was sup-
ported in part by the ONE Munich Strategy Forum (LMU Munich, TU Munich, and the
Bavarian Ministery for Science and Art). The work of Holger Boche was also supported
in part by the German Federal Ministry of Education and Research (BMBF) in the project
Hardware Platforms and Computing Models for Neuromorphic Computing (NeuroCM) under
Grant 16ME0442 and within the national initiative on 6G Communication Systems through
the research hub 6G-life under Grant 16KISK002. The work of Gitta Kutyniok was also sup-
ported in part by the Konrad Zuse School of Excellence in Reliable AI (DAAD), the Munich
Center for Machine Learning (BMBF) as well as the German Research Foundation under
Grants DFG-SPP-2298, KU 1446/31-1 and KU 1446/32-1 and under Grant DFG-SFB/TR
109, Project C09 and the Federal Ministry of Education and Research under Grant MaGriDo.

References
Ajtai, Miklós, Kumar, Ravi, Sivakumar, Dandapani, 2001. A sieve algorithm for the shortest lattice

vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of
Computing, pp. 601–610.

Arimoto, S., 1972. An algorithm for computing the capacity of arbitrary discrete memoryless chan-
nels. IEEE Transactions on Information Theory 18 (1), 14–20. https://doi.org/10.1109/TIT.
1972.1054753.

https://doi.org/10.1109/TIT.1972.1054753

Computability of optimizers for AI and data science Chapter | 7 387

Arjovsky, Martin, Chintala, Soumith, Bottou, Léon, 2017. Wasserstein GAN. https://arxiv.org/abs/
1701.07875. https://dx.doi.org/10.48550/ARXIV.1701.07875.

Benioff, Paul, 1980. The computer as a physical system: a microscopic quantum mechanical Hamil-
tonian model of computers as represented by Turing machines. Journal of Statistical Physics 22
(5), 563–591.

Berner, Julius, et al., 2021. The modern mathematics of deep learning. https://doi.org/10.48550/
ARXIV.2105.04026. https://arxiv.org/abs/2105.04026.

Biasse, Jean-François, Song, Fang, 2016. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields. In: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 893–902.

Blahut, R., 1972. Computation of channel capacity and rate-distortion functions. IEEE Transactions
on Information Theory 18 (4), 460–473. https://doi.org/10.1109/TIT.1972.1054855.

Blömer, Johannes, Seifert, Jean-Pierre, 1999. On the complexity of computing short linearly inde-
pendent vectors and short bases in a lattice. In: Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, pp. 711–720.

Blum, Lenore, Shub, Mike, Smale, Steve, 2000. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. In: The Collected
Papers of Stephen Smale, vol. 3. World Scientific, pp. 1293–1338.

Boche, Holger, Fono, Adalbert, Kutyniok, Gitta, 2023. Limitations of deep learning for inverse
problems on digital hardware. https://dx.doi.org/10.48550/ARXIV.2202.13490. http://arxiv.org/
abs/1207.0580.

Boche, Holger, Schaefer, Rafael F., Poor, H. Vincent, 2019a. Coding for non-iid sources and chan-
nels: entropic approximations and a question of Ahlswede. In: 2019 IEEE Information Theory
Workshop (ITW). IEEE, pp. 1–5.

Boche, Holger, Schaefer, Rafael F., Poor, H. Vincent, 2019b. Secure communication and identifi-
cation systems—effective performance evaluation on Turing machines. IEEE Transactions on
Information Forensics and Security 15, 1013–1025.

Boche, Holger, Schaefer, Rafael F., Poor, H. Vincent, 2022. Algorithmic computability and approx-
imability of capacity-achieving input distributions. https://arxiv.org/abs/2202.12617. https://
dx.doi.org/10.48550/ARXIV.2202.12617.

Boyd, Stephen, Vandenberghe, Lieven, 2004. Convex Optimization. Cambridge University Press.
Colbrook, Matthew J., Antun, Vegard, Hansen, Anders C., 2022. The difficulty of computing

stable and accurate neural networks: on the barriers of deep learning and Smale’s 18th prob-
lem. Proceedings of the National Academy of Sciences 119, 12. https://doi.org/10.1073/pnas.
2107151119.

Cover, T.M., 1984. An algorithm for maximizing expected log investment return. In: IEEE Transac-
tions on Information Theory IT-30.2.

Daemen, Joan, Rijmen, Vincent, 2002. The Design of Rijndael, vol. 2. Springer.
Denning, Peter J., et al., 1989. Computing as a discipline. Communications of the ACM 32 (1),

9–23.
Diffie, Whitfield, Hellman, Martin E., 2022. New directions in cryptography. In: Democratizing

Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390.
Eisenträger, Kirsten, et al., 2014. A quantum algorithm for computing the unit group of an arbitrary

degree number field. In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory
of Computing, pp. 293–302.

Gottschling, Nina M., et al., 2020. The troublesome kernel: why deep learning for inverse problems
is typically unstable. CoRR. arXiv:2001.01258. arXiv:2001.01258. http://arxiv.org/abs/2001.
01258.

Grohs, Philipp, Voigtlaender, Felix, 2023. Proof of the theory-to-practice gap in deep learning via
sampling complexity bounds for neural network approximation spaces. Foundations of Com-
putational Mathematics, 1–59.

Hallgren, Sean, 2007. Polynomial-time quantum algorithms for Pell’s equation and the principal
ideal problem. Journal of the ACM 54 (1), 1–19.

https://arxiv.org/abs/1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.2105.04026
https://arxiv.org/abs/2105.04026
https://doi.org/10.1109/TIT.1972.1054855
https://doi.org/10.48550/ARXIV.2202.13490
http://arxiv.org/abs/1207.0580
https://arxiv.org/abs/2202.12617
https://doi.org/10.48550/ARXIV.2202.12617
https://doi.org/10.1073/pnas.2107151119
http://arxiv.org/abs/2001.01258

388 Numerical Analysis Meets Machine Learning

Hinton, Geoffrey E., et al., 2012. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR. arXiv:1207.0580. arXiv:1207.0580. http://arxiv.org/abs/1207.0580.

Kantorovich, Leonid V., 1960. Mathematical methods of organizing and planning production. Man-
agement Science 6 (4), 366–422.

Latane, Henry Allen, 1959. Criteria for choice among risky ventures. Journal of Political Econ-
omy 67 (2), 144–155.

Lee, Yunseok, Boche, Holger, Kutyniok, Gitta, 2023. Computability of optimizers. arXiv:2301.
06148 [math.OC].

Mazur, Stanisław, 1963. Computable analysis.
Mead, Carver, 1990. Neuromorphic electronic systems. Proceedings of the IEEE 78 (10),

1629–1636.
Montavon, Grégoire, et al., 2019. Layer-wise relevance propagation: an overview. In: Explainable

AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209.
Pour-El, Marian B., Richards, J. Ian, 2017. Computability in analysis and physics. In: Perspectives

in Logic. Cambridge University Press.
Regev, Oded, 2009. On lattices, learning with errors, random linear codes, and cryptography. Journal

of the ACM 56 (6), 1–40.
Rivest, Ronald L., Shamir, Adi, Adleman, Leonard, 1978. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM 21 (2), 120–126.
Schwarz, Hans-Rudolf, Köckler, Norbert, 2013. Numerische mathematik. Springer-Verlag.
Shannon, Claude Elwood, 1948. A mathematical theory of communication. The Bell System Tech-

nical Journal 27 (3), 379–423.
Shor, Peter W., 1999. Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer. SIAM Review 41 (2), 303–332.
Smale, Steve, et al., 1998. Mathematical problems for the next century. The Mathematical Intelli-

gencer 20 (2), 7–15.
Specker, E., 1959. Der Satz vom Maximum in der rekursiven Analysis. In: Heyting, A. (Ed.), Con-

structivity in Mathematics: Proceedings of the Colloquium Held at Amsterdam, 1957.
Turing, Alan Mathison, 1938. On computable numbers, with an application to the Entschei-

dungsproblem. A correction. Proceedings of the London Mathematical Society 2 (1), 544–546.
Turing, Alan Mathison, et al., 1936. On computable numbers, with an application to the Entschei-

dungsproblem. Journal of Mathematics 58 (345–363), 5.
Vaserstein, Leonid Nisonovich, 1969. Markov processes over denumerable products of spaces, de-

scribing large systems of automata. Problemy Peredači Informacii 5 (3), 64–72.
Weihrauch, Klaus, 2000. Computable Analysis: an Introduction. Springer Science & Business Me-

dia.
Wong, Kam-Chau, 1996. Computability of minimizers and separating hyperplanes. Mathematical

Logic Quarterly 42 (1), 564–568.

http://arxiv.org/abs/1207.0580

	7 Computability of optimizers for AI and data science
	1 Introduction
	1.1 Overview
	1.2 Numerical computations on digital hardware
	1.3 Computability and hardware
	1.3.1 Turing machines
	1.3.2 Blum-Shub-Smale machines
	1.3.3 Quantum computers
	1.3.4 Neuromorphic computing

	2 Basic notions
	2.1 Search for the optimal value
	2.2 Computability
	2.2.1 Turing machines
	2.2.2 Computable numbers and sequences
	2.2.3 Computable continuous functions
	2.2.4 Decidable sets

	3 Deep learning as a key technique of artificial intelligence
	3.1 Essence of deep learning
	3.2 Drawbacks of deep learning

	4 Computability of optimal values and existence of computable optimizers
	4.1 One-dimensional optimization
	4.2 Computability of convex optimizers in higher dimensions
	4.3 Example of multidimensional optimization in information theory
	4.3.1 Communication model
	4.3.2 Blahut-Arimoto

	4.4 Other computable and noncomputable functions

	5 Finding the optimizer is not effectively solvable
	5.1 General noncomputability theorem
	5.2 Noncomputability of neural networks and other optimizers
	5.2.1 Neural networks
	5.2.2 Financial mathematics - information theory
	5.2.3 Optimal input distribution - information theory

	5.3 Wasserstein distance
	5.4 Lattice problem for cryptographic applications
	5.5 Inverse problems

	Acknowledgments
	References

