
Chapter 6

Theoretical foundations of
physics-informed neural
networks and deep neural
operators
A brief review

Yeonjong Shina,∗, Zhongqiang Zhangb, and George Em Karniadakisc

aDepartment of Mathematics, North Carolina State University, Raleigh, NC, United States,
bDepartment of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, United

States, cDivision of Applied Mathematics, Brown University, Providence, RI, United States
∗Corresponding author: e-mail address: yeonjong_shin@ncsu.edu

Contents
1 Introduction 294
2 Neural networks 295
3 Mathematical formulations 296

3.1 Stability 297
3.2 Strong formulation 299
3.3 Weak/variational formulations 300
3.4 Extended PINN: domain

decomposition 302
3.5 Useful techniques 303

4 Approximation error for PINN in
strong formulations 305
4.1 A posteriori estimate 305
4.2 A priori estimate 306

5 Training/optimization methods 306
5.1 Initialization schemes 307
5.2 Generic methods: stochastic

gradient descent 309
5.3 Quasi-Newton methods of

1.5-order 312
6 Approximation theory with small

weights 314
7 PINN with observational data 319

8 Deep operator networks 320
8.1 Introduction 320
8.2 Vanilla DeepONets 321
8.3 Approximation rates for general

Hölder operators 322
8.4 Error estimates for solution

operators from PDEs 324
8.5 Training DeepONets 328
8.6 Extending DeepONets 330
8.7 Benchmark test: Burgers’

equation 331
Acknowledgments 333
Appendix 6.A Approximation of

elementary functions with ReLU
NNs 333

Appendix 6.B Approximation of
piecewise polynomials 347

Appendix 6.C Approximation of horizon
functions 350

Appendix 6.D Proof of Theorem 6.1 354
References 355

Handbook of Numerical Analysis, Volume 25, ISSN 1570-8659, https://doi.org/10.1016/bs.hna.2024.05.008
Copyright © 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

293

mailto:yeonjong_shin@ncsu.edu
https://doi.org/10.1016/bs.hna.2024.05.008

294 Numerical Analysis Meets Machine Learning

Abstract
This chapter presents a brief review of the theoretical foundations of physics-informed
neural networks (PINNs) and deep neural operators. PINN is one of the most popular
deep learning approaches for solving both forward and inverse problems of partial dif-
ferential equations (PDEs). It provides seamless ways of embedding laws of physics
into deep neural networks (DNNs) by leveraging auto-differentiation. At the same time,
operator learning emerged as a new learning paradigm for learning nonlinear operators,
particularly ones relevant to PDEs. Deep Operator Network (DeepONet) is one of the first
pioneering models whose architecture is inspired by the universal approximation theo-
rem. DeepONets can generate reliable real-time responses when they are pretrained with
a large amount of data pairs of inputs and outputs. Topics to be covered include math-
ematical formulations, approximation error estimates, approximation theory of DNNs,
and training/optimization methods.

Keywords
Physics-informed neural networks, Deep operator networks, Deep learning, Optimiza-
tion, Approximation theory, Partial differential equations

MSC Codes
65-00, 90-00, 41-00

1 Introduction

In this chapter, we present a review of the theoretical development of physics-
informed neural networks (PINNs, e.g. in Lagaris et al., 1998, and Raissi et al.,
2019) and deep operator networks (DeepONets, e.g., in Lu et al., 2021a) for
partial differential equations.

In physics-informed neural networks, partial differential equations including
forward and inverse problems are reformulated as minimization of least-squares
of the residuals of the equations and their constraints at random points (often
uniformly distributed). Since the neural networks are nonconvex and nonlinear
in their trainable parameters, we often use stochastic gradient descent methods
to find approximate solutions to the minimization problems. Advances in PINNs
include choices of loss functions, distribution of sampling points, architectures
of neural networks, efficient training methods, and many techniques addressing
issues in various applications.

Compared to least-squares finite element methods (Bochev and Gunzburger,
1998; Bramble and Schatz, 1970) and least-squares collocations, the approxi-
mators are networks and thus are highly nonlinear and nonconvex. Correspond-
ingly, different formulations and solvers for the least-squares problems have
been applied and some error estimates of PINNs have been established.

While PINNs may need no data or little data, DeepONets require a large
amount of data but DeepONets learn maps/operators from a function input to a
function output. In the vanilla DeepONets, a regression problem is formulated as

Theoretical foundations of PINNs and deep neural operators Chapter | 6 295

the empirical L2-norm of the differences among the output of neural networks at
input data and corresponding output data. Developments of DeepONets include
but are not limited to those in architectures of neural networks, efficient training
methods and error estimates.

In Section 2, we briefly introduce a special class of neural networks-
feedforward neural networks, although many other networks work as well in
most of the settings in this work. In Section 3, we introduce an abstract prob-
lem and present some classical forward and inverse problems to solve with
PINNs. We also introduce the strong formulations and weak formulations used
in PINNs. Various aspects of PINNs are addressed with various techniques to
solve many types of problems. In Section 4, we discuss the error estimates of
PINNs for conditionally stable problems. The estimates are based on the condi-
tional stability of problems. We present some developments of training methods
in Section 5 for the loss functions, which may not be limited to loss functions
in PINNs. In Section 6, we present a special neural network where the weights
and biases are small. This network is motivated by expressing functions with
discontinuity or large derivatives, such as in hyperbolic problems. In Section 7,
we briefly discuss PINNs when observational data are available, e.g. in inverse
problems. In Section 8, we present error estimates for DeepONets for continu-
ous operators and three examples of solution operators arising from linear and
nonlinear advection-diffusion-reaction equations.

2 Neural networks

Many neural network architectures can be used for scientific machine learning,
such as radial basis function networks, convolution neural networks, residual
neural networks, recurrent Neural networks, U-nets, etc. Let’s focus on feed-
forward neural networks. A L-layer feed-forward neural network (NN) uNN is
a function Rdin �→Rdout defined by

uNN(x; θ)=WLuL−1(x)+ bL, (2.1)

where uL−1 is recursively computed by

u�(x)= φ(W�u�−1(x)+ b�), 1≤ � < L, u0(x)= x.

Here φ is a nonlinear activation function that applies element-wise. Some pop-
ular activation functions include the hyperbolic tangent (tanh) and the rectified
linear unit (ReLU). L is a positive integer greater than or equal to 2, referred to
as the depth. For notational convenience, the input and output dimensions are
often denoted by n0 = din and nL = dout, respectively and these are assumed
to be given for every learning task. The weight matrix and bias vector of the
�-th hidden layer are W� ∈ Rn�×n�−1 and b� ∈ Rn� , respectively. The collection
θ of all the weight matrices and bias vectors determines uNN and is called the
network parameter. The vector �nL = (n1, . . . , nL−1) ∈ NL−1 is referred to as

296 Numerical Analysis Meets Machine Learning

the architecture, which determines the size of θ . To explicitly express the de-
pendency of the architecture, the network parameter is often denoted by θ(�nL),
whose size and magnitude are given by

|�nL| =
L∑

�=1

n�(n�−1 + 1), |θ |∞ = max
1≤�≤L

max{‖W�‖max,‖b�‖max}.

A class of L-layer NNs is then given by

VL(M)=
{
uNN(·; θ(�nL)) : |θ(�nL)|∞ ≤M, �nL ∈NL−1

}
. (2.2)

The class VL does not form a linear space as it is not closed under addition,
i.e., for any u,v ∈ VL, u+ v /∈ VL. However, it has been well known that VL is
universal. For example, for any continuous function f in a compact domain �⊂
Rdin and any ε > 0, there exist M and �nL such that ‖f (x)−uNN(x, θ(�nL))‖< ε

for any x ∈�.
To provide a mathematical explanation of the empirical success of NNs,

many works have focused on quantifying the approximation ability of NNs us-
ing the number of nonzero network parameters, the magnitudes, the depth, and
the width, to name a few. The works of Petersen and Voigtlaender (2018) proved
universal approximation theorems of rectified linear units (ReLU) networks,
showing the advantage of the depth. On the other hand, the class of two-layer
neural networks has been shown to effectively approximate certain functions,
and such a class is now known as the Barron class.

3 Mathematical formulations

Consider the following problem

D[u](x)= f (x) x ∈�

B[u](x)= g(x) x ∈ �,
(3.1)

where D :X→ Y B :X→ Z are appropriate differential operators. Here X, Y

and Z are Banach spaces. Here � ⊂ Rd is a computational (compact) domain
and � is a subset of Rd . This abstract problem can include many interesting
problems. Below, we list some typical benchmark problems when developing
deep learning methods for partial differential equations (PDEs).

Example 3.1 (Poisson equation with Dirichlet boundary condition, forward
problem). Let D = −∑d

j=1 ∂2
xi
:=	 and B = Id (identity operator). Let � =

(0,1)2, � = ∂�= {x = (x1, x2) ∈�|x=(0, x2)or (1, x2), or (x1,0), or (x1,1)}.
The problem is usually written as

−	u(x)= f (x), x ∈�; u(x)= g(x), x ∈ � = ∂�. (3.2)

Here f and g are given, we seek the solution u on the �.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 297

Example 3.2 (Data assimilation of Poisson’s equation, inverse problem). Let
� ⊂ Rd be a Lipschitz domain. Let �0 � � be open. Consider the following
problem

−	u= f, x ∈�; u= g, x ∈�0.

Here f and g are given, we seek the solution u on � and ∂�. This problem is
often called a continuation problem.

Example 3.3 (Cauchy problem of Poisson’s equation, inverse problem). Let
�⊂Rd be a Lipschitz domain. Let �D � ∂� be an open subset with a positive
area. Consider the following Cauchy problem

−	u= f, x ∈�; u= g, x ∈ �D; ∇u · n= ϕ, x ∈ �D.

In this problem, we only know partial data on the boundary and thus we seek
the solution as well as the data on the whole boundary. This problem is often
called a Cauchy problem for the Poisson equation.

Example 3.4 (Coefficient inverse problem). Let D ⊂Rn be a smooth bounded
domain. Consider the initial boundary value problem on �=D× (0, T) (T>0),

∂2
t u=∇ · (p(x)∇u), (x, t) ∈D× (0, T);

u(x,0)= g0(x), ∂tu(x,0)= 0, x ∈D;u= g(x, t), (x, t) ∈ ST = ∂D × (0, T).

Here the coefficient p(x) ∈ C1(D̄) and p(x) ≥ p0 > 0. Here the functions g0
and g are known, while The goal is to find the coefficient p(x) in D. We also
know the normal derivative of u ∇u · n= h(x, t) on ST , where n is the outward
normal vector at the cylindrical surface ST .

3.1 Stability

We assume that the problem (3.1) is conditionally stable. We use the following
definition of conditional stability, see e.g. in Burman and Oksanen (2018) and
Dahmen et al. (2023).

Definition 3.5 (Conditional stability). Let X and Y be Banach spaces. Let
D : X �→ Y and B : X �→ Z be linear maps. Assume that there exists a linear
operator L : X→ H where H is a Banach space such that there is a positive
function N : X̂→ (0,∞)1 and a nondecreasing function ρC : [0,∞]→ [0,∞]
with limt↘0 ρC(t)= 0 for any C > 0, such that for v = v1−v2 ∈X (v1, v2 ∈X)
with ‖Lv‖H ≤ C, it holds that

N(v1 − v2)≤ ρC(‖Dv1 −Dv2‖Y + ‖Bv1 −Bv2‖Z). (3.3)

Here N is usually a norm or a seminorm on a Banach space V which X̂ can be
embedded into. We then call the problem (3.1) conditionally stable.

1 Here X̂ is a Banach space, which often coincides with X̂.

298 Numerical Analysis Meets Machine Learning

Here L is often called regularization. When N is a norm, the problem is well-
posed in the Hadamard sense: the solution exists and is unique and stable with
respect to inputs. In this case, the problem is called unconditionally stable.

A special case of the conditional stability is linear stability. In linear stabil-
ity, N is a norm and ρC is a linear function. For example, in Example 3.1, we
can derive the following stability2

‖u‖L2(�) ≤ C(‖	u‖H−3/2(�) + ‖u‖L2(∂�))≤ C(‖	u‖L2(�) + ‖u‖L2(∂�)).

(3.4)
Here Hr is the Sobolev-Hilbert space with elements and their r-th weak deriva-
tives being square integrable.

The conditional stability for the Problem 3.2 is stated as follows.

Theorem 3.6 (Conditional stability for the Poisson continuation problem, Bur-
man and Oksanen, 2018). Let f ∈ L2(�) and let u ∈ H 1(�) such that the
equation in the Problem 3.2 holds. Let g ∈H 1 (�0). Then for every open simply
connected set E ⊂� such that dist(E, ∂D) > 0, there holds

‖u‖H 1(E) ≤ C
(‖u‖H 1(�)

)1−r
ω
(‖f ‖H−1(�) + ‖g‖L2(�0)

)r
.

Here r ∈ (0,1), depending on the set E. On the domain �, we have

‖u‖H 1(�) ≤ C
(‖u‖H 1(�)

)r [log(
(‖f ‖H−1(�) + ‖g‖L2(�0)

)]−r
.

The conditional stability of the Problem 3.3 can be found in Burman and
Oksanen (2018). The inverse problem in Example 3.4 is Lipschitz stable, i.e.,
ρC is stable, see e.g., Klibanov and Yamamoto (2006).

Many problems have proven to be conditionally stable in literature, such as
classical partial differential equations, integral equations and a large class of
inverse problems.

Remark 3.7. Here the conditional stability is described for linear problems.
From the definition, it can be further extended to nonlinear problems, where ρC

may depend on v1 and v2.

Solving the problem (3.1) can be formulated as an optimization problem
using the residual minimization

inf
v∈X̂
J(v), (3.5)

where the loss functional Jτ (v) can be established in many ways. Depending
on how the optimization problem is reformulated, different methods are ob-
tained, e.g. deep Ritz methods (E and Yu, 2018) using energy minimization and
physics-informed neural networks (PINNs) in Lagaris et al. (1998) and Raissi et
al. (2019), which is based on residual minimization while approximate solutions
being neural networks.

2 The L2 norm on the left can be replaced by ‖u‖
H1/2(�)

.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 299

3.2 Strong formulation

The most straightforward method is based on the strong form of the governing
equation.

J(v)= ‖f −Dv‖2Y + ‖g −Bv‖2
Z + ε2 ‖Lv‖2H . (3.6)

Here ε is usually a small parameter. This is one of the most popular approach
used in practice. To implement this formulation, we enforce the approximation
to satisfy the governing equation over a finite set of points. More precisely,
let �M ⊂ � and �M ′ ⊂ ∂� be such sets with |�M | =M and |∂�M ′ | =M ′.
Let ωM(·)= 1

M

∑
x∈�M

δx(·) and μM ′(·)= 1
M ′
∑

x∈�M ′ δx(·) be empirical mea-
sures for �M and �M ′ , respectively, where δx is the Dirac measure. The naive
PINN method (Lagaris et al., 1998; Raissi et al., 2019) defines an objective (also
known as a physics-informed loss) functional asL(v)=Lre(v)+Lbc(v) where

Lre(v)=
∫

�

Lre[v](x)dωM(x), Lbc(v)=
∫

�

Lbc[v](x)dμM ′(x), (3.7)

Lre[v](x) := [D[v](x)− f (x)]2 ,Lbc[v](x) := [B[v](x)− g(x)]2 .

and seeks an approximation in Vn that minimizes the loss functionalL, i.e., u∗n =
argminv∈Vn

L(v). Ideally, one wants to minimize the continuous loss functional
defined by

L∞(v)=
∫

�

Lre[v](x)dω(x)+
∫

�

Lbc[v](x)dμ(x), (3.8)

where ω and μ are probability measures typically determined by the under-
lying PDEs and the corresponding solution space. However, since the exact
calculations of the integrals are not available, one has to rely on reasonable dis-
cretization or approximation. The work of Sirignano and Spiliopoulos (2018)
proposed an NN approach, namely, the deep Galerkin method, which aims at
minimizing the ideal loss (3.8) by using the stochastic mini-batch gradient de-
scent (see also Section 5.2).

The loss functional can be further generalized by introducing nonhomoge-
neous weights for the summands:

L(v;λ)=
∑

x∈�M

λx

(
D[v](x)− f (x)

)2

+
∑

x∈�M ′
λx

(
B[v](x)− g(x)

)2

, (3.9)

where λ is the collection of all the λx , which includes the application of Monte
Carlo integration when λx = 1

M
if x ∈�m and λx = 1

M ′ if x ∈ ∂�M ′ .
It is worth mentioning that a minimizer u∗n depends on �M , ∂�M ′ , λ and Vn.

300 Numerical Analysis Meets Machine Learning

3.3 Weak/variational formulations

A weak formulation of the general equation may be written as follows. Let V

be a Hilbert space satisfying B[u] = g for all u. For general discussion, let us
define

a(u, v) := 〈D[u], v〉, L(v) := 〈f, v〉,
Lre[v](x) := [D[v](x)− f (x)]2 , Lbc[v](x) := [B[v](x)− g(x)]2 ,

where 〈·, ·〉 is an appropriate inner product. The variational formulation then
seeks to find u ∈ V such that

a(u, v)= L(v) ∀v ∈ V.

The NN approaches seek to solve the variational problem with a subset of V ,
denoted by Vn of NNs, which is the set of approximate solutions.

Let us consider the Poisson equation to illustrate the variational approach.
Let D = −	, g = 0 and � = (0,1). Let V = H 1

0 (�) = {v ∈ H 1(�) : v(0) =
v(1)= 0}, 〈u,v〉 = ∫ 1

0 u(x)v(x)dx for all u,v ∈ V and f ∈ L2(�). It then fol-
lows from the integration by parts that

a(u, v)= 〈u′, v′〉, L(v)= 〈f, v〉.
If Vn is a linear space spanned by {φj ∈ V : j = 1, .., n}, the above is equivalent
to solving a linear system of equations of the form

Ac= b, where Aij = a(φi,φj), bi = L(φi). (3.10)

The solution is then given by u∗n =
∑n

j=1 ĉj φj where ĉ is the solution to Ac= b,
which basically describes the finite element method (FEM). If Vn is a class of
neural networks, since Vn is not a linear space, the FEM-like approach cannot
apply. Therefore, one needs new approaches to solve the variational problem
using NNs.

Ritz-Galerkin approach. The work of Ainsworth and Dong (2021) proposed
an NN approach based on a standard Galerkin approximation of the variation
equation, namely Galerkin Neural Networks (GNNs). Let a : V × V �→ R be a
bounded symmetric, bilinear form satisfying a(v, v)≥ 0 and a(v, v)= 0 if and
only if v = 0, which defines an associated norm given by |||v||| := √a(v, v).

For a given basis {φi}ni=1, let us define u∗n = GALERKIN(a,L, {φi}ni=1)

where u∗n is the solution obtained from (3.10). The GNN method seeks basis
functions from a class of NNs and provides the corresponding Galerkin NN ap-
proximation. The GNN constructs one basis at a time and gradually augments
the basis as the algorithm proceeds. The GNN mechanism is built based on the
following result.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 301

Proposition 3.8 (Proposition 2.3 of Ainsworth and Dong, 2021). Let u be the
solution to the variational formulation and u0 ∈ V be a given approximation.
Let ϕ1 = u−u0|||u−u0||| and let r(u0) : V → R be a functional given by the rule
r(u0)[v] := L(v) − a(u0, v). Then, r(u0)[ϕ1] = maxv∈B r(u0)[v] where B is
the closed unit ball in V .

The proposition established the relationship between the residual r(u0) and
the approximation error u − u0. Based on this error indicator, the GNN com-
mences with an initial guess u0 and recursively augments the basis according to
the following. For k = 1, . . . , n,

vk := argmax
v∈Vn,|||v|||�=0

r(uk−1)[v̄] = argmax
v∈Vn,|||v|||�=0

L(v)− a(uk−1, v)

|||v||| ,

and uk = GALERKIN(a,L, {ϕNN
i }ki=0) where ϕNN

i = vi|||vi ||| with v0 = u0. The
GNN approximation to the variational formulation is then given by un where n is
a user-defined input representing the number of NN basis functions. The original
work allows one to use different Vn for each vk to further facilitate the training
and improve the performance. The convergence of the GNN with respect to the
number of basis functions is proved in Ainsworth and Dong (2021).

Minmax formulation. The work of Zang et al. (2020) followed the min-max
formulation

min
u∈Vn

(
max
v∈Vn

|a(u, v)−L(v)|2
‖v‖2

)
,

and the approach was termed the weak adversarial network (WAN). In practice,
the integration is approximated by a quadrature rule. Also, similar to the deep
Ritz method, the boundary loss term is added. Let {xk,wk}Mk=1 be a quadrature
rule over [0,1]. Then the loss functional is given by

L(u, v)=
∣∣∣∑M

k=1 wk ·
(
u′(xk)v

′(xk)− f (xk)v(xk)
)∣∣∣2∣∣∣∑M

k=1 wk · v2(xk)

∣∣∣2 .

To further improve the training, the WAN approach takes the log of the loss and
aims to solve the minmax problem

min
u∈Vn

(
max
v∈Vn

logL(u, v)+Lbc(u)

)
.

Petrov-Galerkin approach. Several works investigated NN approaches that use
the Petrov-Galerkin (PG) formulation. Let W be a Hilbert space that differs
from V . The PG seeks to find u ∈ V such that a(u, v) = L(v) for all v ∈W .
The corresponding NN approach uses a fixed finite-dimensional linear space of

302 Numerical Analysis Meets Machine Learning

Wn and seeks a solution in a class Vn of NNs. The works of Khodayi-Mehr
and Zavlanos (2020); Shang et al. (2022) used linear finite element spaces and
the work of Kharazmi et al. (2019) used sine functions, Legendre polynomials
as test spaces. In Kharazmi et al. (2021), the hp-variational physics-informed
neural networks were proposed as a general framework that combines the PG
approach and hp-refinement via domain decomposition, where piecewise poly-
nomials were used for test functions.

3.4 Extended PINN: domain decomposition

Extended PINNs (XPINNs) (Jagtap and Karniadakis, 2020) combine a domain
decomposition method with PINNs. Let {�i}Ni=1 be a partition of the domain �

and consider a set of subproblems:

D[ui](x)= f (x) x ∈�i

B[ui](x)= g(x) x ∈ ∂�i ∩ �

ui(x)= uj (x) x ∈ ∂�i ∩ ∂�j .

(3.11)

Then, the solution to the original problem (3.1) is written in terms of uj ’s as
u(x) =∑N

j=1 uj |�j
(x), where u|�j

(x) = u(x) if x ∈ �j and 0 if x /∈�j . The
XPINN aims at approximating each uj using a NN, say vj ∈ Vn. While XPINNs
can be formulated in many different ways (e.g. variational formulation), for ease
of discussion, we focus on the original formulation based on the strong form.
Let us define the interface term by

Lif[v,u](x)= β0(v(x)− u(x))2 + β1‖∇v(x)−∇u(x)‖2
2

+ (D[v](x)−D[u](x))2,

for some β0, β1 ≥ 0, where “if” stands for interface.
Let �Mj

⊂�j , ∂�M ′j ⊂ ∂�j , �j = �∩ ∂�M ′j , and ∂�M ′ij ⊂ ∂�M ′i ∩ ∂�M ′j
be finite sets of interest and consider the corresponding empirical probability
distributions: ωj (·) = 1

Mj

∑
x∈�Mj

δx(·), μj (·) = 1
|�j |
∑

x∈�j
δx(·), and μ̄ij =

1
M ′ij

∑
x∈∂�M ′

ij

δx(·). Then, the loss functional for XPINNs is given by

L[v1, . . . , vN] =
N∑

j=1

[∫
�j

Lre[vj](x)dωj (x)+
∫

�j

Lbc[vj](x)dμj (x)

+
∑
i �=j

∫
∂�i∩∂�j

Lif[vi, vj](x)dμ̄ij (x)

]
,

where vj ’s are all in Vn (e.g. a class of neural networks). Let {u∗j }Nj=1 be a
minimizer of the loss functional. Then, the NN approximation by the XPINN

Theoretical foundations of PINNs and deep neural operators Chapter | 6 303

formulation is given by

uXPINN(x)=
N∑

j=1

u∗j (x) · Ij (x), Ij (x)=

⎧⎪⎪⎨⎪⎪⎩
0 if x /∈�j

1
Sj (x)

if x ∈ ∂�j

1 otherwise,

where Sj (x) represents the number of subdomains whose boundary contains x.
Note that the XPINN does not necessarily preserve the continuity at interfaces.

The performance of XPINN can be enhanced by adding the jump condition
at the interface, e.g., in Jagtap et al. (2020) and De Ryck et al. (2023) in the
loss function. In Hu et al. (2022), it is shown that XPINN is not necessarily
performing better than PINN. The XPINN can have less complex parts and sim-
ple locally but less data in each part can lead to overfitting and thus affect the
accuracy.

More aspects of domain decompositions techniques have been explored,
such as in Sheng and Yang (2022) (variational formulation) and Shukla et al.
(2021) addressing parallel computation, Meng et al. (2020) and Penwarden et
al. (2023) for time domains, Kim and Yang (2023) using overlapping subdo-
mains, and Kopaničáková et al. (2023) using preconditioning, and Sun et al.
(2023) assigning different boundary conditions on different subdomains.

3.5 Useful techniques

We discuss some techniques and methods that may improve the performance of
the aforementioned formulations.

Enforcement of boundary conditions. The aforementioned NN approaches
do not satisfy the boundary conditions from the beginning and require an ad-
ditional loss term which penalizes the discrepancy between the NN prediction
on boundary and the given boundary conditions. This could be cumbersome
when it comes to the PINN method as well as many variational approaches. In
general, the loss functionals comprise multiple terms and each term may have
significantly different scales. If this is the case, training algorithms would focus
on minimizing the largest term while the other terms marginally change.

In principle, one can use the distance function and modify the NN structure.
The distance function d to the boundary ∂� is defined to be the function that
gives the shortest distance between any point x to ∂�. Thus, for example,

uNN(x; θ)= g(x)+ d(x)uNN(x; θ),

where g is a smooth extension of g, will exactly satisfy the Dirichlet boundary
condition as d(x)= 0 on ∂�. However, the numerical solution here is only Lip-
schitz continuous as d(x) is. Several works followed this principle with some
variations (see Lagaris et al., 1998; Berg and Nyström, 2018). This idea can be
further generalized. In particular, the work of Sukumar and Srivastava (2022)

304 Numerical Analysis Meets Machine Learning

used the theory of R-functions to construct an approximate distance function
ξ that allows one to satisfy exactly inhomogeneous Dirichlet, Neumann, and
Robin boundary conditions on complex geometries.

Constraints. Instead of modifying NN structures, one can formulate the prob-
lem as a constrained optimization problem via the augmented Lagrangian
method. For example, the PINN loss may be written as

min
θ
Lre(θ) subject to B[uNN(·; θ)](x)= g(x) ∀x ∈ �M ′ ,

which takes the boundary conditions as constraints. The method of Lagrange
multipliers will then construct the Lagrangian defined by L(θ, λ) = Lre(θ) +
〈λ,h(θ)〉 where h(θ) := (B[uNN(·; θ)](x) − g(x))x∈�M ′ and seek to solve the
minmax problem of maxλ minθ L(θ, λ). The augmented Lagrangian method can
also apply, which seeks to solve the minmax problem of

max
λ

min
θ
L(θ, λ)+ β‖h(θ)‖2,

for some appropriately chosen β > 0. Since ‖h(θ)‖2 =M ′Lbc(θ), this may be
viewed as a combination of the original PINN loss and the Lagrangian. The
work of Son et al. (2023) proposed this formulation, namely, the augmented
Lagrangian relaxation method for PINNs. See also Lu et al. (2021b) where the
augmented Lagrangian is used to enforce constraints.

Continuity equations. One can impose a certain structure into the NN. For
example, we can define a divergence-free NN by using a curl field, e.g., in
Richter-Powell et al. (2022).

Sobolev formulation. In the design of loss functions, we can take Sobolev
spaces for Y and Z in (3.6) instead of L2 or Lp spaces. For example, we can take

Y =H 1(�), where the norm of v ∈ Y is defined by
√
‖v‖2

L2 +
∑d

i=1

∥∥∂xi
v
∥∥2

L2 .

Similarly, we can consider Z = H 1(�) instead of L2(�). Then we can apply
proper discretizations on the integrals and obtain a loss functional for training,
see e.g., in Yu et al. (2022) and Son et al. (2021). Even higher derivatives of the
residuals are considered in Yu et al. (2022) and Son et al. (2021).

Adaptive activation function. The motivation of adaptive activation functions
(Jagtap et al., 2022b) is that different activation functions can significantly affect
the spectral gaps of neural networks and thus the training results. Two extreme
cases are sine or hyperbolic tangent (smooth) and the ReLu (nonsmooth). To
appreciate different activation functions, one can set the form of the activation
functions as σ(·)=∑r

i=1 aiσi(·), where σi’s are the commonly used activation
functions which users prefer and ai’s are trainable logical values.

Separable PINNs. In separable PINNs (Cho et al., 2022), the following net-
work architecture

∑r
j=1
∏d

i=1 Ni,j (xi) is used, where Ni,j (xi) is a feedforward

Theoretical foundations of PINNs and deep neural operators Chapter | 6 305

neural network in xi only. Compared to the feedforward neural networks as a
function of (x1, . . . , xd) in (2.1), PINNs can be trained faster by 10-100 times.
The acceleration is due to the tensor-product nature of the network architecture,
which facilitates auto-differentiation. Similar network architectures of low rank
are considered in Wang et al. (2022a,b); Zhang et al. (2023a).

PINNs for high dimensions. A random batch method in dimensionality has
been developed in Hu et al. (2023), where the computational cost of deriva-
tives of feed-forward neural networks consists of computing the derivative in
a few randomly picked dimensions in batches and thus the computational time
becomes feasible even when the dimension is very high.

4 Approximation error for PINN in strong formulations

Motivated by the stability, we can directly derive an (posterior) error estimate.
Let u∗ ∈X be a solution to (3.1).

Assume that f and g are continuous (otherwise we use their approximations
which can be evaluated at the sampling points). Assume the neural network
uNN is smooth enough such thatDuNN and BuNN is well-defined at sampling
points. Suppose that ε = 0, i.e., we have no regularization.

4.1 A posteriori estimate

Let X = L2(�) and Y = L2(�). By the conditional stability (3.3), we obtain

N(uNN − u∗)≤ ρC(‖DuNN − f ‖Y + ‖BuNN − g‖Z)

≤ ρC

√
2‖DuNN − f ‖2

Y + 2‖BuNN − g‖2
Z)

= ρC(
√

2L(v,λ)+
√

2εappr, f + 2εappr,g)

where we have applied the inequality
√

a + b ≤ √a + √b for a, b ≥ 0 and
denote

εappr,f = ‖DuNN − f ‖2
Y −
∑

x∈�M

1

#�M

(DuNN − f)2(x),

εappr,g = ‖BuNN − g‖2Y −
∑

x∈�M

1

#�M

(BuNN − g)2(x)

Both quantities can be estimated by the upper bounds of their corresponding
Radmacher complexity. If the sampling points are quadrature points and weights
are points-dependent, we may improve the bounds of these quantities by errors
of quadrature points, if all functions are smooth. We refer to Shin et al. (2023)
(applying Radmacher complexity) and Mishra and Molinaro (2023, 2022) (us-
ing quadrature bounds) for more detailed analysis.

306 Numerical Analysis Meets Machine Learning

4.2 A priori estimate

Let Su∗ be a good mollifier of u∗ so that one can make of the derivatives of u∗
at the sampling points. By the conditional stability (3.3), we obtain

N(uNN − u∗)≤ ρC(‖DuNN − f ‖Y + ‖BuNN − g‖Z)

≤ ρC(
∥∥D(uNN −Su∗)

∥∥
Y
+ ∥∥B(uNN −Su∗)

∥∥
Z︸ ︷︷ ︸

approximation

+ ∥∥f −DSu∗
∥∥

Y
+ ∥∥(g −BSu∗)

∥∥
Z
)︸ ︷︷ ︸

mollifying

.

Observe that ‖D(uNN −Su∗)‖Y +‖B(uNN −Su∗)‖Z can be bounded by cer-
tain norms of uNN − Su∗ and their derivatives. Thus this error can be small
by the universal approximation theorem of the underlying neural networks and
convergence rate can be quantified. The mollifying error can be estimated by
the classical mollifier

∫
Rd ε−dϕ(

x−y
ε

)u(y) dy, where ε−dϕ(
x−y

ε
) is a compactly

supported function approximating the Dirac delta function in the distribution
sense. With some mild moment conditions on ϕ, the convergence order of mol-
lifier depends on the smoothness of the solution u∗. Also, Su∗ can be some
approximate solution by certain numerical methods. A similar idea is presented
in Shin et al. (2023) in more details.

The strong formulation may require high smoothness which the solution may
not admit. While the estimate here is insightful, it may not be useful in practice,
especially when solutions are not smooth. This is a strong motivation of using
weak formulations.

5 Training/optimization methods

The PINN methodology requires to solve an optimization problem. In prac-
tice, one needs to properly choose a numerical optimization algorithm to solve
it. First-order gradient-based optimization algorithms have been popularly em-
ployed in this regard mainly due to their simple implementations and reasonably
good empirical performance for diverse problems. We briefly discus several nu-
merical optimization algorithms for the PINN methodology.

Let Vn be a class of neural networks, e.g., VL defined in (2.2). Optimization
problems defined on Vn are equivalently written as optimization problems on
a finite-dimensional space, e.g., R|�nL|. That is, by letting L(θ) :=L(uNN(·; θ))

for any uNN ∈ VL, we are concerned with solving the following minimization
problem

min
θ∈R|�nL|

L(θ). (5.1)

In what follows, we briefly discuss popular optimization methods and strategies
for the PINN methodology.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 307

5.1 Initialization schemes

How to initialize hyperparameters of neural networks plays a pivotal role when
it comes to iterative algorithms. As illustrated by the convergence analysis of
Newton’s method, a well-chosen initialization can dramatically improve the per-
formance in practice. Several works have studied random initialization schemes
for deep NNs. Popular initialization schemes use either Gaussian or uniform
distributions for weight matrices and set bias vectors being zeros. See the table
below. The underlying principle of many initialization schemes is to make the
unit variance to avoid the so-called exploding/vanishing gradient, which refers
to the phenomenon in which deep NNs yield either too big or too small gradi-
ents. Very large gradients will make training algorithms diverge and very small
gradients will take forever for algorithms to converge. This requires one to com-
pute the variance with respect to all the weights.

The Glorot initialization (Glorot and Bengio, 2010) was proposed based on
the linearity assumption. Suppose φ(x)= x, also known as the linear activation
function). Since all the bias vectors are initialized to zeros, assuming W�’s are
independently initialized whose element has mean zero and variance σ 2

� , it can
be checked that the variance of the i-th element of u� is

Var[u�
i (x)] =

�∏
j=1

(nj−1σ
2
j) · ‖x‖2

2 ∀1≤ i ≤ n�.

Let s�(x)=W�u�−1(x)+ b�. It follows from the chain rule that

∂uNN

∂s�
k

=
(

∂s�+1

∂s�
k

)�
∂uNN

∂s�+1
= φ′(s�)(W�+1

:,k)� ∂uNN

∂s�+1
,

where W�+1
:,k is the k-th column of W�+1. Since φ′(x) = 1 and ∂uNN

∂s�+1 =
(WL · · ·W�+2)�, we have

Var

[
∂L
∂s�

k

]
=

L∏
j=�+1

(njσ
2
j) · ‖x‖2

2 ∀1≤ k ≤ n�.

The Glorot initialization aims at satisfying

Var[u�
k(x)] =Var[u1

1(x)], Var

[
∂L
∂s�

k

]
=Var

[
∂L
∂s1

1

]
, ∀�, k,

which are equivalent to n�σ
2
� = 1 and n�−1σ

2
� = 1 for all �. Since the two are

met only if n� = n�−1, as a compromise, the Glorot initialization (Glorot and
Bengio, 2010) sets

(Glorot initialization) : σ 2
� =

2

n� + n�−1
.

308 Numerical Analysis Meets Machine Learning

The Kaiming initialization scheme (He et al., 2015) was developed based
on the rectified linear unit (ReLU) activation function. Let φ(x) = max{x,0}
and suppose that the bias vectors are initialized to zeros and the weight matri-
ces are independently initialized from symmetric distributions around zero. Let
σ 2

� be the variance of each component of W�. It follows from the symmetric
distribution assumption that E[(u�−1

k (x))2] = 1
2 Var[s�−1

k (x)] and thus

Var[s�
i (x)] = σ 2

� E[‖u�−1(x)‖2
2] =

1

2
σ 2

�

n�−1∑
k=1

Var[s�−1
k (x)]

= 1

2
σ 2

� n�−1Var[s�−1
i (x)].

The Kaiming initialization enforces Var[s�
i (x)] = Var[s1

1(x)] for all � and i,
which results in the condition of

(Kaiming initialization) : σ 2
� =

2

n�−1
.

weight matrix bias vector hyperparameters note

Glorot Normal
(Glorot and Bengio, 2010)

N(0, σ2) 0 σ2 = 2
n�+n�−1

Linear, Tanh

Glorot Uniform
(Glorot and Bengio, 2010)

U(−a, a) 0 a2 = 6
n�+n�−1

Kaiming Normal
(He et al., 2015)

N(0, σ2) 0 σ2 = 2
n�

ReLU and variants

Kaiming Uniform
(He et al., 2015)

U(−a, a) 0 a2 = 6
n�

RAI (Lu et al., 2020) N(0, σ2) + Beta(2,1) σ2 = 0.60072
n�−1

Preventing Dying ReLU

Dying ReLU. Dying ReLU refers to the phenomenon in which ReLU neurons
are inactivated and return zeros for all inputs. It has been empirically observed
that this could happen not only at the initialization but also during training. If a
deep NN was initialized as a constant function, i.e., all the neurons were dead,
the network cannot be trained by gradient-based algorithms as the gradient is
zero. The work of Lu et al. (2020) estimated the probability of such an event
(namely “born dead probability” in Lu et al. (2020)) with standard initialization
schemes including Glorot (Glorot and Bengio, 2010) and He (He et al., 2015).

Theorem 5.1 (Theorem 3.2 of Lu et al., 2020). Let �n = (n1, . . . , nL−1) be
an architecture. Suppose that all weights are independently initialized from
symmetric continuous probability distributions around zero, and all biases are
either drawn from a symmetric distribution or set to zero. Then, the proba-
bility that the initialized deep ReLU NN is born dead is upper bounded by
1−∏L−1

�=1 (1− 2−n�).

Theoretical foundations of PINNs and deep neural operators Chapter | 6 309

The randomized asymmetric initialization (RAI) was proposed in Lu et al.
(2020) to alleviate the dying ReLU by breaking the symmetry in distributions.
Let V � = [W�,b�] ∈ Rn�×(n�−1+1). The RAI scheme works as follows: W 1

ij ∼
N(0, 2

din
and b1 = 0 as is in the Kaiming normal initialization. For every � ≥ 2

and j ∈ {1, . . . , n�}, (a) randomly select an index k�
j from {1, . . . , n�−1, n�−1 +

1}, and (b) initialize (V �
j)−k�

j
∼N(0, σ 2

� I) and (v�
j)k�

j
∼ Beta(2,1) where σ 2

� =
0.60072

n�−1
, V �

j is the j -th row of V �, (V �
j)k is the k-th component of V �

j , (V �
j)−k is

a vector constructed from V �
j by omitting the k-th component. Here 0.6007 is an

approximation of − 2
√

2
3
√

π
+
√

1+ 8
9π

, which is derived from the second moment
analysis (Lu et al., 2020).

Data-dependent bias initialization. For two-layer NNs, the aforementioned
schemes often do not perform well as these schemes were meant for deep
NNs. In Shin and Karniadakis (2020), the data-dependent bias initialization
scheme for two-layer ReLU NNs was proposed which located neurons at
data points. Given W 1, the scheme initializes the bias vector b1 according to
(b1)k = −w�k xik where xik is a randomly selected input data point. By con-
struction, the two-layer ReLU NN at initialization is written as

(Data-dependent Bias Initialization) : uNN(x)=
n1∑

k=1

W 2:,kφ(W 1
k (x − xik)),

(Zero Bias Initialization) : uNN(x)=
n1∑

k=1

W 2:,kφ(W 1
k x),

where W 2:,k is the k-th column of W 2. When the biases are initialized as zeros,
all initialized neurons are clustered at the origin. Consequently, it would take a
long time for training algorithms to distribute neurons over the training domain
to achieve a small training loss. In the worst case, along the way of distributing
neurons, it will get stuck at the local minimum. The data-dependent bias initial-
ization ensures that all neurons are randomly distributed over the training data
points.

5.2 Generic methods: stochastic gradient descent

The first-order gradient-based optimization algorithms have been popularly em-
ployed when it comes to (5.1) due to their simple implementation and reason-
ably good empirical performance.

The vanilla gradient descent (GD) algorithm commences with a random
guess θ(0) (following one of the initialization schemes) and updates the param-
eter according to the rule: for k = 1,2, . . . ,

(Full-batch GD) : θ(k) = θ(k−1) − ηk · ∇L(θ(k−1)), (5.2)

310 Numerical Analysis Meets Machine Learning

where ηk is the learning rate or the stepsize for the k-th iteration. This is also
known as the full-batch training.

If the underlying computational domain is in either 3D or 4D (including
time), the discrete loss evaluation may require a large number of points in com-
putational domains. Consequently, the computation of the gradient becomes
very expensive. To alleviate such difficulty, (stochastic) mini-batch GD ap-
proaches are popularly employed. There are two main approaches. The first
one is the subsampling from a fixed set containing a large number of points.
Let �M ⊂ � be a fixed set with M � 1. Let m be a reasonably small num-
ber satisfying 1 ≤ m�M , which is referred to as the batch size. In the PINN
formulation, the full gradient of L is written as

∇L(θ)= 1

M

∑
x∈�M

∇Lre[θ](x)+ λ∇Lbc(θ),

where Lre[θ](x) := Lre[uNN(·; θ)](x). It can be seen that the full gradient re-
quires M evaluations of ∇Lre[θ](·) which can be computationally demanding
as M � 1. The computation cost grows linearly with respect to the number M

of sample points. Thus, the mini-batch training is popularly used in practice. For
the k-th iteration, let �

(k)
m ⊂�M and define

∇L(θ(k−1);�(k)
m) := 1

|�(k)
m |
∑

x∈�(k)
m

∇Lre[θ(k−1)](x)+ λ∇Lbc(θ), (5.3)

whose computation requires only m evaluations of ∇Lre[θ](·). The mini-batch
gradient descent algorithm then updates the parameter according to the rule:

(Mini-batch GD) : θ(k) = θ(k−1) − ηk · ∇L(θ(k−1);�(k)
m), (5.4)

where the sampling set �
(k)
m varies over iterations. Depending on how these

sampling sets are chosen, different mini-batch schemes are obtained. Let �M =
{xj }Mj=1 ⊂� and let M = qm+ r where q is the quotient and r ∈ {1, . . . ,m} is
the remainder. Define

Ik =
{
{1+ (k − 1)m, . . . ,m+ (k − 1)m} if k �≡ 0 (mod q + 1),

{1+ qm, . . . ,M} if k ≡ 0 (mod q + 1).

Let SM be the permutation group of the set {1, . . . ,M}. Whenever (k − 1) =
s(q+ 1) for some nonnegative integer s, let σ s be a randomly uniformly chosen
element from SM and define

σ (k) :=
{

σ s if k ≡ 1 (mod q + 1),

σ (k−1) if k �≡ 1 (mod q + 1).

Theoretical foundations of PINNs and deep neural operators Chapter | 6 311

We are now in a position to describe some popular mini-batch schemes:

(Mini-batch without shuffling) : �(k)
m = {xj }j∈Ik

,

(Mini-batch with shuffling) : �(k)
m = {xσ(k)(j)}j∈Ik

,

(Mini-batch with replacement) : �(k)
m ∼ P,

where P is the uniform probability distribution over the set of all subsets contain-
ing m points from �M . Among the above three schemes, the mini-batch without
shuffling is considered as deterministic while the other two are stochastic. An
epoch is a unit that refers to the number of iterations taken to sweep the entire
M points (q + 1 iterations). In the full batch training, an epoch is equivalent to
an iteration.

The other is based on random sampling from the underlying probability mea-
sure ω defined on �. The distinct feature of this approach is that the reference
set �M needs not to be formed. Rather, every iteration requires newly sampled
fresh m points from the underlying probability distribution ω. Specifically,

(Stochastic Mini-batch) : �(k)
m = {x(k)

j }mj=1

where {x(k)
j } ⊂� are i.i.d. samples from ω.

At every iteration, one has the option to design an appropriate learning rate or
stepsize ηk . It has been widely known that the learning rates should be chosen
sufficiently small for convergence and, at the same time, sufficiently large for
making meaningful progress within practically reasonable maximum epochs/it-
erations (e.g. 100K or 1M). From the optimization perspective, the optimal
learning rate is possibly found by following the minimization principle. Given
the current update direction d(k−1) (e.g. d(k−1) =−∇L(θ(k−1);�(k)

m)), the prin-
ciple seeks the best learning rate that solves

η∗k = argmin
η∈R

L
(
θ(k−1) + ηd(k−1)

)
.

However, the optimization problem is difficult to solve in general and the op-
timum solution is only available for a small class of problems (e.g. convex,
linear). In addition, the mini-batch version of the minimization rule remains
elusive which further prevents its use in practice. Hence, practically popular de-
signs heavily rely on users’ trial-and-errors, which require problem-dependent
hyperparameters to be tuned appropriately.

Let T be a positive integer representing the number of iterations on which
the learning rate remains unchanged. While the initial learning rate η0 is chosen
in a problem-dependent manner, some popularly used values lie in the range of
[10−5,10−3]. The decay factor is denoted by γ and the maximum and mini-
mum learning rates are denoted by ηmax and ηmin, respectively. Some popular

312 Numerical Analysis Meets Machine Learning

schedulers include

[Constant learning rate] ηk = η0,

[Step Scheduler] ηk = η0γ
� k

T
�,

[Exponential Scheduler] ηk = η0γ
k,

[Cosine Scheduler] ηk = ηmin + ηmax − ηmin

2
(1+ cos(πk/T)).

In practice, especially when it comes to the PINN methodology, the vanilla
(stochastic) GD is rarely used, rather, their variants are typically employed.
One of the most popular variants is the adaptive moment estimation algo-
rithm, widely known as Adam. The update rule of Adam is given as follows. For
β1, β2 ∈ [0,1) whose default values are 0.9 and 0.999, respectively, let m(0) = 0,
v(0) = 0 and ε = 10−8. Given an initialization θ(0), the k-th iterated parameter
is given by

(Adam) : θ(k) = θ(k−1) − ηk · m̂(k)/(
√

v̂(k) + ε),

where m̂(k) = 1
1−βk

1
m(k), v̂(k) = 1

1−βk
2
v(k), m(k) = β1m

(k−1) + (1 − β1)g
(k−1),

v(k) = β2v
(k−1) + (1− β2)g

(k−1)⊗ g(k−1), and g(k−1) =∇L(θ(k−1);�(k)
m). All

the operations are understood element-wise.

5.3 Quasi-Newton methods of 1.5-order

While first-order gradient-based optimization algorithms are popularly used,
they often suffer from either being stuck at local minima or slow convergence.
Perhaps, a natural extension of the first-order methods is the optimization meth-
ods that (approximately) use the second-order information, i.e., Hessian. New-
ton’s method is the representative one. While it could achieve the quadratic rate
of convergence, the computation of Hessian is computationally very expensive
if optimization problems are defined in a high dimension, which is the case for
NNs as the number of NN parameters is large. Therefore, the Gauss-Newton
type algorithms are popularly used which aim at approximating Hessian using
only gradient information. These algorithms are called 1.5-order methods.

The underlying idea of higher-order algorithms is to appropriately design a
local proxy function on which the minimum can be found easily. More precisely,
let U be a neighborhood of the current parameter θ(k−1) and one seeks to design
an approximation L̃ on U . The minimizer of the proxy function is then set to
the update rule. A natural proxy function comes from the Taylor expansion:

L(θ)≈L(θ(k−1))+ 〈∇L(θ(k−1)), θ − θ(k−1)〉
+ 1

2
(θ − θ(k−1))�Hk−1(θ − θ(k−1))+ . . . ,

Theoretical foundations of PINNs and deep neural operators Chapter | 6 313

where Hk−1 is the Hessian of L at θ(k−1). The Taylor approximation degree up
to one yields

L̃1(θ)=L(θ(k−1))+ 〈∇L(θ(k−1)), θ − θ(k−1)〉.

Seeking the minimizer of L̃1 then gives the gradient descent (also known as
the steepest decent) method, i.e., θ∗ = θ(k−1) − ηk · ∇L(θ(k−1)). The Taylor
approximation degree up to two provides the multivariate polynomial of degree
up to two involving the Hessian

L̃2(θ)=L(θ(k−1))+ 〈∇L(θ(k−1)), θ − θ(k−1)〉
+ 1

2η
(θ − θ(k−1))�Hk−1(θ − θ(k−1)).

Assuming the Hessian is invertible, the minimizer of L̃2 is explicitly written as

(Newton’s method) θ(k) := θ∗ = θ(k−1) − ηk ·H−1
k−1∇L(θ(k−1)),

which defines Newton’s update rule. Since the Hessian is expensive to compute,
the 1.5-order optimization algorithms seek to find alternative proxy functions
that do not require the Hessian. A generic proxy function may be written as

L̃1.5(θ;B)=L(θ(k−1))+ 〈∇L(θ(k−1)), θ − θ(k−1)〉
+ 1

2ηk

(θ − θ(k−1))�B(θ − θ(k−1)),

where B is an appropriately chosen matrix that does not require the second order
partial derivatives. The 1.5-order method is then determined by the minimizer
of L̃1.5(θ;B), i.e.,

(1.5-order method) θ(k) := θ∗ = θ(k−1) − ηk ·B−1∇L(θ(k−1)).

The quasi-Newton type algorithms are based on the principle of seeking the
Hessian approximation with the exact gradient. That is, it aims at finding B such
that ∇L(θ(k−1) +μ)=∇L̃1.5(θ

(k−1) +μ;B) where the gradient is taken with
respect to μ. It then can be checked that μ and B should satisfy the so-called
secant equation

(quasi-Newton) ∇L(θ(k−1) +μ)=∇L(θ(k−1))+ η−1
k Bμ.

The quasi-Newton type algorithms iteratively find the solution μk , Bk to the se-
cant equation. The update rule for μk is determined by the first-order optimality
condition, i.e., ∇L(θ(k−1))+ η−1

k Bkμk = 0 ⇐⇒ μk =−ηk · B−1
k ∇L(θ(k−1))

where the learning rate ηk is typically chosen to satisfy the Wolfe condi-
tions. Hence, the quasi-Newton algorithm reads θ(k) = θ(k−1) + μk . The core

314 Numerical Analysis Meets Machine Learning

part of the quasi-Newton algorithms is on the update formula for Bk . While
several formulas exist, in the context of the PINN methodology, the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) algorithm is one of the most popular

ones. The BFGS updates Bk according to Bk+1 = Bk + yky
�
k

y�k μk
− Bkμk(Bkμk)

�
μ�k Bkμk

,

where yk =∇L(θ(k−1) +μk)−∇L(θ(k−1)).
For nonlinear least squares problems, which are equivalent to minimizing a

sum of squared function values, the Gauss-Newton type algorithms are popu-
larly used. These algorithms also follow the above principle and are obtained by
appropriate designs of B. The Levenberg-Marquart algorithm is one of the most
well-known algorithms of this type, whose design is given by

(Levenberg-Marquart) B = λI + J�r Jr or λdiag(J�r Jr)+ J�r Jr .

6 Approximation theory with small weights

Both shallow and deep neural networks are universal approximators, however,
their training behaviors may vary significantly. Since the NN parameters are ini-
tialized as small numbers, deep NNs may be preferred if they remain universal
under the constraints on the magnitude of weights and biases. Fig. 1 shows the
histogram of the magnitude of weights and biases of a 5-layer NN of width 100
at the initialization. We employ the Kaiming initialization (He et al., 2015), one
of the most popular initialization schemes for ReLU NNs. This demonstrates
that weights and biases are initialized to small values.

FIGURE 1 The histogram of the magnitude of randomly generated weights and biases for a 5-layer
ReLU network of width 100. The Kaiming initialization (He et al., 2015) is employed.

This subsection establishes a universal approximation theorem of ReLU
NNs with constraints on the magnitude of weights and biases. The primary focus
will lie on the ReLU approximation to functions with (countably many) discon-
tinuities. As a pedagogical example, let us consider a simple learning task of
approximating a step function f ∗(x) = I[−1,1](x) where IA(x) is the indicator

Theoretical foundations of PINNs and deep neural operators Chapter | 6 315

function where IA(x)= 1 if x ∈A and IA(x)= 0 if x /∈A. It is readily checked
that for any ε > 0, there exists a two-layer ReLU NN uNN(x) of width 4 that
approximates f ∗ within the �1-error of ε, i.e.,

∫
R
|f ∗(x)−uNN(x)|dx = ε. One

such NN can explicitly be written as

uNN(x)= 1

2ε
[φ(x + 1+ ε)− φ(x + 1− ε)− φ(x − 1+ ε)+ φ(x − 1− ε)] ,

where φ(x)=max{x,0}. This indicates that if the desired accuracy is ε = 10−3

and a two-layer ReLU network,
∑4

i=1 ciφ(wix + bi), is used, the magnitudes
of ciwi and cibi should be at around 500. It may suggest that many gradient
descent iterations are required to make all the ciwi , biwi’s have the magnitude
of 500. In Fig. 2, the histograms of NN parameters are plotted that illustrate
the changes in magnitudes before and after the training. The top row shows
the results with the two-layer (shallow) NNs at varying widths – 4, 16, 64. As
expected, the magnitudes of parameters remain small as the width increases.
Similar results are observed with the three-layer NNs whose results are shown
in the bottom row.

FIGURE 2 The histograms of weights and biases of networks before and after training for the
task of approximating f ∗(x) = I[−1,1](x). (Top row) Two-layer ReLU networks of width 4, 16,
64 (left to right) are employed. (Bottom row) L-layer ReLU networks of width W are employed
where (L,W) = (3,4), (5,4), (6,8). Training is done by Adam over 300 equidistant data points
from [−3,3]. The maximum number of epochs is either 50,000 or 100,000.

Fig. 3 reports the training loss versus the number of iterations at varying NN
architectures. It is seen that there is a tendency that the loss decays faster as the
width gets larger and the depth gets larger.

In what follows, we present a universal approximation theorem of deep
ReLU NNs with constraints on the magnitudes of NN parameters. We followed
the proof structure of Petersen and Voigtlaender (2018), while we made mod-
ifications in each step to ensure that the magnitudes of the weights and biases

316 Numerical Analysis Meets Machine Learning

FIGURE 3 The prediction errors with respect to the number of epochs for the task of approxi-
mating f ∗(x)= I[−1,1](x). (a) Two-layer ReLU networks of width 4, 16, 64 (left to right) are em-
ployed. (b) L-layer ReLU networks of width W are employed where (L,W)= (3,4), (5,4), (6,8).
Training is done by Adam over 300 equidistant data points from [−3,3]. The maximum number of
epochs is 100,000.

were well controlled. Consequently, our new results will show the dependency
of the magnitudes of NN parameters in the NN architecture.

The class of functions to be approximated contains functions defined on �=
[−1/2,1/2]d that have the form of IK(x)g(x) where g is a smooth function and
K is an appropriate compact set in � on which IK is locally a horizon function.
To be more precise, let r ∈ N, β ∈ (0,∞) such that β = n + σ where n ∈ N0
and σ ∈ (0,1], d ∈N≥2, and B,p > 0. Then, Ep

r,β,d,B is the target function class
that is defined by

Ep
r,β,d,B :=

{
IK(x)g(x) :K ∈Kr,β,d,B, g ∈ Fβ ′,d,B

}
, (6.1)

where β ′ = dβ
p(d−1+β)

, Fβ ′,d,B is a class of smooth functions and Kr,β,d,B is a
class of tailored domains with smooth boundaries. Both classes will be defined
shortly.

The smooth function class is defined as follows.

Fβ,d,B =
{
f ∈ Cn([−1/2,1/2]d) : ‖f ‖C0,β ≤ B

}
,

where ‖f ‖C0,β = max
{
max|k|≤n ‖∂kf ‖C0,max|k|=n Lipσ (∂f)

}
and

Lipσ (∂f) := supx,y∈�,x �=y
|f (x)−f (y)|
‖x−y‖σ .

‖f ‖C0,β =max

{
max
|k|≤n
‖∂kf ‖C0 , max

|k|=n
Lipσ (∂f)

}
,

Lipσ (∂f) := sup
x,y∈�,x �=y

|f (x)− f (y)|
‖x − y‖σ .

Next, let us introduce the class of horizon functions. Let d ∈ N≥2, x−1 =
(x2, · · · , xd) ∈ Rd−1 and H := I[0,∞)×Rd−1 be the Heaviside function. We de-
fine

HF β,d,B = {f ◦ T ∈ L∞(�) : f (x)=H(x1 + γ (x−1),x−1),

γ ∈ Fβ,d−1,B, T ∈�(d,R)},

Theoretical foundations of PINNs and deep neural operators Chapter | 6 317

where �(d,R) is the group of permutation matrices. We are now in a position
to define a class of piecewise smooth functions of interest, which was originally
introduced in Petersen and Voigtlaender (2018). Let us consider a set of domains
with smooth boundaries. For r ∈N, let

Kr,β,d,B :=
{
K ⊂� : ∀y ∈�,∃fy ∈HF β,d,B

such that IK(x)= fy(x) on x ∈�∩B2−r (y)
}
,

where B2−r (y) is the closed ball centered at y with the radius of 2−r in ‖ · ‖∞-
norm. Note that every closed set K ′ in � whose boundary is locally the graph of
a Cβ function of all but one coordinate belongs toKr,β,d,B for sufficiently large
r and B.

To give a concrete idea of what functions belong to the class Ep
r,β,d,B ,

here we present an example. Let K = {(x1, x2) ∈ � : x1 + 0.5 sin(2πx2) ≥ 0}
which corresponds to the yellow region shown on the left of Fig. 4. Since
γ = 0.5 sin(2πx) ∈ F2,1,2π as ‖γ ‖C0,2 = π , K belongs to Kr,β,d,B with r = 1,
β = 2, d = 2, B = 100. In particular, for all y ∈ � and for all r ∈ N, we have
fy(x1, x2) = H(x1 + 0.5 sin(2πx2), x2) ∈HF β,d,B which is equal to IK and
shows, in fact, r can be any integer. Lastly, let g be the Rosenbrock function de-
fined by g(x1, x2)= (1− 0.5X1)

2 + 100 ∗ (0.5x2 − (0.5x1).
2)2, which belongs

to Ep
r,β,d,B where β ′ = 2. Then, the function IKg belongs to the function class

E2
1,2,2,100 whose graph is shown on the right of Fig. 4.

FIGURE 4 Left: The yellow region corresponds to K = {(x1, x2) ∈ � : x1 + 0.5 sin(2πx2) ≥ 0}
that belongs to the domain class Kr,β,d,B with r = 1, β = 2, d = 2, B = 100. Right: A piecewise

smooth function of the form IK(x)g(x) ∈ Ep
r,β,d,B

where g(x) is the Rosenbrock function.

We now state the main theorem. Let r , n, σ , d , B, p be given with β =
n+ σ where r ∈N, n ∈N0, σ ∈ (0,1], d ∈N≥2, and B,p > 0, which define the
function class Ep

r,β,d,B of interest.
Let M ≥ 1 be given and let n= $log2 n%. Let m ∈ N be sufficiently large to

satisfy (2m+ 1)≥ (r + 1)
p(d−1+β)

β
.

• Let (k,L) ∈N2 such that m= k(L− 1)≥ 1
2 log2

(
log2 n

2

)
.

318 Numerical Analysis Meets Machine Learning

• Let (s′, r ′) ∈ N2 such that γ̃ (d − 1, n,B)≤ (s′M)r
′−1 where γ̃ is defined in

(6.B.1).
• Let (s′′, r ′′, r ′′′) ∈ N3 such that 22(m+1)M−1 ≤ 0.5(s′′M)r

′′−1 and (1 +
(d−1)n+β

n!)B ≤ (((d − 1)s′ + 1)M)r
′′′−1.

• Let (sh, rh) ∈N2 such that 2
β

d−1+β
(2m+1)M−1 ≤ 0.5(shM)rh .

• Let (sI , rI) ∈N2 such that 2
β

p(d−1+β)
(2m+1)M−1 ≤ 0.5(sI M)rI−1.

• Let (s′g, r ′g) ∈ N2 such that γ̃ (d, n,B) ≤ (s′gM)r
′
g−1 where γ̃ is defined in

(6.B.1).
• Let (s′′g , r ′′g , r ′′′g) ∈ N3 such that 22(m+1)M−1 ≤ 0.5(s′′M)r

′′−1 and (1 +
dn+β

n!)B ≤ ((ds′ + 1)M)r
′′′
g −1.

Let us define an architecture of θK by

�nθK
= (2rd · (�nθ0 + 2⊕Lθ0 , (2sh)

⊕rh), (2rd+1(dsI + 1))⊕rI), (6.2)

where Lθ0 is the length of �nθ0 , and

�nθ0 = (�nθ1,2(Nd−1 + d − 1), (2Nd−1((d − 1)s′′ + 1))⊕(r ′′+r ′′′)),

Nd−1 = 2
d−1

d−1+β
(2m+1)

,

where Pd,n =
(
d+n

n

)
and

�nθ1 =
(
Pd−1,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s′)⊕(r ′−1)

)
+ (2d)⊕(nL+r ′−1),

where �n×̃ = (3(2k + 2))⊕L.

Also, define an architecture of θg by

�nθg = (�nθ2,2(Nd
g + d), (2Nd

g (ds′′g + 1))⊕(r ′′g+r ′′′g)), Nd
g = 2

d
d+β

(2m+1)
,

(6.3)

where �nθ2 =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s′g)

⊕(r ′g−1)
)
+ (2d)⊕(nL+r ′g−1).

Theorem 6.1. For any IK(·)g(·) ∈ Ep
r,β,d,B , there exists a ReLU NN, � such

that

‖R[�](x)− IK(x)g(x)‖Lp ≤ C̃ · 2− β
p(d−1+β)+β

(2m+1)
,

with �n� = (�nθK
+ �nθg , �n×̃) and |�|∞ ≤M. Here C̃ is a constant that depends

only on r , β, d , B, p. Also, θK and θg are ReLU NNs whose architectures are
given by (6.2) and (6.3), respectively.

Proof. The proof can be found in Appendix 6.D.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 319

Remark 6.2. In the Appendix, we provided relevant approximation theorems
with the controlled magnitude. The results indicate that one can approximate
smooth functions with small weights, while discontinuous functions need deli-
cate approaches to control the magnitude.

7 PINN with observational data

Assume we have a forward problem to solve, and have some observational data
of the solution u, we can use the loss function by adding the data loss in the
PINN loss (3.9).

L(v;λ)=
∑

x∈�M

λx

(
D[v](x)− f (x)

)2

+
∑

x′∈�M ′
λx′
(
B[v](x)− g(x)

)2

+
∑
xobs

λxobs |v− u(xobs)|2 (7.1)

Then we solve the minimization problem minθ L(uNN ;λ).
If we have an inverse problem to solve, we may use a similar loss functional.

For example, when we solve the data assimilation Problem 3.2 or the Cauchy
problem of Poisson’s equation 3.3, we can still use the above formulation. For
the coefficient inverse Problem 3.4, we need to have two neural networks, one
for the solution u, and the other for p. In this case, we denote the loss function
at the continuous level by

L(uN,pN ;λ)=
∥∥∥∂2

t uN −∇ · (pN∇uN)

∥∥∥2
L2(�)

+ ‖u(x,0)− g(x)‖2
L2

+ ‖∂tu(x,0)‖2
L2 + ‖u− g‖2

L2(ST)
+ ‖∇u · n− h(x, t)‖2

W︸ ︷︷ ︸
data

.

Here the space W and the norm on it can be selected according to the Lipschitz
stability in Klibanov and Yamamoto (2006). Suppose that � are the parameters
for the network pN , we then solve the following problem infθ,�L(uN,pN ;λ).
While the observation data u(xobs) are available, the choices of �M , �M ′ may
be adjusted from the formulation for forward problems.

In the PINNs framework, it is essentially the same to solve both forward and
inverse problems. In both cases, we need stability of the problem to facilitate the
setup of loss functions. The difference may lie in the complexity– we need two
networks to solve inverse problems. Also, we may need some regularization to
stabilize the formulation, as the stability may not be available theoretically.

PINNs have been applied to solve various inverse problems, such as elliptic
and wave equations in Mishra and Molinaro (2022), supersonic problems in
Jagtap et al. (2022a) and many others.

320 Numerical Analysis Meets Machine Learning

8 Deep operator networks

The PINN for PDEs usually solve one single problem at a time and can be time
consuming. In particular training neural networks are performed for differen-
tial equations with fixed inputs, such as initial conditions, boundary conditions,
forcing, and coefficients. If one input is changed, the training process has to be
repeated. It is difficult to obtain outputs in real-time for systems that require
various sets such in multiphysics.

Operator learning via neural networks has been developed to accommo-
date varying inputs and predict in real-time. In operator learning, a fixed-
weighted/pretrained network approximates a continuous operator from the in-
put(s) to the output(s), e.g. in the DeepONets (8.4). Once such networks are
trained, we can predict/ evaluate at the desired input(s) in real-time.

To learn such networks, it often requires a huge amount of data to per-
form a least-squares regression for accurate approximations. For the learning
of solution operators from PDEs, the data are usually generated by accurately
solving the underlying PDEs with various inputs, which are usually modelled
by stochastic processes with mild smoothness, such as in truncated Karhunen-
Loeve expansions or a truncated Fourier expansion of stochastic processes.

8.1 Introduction

Let X and Y be Banach spaces. Consider a continuous operator G : X→ Y

as follows. Let G(·) be represented using a Schauder basis {ek} in the Banach
space Y by G(u)(y)=∑∞k=1 ck(G(u))ek(y), where ck(·) is a linear functional.
We denote by Tmu an approximation (encoder) or a parameterization of u in X

and a truncation of the series

Gm,p(Tmu)(y)=
p∑

k=1

ck(G(Tmu))ek(y). (8.1)

Assumption 8.1 (Modulus of continuity). Let S ⊂X and w : [0,∞)→[0,∞)

be continuous at 0. There exists a constant C > 0 independent of u,v ∈ S.

‖G(u)−G(v)‖Y ≤ Cw(‖u− v‖X), ∀u,v ∈ S, 0 < α ≤ 1. (8.2)

A particular useful choice of the function is w(·)= |·|α for some 0 < α ≤ 1.
The error estimate of a network approximation can be derived as follows.

We first split into three parts: approximation error from input, approximation
error from output and approximation error from neural networks and then we
can apply the modulus of continuity, the Schauder expansion and

‖G(u)−GN(Tmu)‖Y ≤ ‖G(u)−G(Tmu)‖Y +
∥∥G(Tmu)−Gm,p(Tmu)

∥∥
+ ∥∥Gmp(Tmu)−GN(Tmu)

∥∥
Y

Theoretical foundations of PINNs and deep neural operators Chapter | 6 321

≤ Cw(‖u− Tmu‖X)+
∞∑

k=p+1

|ck(G(Tmu))| ‖ek‖Y

+ ∥∥Gm,p(Tmu)−GN(Tmu)
∥∥

Y
(8.3)

≤ Cw(‖u− Tmu‖X)

+
∞∑

k=p+1

(|ck(G(Tmu)−G(u))| + |ck(G(u))|)‖ek‖Y

+ ∥∥Gm,p(Tmu)−GN(Tmu)
∥∥

Y
.

From this decomposition, we observe the factors of affecting the approximation
error of an neural operator:

• How the input u is encoded/approximated. At least two typical approxima-
tions are used: interpolation, Deng et al. (2022) and Li et al. (2020); and
truncated spectral expansion, Lanthaler et al. (2021) (from known basis) and
Zhang et al. (2023b) (from Mercer’s theorem).

• The choices of basis, which may significantly affect the efficiency of the
approximation as in the spectral methods, empirical spectral methods (e.g.,
proper orthogonal decomposition (Lu et al., 2022)).

• The architecture of neural networks, e.g. DeepONets (Lu et al., 2019, 2021a)
and extensions in Lu et al. (2022) and Zhang et al. (2023b), Fourier Neural
operators (Li et al., 2020).

In practice, we also have errors from training/optimization and from the mis-
match of the inputs for training and evaluating. Here we focus on the error from
the mismatch. DeepONet takes function values at a set of fixed m points for the
branch while the new input to evaluate at has function values at a different set of
m′ points. One way to accommodate this situation is to use a proper interpolation
(or approximation) to derive a function (say Sm′u) so that one can evaluate the
function at the set of m points that are required in the trained DeepONets. Note
that this reformulation of the inputs does not require retraining DeepONets. The
error for this accommodation can be bounded as follows.

‖GN(TmSm′u)−G(u)‖Y ≤ ‖GN(TmSm′u)−G(Sm′u)‖Y + ‖G(Sm′u)−G(u)‖Y
≤ ‖GN(TmSm′u)−G(Sm′u)‖Y +Cw(‖Sm′u− u‖X),

where we have applied the triangle inequality and the modulus continuity (8.2).
The estimate of w(‖Sm′u− u‖X) is well studied in approximation theory and
thus it is always assumed that the same set of m points is used for training and
evaluating.

8.2 Vanilla DeepONets

In Chen and Chen (1995b); Lu et al. (2021a), the architecture of neural net-
works for operator learning is called Deep Operator Networks (DeepONets) in

322 Numerical Analysis Meets Machine Learning

the following form

GN(u)=
p∑

k=1

bN (Tmu;�(k))︸ ︷︷ ︸
branch

tN (y; θ(k))︸ ︷︷ ︸
trunk

, (8.4)

where Tmu = (u(x1), u(x2), · · · , u(xm))�. Here the neural networks fN and
gN can be any class of functions that satisfy the classical universal approxima-
tion theorem of continuous functions on compact sets.

Theorem 8.2 (Universal approximation theorem, Chen and Chen, 1995b; Lu et
al., 2021a). Let K1 ⊂ Rd1 be a compact set. Let V be a compact set in C(K1),
K2 ⊂ Rd be a compact set and Y = C(K2). Assume that G : V → Y is contin-
uous. Then for any ε > 0, there are positive integers p and m, neural networks
tN (·; θ(k)) and bN (·;�(k)), k = 1, . . . , p, xj ∈K1, j = 1, . . . ,m, such that

sup
u∈V

sup
y∈K2

|G(u)(y)−GN(Tmu)(y)|< ε, (8.5)

where Tmu is an interpolation of u at x1, . . . , xm using (u(x1), u(x2), · · · ,
u(xm))�.

The universal approximation theorem can be proved by emulating a trun-
cated Fourier expansion as in Chen and Chen (1995b). However, the con-
vergence order cannot be established therein as the branch networks is high-
dimensional as a function of (u(x1), u(x2), · · · , u(xm)). Also, according to the
proofs in Chen and Chen (1993, 1995a,b); Chen (1998), C(K1) can be replaced
by Lp(K1), p ≥ 1 and C(K2) can be replaced by Lq(K2), q ≥ 1. But Tmu

should be replaced by averaged values Tmu = (Tmuh(x1), . . . , Tmuh(xm))�,
where Tmuh(xi)=

∫
B(xi ,h)∩K u(t) dt/μ(B(xi, h)∩K) while μ is the Lebesgue

measure and B(xi, h) is the ball centered at xi with radius h. More generally,
these spaces may be replaced by Banach spaces with a Schauder basis.

8.3 Approximation rates for general Hölder operators

As indicated in (8.3), for a given operator, the approximation error of Deep-
ONets depends on encoder/approximation of the input Tmu and the choices of
basis and architecture of branch and trunk networks. To establish approximation
rates, we may use the current state-of-the-art where we emulate DeepONets by
certain numerical methods.3 Thus it is important to identify numerical methods
which the architecture is analogy to and how the numerical methods behave.

Here we use some conclusions from Deng et al. (2022) on the approximation
error of DeepONets using feedforward neural networks for Hölder continuous
operators. The error is obtained by emulating truncated Fourier expansions in

3 The emulation provides error estimates and thus insights on how one can obtain and improve
architectures of networks for operator learning.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 323

the Lq space. Let N(·; θ) be an feedforward neural network with parameters θ .
We use |θ | to denote the size of is the total number of nonzero parameters; NN
for the width of N is the number of neurons in each layer; LN for the depth or
the number of layers.

Assume that

‖Tmu− u‖X ≤ Cm−r ‖u‖V ,∀u ∈ V. r > 0. (8.6)

Theorem 8.3 (Error estimates of DeepONets for Hölder continuous operators,
Deng et al., 2022). Assume that the conditions in Theorem 8.2 and (8.6) hold.
Assume that Tm is Lipschitz continuous and G is Hölder continuous with ex-
ponent α. Let Y = Lq(K2), where 1 ≤ q ≤∞, K2 ⊂ Rd is compact. Then we
have

‖G(u)−GN(Tmu)‖Y ≤
∥∥G(u)−Gm,p(Tmu)

∥∥
Y
+∥∥Gm,p(Tmu)−GN(Tmu)

∥∥
Y

,

(8.7)
where Gm,p(Tmu) is defined in (8.4) and∥∥G(u)−Gm,p(Tmu)

∥∥
Y
≤ Cm−rα +Cω2(G(Tmu),p−1/d)q,∥∥Gm,p(Tmu)−GN(Tmu)

∥∥
Y
≤ C
(
p
√

mN
−2α/m

bN
L
−2α/m

bN
+ p exp(−|θ | 1

1+d)
)
,

where r is from (8.6). The positive constant C is independent of m, p and NbN is
the number of neurons in each layer of the branch network, |θ | is the size (num-
ber of nonzero parameters) of each trunk network tN , and LbN is the numbers
of layers of the branch network.

Let us denote the order/magnitude of ‘·’ by ‘∼ ·’. According to Theo-
rem 8.3, in order to make the total error ‖G(u)−GN(Tmu)‖Y < ε, we need

to set m∼ ε− d
α , p ∼ ε− d

2 , NgNLgN ∼ ε− d
ε and |θ | ∼

(
d+2

2 ln(1
ε
)
)d+1

. The low

approximation rate and the high complexity is caused by the high dimension-
ality of the function (of Tmu) and Hölder continuous operators. If an operator
is smoother, faster convergence can be obtained, e.g. exponential convergence
in Lanthaler et al. (2021) and Marcati and Schwab (2023). In addition to the
smoothness of the operator G, the structure of the operators or approximate
operator Gm,p is also important for the convergence rates of DeepONet. For ex-
ample, for solution operators from partial differential equations we may have
better convergence as we can obtain Gm.p using well-studied and efficient nu-
merical methods and then neural networks can emulate these methods. In Deng
et al. (2022), it is shown that there is no curse of dimensionality (exponential
complexity in m) for several solution operators from PDEs. We will present
such examples from Deng et al. (2022) in Section 8.4.

Below, we discuss some theoretical considerations when obtaining error esti-
mates. I. Physical domains of inputs and outputs K1 and K2. We usually assume
that the domains of K1 and K2 are cubes or balls, where approximations with

324 Numerical Analysis Meets Machine Learning

convergence rates are well studied. If they are not cubes or balls, we use the
Tietze-Urysohn-Brouwer extension theorem to extend the operator such that
domains of input and output are cubes or balls (denoted by D). We denote the
resulting operator (with also extension of V and image) by G(u) if no confusion
arises. II. Choices of function spaces for GN. Let’s suppose that GN maps func-
tions in Vm to functions in Yp. Once we identify choices of the spaces V , Vm, Y ,
and Yp, we are ready to calculate the approximation rate. In addition to the trun-
cated Fourier expansion for both input and output, we list in Table 1 some typical
choices of these spaces. Other choices are possible, e.g., Vm can be chosen as
the set of networks with m parameters, which can well approximate functions
in V while Vm is not a linear subspace of V . It is important to choose the best
possible choices to parameterize the input and output as they determine the di-
mensionality of the input and output of the operatorGm,p(Tmu). The choices are
highly problem dependent. In this work, we only consider two choices of piece-
wise polynomials and truncated Fourier space. We refer the interested readers
for more discussion in Kovachki et al. (2021b), Deng et al. (2022), Lanthaler et
al. (2021), and Marcati and Schwab (2023).

TABLE 1 List of some parameterizations of the input and output. Here RKHS
refers to reproducing kernel Hilbert space.

X(V) or Y Vm or Yp Tmu Ref.

Lp piecewise polynomials function values Deng et al. (2022)

Lq truncated Fourier space Fourier coefficients Deng et al. (2022)
Lanthaler et al. (2021)

RKHS truncated RKHS (first N

term of the basis)
expansion coefficients Lanthaler et al. (2021)

Zhang et al. (2023b)

analytic
functions

truncated orthogonal
polynomials

expansion coefficients Marcati and Schwab
(2023)

8.4 Error estimates for solution operators from PDEs

We now consider error estimates of DeepONets for solution operators from lin-
ear and nonlinear advection-diffusion-reaction equations.

Example 8.4. Consider the following 1D advection-diffusion equation with
Dirichlet boundary condition:

− uxx + a(x)ux = f (x), x ∈ (0,L), 0 < L <∞, u(0)= u(L)= 0, (8.8)

where a(x), f (x) ∈ L∞(0,L). The solution operator is defined from the coeffi-
cient a to the solution u by

u=Gf (a). (8.9)

Theoretical foundations of PINNs and deep neural operators Chapter | 6 325

Let {xi}mi=1 be a partition of (0,L). Define am = (a1, · · · , am)�, where ai =
a(xi), xi ∈ (0,L), i = 1,2, . . . ,m. From the solution (8.10), we can define a
solution operator by

Theorem 8.5 (Error estimates of DeepONet for the solution operator (8.9),
Deng et al., 2022). For any given f ∈ L∞, let Gf (a) be the solution oper-
ator (8.9). Let S = {a(x) : a ∈ L∞(0,L), ∂xa ∈ L∞(0,L)}. Then, there exist
ReLU branch networks bN (am;�(i)) of size |�(i)| =m4 ln(m) for i = 1, · · · ,p,
and ReLU trunk networks tN (x; θ(k)) of width NtN = 3 and depth LtN = 1,
k = 1, · · · ,p, such that

sup
a∈S

∥∥∥Gf (a)−Gf

N
(am)

∥∥∥
L∞
≤ C
(
p−1 +m−1 +

∣∣∣�(i)
∣∣∣− 1

4+ε)
,

where Gf

N
(am) is of the form in (8.4), ε > 0 is arbitrarily small and C > 0 is

independent of m, p, |�(i)| and a(x).

The proof can be done by emulating the analytic solution as follows. The
solution can be written as

u(x)=−
(
A− ◦A+

)
(f)(x)+ A−(1)(x)

A−(1)(L)

(
A− ◦A+

)
(f)(L), (8.10)

where 1(x)= 1 for x ∈ [0,L] and A+(g)(x) := ∫ x

0 A(y)g(y)dy, A−(g)(x) :=∫ x

0 A−1(y)g(y)dy and A(x) = exp(− ∫ x

0 a(y) dy). We can utilize the analyti-
cal formulation (8.10) to show that

∥∥Gf (a)−Gf (I 0
ma)
∥∥

L∞ ≤ C
∥∥a − I 0

ma
∥∥

L∞ ,
where I0

mv(x) = v(xi−1) (piecewise constant interpolation) on [xi−1, xi). De-
fine an approximation of Gf (a) as

Gf
m(am)(x) := −

(
AN− ◦AN+

)
(f)(x)+ A

N−(1)(x)

AN−(1)(L)

(
AN− ◦AN+

)
(f)(L), (8.11)

where AN+(g)(x) := ∫ x

0 I
0
m(Ag)(y)dy, AN−(g)(x) := ∫ x

0 I
0
m(A−1g)(y)dy. The

approximation error introduced in this step can be calculated and the order is
m−1, which is the convergence order of piecewise linear interpolation. Then
G(a) can be approximated by

∑p

i=1G
f
m(am)(yi)L

p
j (y) where L

p
j (y) is the

piecewise interpolation polynomial on a partition of (0,L) and the resulting
error is of order p−1 + m−1. Approximating Gf

m(am)(yi) by ReLU feedfor-
ward neural network bN (am;�(i)) and L

p
j (y) by tN (y; θ(k)) we then obtain

a DeepONet in the form (8.4). The approximation error by neural networks
can be bounded by observing that Gf

m(am)(yi) is a rational polynomial in
Vm = (v1, v2, . . . , vm) where vi = exp(ai(xi−xi−1) and L

p
j (y) can be rewritten

by a linear combination of two-layer ReLU neural networks and approximation
error estimates in Telgarsky (2017).

326 Numerical Analysis Meets Machine Learning

Example 8.6. Consider the Burgers’ equation (8.18). Define the solution oper-
ator by u=G(u0) from the initial condition to the solution.

For l ∈ Z, xl
j = xj + 2πl, j = 0,1, · · · ,m, where �m = {−π = x0 < x1 <

· · ·< xm = π} is a partition of [−π,π]. Let M0, M1 > 0. Define

S= S(M0,M1) := {v|[−π,π) :
∥∥v|[−π,π)

∥∥
L∞ ≤M0,‖∂xv|[−π,π)‖L∞ ≤M1,

v̄ :=
∫ π

−π

v(s) ds = 0}. (8.12)

Let Lm
j (x) be the piecewise linear nodal basis over the partition �m, hj = xj −

xj−1, and h=max1≤j≤m hj .

Theorem 8.7 (Error estimate of DeepONet for 1D Burgers equation with pe-
riodic boundary). Let G(u0) be the solution operator of the Burgers equa-
tion (8.18). Then, there exist ReLU branch networks gN (Tmu0,m;�(i)) of size
|�(i)| = O(m2 ln(m)) for i = 1, · · · ,p, and ReLU trunk networks fN (x; θ(k))

of size O(1), k = 1, · · · ,p, such that for any t > 0,

sup
u0∈S
‖G(u0)(·, t)−GN(Tmu0)(·, t)‖L∞([−π,π))

≤ C
(
p−1 +m−1 +

∣∣∣�(i)
∣∣∣− 1

2+ε)
,

where GN(Tmu0) is of the form (8.4), ε > 0 is arbitrarily small and C > 0 is
independent of m, p, |�(i)| and the initial condition u0.

The proof of the theorem can be established by three steps. First, it can be
shown that by (8.19), the solution operator G :X→ Y is Lipschitz continuous,
where X = Y = L∞([−π,π)). Second, let

Gm,p(Tmu0)(x, t)=
p∑

k=1

Gm(Tmu0)(xk, t)L
p
k (x), xk ∈�p,

where Gm(Tmu0) is defined by applying the piecewise constant and linear inter-
polation in (8.19)

Gm(Tmu0)(x)= −2κ
∫
R

∂xK(x, y, t)(I1
mv0)(y)dy∫

R
K(x, y, t)(I0

mv0)(y)dy

= v0
0c1

0(x)+ v0
1c1

1(x)+ · · · + v0
m−1c

1
m−1(x)

v0
0c2

0(x)+ v0
1c2

1(x)+ · · · + v0
m−1c

2
m−1(x)

, x= (x, t), (8.13)

where I0
mf and I1

mf be the piecewise constant interpolation and piecewise

linear interpolation of f over �m, respectively, and v0
j = v0(xj) = ∏j

i=0 Vi ,

(Vi = exp(−u0,j+u0,j−1
4κ

hi)) and ci
j (x), i = 1,2, j = 0, · · · ,m− 1 are functions

Theoretical foundations of PINNs and deep neural operators Chapter | 6 327

in x. In this step, the approximation error can be bounded by (Theorem 3.3,
Deng et al., 2022), for any x= (x, t) ∈ (−π,π)× (0,+∞),

sup
u0∈S

∣∣∣G(u0)(x)−Gm,p(Tmu0;x)

∣∣∣≤ Cp−1 + sup
u0∈S

∣∣∣G(u0)(x)−Gm(Tmu0;x)

∣∣∣
≤ Cp−1 + 2

(M2
0

κ
+M1

)
h. (8.14)

Third, we can view Gm(Tmu0)(x) as a rational function in (V0,V1, · · · ,Vm−1)
�

and thus can be well approximated by a ReLu neural network as in Telgar-
sky (2017). Specifically, there exists a ReLU network gN (Tmu0,m;�) of size
|�| = O(m2 ln(m)) and a constant C = C(κ,M0,M1) > 0, such that for any
x ∈ [−π,π)× (0,∞), there exists a set of parameters �x such that

sup
u0∈S

∣∣∣Gm(Tmu0;x)− gN (Tmu0;�x)

∣∣∣≤ Ch.

Rewriting the basis L
p
k by a ReLu neural network, we then obtain the desired

conclusion.
Extensions to 1D Burgers equation with Dirichlet boundary condition and/or

forcing terms and 2D Burgers equation have been discussed in Deng et al.
(2022).

Example 8.8 (2D diffusion-reaction equation). Consider the following 2D
diffusion-reaction equation:

−	u+ a(x, y)u= f, in �⊂R2, Bu= 0, on ∂�, (8.15)

where � is a rectangular domain and B can be the Dirichlet, Neumann or Robin
boundary operator.

Let a(x, y) ∈�, where

� = {a(x, y) ∈Wr−2,2(�)∩L∞(�) : 0≤ a(x, y)≤ C0}, C0 > 0.

Here 1 < r ≤ 3 and Ws,2 is the Sobolev space with square-integrable s-th order
weak derivatives. The theorem below states the rate of DeepONets approximat-
ing the solution operator of 2D advection-reaction-diffusion equation (8.15).

Theorem 8.9 (Approximation rate of DeepONet for 2D diffusion-reaction equa-
tions). Assume f ∈ Wr−2,2(�), 1 < r ≤ 3. Let Gf (a) be the solution opera-
tor. There exist a branch network (blessed representation) bN (am;�) ∈ Rp×1

of size O(m3 ln(ε−1)) and ReLU trunk networks tN (x; θ(k)) ∈ R1×1 of size
|θ(k)| =O(1), k = 1, · · · ,p (p =m), such that

sup
a∈�

∥∥∥Gf (a)−Gf

N
(am)

∥∥∥
L∞
≤ C
(
(logm)

1
2 m−

r−1
2 + ∣∣NbNLbN

∣∣− 1
3+ε
)
,

328 Numerical Analysis Meets Machine Learning

where ε > 0 is arbitrarily small and C > 0 is independent of m, NbN , LbN

and a(x, y). Here Gf

N
(am) = (bN (am;�))��tN and �tN = (tN (x; θ(1)), . . . ,

tN (x; θ(p))).

As we don’t have analytical solutions, we emulate the finite difference
method to establish the approximation rate of a DeepONet. The proof is es-
tablished in three steps. First, we approximate the solution by the central finite

difference scheme and obtain the approximation error (log(m))
1
2 m− r−1

2 when m

grid points are used. Second, we rewrite the solver for the linear system resulting
from the central finite difference scheme by applying the Sherman-Morrison’s
formula. Third, we emulate the Sherman-Morrison’s formula by a blessed rep-
resentation (a tree structure) (Mhaskar and Poggio, 2016) for branch networks
bN . Then we can obtain the approximation error estimates by the estimates of
the blessed representation in Mhaskar and Poggio (2016). Details of the proof
can be bounded in Section 4 of Deng et al. (2022).

8.5 Training DeepONets

To train DeepONets, we need the following:

• Sufficient amount of data, which represents diverse inputs and output;
• A suitable architecture for the underlying operator;
• A proper training method such as stochastic gradient descent methods.

High quality data generation is perhaps the first essential step for the success
of DeepONets. In real applications, data may be captured by placing affordable
and feasible number of sensors. When working with solution operators, we need
sufficient amount of data from efficient solvers of the underlying problems with
various representative inputs. The inputs are usually modelled with Gaussian
random fields with covariance functions such as Gaussian exp(−|x − y|2 /l2)

in Lu et al. (2021a, 2022), Matern kernel (Li et al., 2020). It is crucial to
tune the parameters in these covariance functions to have representative in-
puts. Over a bounded domain D, we can obtain via Mercer’s theorem that
the Gaussian process can be written as (known as Karhunen-Loeve expansion)∑∞

k=1
√

λkek(x)ξk , where (λk, ek) is an eigenpair of the covariance function,
ξk’s are independent and identically distributed standard Gaussian random vari-
ables. Also, {ek}∞k=1 forms an orthonormal basis in L2(D) over a bounded
domain D and thus has the capacity to represent a large class of functions in
a Hilbert space, which is called the reproduced kernel Hilbert space.

The architectures for DeepONets may be adjusted for different operators or
even for the same operator for a different level of accuracy. We will not discuss
this aspect further.

In the DeepONets, we often use the l2 regression. Suppose that we are given
the data pairs (u(j), v(j))Jj=1 where v(j) ≈G(u(j)) (such as those obtained from

certain numerical methods or from noisy observations). Here the functions v(j)

Theoretical foundations of PINNs and deep neural operators Chapter | 6 329

are given at certain points yi’s.

J∑
j=1

I∑
i=1

∥∥∥GN(Tmu(j))(yi)− v(j)(yi))

∥∥∥2 . (8.16)

Here the numbers I and J and the size of neural networks should be chosen
carefully to have an efficient calculation. These numbers can be estimated ac-
cording to error estimates, e.g. those in last subsections.

If we know the physics laws that the data obey, e.g. in the case of solution
operators fromDv = f with certain boundary or initial conditions, we may use
the physics-informed DeepONets, e.g., in Wang et al. (2021) and Goswami et
al. (2023) to improve the efficiency. The formulation may read as follows.

J∑
j=1

(I∑
i=1

∥∥∥GN(Tmu(j))(yi)− vj (yi))

∥∥∥2 + L∑
l=1

∣∣∣LGN(Tmu(j))− f

∣∣∣2 (zl)
)

(8.17)
with possibly extra terms on boundary and initial conditions. Here the points {zl}
can different from the points {yi}. The accuracy of DeepONets may be enhanced
by adding a norm of the gradients, e.g. Luo et al. (2023a) and in Section 8.7.

The training of the DeepONets can be performed with stochastic gradient
descent methods. However, due to the structure of DeepONets, the training of
the DeepONets can be split into two steps as in DeepONets with POD (Lu et al.,
2022) or SVD (Venturi and Casey, 2023): one can first perform singular value
decomposition and use the eigenvectors scaled by the positive eigenvalues as the
basis and emulate this basis to obtain trunk networks and then one trains branch
networks. In Lee and Shin (2023), a two-step training method is proposed based
on the Gram-Schmidt orthonormalization. The two-step method of Lee and Shin
(2023) is based on the matrix expression of the loss. Since the DeepONet can
be written as

GN(u)(y)= T (y)B(u) where T (y; θ)= [tN (y; θ(1)), . . . , tN (y; θ(p))],

B(u;�)=

⎡⎢⎢⎣
bN (Tmu;�(1))

...

bN (Tmu;�(p))

⎤⎥⎥⎦ ,

where θ and � are the collections of all the parameters of the trunk and branch
networks, respectively, it can be checked that the loss of (8.16) can be expressed
as

L(θ,�)= ‖T (θ)B(�)− V ‖2
F ,

where T is the matrix of size I ×p whose i-th row is T (yi; θ), B is the matrix of
size p× J whose j -th column is B(u(j);�), and V is the matrix of size I × J

330 Numerical Analysis Meets Machine Learning

whose j -th column is [v(j)(y1), . . . , v
(j)(yI)]�. In the first step, the method

solves

min
θ,A
‖T (θ)A− V ‖2

F ,

where A is a trainable matrix of size p × J and let (θ∗,A∗) be an optimal
solution. Then, the Gram-Schmidt orthonormalization is applied to the trunk
network, which can be done by the QR-factorization (or equivalently SVD),
which gives T (θ∗)=Q∗R∗. The second step then trains the branch network to
fit R∗A∗, i.e.,

�∗ = argmin
�

‖B(�)−R∗A∗‖.

Accordingly, the trunk network is given by T (y; θ∗)(R∗)−1 and the branch net-
work is B(u;�∗), which gives the DeepONet trained by the two-step of Lee and
Shin (2023) is GN(u)(y)= T (y; θ∗)(R∗)−1B(u;�∗).
Remark 8.10. It is worth mentioning some differences between the above two-
step training methods and the direct use of either SVD (Lu et al., 2022) or POD
(Venturi and Casey, 2023) for the trunk networks. A major difference lies in the
linear learning versus the nonlinear learning. The direct use of SVD or POD for
the trunk network means that one should expect only a linear relation between
data and the basis functions on a fixed grid. Yet, the use of the trunk network
in the learning process creates a nontrivial nonlinear relation between data and
the resulting basis functions. Furthermore, one can evaluate the basis (the trunk
network) on any points aside from the given grid. Admittedly, if one is inter-
ested in problems where the standard SVD/POD approaches perform well, one
may skip the first step of the training and use the SVD or POD basis instead of
training the trunk network. However, if one is concerned with problems where
the standard SVD/POD approaches suffer, e.g. advection dominated problems,
the nonlinear learning approach provides a viable option. In particular, Theorem
3.5 of Lee and Shin (2023) shows that there exists a trunk network architecture
having the smallest width of 4 that approximates any SVD basis. This indicates
that one advantage expected from nonlinear learning may be an efficient dimen-
sion reduction capability. A similar discussion can be found in the context of
the reduced order modeling (ROM) – linear manifold ROM versus nonlinear
manifold ROM (Kim et al., 2022).

8.6 Extending DeepONets

In Chen and Chen (1995b), tN and bN are two-layer (shallow neural networks)
while multilayer feedforward neural networks are used in Lu et al. (2021a).
Various extensions in architectures are made such as using convolutions neural
networks for branch neural networks in order to accelerate the computation as
the input of the branch networks is very high-dimensional, adding Fourier fea-

Theoretical foundations of PINNs and deep neural operators Chapter | 6 331

tures trunk networks or using cosine and sine functions as the inner layer of the
trunk network, e.g. in Lu et al. (2022).

DeepONets with proper orthogonal decomposition (POD) has been devel-
oped in Lu et al. (2022), where the trunk networks are replaced by the empirical
orthogonal basis from performing POD on the data. A similar idea is imple-
mented in Venturi and Casey (2023), where singular value decomposition is
applied.

Convolutional neural networks can be employed in branch networks to re-
duce the computational cost in Lu et al. (2022). Similarly, Fourier neural opera-
tors (Li et al., 2020; Kovachki et al., 2021a) can be applied as branch networks.

As mentioned in Section 8.1, the vanilla DeepONets depends on a fixed dis-
cretization and thus can be extended to take data from discretization of different
mesh size in Zhang et al. (2023b) by adding one more layer as a function of y

in branch networks. In Franco et al. (2023), the branch networks are designed to
accommodate mesh-based data.

Architectures of DeepONets can also be established via emulating efficient
numerical methods for the underlying operators. For example, the solution op-
erators arising from partial differential equations. For example, in Deng et al.
(2022), the above architecture of DeepONets for solution operators of 1D and
2D diffusion-reaction equations (on an interval and a square) can be established
by emulating finite difference methods and a numerical solver for the resulting
linear system. The approximation error estimates can be obtained accordingly.

8.7 Benchmark test: Burgers’ equation

Consider the 1-D Burgers equation with periodic boundary condition{
ut + uux = κuxx, (x, t) ∈R× (0,∞), κ > 0,

u(x − π, t)= u(x + π, t), u(x,0)= u0(x).
(8.18)

Then, by the Cole-Hopf transformation, the solution to (8.18) can be written

as u = −2κvx

v
, where vt = κvxx , v(x,0) = v0(x) = exp

(
− 1

2κ

∫ x

−π
u0(s)ds

)
.

With the heat kernel K(x, y, t)= 1√
4πκt

exp
(
− (x−y)2

4κt

)
, we obtain

u(x, t)=−2κ

∫
R

∂xK(x, y, t)v0(y)dy∫
R
K(x, y, t)v0(y)dy

. (8.19)

Here we assume that the initial condition u0(x) has zero mean in a period ū0 :=∫ π

−π
u0(s)ds = 0 and thus v0(x) in (8.19) is 2π-periodic.

Remark 8.11. The condition we need in the Cole-Hopf transformation is∫
R

exp(−εx2) |v0(x)| dx <∞, which can be satisfied when u0(x) is piecewise
linear as assumed. Here ε > 0. If the initial condition u0(x) has the average

332 Numerical Analysis Meets Machine Learning

ū0 �= 0, we write the solution u(x, t) := υ(x− ū0t, t)+ ū0, where υ satisfies the
Burgers equation (8.18) with the initial condition of zero average u0 − ū0.

In the following experiments, we test two different formulations for Deep-
ONets for the solution operator G defined by u= G(u0) over the interval [0,1]
(by scaling the domain from [0,2π] to [0,1], e.g., by x′ = x/(2π), denoted also
by x), when κ = 0.001.

Data generation. We use a Gaussian random field (GRF) to generate vari-
ous initial conditions. Specifically, we let u0(x) = f (sin2(ax)), where f (x) ∼
GP (0, kl(x1, x2)), a is a constant s.t. u0 satisfies the desired periodic condition.
The covariance kernel kl (x1, x2) is taken to be the Gaussian kernel with a length
scale parameter l > 0, i.e., kl (x1, x2)= exp

(−‖x1 − x2‖2 /2l2
)
. We use a high

resolution Fourier spectral method to generate data u.
Architecture and Hyperparameters of DeepONets. We apply the plain Deep-

ONet of the form (8.4) with the following setting:

• m (data length, #sensors) = 641; #udata train= 30,000; #udata test= 3000,
• (ADAM optimizer) learning rate = 6× 10−4 with exponential decay; epochs
= 500,000.

For the branch network, we use ReLU neural network with layers [m]+ [200]×
10; and for the trunk network, we use the swish neural network with layers
[1] + [200] × 10;

We use the following two Loss functions: the standard MSE:

L1 = 1

Nu ×Ny

‖Tdata −GT (udata)‖2
l2

= 1

Nu ×Ny

Nu∑
i=1

Ny∑
j=1

∣∣∣T (i)
j −GT

(
u(i)
)(

yj

)∣∣∣2 (8.20)

and MSE with regularization by first-order derivatives:

L2 = 1

Nu ×Ny

‖Tdata −GT (udata)‖2l2 +
λg

Nu ×Ny

|∂yTdata − ∂yGT (udata) |2l2
(8.21)

Here we obtain ∂yTdata by finite difference or spectral differentiation. The Deep-
ONet are implemented in Python3 and TensorFlow2.

Index 1 2
Loss function L1 L2

test MSE 5.313× 10−3 5.963× 10−4

test relative l2 8.146× 10−2 2.115× 10−2

test mean l∞ 3.065× 10−1 1.093× 10−1

test max l∞ 2.888× 100 1.999× 100

Theoretical foundations of PINNs and deep neural operators Chapter | 6 333

From the table, we observe that using H 1 regularization can enhance the
accuracy.

More benchmark problems can be found in Lu et al. (2022) and Luo et al.
(2023b) (fluid flows) and in many related works.

Acknowledgments
GEK acknowledges support by the DOE SEA-CROGS project (DE-SC0023191), the MURI-
AFOSR FA9550-20-1-0358 project, and the ONR Vannevar Bush Faculty Fellowship
(N00014-22-1-2795).

Appendix 6.A Approximation of elementary functions with
ReLU NNs

Note that the ReLU activation function satisfies the positive-homogeneity of
order 1, i.e., for any a > 0, we have

φ(ax)= aφ(x),

where φ(x)=max{x,0}. Therefore, for any C > 0 and any ReLU network em-
ulated by {W�,b�}L�=1, we have

R[θ](x)= CLR[θ̃C](x) where θ̃C = {C−1W�,C−1b�}L�=1.

Therefore, in principle, there is a simple way of controlling the magnitude of
weights and biases by setting C� 1 and by expressing a (possibly) large number
CL with additional layers of controlled weights. However, such a naive con-
struction will not consider the potentially complex structure of R[θ] and may
lead to unnecessarily large NN architectures at the end.

Lemma 6.A.1 (Magnitude control by depth and width). For any C > 0, sup-
pose s ∈ N and r ∈ N≥2 satisfy C ≤ sr−1Mr . Then, there exists a r-layer
ReLU network R[θ] : R → R with the architecture of �nθ = (s⊕(r−1)) and
M[θ] = 2s + (r − 2)s2 such that

R[θ](x)= Cφ(x), |θ |∞ ≤M.

Furthermore, assuming r ∈ N≥2, there exists a r-layer ReLU network R[θ ′] :
R→R with the architecture of �nθ ′ = (2s⊕(r−1)) andM[θ ′] = 4s + 4(r − 2)s2

such that

R[θ ′](x)= Cx, |θ ′|∞ ≤M.

Proof. Let W 1 = [M, · · · ,M]� ∈ Rs×1 and Wr = C
sr−1Mr [M, · · · ,M] ∈ R1×s .

For 2≤ l < r , let [Wl]ij =M ∈Rs×s . By letting bl = 0 for all 1≤ l ≤ r , it then
can be checked that R[θ](x)= Cφ(x) with θ = {Wl,bl}rl=1 and |θ |∞ ≤M.

334 Numerical Analysis Meets Machine Learning

Similarly, let W 1 = [M, · · · ,M,−M, · · · ,−M]� ∈ R2s×1, and Wr =
C

sr−1Mr (W
1)� ∈ R1×2s . For 2 ≤ l < r , let Wl

i = (W 1)� ∈ R1×2s for all 1≤ i ≤
2s. By letting bl = 0 for all 1≤ l ≤ r , it then can be checked that R[θ ′](x)= Cx

with θ ′ = {Wl,bl}rl=1 and |θ ′|∞ ≤M.

Lemma 6.A.2 (Duplication of Width). Let θ = {W�,b�}L�=1 be a ReLU NN
whose architecture is �nθ = (n1, . . . , nL−1), let k ∈N≥1, and j ∈ {1, . . . ,L− 1}.
Let θ ′[j,k] := {W �[j,k],b

�[j,k]}L�=1 where

(if j = 1) :⎧⎪⎪⎨⎪⎪⎩
W 1[j,k] = 1k×1 ⊗W 1,b1[j,k] = 1k×1 ⊗ b1

W �[j,k] = 1k×k ⊗W�,b�[j,k] = k�−11k×1 ⊗ b� if 2≤ �≤ L− 1

WL[j,k] = 11×k ⊗WL,bL[j,k] = kL−1bL,

(if 2≤ j ≤ L− 1) :⎧⎪⎪⎨⎪⎪⎩
W �[j,k] =W�, b�[j,k] = b� if 1≤ � < j

W �[j,k] = 1k×k ⊗W�,b�[j,k] = k�−j 1k×1 ⊗ b� if j ≤ �≤ L− 1

WL[j,k] = 11×k ⊗WL,bL[j,k] = kL−j bL.

Then, the ReLU network θ ′[j,k] satisfies

R[θ ′[j,k]](·)= kL−j ·R[θ](·),
with the architecture of �nθ ′[j,k] = (n1, . . . , nj−1, knj , . . . , knL−1). Furthermore,

|W �[k]|∞ = |W�|∞ and |b�[k]|∞ = kmax{0,�−j}|b�|∞ for all 1≤ �≤ L. In partic-

ular, if b� = 0 for all �≥ j , we have |θ ′|∞ = |θ |∞.

Lemma 6.A.3 (Concatenation of two networks). Let θ1 = {Wl,bl}L1
l=1 and θ2 =

{Al, cl}L2
l=1 be two networks whose architectures are �ni and the output dimension

of R[θ1] is equal to the input dimension of R[θ2]. Then, there is a ReLU network
θ that emulates the composition of the two networks, i.e., R[θ](x) = R[θ2] ◦
R[θ1](x) for all x with the architecture of �n= (�n1, �n2) where

θ := {(W 1, b1), · · · , (A1WL1 ,A1bL1 + c1), (A2, c2), · · · , (AL2 , cL2)}.
(6.A.1)

Proposition 6.A.4. Let R[θ0] : Rd → R be a L-layer ReLU NN with the ar-
chitecture of �n0 = (n1, . . . , nL−1) and |θ0|∞ = B > 0. For any M such that
M ∈ (0,B), k ∈ N and j ∈ {1, . . . ,L − 1}, suppose (s, r) ∈ N × N satisfying
(B

M)L ≤ kL−j (sM)r−1. Then, there exists a ReLU NN R[θ] such that

R[θ](x)= R[θ0](x) ∀x ∈Rd, |θ |∞ =M,

Theoretical foundations of PINNs and deep neural operators Chapter | 6 335

with the architecture of �nθ = (n1, . . . , nj−1, knj , . . . , knL−1,2s⊕(r−1)).

Proof. Let θ0 = {W�,b�}L�=1 and observe that

R[θ0](x)= (
B

M
)LR[θ0,M](x), θ0,M = {M

B
W�,

M

B
b�}L�=1,

which gives |θ0,M|∞ ≤M.
Suppose (s, r) ∈ N× N≥2 satisfying (B

M)L ≤ (sM)r−1. Following the con-
struction given in Lemma 6.A.1, but by setting the weight matrix of the 1st
hidden layer as [1, . . . ,1,−1, . . . ,1]� ∈ R2s×1, we obtain a r-layer ReLU NN
R[θ ′] such that R[θ ′](x) = (B

M)Lx for all x with the architecture of �nθ ′ =
(2s⊕(r−1)). Let R[θ] be the composition of R[θ ′] and R[θ0,M], which gives
R[θ](x)= R[θ ′] ◦R[θ0](x)= (B

M)LR[θ0,M](x) for all x. It then can be checked
that the architecture of R[θ] is �nθ = (�nθ0,2s⊕(r−1)). The layer that connects the
last layer of θ0 and the first layer of θ ′ (see (6.A.1)) is given by

[1, · · · ,1,−1, · · · ,−1]�(
M

B
)WL, [1, · · · ,1,−1, · · · ,−1]�(

M

B
)bL,

whose maximum norm is bounded by M. Therefore, |θ |∞ =M.

Lemma 6.A.5 (Heaviside). For x = (x1, · · · , xd) ∈Rd , let

H(x)=
{
I[0,∞)(x) if d = 1,

I[0,∞)×Rd−1(x) if d ≥ 2.

Suppose (s, r, k) ∈N3 such that ε−1M−2 ≤ k(sM)r−1. Then, there exists a ReLU
network θ such that �nθ = (2k,2s⊕(r−1)) and |θ |∞ =M and

‖R[θ](·)−H(·)‖Lp(Rd) ≤ ε
− 1

p .

In particular, by letting s = k, we have �nθ = (2s⊕r).

Proof. First, we observe that ∀(x2, . . . , xd) ∈Rd−1,

H̃ε(x)= H̃ε(x1, . . . , xd)= ε−1 [φ(x1)− φ(x1 − ε)]=

⎧⎪⎨⎪⎩
1 if ε ≤ x1

0 if x1 ≤ 0

ε−1x1 if 0≤ x1 ≤ ε

and ‖H̃ε(·) − H(·)‖p
Lp(Rd)

≤ ε. Assuming ε ∈ (0,1], observe that H̃ε(x) =
ε−1M−2R[θ0](x) where R[θ0](x) = M(φ([M,0]x) − φ([M,0]x − εM)) with
�nθ0 = (2) |θ0| =M. Suppose (s, r) ∈ N × N≥3 such that ε−1M−2 ≤ (sM)r−1.
It then follows from Proposition 6.A.4 that there exists θ such that R[θ] = H̃ε

with �nθ = (2,2s⊕(r−1)) and |θ | =M.

336 Numerical Analysis Meets Machine Learning

Lemma 6.A.6 (Indicator 1D). Let (s,r,k) ∈N3 satisfying ε−1M−2 ≤ k(sM)r−1.
For any a, b ∈ [−1/2,1/2] and ε ∈ (0, 1

2], there exists a ReLU NN, θ such that

‖R[θ](·)− I[a,b](·)‖Lp(R) = (
2

p+ 1
ε)

1
p ,

with �nθ = (4k,2s⊕(r−1)) and |θ |∞ =M. In particular, if s = 2k, we have �nθ =
(2s⊕r).

Proof. For any a, b ∈ [−1/2,1/2] such that a < b, let us consider a two-layer
NN, θε such that

R[θε](x)= 1

ε
[φ(x − a)− φ(x − a − ε)− φ(x − b+ ε)+ φ(x − b)] ,

which satisfies ‖R[θ0](·)− I[a,b](·)‖Lp(R) = (2
∫ ε

0 (1
ε
x)pdx)1/p = (2

p+1ε)1/p.

Assuming ε ≤ 1
2 , observe that R[θε](x)= ε−1M−2 ·R[θ0](x) where

R[θ0](x)=M
[
φ(Mx −Ma)− φ(Mx −M(a + ε))− φ(Mx −M(b− ε))

+ φ(Mx −Mb)
]
,

with �nθ0 = (4) and |θ0| =M.
Let (s, r) ∈ N × N≥3 satisfying ε−1M−2 ≤ (sM)r−1. It then follows from

Proposition 6.A.4 that there is a ReLU NN, θ , such that R[θ] = R[θε] with
�nθ = (4,2s⊕(r−1)) and |θ |∞ =M.

Lemma 6.A.7 (Parallelization of multiple NNs, Petersen and Voigtlaender,
2018). For j = 1, . . . ,N , let θj be a L-layer NN whose architecture is �nθj . Let
us define the separate Psp({θj }Nj=1) and the joint Pjt({θj }Nj=1) parallelizations

of {θj } by

R[Psp({θj }Nj=1)](z1, . . . , zN)=

⎡⎢⎢⎣
R[θ1](z1)

...

R[θN](zN)

⎤⎥⎥⎦ ,

R[Pjt({θj }Nj=1)](x)=

⎡⎢⎢⎣
R[θ1](x)

...

R[θN](x)

⎤⎥⎥⎦ ,

whose architectures are

�nPsp({θj }Nj=1)
= �nPjt({θj }Nj=1)

=
N∑

j=1

�nθj

Theoretical foundations of PINNs and deep neural operators Chapter | 6 337

and

|Psp({θj }Nj=1)|∞ = |Pjt({θj }Nj=1)|∞ =max
j
|θj |∞.

Remark: If the output dimension of R[θj] is 1, the weight matrix of the
last layer of Psp({θj }Nj=1) is the form of the block diagonal matrix. This allows

one to express
∑N

j=1R[θj](zj) without affecting the magnitude of NN. For
the notational simplicity, if there is no ambiguity, we denote the NN for such
summation by Psp({θj }Nj=1). A similar statement works for Pjt({θj }Nj=1) as well.

Lemma 6.A.8 (Indicator in d-dimension). For d ∈ N, let ai, bi ∈ [−1/2,1/2]
with ai < bi and bi−ai

2 > ε for all i = 1, · · · , d . Let M≥ 1 be a given. For any
B > 1 and ε ∈ (0, 1

2], let (s, r, r ′) ∈N×N2≥2 be integers satisfying

ε−1M−1 ≤ 0.5(sM)r−1,

B ≤ ((ds + 1)M)r
′−1

Then, there exists a ReLU network � such that for any |f | ≤ B,

‖R[�](·, f (·))− I∏d
i=1[ai ,bi](·)f (·)‖Lp(Rd) ≤ 4dBε,

whose architecture is �n� = (2ds + 2)⊕(r+r ′) and |�|∞ = M. Also, for any
|f |, |g| ≤ B, we have

‖R[�](·, f (·))−R[�](·, g(·))‖Lp(Rd) ≤ 2‖f − g‖
Lp(
∏d

i=1[ai ,bi]).

Proof. Let x= (x1, · · · , xd) ∈Rd and y ∈R, and define

n(x, y)= dBφ

(
1

d

d∑
i=1

R[Ii](xi)+ 1

d
φ(y/B)− 1

)

− dBφ

(
1

d

d∑
i=1

R[Ii](xi)+ 1

d
φ(−y/B)− 1

)
,

where B ≥ 1 and R[Ii](·) is a neural network from Lemma 6.A.6 satisfying

‖I[ai ,bi](x)−R[θIi
](x)‖Lp(R) ≤ ε

− 1
p . It then can be checked that

n(x, y)=
⎧⎨⎩y if x ∈∏d

i=1[ai + ε, bi − ε],
0 if x /∈∏d

i=1[ai, bi].

Since φ is 1-Lipschitz, we have |n(x, y)| ≤ 2B whenever |y| ≤ B. Thus, for any
|f | ≤ B, since the Lebesgue measure of

∏d
i=1[ai, bi]\∏d

i=1[ai + ε, bi − ε] is

338 Numerical Analysis Meets Machine Learning

bounded by (2d)ε, we have

‖n(x, f (·))− I∏d
i=1[ai ,bi](·)f (·)‖Lp(Rd) ≤ (2B)(2d)ε.

The rest of the proof constructs a ReLU network that exactly emulates
n(x, y). Let the architecture of Ii be �nI = (2s⊕r) for all i.

Suppose B > 1 and M≥ 1. Let θ4 = {W�
4 ,b�

4}r+1
�=1 where W 1

4 = [B−1;−B−1],
W�

4 = I2 for 2≤ � and b�
4 = 0. Then, R[θ4](y)=

[
φ(y/B)

φ(−y/B)

]
with �nθ4 = (2⊕r)

and |θ4|∞ =M.
By modifying the bias vector of the last layer in Ii , one can find I′i such that

R[I′i](x) = R[Ii](x)− 1 while having the same architectures and magnitude.
Let θ1 = Psp({I′i}di=1 ∪ θ4) such that

R
[
Psp({Ii}di=1 ∪ θ4)

]
(x, y)=

⎡⎢⎢⎢⎢⎣
R[I1](x1)− 1

...

R[Id](xd)− 1

R[θ4](y)

⎤⎥⎥⎥⎥⎦
with |θ1|∞ =M and �nθ1 = (d2s + 2)⊕r .

Let θ5 = {Wl
5, b

l
5}2l=1 where bl

5 = 0, W 2
5 = 11×k ⊗ [1,−1], and

W 1
5 = (ds + 1)−11k×1

[
1 1 · · · 1 1 0
1 1 · · · 1 0 1

]
∈R2k×(d+2).

Then consider � := θ5 • θ1. Then, it can be checked that R[�](x, y) =
k

(ds+1)B
n(x, y) with |�|∞ =M. By letting k = ds + 1, we have �n� = (2ds +

2)⊕(r+1).
Choose r ′ ∈ N such that B ≤ ((ds + 1)M)r

′−1. It then follows from Propo-
sition 6.A.4 that there exists a NN θ such that R[θ] = BR[�] = n(x, y) with
|θ | =M and �nθ = (2ds + 2)⊕(r+r ′+1).

Lemma 6.A.9 (Sum of Indicators). For d ∈ N, let ai,l, bi,l ∈ [−1/2,1/2] with

ai,l < bi,l and bi,l−ai,l

2 > ε for all i = 1, · · · , d and l = 1, · · · ,N . Let M ≥ 1
be a given. For any B > 1 and ε ∈ (0, 1

2], let (s, r, r ′) ∈ N × N2≥2 be integers
satisfying

ε−1M−1 ≤ 0.5(sM)r−1,

B ≤ ((ds + 1)M)r
′−1

Let � be a RN -valued ReLU NN whose architecture is �n� with |�|∞ ≤M and
|R[�]l (x)| ≤ B for all l and for all x ∈ Rd . Then, there exists a ReLU NN �

Theoretical foundations of PINNs and deep neural operators Chapter | 6 339

such that∥∥∥∥∥R[�](·)−
N∑

l=1

I∏d
i=1[ai,l ,bi,l]R[�]l (·)

∥∥∥∥∥
Lp([−1/2,1/2]d)

≤ 4dBNε,

whose architecture is �n� = (�n�, (2N(ds + 1))⊕(r+r ′)) and |�|∞ ≤M.

Proof. Let � be a given network having L0 layers and Idd be a L0-layer identity
network such that R[Idd](x) = x for all x ∈ Rd with �nIdd

= (2d, · · · ,2d). Let

θ0 = Pjt({Idd,�}). Then, �nθ0 = (n + 2d)⊕(L0−1) and R[θ0](x) =
[

x

R[�](x)

]
with |θ0| ≤M.

Let �0,k be a L= (r + r ′ + 1)-layer network from Lemma 6.A.8 such that
R[�0,k](x, y)≈ I∏d

i=1[ai,k,bi,k](x)y for all |y| ≤ B with �n�0,k
= (2ds+2)⊕(L−1).

Let θ̃1,k be a NN such thatR[θ̃1,k](x, v)= R[�0,k](x, vk) which can be obtained
by modifying the first layer of �0,k . Then, �nθ̃1,k

= �n�0,k
with |θ̃1,k|∞ = |�0,k|∞.

Let θ1 = Pjt({θ̃1,j }Nj=1) such that R[θ1](v, x)=∑N
k=1R[�0,k](x, vk) with �nθ1 =

(2N(ds + 1))⊕(r+r ′) and |θ1| ≤M.
Finally, let � := θ1 • θ0. It can be checked that R[�](x) =∑N

l=1R[�0,k](x,R[�]l (x)) with �n� = (�n�, (2N(ds + 1))⊕(L−1)) and |�|∞ ≤
M.

Therefore,∥∥∥∥∥R[�](x)−
N∑

l=1

I∏d
i=1[ai,l ,bi,l]R[�]l (x)

∥∥∥∥∥
Lp([−1/2,1/2]d)

=
∥∥∥∥∥

N∑
l=1

n(x,R[�]l (x))−
N∑

l=1

I∏d
i=1[ai,l ,bi,l]R[�]l (x)

∥∥∥∥∥
Lp([−1/2,1/2]d)

≤
N∑

l=1

‖n(x,R[�]l (x))− I∏d
i=1[ai,l ,bi,l]R[�]l (x)‖Lp([−1/2,1/2]d)

≤ 4dBNε,

which completes the proof.

Lemma 6.A.10 (Square x2). For any m ∈ N, let L ≥ 2 and k ≥ 1 such that
m= k(L− 1). Then, there exists a ReLU network θ such that

‖R[θ](x)− x2‖L∞[0,1] ≤ 2−2(m+1),

with the architecture of �nθ = (2k + 2)⊕(L−1) and |θ |∞ ≤ 1.

340 Numerical Analysis Meets Machine Learning

Proof. We mainly follow the proof of Lemma A.3 of Petersen and Voigtlaender
(2018). Let us first define as in Yarotsky (2022) the function

g(x)=

⎧⎪⎨⎪⎩
2x if 0≤ x < 0.5

2(1− x) if 0.5≤ x ≥ 1

0 elsewhere.

For t ∈ N, let gt (x)= g ◦ g ◦ · · ·g︸ ︷︷ ︸
t-times

be the t-times composition of g. It then can

be checked that

gt (x)=

⎧⎪⎪⎨⎪⎪⎩
2t (x − k/2t−1) if 2k

2t ≤ x ≤ 2k+1
2t for some k∈{0,1, · · · ,2t−1−1}

−2t (x − k/2t−1) if 2k−1
2t ≤ x ≤ 2k

2t for some k∈{1, · · · ,2t−1},
0 elsewhere.

Let fm(x)= x−∑m
t=1 4−t gt (x). It then follows from Proposition 2 of Yarotsky

(2022) that

‖fm(x)− x2‖L∞[0,1] ≤ 2−2−2m.

With this known result in mind, we now construct a ReLU network that exactly
represents fm(x), which already has been done in Petersen and Voigtlaender
(2018). However, we require all the network parameters to be bounded in abso-
lute values by M.

Let us define gt (x; k) as follows:

gt (x; k)= 2t

⎡⎣φ(x)+ 2
2t−1∑
s=1

(−1)sφ
(
x − 4−k s

2t

)
+ φ(x − 4−k)

⎤⎦ .

We note that gt (x;0)= gt (x) and 4−t gt (4−sgs(x); s)= 4−t−sgt+s(x).
Let gt,k, ct,k,d t,k ∈R2t+1 defined by

[gt,k]i =
{

4−k if i = 1 or 2t + 1

2 · 4−k if 1 < i < 2t + 1
,

[d t,k]i =

⎧⎪⎪⎨⎪⎪⎩
0 if i = 1

−4−k if i = 2t + 1

−4−k i
2t−1 if 1 < i < 2t + 1

,

and [ct]i = 2−t (−1)i+1, [st]i =∑(s,p)∈�i
t
2−s(−1)p+1 where

�i
t = {(s,p) ∈ {1, · · · , t} × {1, · · · ,2s} : i = p2t−s}.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 341

It then can be checked that

4−mgm(x)= cT
mφ(gm,0x + dm,0),

m∑
s=1

4−sgs(x)= sT
mφ(gm,0x + dm,0).

Since x = φ(x) in [0,1] and fm(x) can be exactly represented by a two-layer
network of width 2m + 1 whose weights and biases are all bounded by 1 (in
absolute values) and the number of nonzero weights and biases is 3 · 2m + 2.

For the deep ReLU construction, consider

C1φ(W 1x + b1)=
[

4−t gt (x)

x −∑t
s=1 4−sgs(x)

]
where

W 1 =
[
gt,0

1

]
∈R2t+2, b1 =

[
d t,0

0

]
∈R2t+2,

C1 =
[

cT
t 0

−sT
t 1

]
∈R2×(2t+2).

Next, we observe that

sT
t φ(gk,0(4

−t gt (x))+ dk,t)= 4−t sT
t φ(gk,0(gt (x))+ dk,0)

= 4−t
k∑

s=1

4−sgs(gt (x))=
t+k∑

s=t+1

4−sgs(x).

Thus, we have

Cφ

(
V

[
4−t gt (x)

x −∑t
s=1 4−sgs(x)

]
+ b

)
=
[

4−t−kgt+k(x)

x −∑t+k
s=1 4−sgs(x)

]
,

where

V =
[
gk,0 0

0 1

]
∈R(2k+2)×2, b=

[
dk,t

0

]
∈R2k+2,

C =
[

cT
k 0

−sT
k 1

]
∈R2×(2k+2).

For any integers L≥ 3 and kj ≥ 1 for j = 2, · · · ,L, let m=∑L
j=2 kj and set

Wj =
⎡⎣gkj ,0c

T
kj−1

0

−sT
kj−1

1

⎤⎦ , bj =
[
d

kj ,
∑j

s=2 ks

0

]
, 1 < j < L,

342 Numerical Analysis Meets Machine Learning

and WL = [−sT
kL

,1] ∈ R1×(2kL+2) and bL = 0. Then, θ = {Wj,bj }Lj=1 is a L-
layer ReLU network with the architecture of

�n= (2k2 + 2,2k3 + 2, · · · ,2kL + 2),

such that R[θ](x) = fm(x). Also, since every elements of gk,0 and ck are less
than one, all the parameters are bounded by 1 in absolute values.

Lemma 6.A.11 (Multiplication). For B ≥ 1
2 and m ∈N, let (L, k, r) ∈N3 such

that

m= k(L− 1),

B2 ≤ (3(2k + 2))r−1.

Then, there exists a ReLU network ×̃ satisfying

• for all x, y ∈ [−B,B], we have |xy −R[×̃](x, y)| ≤ 2−2m;
• for all x, y ∈ [−B,B] with xy = 0, we have R[×̃](x, y)= 0;
• |×̃|∞ ≤ 1 and �n×̃ = (3(2k + 2))⊕(L+r−1)

Proof. As in the proof of Proposition 3 in Yarotsky (2022), it follows from xy =
(x+y)2−x2−y2

2 that we define

hm(x, y)= B2

2

[
fm

(|x + y|
B

)
− fm

(|x|
B

)
− fm

(|y|
B

)]
.

Then, |hm(x, y)− xy| ≤ (B
2m

)2
.

Let θ0 = {Wl
0, b

l
0}2l=1 be a two-layer network of width 12 such that

R[θ0](x, y)= (|x + y|/B, |x|/B, |y|/B)� and |θ0|∞ ≤ 1.
By Lemma 6.A.10, there exists a network θ1 such that R[θ1](x) = fm(x).

Then Psp(θ
1) gives R[Psp(θ

1)](x, y, z)= fm(x)−fm(y)−fm(z)
2 with |θ1|∞ ≤ 1 and

�nθ1 = (3(2k + 2))⊕(L−1).
Let θ = Psp(θ

1) • θ0. It then can be checked that R[θ](x, y)= B−2hm(x, y)

with |θ |∞ ≤ 1 and �nθ = (12, (3(2k+2))⊕(L−1)). Lastly, let (s, r) ∈N2 such that
B2 ≤ sr−1. It then follows from Proposition 6.A.4 that there exists θ ′ such that
R[θ ′](x, y)= hm(x, y) with |θ ′| ≤ 1 and �nθ ′ = (12, (3(2k+2))⊕(L−1), s⊕(r−1)).

Lemma 6.A.12 (Monomial). Let α = (α1, · · · , αd) be a multiindex and let
n = $log2 |α|%. For any integers L ∈ N, let k ≥ 1 such that m = k(L − 1) ≥
1
2 log2
(
n
2

)
. Then, there exists a ReLU NN �α satisfying

• |xα −R[�α](x)| ≤ n2−2(m+1) for all x ∈ [−1/2,1/2]d ,
• |�α|∞ ≤ 1, and �n�α = [2n−1, . . . ,20] ⊗ �n×̃ where �n×̃ = (3(2k + 2))⊕L.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 343

Proof. Let x = (x1, · · · , xn0) ∈ Rn0 . By letting θ1 = {W 1
1 , b1

1} where W 1
1 =

eT
j ∈ R1×n0 and b1

1 = 0, it can be checked that R[θ1](x) = xj . Also, by let-

ting θ0 = {W 1
0 = 01×n0, b

1
0 = 1}, we have R[θ0](x) = 1. Thus, any monomials

of degree ≤ 1 can be represented by ReLU networks.
Let α = (α1, · · · , αd) be a multiindex such that

xα = x
α1
1 · · ·xαd

d , |α| =
d∑

j=1

αj .

For any α, let us define πα : {1, · · · , |α|} → {1, · · · , d} such that πα(i) = j if∑j−1
l=1 αl < i ≤∑j

l=1 αl . Then, there is a 1-layer ReLU network θ̄ such that
R[θ̄](x) ∈R|α| where [R[θ̄](x)]i = xπα(i) for 1≤ i ≤ |α|. It then can be checked
thatM(θ̄)= |α|.

First, let us assume that |α| = 2n for any n ∈ N. Let ×̃ be the multiplica-
tion network from Lemma 6.A.11 with B = 1/2 such that |R[×̃](x, y)− xy| ≤
2−2(m+1) for all x, y ∈ [−0.5,0.5]. Then, let ×n := P2n−1

sp (×̃) if n > 1 and
×1 := ×̃. By recursively applying similar procedures, we define

×α
Full := ×̄n

1 , where ×̄n
j := ×j • · · · • ×n−1 • ×n • θ̄ , 1≤ j ≤ n,

whose realization approximates xα within the error of n2−2(m+1), which can be
verified as follows. First, note that the network architecture of ×α

Full is given by

�n×α
Full
= [2n−1, . . . ,20] ⊗ �n×̃.

We prove the error bound by induction on n. If n= 1, we have |α| = 2 and

|xπα(1)xπα(2) −R[×α
Full](x)| = |xπα(1)xπα(2) −R[×̃](xπα(1), xπα(2))|

≤ 2−2(m+1),

which proves the claim for the case of n= 1.
Suppose the statement is true for ñ < n. For notational convenience, let us

denote R[θ] as θ . Observe that∣∣∣∣∣∣
2n∏
i=1

xπα(i) −R[×α
Full](x)

∣∣∣∣∣∣=
∣∣∣∣∣∣

2n∏
i=1

xπα(i) −R[×̃]([×̄n
2 (x)]1, [×̄n

2 (x)]2)
∣∣∣∣∣∣

≤
∣∣∣∣∣∣

2n∏
i=1

xπα(i) − [×̄n
2 (x)]1[×̄n

2 (x)]2
∣∣∣∣∣∣

+ ∣∣[×̄n
2 (x)]1[×̄n

2 (x)]2 −R[×̃]([×̄n
2 (x)]1, [×̄n

2 (x)]2)
∣∣

≤ 2−2(m+1) +
∣∣∣∣∣∣
2n−1∏
i=1

xπα(i) − [×̄n
2 (x)]1

∣∣∣∣∣∣ · ∣∣[×̄n
2 (x)]2

∣∣

344 Numerical Analysis Meets Machine Learning

+
∣∣∣∣∣∣

2n∏
i=2n−1+1

xπα(i) − [×̄n
2 (x)]2

∣∣∣∣∣∣
∣∣∣∣∣∣
2n−1∏
i=1

xπα(i)

∣∣∣∣∣∣
≤ 2−2(m+1) + (n− 1)2−2(m+1) = n2−2(m+1),

where the last inequality uses the induction hypothesis and the facts that∣∣∣∏2n−1

i=1 xπα(i)

∣∣∣≤ 2−2 and
∣∣[×n

2 (x)]2
∣∣≤ (n− 1)2−2(m+1)+ 2−2 ≤ 1− 2−2. Note

that m is chosen to satisfy

m≥ 1

2
log2

(
n− 1

2

)
.

It now suffices to prove the case where 2n−1 < |α| < 2n. Let α1, α2 be
multiindices such that α1 + α2 = α where |α1| = 2n−1 and |α2| = |α| − 2n−1.
Let us consider the following network. Given α2, let θ̂ be a one-layer network
with the architecture of �n

θ̂
= (n0, |α|) such that [R[θ̂](x)]i = xπα(i). Let H(x)=

$ x2 %, H(j)(x) =
j times︷ ︸︸ ︷

H ◦ · · · ◦H(x) and H(0)(x) = x. Let h
j
|α| := H(n−j)(|α|). Since

2n−1 < |α|< 2n, h1|α| = 2.
Let us recursively define

×α
Full := ×n

1 , where ×n
j := ×̂j • · · · • ×̂n−1 • ×̂n • θ̂ , 1≤ j ≤ n,

where ×̂j is a network such that

×̂j =

⎧⎪⎨⎪⎩P�
h
j
α
2 �(×̃), if h

j
α is even,

P(P�
h
j
α
2 �(×̃), IdL+1,1) if h

j
α is odd,

whose architecture is

�n×̂j
=

⎧⎪⎨⎪⎩�
h

j
α
2 �×̃ if h

j
α is even,

�hj
α
2 �×̃ + 2⊕L if h

j
α is odd

that satisfies[
R[×n

j](x)
]
i

=

⎧⎪⎨⎪⎩R[×̃]
(
[R[×n

j−1](x)]2i−1, [R[×n
j−1](x)]2i

)
, if 1≤ i ≤ �hj

α
2 �,

[R[×n
j−1](x)]

h
j
α
, if h

j
α is odd

Theoretical foundations of PINNs and deep neural operators Chapter | 6 345

It then can be checked that
∣∣xα −R[×α

Full](x)
∣∣ ≤ n2−2(m+1), and the architec-

ture of ×α
Full is given by

�n×α
Full
= (d,vn−1

×̃ , · · · ,v0
×̃,1),

where v
n−1−j

×̃ = �h
j
α

2
�×̃ + sj 2⊕L, sj ≡ h

j
α (mod 2),

for 0≤ j < n. By observing �hj
α
2 � + sj ≤ 2n−1−j , the proof is completed.

Lemma 6.A.13 (Polynomials). Let q ∈ N, {xl}ql=1 ⊂ [−1/2,1/2]d , n =
$log2 n%. Let γj,� = ∑j≤α,|α|≤n cα,�

(α
j

)
(−x�)

α−j and let γ :=
max|j|≤n,1≤�≤q |γj,�|. For any m ∈ N, let (k,L) ∈ N2 such that m= k(L− 1)≥
1
2 log2

(
log2 n

2

)
. For a given M≥ 1, let (s, r) ∈N2 satisfying γ ≤ (sM)r−1. Then,

there exists a Rq -valued ReLU NN �n such that |�n|∞ ≤M satisfying∣∣∣∣∣∣R[�n]l (x)−
∑
|α|≤n

cα,l(x − xl)
α

∣∣∣∣∣∣≤ γ · n ·
(

d + n

n

)
· 2−2(m+1),

for all x ∈ [−1/2,1/2]d and for all l ∈ {1, · · · , q}. The architecture of �n is
given by

�n�n =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s)⊕(r−1)

)
where �n×̃ = (3(2k + 2))⊕L.

Proof. Let x, x� ∈Rd . By applying the binomial theorem, we have

(x − x�)
α =
∑

0≤j≤α

(
α

j

)
(−x�)

α−j(x)j,

(
α

j

)
=

d∏
i=1

(
αi

ji

)
.

Thus, we have∑
|α|≤n

cα,�(x − x�)
α =
∑
|α|≤n

cα,�

∑
0≤j≤α

(
α

j

)
(−x�)

α−j(x)j

=
∑
|j|≤n

(x)j

⎡⎣ ∑
j≤α,|α|≤n

cα,�

(
α

j

)
(−x�)

α−j

⎤⎦ .

Let γj,� =∑j≤α,|α|≤n cα,�

(α
j

)
(−x�)

α−j and let γ := maxj≤n,1≤�≤q |γj,�|. Let

s, r ∈N satisfy γ ≤ (sM)r−1.

346 Numerical Analysis Meets Machine Learning

Let {α : 1 ≤ |α| ≤ n} = {α1, · · · ,αP ′d,n
} where P ′d,n = Pd,n − 1 and Pd,n =(

d+n
n

)
, and let n = $log2 n%. Let �α be the network from Lemma 6.A.12 such

that R[�α](x)≈ xα . If 1≤ |α|< n, let us consider �ext
α =�α • Id where Id is

the identity network such that R[IdL,d](x) = x for all x ∈ Rd and that makes
�ext

α a (nL+ 1)-layer network. Specifically,

�n�ext
α
= (d, �v�ext

α
,1), �v�ext

α
= (

(n−$log2 |α|%)L times︷ ︸︸ ︷
2d, · · · ,2d ,v

$log2 |α|%−1
×̃,α

, · · · ,v0
×̃,α

),

where v
j

×̃,α
is defined in Lemma 6.A.12.

Let �′n := Pjt (�
ext
αj
: 1≤ j ≤ P ′d,n) be a (nL+ 1)-layer network such that

R[�′n]j (x)= R[�ext
αj
](x), 1≤ j ≤ P ′d,n,

and whose architecture is �n�′n = (d,
∑P ′d,n

j=1 �v�ext
αj

,P ′d,n).

Let θ1 = {Gc,gc} be a layer such that

Gc ∈Rq×P ′d,n , gc ∈Rq,

where [Gc]�j = 1

γ
γαj ,�, [gc]� = 1

γ
γα0,�, 1≤ �≤ q,1≤ j ≤ P ′d,n.

Let �n = θ1 • �′n. Then, �n is a network with the architecture of �n�n =
(d,
∑P ′d,n

j=1 �v�ext
αj

, q) that satisfies

|R[�n]l (x)−
∑
|α|≤n

cα,l(x − xl)
α| ≤ γ

∑
|α|≤n

|xα −R[θα](x)|

≤ γ

(
n∑

k=1

k|{α : |α| = k}|
)
· 2−2(m+1) ≤ γ n

(
d + n

n

)
2−2(m+1).

Lemma 6.A.14 (Lemma A.4 in Petersen and Voigtlaender, 2018). Let n ∈ N0
and β = n+ σ where σ ∈ (0,1]. For each f ∈ Fβ,d,B and x0 ∈ (−1/2,1/2)d ,
there exists a polynomial p(x)=∑|k|≤n ck(x − x0)

k with |ck| ≤ B
k! for all |k| ≤

n, and such that

|f (x)− p(x)| ≤ dn

n! B‖x − x0‖β, ∀x ∈ [−1/2,1/2]d .

Proof. See Petersen and Voigtlaender (2018).

Lemma 6.A.15 (Truncation). For B > 0, there exists a two-layer network θ =
{Wl,bl}2l=1 with |θ |∞ ≤ 1 and �nθ = (d,2d, d) that exactly represents the trun-
cation function τB(x)= sign(x)min{|x|,B}, i.e., max{1,B}Rk[θ](x)= τB(xk)

for all 1≤ k ≤ d .

Theoretical foundations of PINNs and deep neural operators Chapter | 6 347

Proof. Let A= [1,−1], 12×1 = [1,1]T and consider the following network θ =
{Wl,bl}2l=1 such that

W 1 =min{1,B−1}Id ⊗ 12×1 ∈R2d×d, b1 =min{1,B}1d×1 ⊗AT ∈R2d×1,

W 2 = Id ⊗A ∈Rd×2d, b2 =−min{1,B}1d×1R
d×1.

It then can be checked that max{1,B}R[θ]l (x,B)= τB(xl) for all 1≤ l ≤ d and
|θ |∞ ≤ 1.

Appendix 6.B Approximation of piecewise polynomials

Theorem 6.B.1. Let d ∈ N, β = n+ σ where σ ∈ (0,1]. Let n= $log2 n%. Let
M ≥ 1 be given. The following seven integers (k,L, s, s′, r, r ′, r ′′) decide the
specific architecture that depends on the approximation accuracy (controlled by
m, the magnitude M of weights and biases.

• For any m ∈N, choose (k,L) ∈N2 such that m= k(L−1)≥ 1
2 log2

(
log2 n

2

)
.

• For any (s, r) ∈N2, let γ̃ (d, n,B)≤ (sM)r−1 where γ̃ is defined in (6.B.1).
• For any (s′, r ′, r ′′) ∈N3, let 22(m+1)M−1 ≤ 0.5(s′M)r

′−1 and (1+ dn+β

n!)B ≤
((ds + 1)M)r

′′−1.

Then, there exists a ReLU NN � such that |�|∞ ≤M and for any f ∈ Fβ,d,B ,
there are network parameters that depend on f satisfying

‖f (x)−R[�](x)‖Lp([−1/2,1/2]d) ≤ C′(d,n,β,B)2−
β

d+β
(2m+1)

,

where C′(d,n,β,B) = 2 max{max{d,n}max{(1 + dn

n! d
β)B, γ̃ (d, n,B)Pd,n},

dn+β

n! B}. The architecture of � is given by

�n� = (�n�0 ,2(Nd + d), (2Nd(ds′ + 1))⊕(r ′+r ′′)), Nd = 2
d

d+β
(2m+1)

,

where Pd,n =
(
d+n

n

)
and

�n�n =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s)⊕(r−1)

)
+ (2d)⊕(nL+r−1),

where �n×̃ = (3(2k + 2))⊕L.

Proof. Let N ∈ N which will be chosen later. For λ ∈ {1, · · · ,N}d =: [N]d , let
us consider a partition of [−1/2,1/2]d (with disjointness up to null sets):

Iλ :=
d∏

i=1

[
λi − 1

N
− 1

2
,
λi

N
− 1

2

]
,

⋃
λ∈[N]d

Iλ = [−1/2,1/2]d,

xλ = [xλ]i = (
λi − 1

2

N
− 1

2
).

348 Numerical Analysis Meets Machine Learning

Note that Iλ ⊂ B̄
|·|
d/N (x) for all x ∈ Iλ. It then follows from Lemma 6.A.14 that

for each λ, there exists a polynomial pλ,n of degree up to n such that

‖f − pλ,n‖C0(Iλ) ≤
dn

n! B
(

d

N

)β

=⇒

‖f − pλ,n‖Lp(Iλ) ≤N−d/p dn

n! B
(

d

N

)β

.

Here we use ‖f ‖Lp(�) ≤ μ(�)1/p‖f ‖C0 , where μ(�) is the Lebesgue measure
of �. Then, we have∥∥∥∥∥∥f (x)−

∑
λ∈[N]d

IIλ(x) · pλ,n(x)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

=
⎛⎝ ∑

λ∈[N]d
‖f − pλ,n‖pLp(Iλ)

⎞⎠1/p

≤N−β dn+β

n! B.

Also, since f ∈ Fβ,d,B , ‖f ‖C0 ≤ B and thus, it follows from Lemma 6.A.14
that

‖pλ,n‖C0(Iλ) ≤ (1+ dn

n! d
β)B := B̃(d,β,B), ∀λ ∈ [N]d ,

where B̃ depends only on d , β and B. Let xλ = [xλ]i = (
λi− 1

2
N
− 1

2) for λ ∈ [N]d .
Here pλ,n is the Taylor polynomial of degree n centered at xλ, which can be
written as

pλ,n =
∑
|α|≤n

cα,λ(x − xλ)
α =
∑
|k|≤n

γk(Cλ, xλ)x
k, cα,λ = ∂αf (xλ)

α! ,

where γk(Cλ, xλ) = ∑k≤α,|α|≤n

c
f
α,λ

α!
(α

k

)
(−xλ)

α−k and Cλ = {cα,λ}|α|≤n ⊂
[−B,B]Pd,n . Note that for any f ∈ Fβ,d,B , |cα,λ| ≤ B for any λ and α such
that |α| ≤ n. Let

γ̃ (d, n,B) := max
C⊂[−B,B]Pd,n

max
|k|≤n,x∈[−1/2,1/2]d

|γk(C, x)|. (6.B.1)

For any m ∈ N, let (k,L) ∈ N2 such that m = k(L − 1) ≥ 1
2 log2

(
log2 n

2

)
where n = $log2 n%. Also, let s, r ∈ N2 satisfy γ̃ (d, n,B) ≤ (sM)r−1. By
Lemma 6.A.13, we have a RNd+d -valued ReLU NN �n that approximates pλ,n

for all λ ∈ [N]d such that

‖R[�n]λ(x)− pλ,n(x)‖L∞(Iλ) ≤ γ̃ (d, n,B) · Pd,n · n · 2−2(m+1), ∀λ ∈ [N]d ,

Theoretical foundations of PINNs and deep neural operators Chapter | 6 349

and R[�n]λ(x)= xj for λ=Nd + j and 1≤ j ≤ d , whose architecture is

�n�n =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s)⊕(r−1)

)
+ (2d)⊕(nL+r−1),

where �n×̃ = (3(2k + 2))⊕L.

Let τ be the separate concatenation of the truncation network from Lem-
ma 6.A.15 and the identity network. That is, let �′n := τ

B̃
• �n. Then,

R[�′n]l (x)= τ
B̃
(R[�n]l (x)) for 1≤ l ∈Nd , andR[�′n]l (x)= xj for l =Nd+j

and 1≤ j ≤ d . Its architecture is

�n�′n = (�n�n,2(Nd + d)),

and |�′n|∞ ≤M.
We now apply Lemma 6.A.9 with �′n. Let ε < 1

2N
. Let (s′, r ′, r ′′) ∈N×N2≥2

such that

ε−1M−1 ≤ 0.5(s′M)r
′−1,

(1+ dn

n! d
β)B = B̃ ≤ ((ds + 1)M)r

′′−1.

Then, there exists a ReLU NN � such that |�|∞ ≤M, �n� = (�n�′0 , (2Nd(ds′ +
1))⊕(r ′+r ′′)) and∥∥∥∥∥∥R[�](x)−

∑
λ∈[N]d

IIλ(x)R[�′n]λ(x)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

≤ 4dB̃Ndε.

It then can be checked that∥∥∥∥∥∥R[�](x)−
∑

λ∈[N]d
IIλ(x) · pλ,n(x)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

≤
∑

λ∈[N]d

∥∥nε(x, p̃λ,n(x))− IIλ(x) · pλ,n(x)
∥∥

Lp(Iλ)

≤
∑

λ∈[N]d

{∥∥nε(x,pλ,n(x))− IIλ(x) · pλ,n(x)
∥∥

Lp(Iλ)

+∥∥nε(x, p̃λ,n(x))− nε(x,pλ,n(x))
∥∥

Lp(Iλ)

}
≤NddB̃ε +

∑
λ∈[N]d

∥∥p̃λ,n(x)− pλ,n(x)
∥∥

Lp(Iλ)

≤NddB̃ε +Ndγ̃ (d,n,B) · Pd,n · n · 2−2(m+1)

≤NdC(d,n,B){dε + n2−2(m+1)},

350 Numerical Analysis Meets Machine Learning

where C(d,n,B)=max{B̃(d, n,B), γ̃ (d, n,B)Pd,n}. Therefore, we have

‖f (x)−R[�](x)‖Lp([−1/2,1/2]d)

≤
∥∥∥∥∥∥R[�](x)−

∑
λ∈[N]d

IIλ(x) · pλ,n(x)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

+
∥∥∥∥∥∥f (x)−

∑
λ∈[N]d

IIλ(x) · pλ,n(x)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

≤NdC(d,n,B){dε + n2−2(m+1)} +N−β dn+β

n! B

≤ C′(d,n,β,B)((ε + 2−2(m+1))Nd +N−β),

where C′(d,n,β,B)=max{max{d,n}C(d,n,B), dn+β

n! B}.
By letting N = 2s′′ where s′′ = 2m+1

d+β
and ε = 2−2(m+1), we have

‖f (x)−R[�](x)‖Lp([−1/2,1/2]d)

≤ C′(d,n,β,B)((ε + 2−2(m+1))2ds′ + 2−βs′)

= 2C′(d,n,β,B)2−
β

d+β
(2m+1)

.

Appendix 6.C Approximation of horizon functions

Lemma 6.C.1. Let M ≥ 1 be given. Let γ ∈ Fβ,d−1,B and θγ be a ReLU
network that approximates γ from Theorem 6.B.1 with |θγ |∞ ≤ M. For any
ε ∈ (0,1], let (sh, rh) ∈ N2 such that ε−1M−1 ≤ (shM)rh . Then, there exists a
network � such that

‖R[�](x)− I[0,∞)(x1 + γ (x−1))‖Lp([−1/2,1/2]d)

≤ 2
1+p
p max

{
‖γ −R[θγ]‖

1
p

L1([−1/2,1/2]d−1)
, ε

1
p

}
,

with �n� = (�nθγ + 2⊕Lθγ , (2sh)
⊕rh) and |�|∞ ≤M.

Proof. For γ ∈ Fβ,d−1,B , let θγ be a ReLU NN from Theorem 6.B.1 that ap-
proximates γ . Since the permutation matrix does not change the accuracy of
the resulting networks, without loss of generality (up to a constant), we assume
T = Id .

Let x = (x1, · · · , xd) and x−1 = (x2, · · · , xd). After modifying the first hid-
den layer of θγ , we obtain a NN, θ ′γ such that R[θ ′γ](x)= x1+R[θγ](x−1) with

|θ ′γ |∞ = |θγ |∞ and �nθ ′γ = �nθγ + 2⊕Lθγ where Lθγ is the size of �nθγ .

Theoretical foundations of PINNs and deep neural operators Chapter | 6 351

For any ε ∈ (0,1], let (sh, rh) ∈N2 such that ε−1M−1 ≤ (sM)r . Then, there
is a NN θH such that ‖R[θH] − I[0,∞)‖Lp ≤ ε−1/p.

Let �= θH •θ ′γ with �n� = (�nθ ′γ , �nθH
) and |�|∞ ≤M. It can be checked that

‖R[�](x)− I[0,∞)(x1 + γ (x−1))‖Lp([−1/2,1/2]d) ≤ 2q max {EI ,EII } ,

where q = 1+ p−1 and

EI = ‖I[0,∞)(R[θ ′γ](x))− I[0,∞)(x1 + γ (x−1))‖Lp([−1/2,1/2]d),

EII = ‖R[θH](R[θ ′γ](x))− I[0,∞)(R[θ ′γ](x))‖Lp([−1/2,1/2]d).

First, we note that for fixed x−1 ∈ [−1/2,1/2]d−1,

x1 + γ (x−1)≥ 0 and x1 +R[θ ′γ](x̃) < 0

⇐⇒ x1 ∈ [−γ (x−1),−R[θ ′γ](x−1)),

x1 + γ (x−1) < 0 and x1 +R[θ ′γ](x−1)≥ 0

⇐⇒ x1 ∈ [−R[θ ′γ](x−1),−γ (x−1)).

Thus, it then can be seen that

(2qEI)
p ≤ 21+p‖γ −R[θγ]‖L1([−1/2,1/2]d−1).

For EII , since |I[0,∞)(x1)−R[θH](x1)| ≤ I[0,ε](x1) for all x1 ∈R, we have

(2qEII)
p ≤ 21+p

∫
[−1/2,1/2]d−1

∫
[−1/2,1/2]

I0≤x1+R[θγ](x−1)≤ε(x)dx1dx−1

≤ 21+p

∫
[−1/2,1/2]d−1

εdx−1 = 21+pε.

Therefore,

‖R[�](x)− I[0,∞)(x1 + γ (x̃))‖Lp([−1/2,1/2]d)

≤ 2
1+p
p max

{
‖γ −R[θγ]‖

1
p

L1([−1/2,1/2]d−1)
, ε

1
p

}
.

Theorem 6.C.2. Let d ∈ N, β = n+ σ where σ ∈ (0,1], r ∈ N and M ≥ 1 be
given. Let n= $log2 n%. Let m ∈N such that (2m+ 1)≥ (r + 1)

p(d−1+β)
β

.

• Let (k,L) ∈N2 such that m= k(L− 1)≥ 1
2 log2

(
log2 n

2

)
.

• Let (s′, r ′) ∈ N2 such that γ̃ (d − 1, n,B) ≤ (s′M)r
′−1 where γ̃ is defined in

(6.B.1).
• Let (s′′, r ′′, r ′′′) ∈ N3 such that 22(m+1)M−1 ≤ 0.5(s′′M)r

′′−1 and (1 +
(d−1)n+β

n!)B ≤ (((d − 1)s′ + 1)M)r
′′′−1.

352 Numerical Analysis Meets Machine Learning

• Let (sh, rh) ∈N2 such that 2
β

d−1+β
(2m+1)M−1 ≤ 0.5(shM)rh .

• Let (sI , rI) ∈N2 such that 2
β

p(d−1+β)
(2m+1)M−1 ≤ 0.5(sI M)rI−1.

For any K ∈Kr,β,d,B , there exists a ReLU NN, � such that |�|∞ ≤M and

‖R[�](x)− IK(x)‖Lp ≤ C(r,β, d,B,p)2−
β

p(d−1+β)
(2m+1)

,

where C(r,β, d,B,p)= 21+p−1+rd(4d + 2
1+p
p C′(d − 1, n,β,B)1/p) and C′ is

defined in Theorem 6.B.1. The architecture of � is

�n� = (2rd · (�nθγ + 2⊕Lθγ , (2sh)
⊕rh), (2rd+1(dsI + 1))⊕rI),

where Lθγ is the length of �nθγ , and

�nθγ = (�n�0 ,2(Nd−1 + d − 1), (2Nd−1((d − 1)s′ + 1))⊕(r ′+r ′′)),

Nd−1 = 2
d−1

d−1+β
(2m+1)

,

where Pd,n =
(
d+n

n

)
and

�n�0 =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s)⊕(r−1)

)
+ (2d)⊕(nL+r−1),

where �n×̃ = (3(2k + 2))⊕L.

Proof. For λ = (λ1, · · · , λd) ∈ {1, · · · ,2r0}d =: [2r0]d , let us consider a parti-
tion of �= [−1/2,1/2]d (disjointness upto null sets):

Iλ =
d∏

i=1

[
(λi − 1)2−r0 − 1

2
, λi2

−2 − 1

2

]
. (6.C.1)

Note that for x ∈ Iλ, Iλ ⊂ B
‖·‖�∞
2−r0 (x).

From the definition of Kr0,β,d,B , for each λ ∈ {1, · · · ,2r0}d , there is a hori-
zon function fλ ∈HF β,d,B such that IIλ(x)IK(x)= IIλ(x)fλ(x). Thus, for any
K ∈Kr0,β,d,B , we have

IK(x)=
∑

λ∈[2r0]d
IIλ(x)fλ(x).

The goal is to find a deep ReLU network that approximates∑
λ∈[2r0]d IIλ(x)fλ(x).
Let d − 1 ∈N, β = n+ σ where σ ∈ (0,1]. Let n= $log2 n%. Let M≥ 1 be

given

• For any m ∈N, choose (k,L) ∈N2 such that m= k(L− 1)≥ 1
2 log2

(
log2 n

2

)
.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 353

• For any (s, r) ∈ N2, let γ̃ (d − 1, n,B) ≤ (sM)r−1 where γ̃ is defined in
(6.B.1).

• For any (s′, r ′, r ′′) ∈ N3, let 22(m+1)M−1 ≤ 0.5(s′M)r
′−1 and

(1+ (d−1)n+β

n!)B ≤ (((d − 1)s + 1)M)r
′′−1.

From Theorem 6.B.1, for any γλ ∈ Fd−1,β,B , there exists a ReLU network θγλ

such that

‖γ −R[θγλ]‖Lp ≤ C′(d − 1, n,β,B)2−
β

d−1+β
(2m+1)

,

whose architecture is given by

�nθγλ
= (�n�0 ,2(Nd−1 + d − 1), (2Nd−1((d − 1)s′ + 1))⊕(r ′+r ′′)),

Nd−1 = 2
d−1

d−1+β
(2m+1)

,

where Pd,n =
(
d+n

n

)
and

�n�0 =
(
Pd,n · [2n−1, . . . ,20] ⊗ �n×̃, (2s)⊕(r−1)

)
+ (2d)⊕(nL+r−1),

where �n×̃ = (3(2k + 2))⊕L,

while |θγλ |∞ ≤ M. By Lemma 6.C.1, for any ε ∈ (0,1], let (sh, rh) ∈ N2

such that ε−1M−1 ≤ (shM)rh . Then, there exists a ReLU NN �γλ such that
R[�γλ](x) = R[θH](x1 + R[θγλ](x−1)) whose architecture is given by �n�γ :=
�n�γλ
= (�nθγλ

+ 2⊕Lθγλ , (2sh)
⊕rh) and |�|∞ ≤M.

By jointly concatenating {�γλ}λ∈[2r]d , we have a ReLU NN θF whose
architecture is �nθF

= 2r0d �n�γ satisfying |θF |∞ ≤ M such that R[θF]λ(x) =
R[θH](x1 +R[θγλ](x̃)) for λ ∈ [2r]d .

For ε′ ≤ 1
2r0+1 , let (sI , rI) ∈ N2 such that ε′−1M−1 ≤ 0.5(sI M)rI−1. By ap-

plying Lemma 6.A.9, we have a ReLU network � such that∥∥∥∥∥∥R[�](·)−
∑

λ∈[2r0]d
IIλR[θF]λ(·)

∥∥∥∥∥∥
Lp([−1/2,1/2]d)

≤ 4 · d · 2r0d · ε′,

whose architecture is �n� = (�nθF
, (2r0d+1(dsI + 1))⊕rI and |�|∞ ≤M.

Lastly, observe that

‖R[�](x)− IK(x)‖Lp

≤ 2q

∥∥∥∥∥∥R[�](x)−
∑

λ∈[2r]d
IIλ(x)R[θF]λ(x)

∥∥∥∥∥∥
Lp

354 Numerical Analysis Meets Machine Learning

+ 2q

∥∥∥∥∥∥
∑

λ∈[2r]d
IIλ(x) (R[θF]λ(x)− fλ(x))

∥∥∥∥∥∥
Lp

≤ 2q+r0d

{
4dε′ + max

λ∈[2r]d
{‖R[θF]λ(x)− fλ(x)‖Lp }

}
≤ 2q+r0d

{
4dε′ + 2

1+p
p max{C′(d − 1, n,β,B)1/p2−

β
p(d−1+β)

(2m+1)
, ε1/p}

}
.

By letting ε1/p = ε′ = 2−
β

p(d−1+β)
(2m+1) we have

‖R[�](x)− IK(x)‖Lp ≤ C(r0, β, d,B,p)2−
β

p(d−1+β)
(2m+1)

,

where C(r0, β, d,B,p) = 2q+r0d(4d + 2
1+p
p C′(d − 1, n,β,B)1/p) and the

proof is completed.

Appendix 6.D Proof of Theorem 6.1

Proof. For K ∈ Kr,β,d,B , let θK be a ReLU network θK from Theorem 6.C.2
that approximates IK(x). For g ∈ Fβ ′,d,B , let θg be a deep ReLU network from
Theorem 6.B.1. Without loss of generality, let us assume that the number of
layers of θg and θK are the same. Let ×̃ be the multiplication network from
Lemma 6.A.11. We then define �= ×̃ • Pjt(θg, θK). It then can be checked that

‖R[�](x)− IK(x)g(x)‖Lp

≤ ‖R[×̃](R[θg](x),R[θK](x))−R[θK](x)R[θg](x)‖Lp

+ ‖R[θK](x)R[θg](x)− IK(x)g(x)‖Lp

≤ 2−2m + ‖R[θK](x)
(
R[θg](x)− g(x)

)‖Lp + ‖g(x) (R[θK](x)− IK(x))‖Lp .

Note that ‖g‖C0 ≤ B and |R[θK](x)| ≤ 1. Thus, it follows from Theorems 6.B.1
and 6.C.2 that

‖R[θK](x)
(
R[θg](x)− g(x)

)‖Lp ≤ ‖R[θg](x)− g(x)‖Lp

≤ C′(d,n,β ′,B)2
− β′

d+β′ (2m+1)
,

‖g(x) (R[θK](x)− IK(x))‖Lp ≤ C(r,β, d,B,p)2−
β

p(d−1+β)
(2m+1)

,

which shows that

‖R[�](x)− IK(x)g(x)‖Lp

≤ 3−1C̃

[
2−2m + 2

− β′
d+β′ (2m+1) + 2−

β
p(d−1+β)

(2m+1)

]
,

Theoretical foundations of PINNs and deep neural operators Chapter | 6 355

where C̃(r, β, d,B,p) = 3 max{C(r,β, d,B,p),C′(d,n,β ′,B),1}. Since
β ′

d+β ′ = β
p(d−1+β)+β

≤ β
p(d−1+β)

≤ 1, we have

‖R[�](x)− IK(x)g(x)‖Lp ≤ C̃ · 2− β
p(d−1+β)+β

(2m+1)
.

The architecture of � is �n� = (�nθK
+ �nθg , �n×̃).

References
Ainsworth, M., Dong, J., 2021. Galerkin neural networks: a framework for approximating

variational equations with error control. SIAM Journal on Scientific Computing 43 (4),
A2474–A2501.

Berg, J., Nyström, K., 2018. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing 317, 28–41.

Bochev, P., Gunzburger, M., 1998. Finite element methods of least-squares type. SIAM Review 40
(4), 789–837.

Bramble, J.H., Schatz, A.H., 1970. Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using
subspaces without boundary conditions. Communications on Pure and Applied Mathematics 23,
653–675.

Burman, E., Oksanen, L., 2018. Weakly consistent regularisation methods for ill-posed problems.
In: Numerical Methods for PDEs. In: SEMA SIMAI Springer Ser., vol. 15. Springer, Cham,
pp. 171–202.

Chen, T., 1998. A unified approach for neural network-like approximation of non-linear functionals.
Neural Networks 11 (6), 981–983.

Chen, T., Chen, H., 1993. Approximations of continuous functionals by neural networks with appli-
cation to dynamic systems. IEEE Transactions on Neural Networks 4 (6), 910–918.

Chen, T., Chen, H., 1995a. Approximation capability to functions of several variables, nonlinear
functionals, and operators by radial basis function neural networks. IEEE Transactions on Neu-
ral Networks 6 (4), 904–910.

Chen, T., Chen, H., 1995b. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks 6 (4), 911–917.

Cho, J., Nam, S., Yang, H., Yun, S.-B., Hong, Y., Park, E., 2022. Separable PINN: mitigat-
ing the curse of dimensionality in physics-informed neural networks. arXiv preprint. arXiv:
2211.08761.

Dahmen, W., Monsuur, H., Stevenson, R., 2023. Least squares solvers for ill-posed PDEs that
are conditionally stable. ESAIM: Mathematical Modelling and Numerical Analysis 57 (4),
2227–2255.

De Ryck, T., Jagtap, A.D., Mishra, S., 2023. Error estimates for physics-informed neural networks
approximating the Navier–Stokes equations. IMA Journal of Numerical Analysis, drac085.

Deng, B., Shin, Y., Lu, L., Zhang, Z., Karniadakis, G.E., 2022. Approximation rates of Deep-
ONets for learning operators arising from advection–diffusion equations. Neural Networks 153,
411–426.

E, W., Yu, B., 2018. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics 6 (1), 1–12.

Franco, N.R., Manzoni, A., Zunino, P., 2023. Mesh-informed neural networks for operator learning
in finite element spaces. Journal of Scientific Computing 97 (2), 35.

Glorot, X., Bengio, Y., 2010. Understanding the Difficulty of Training Deep Feedforward Neural
Networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, vol. 9. PMLR, pp. 249–256.

356 Numerical Analysis Meets Machine Learning

Goswami, S., Bora, A., Yu, Y., Karniadakis, G.E., 2023. Physics-informed deep neural operator net-
works. In: Machine Learning in Modeling and Simulation: Methods and Applications. Springer,
pp. 219–254.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: Proc. IEEE Int. Conf. Comput. Vis, pp. 1026–1034.

Hu, Z., Jagtap, A.D., Karniadakis, G.E., Kawaguchi, K., 2022. When do extended physics-informed
neural networks (XPINNs) improve generalization? SIAM Journal on Scientific Computing 44
(5), A3158–A3182.

Hu, Z., Shukla, K., Karniadakis, G.E., Kawaguchi, K., 2023. Tackling the curse of dimensionality
with physics-informed neural networks. arXiv preprint. arXiv:2307.12306.

Jagtap, A.D., Karniadakis, G.E., 2020. Extended physics-informed neural networks (XPINNs): a
generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics 28 (5), 2002–2041.

Jagtap, A.D., Kharazmi, E., Karniadakis, G.E., 2020. Conservative physics-informed neural net-
works on discrete domains for conservation laws: applications to forward and inverse problems.
Computer Methods in Applied Mechanics and Engineering 365, 113028.

Jagtap, A.D., Mao, Z., Adams, N., Karniadakis, G.E., 2022a. Physics-informed neural networks for
inverse problems in supersonic flows. Journal of Computational Physics 466, 111402.

Jagtap, A.D., Shin, Y., Kawaguchi, K., Karniadakis, G.E., 2022b. Deep Kronecker neural networks:
a general framework for neural networks with adaptive activation functions. Neurocomput-
ing 468, 165–180.

Kharazmi, E., Zhang, Z., Karniadakis, G.E., 2019. Variational physics-informed neural networks for
solving partial differential equations. arXiv preprint. arXiv:1912.00873.

Kharazmi, E., Zhang, Z., Karniadakis, G.E., 2021. hp-vpinns: variational physics-informed neural
networks with domain decomposition. Computer Methods in Applied Mechanics and Engineer-
ing 374, 113547.

Khodayi-Mehr, R., Zavlanos, M., 2020. Varnet: variational neural networks for the solution of partial
differential equations. In: Learning for Dynamics and Control. PMLR, pp. 298–307.

Kim, H.H., Yang, H.J., 2023. Domain decomposition algorithms for physics-informed neural net-
works. In: Domain Decomposition Methods in Science and Engineering XXVI. Springer,
pp. 697–704.

Kim, Y., Choi, Y., Widemann, D., Zohdi, T., 2022. A fast and accurate physics-informed neural
network reduced order model with shallow masked autoencoder. Journal of Computational
Physics 451, 110841.

Klibanov, M.V., Yamamoto, M., 2006. Lipschitz stability of an inverse problem for an acoustic
equation. Applicable Analysis 85 (5), 515–538.

Kopaničáková, A., Kothari, H., Karniadakis, G.E., Krause, R., 2023. Enhancing training of physics-
informed neural networks using domain-decomposition based preconditioning strategies. arXiv
preprint. arXiv:2306.17648.

Kovachki, N., Lanthaler, S., Mishra, S., 2021a. On universal approximation and error bounds for
Fourier neural operators. Journal of Machine Learning Research 22 (1), 13237–13312.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2021b. Neural operator: learning maps between function spaces. arXiv preprint. arXiv:2108.
08481.

Lagaris, I.E., Likas, A., Fotiadis, D.I., 1998. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks 9 (5), 987–1000.

Lanthaler, S., Mishra, S., Karniadakis, G.E., 2021. Error estimates for DeepOnets: a deep learning
framework in infinite dimensions.

Lee, S., Shin, Y., 2023. On the training and generalization of deep operator networks. arXiv preprint.
arXiv:2309.01020.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2020. Fourier neural operator for parametric partial differential equations. arXiv:2010.08895.

Theoretical foundations of PINNs and deep neural operators Chapter | 6 357

Lu, L., Jin, P., Karniadakis, G.E., 2019. Deeponet: learning nonlinear operators for identifying dif-
ferential equations based on the universal approximation theorem of operators. arXiv preprint.
arXiv:1910.03193.

Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E., 2021a. Learning nonlinear operators via deep-
onet based on the universal approximation theorem of operators. Nature Machine Intelligence 3
(3), 218–229.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., Karniadakis, G.E., 2022. A compre-
hensive and fair comparison of two neural operators (with practical extensions) based on FAIR
data. Computer Methods in Applied Mechanics and Engineering 393, 114778.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G., 2021b. Physics-informed neural
networks with hard constraints for inverse design. SIAM Journal on Scientific Computing 43
(6), B1105–B1132.

Lu, L., Shin, Y., Su, Y., Karniadakis, G., 2020. Dying ReLU and initialization: theory and numerical
examples. Communications in Computational Physics 28, 1671–1706.

Luo, D., O’Leary-Roseberry, T., Chen, P., Ghattas, O., 2023a. Efficient pde-constrained optimization
under high-dimensional uncertainty using derivative-informed neural operators.

Luo, Y., Chen, Y., Zhang, Z., 2023b. Cfdbench: a comprehensive benchmark for machine learning
methods in fluid dynamics. arXiv preprint. arXiv:2310.05963.

Marcati, C., Schwab, C., 2023. Exponential convergence of deep operator networks for elliptic par-
tial differential equations. SIAM Journal on Numerical Analysis 61 (3), 1513–1545.

Meng, X., Li, Z., Zhang, D., Karniadakis, G.E., 2020. PPINN: parareal physics-informed neural
network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineer-
ing 370, 113250.

Mhaskar, H.N., Poggio, T., 2016. Deep vs. shallow networks: an approximation theory perspective.
Analysis and Applications 14 (06), 829–848.

Mishra, S., Molinaro, R., 2022. Estimates on the generalization error of physics-informed neural
networks for approximating a class of inverse problems for PDEs. IMA Journal of Numerical
Analysis 42 (2), 981–1022.

Mishra, S., Molinaro, R., 2023. Estimates on the generalization error of physics-informed neural
networks for approximating PDEs. IMA Journal of Numerical Analysis 42 (1), 1–43.

Penwarden, M., Jagtap, A.D., Zhe, S., Karniadakis, G.E., Kirby, R.M., 2023. A unified scalable
framework for causal sweeping strategies for physics-informed neural networks (PINNs) and
their temporal decompositions. Journal of Computational Physics 493, 112464.

Petersen, P., Voigtlaender, F., 2018. Optimal approximation of piecewise smooth functions using
deep ReLU neural networks. Neural Networks 108, 296–330.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics 378, 686–707.

Richter-Powell, J., Lipman, Y., Chen, R.T., 2022. Neural conservation laws: a divergence-free per-
spective. Advances in Neural Information Processing Systems 35, 38075–38088.

Shang, Y., Wang, F., Sun, J., 2022. Deep Petrov-Galerkin method for solving partial differential
equations. arXiv preprint. arXiv:2201.12995.

Sheng, H., Yang, C., 2022. PFNN-2: a domain decomposed penalty-free neural network method for
solving partial differential equations. Communications in Computational Physics 5, 19–25.

Shin, Y., Karniadakis, G.E., 2020. Trainability of ReLU networks and data-dependent initialization.
Journal of Machine Learning for Modeling and Computing 1 (1), 39–74.

Shin, Y., Zhang, Z., Karniadakis, G.E., 2023. Error estimates of residual minimization using neural
networks for linear PDEs. Journal of Machine Learning for Modeling and Computing 4 (4).

Shukla, K., Jagtap, A.D., Karniadakis, G.E., 2021. Parallel physics-informed neural networks via
domain decomposition. Journal of Computational Physics 447, 110683.

Sirignano, J., Spiliopoulos, K., 2018. DGM: a deep learning algorithm for solving partial differential
equations. Journal of Computational Physics 375, 1339–1364.

358 Numerical Analysis Meets Machine Learning

Son, H., Cho, S.W., Hwang, H.J., 2023. Enhanced physics-informed neural networks with aug-
mented Lagrangian relaxation method (AL-PINNs). Neurocomputing, 126424.

Son, H., Jang, J.W., Han, W.J., Hwang, H.J., 2021. Sobolev training for physics informed neural
networks. arXiv preprint. arXiv:2101.08932.

Sukumar, N., Srivastava, A., 2022. Exact imposition of boundary conditions with distance func-
tions in physics-informed deep neural networks. Computer Methods in Applied Mechanics and
Engineering 389, 114333.

Sun, Q., Xu, X., Yi, H., 2023. Dirichlet-Neumann learning algorithm for solving elliptic interface
problems. arXiv preprint. arXiv:2301.07361.

Telgarsky, M., 2017. Neural networks and rational functions. In: International Conference on Ma-
chine Learning. PMLR, pp. 3387–3393.

Venturi, S., Casey, T., 2023. Svd perspectives for augmenting deeponet flexibility and interpretabil-
ity. Computer Methods in Applied Mechanics and Engineering 403, 115718.

Wang, S., Wang, H., Perdikaris, P., 2021. Learning the solution operator of parametric partial differ-
ential equations with physics-informed deeponets. Science Advances 7 (40), eabi8605.

Wang, Y., Jin, P., Xie, H., 2022a. Tensor neural network and its numerical integration. arXiv preprint.
arXiv:2207.02754.

Wang, Y., Liao, Y., Xie, H., 2022b. Solving Schrödinger equation using tensor neural network. arXiv
preprint. arXiv:2209.12572.

Yarotsky, D., 2022. Universal approximations of invariant maps by neural networks. Constructive
Approximation 55 (1), 407–474.

Yu, J., Lu, L., Meng, X., Karniadakis, G.E., 2022. Gradient-enhanced physics-informed neural net-
works for forward and inverse pde problems. Computer Methods in Applied Mechanics and
Engineering 393, 114823.

Zang, Y., Bao, G., Ye, X., Zhou, H., 2020. Weak adversarial networks for high-dimensional partial
differential equations. Journal of Computational Physics 411, 109409.

Zhang, H., Xu, Y., Liu, Q., Li, Y., 2023a. Deep learning framework for solving Fokker-Planck
equations with low-rank separation representation. Engineering Applications of Artificial Intel-
ligence 121, 106036.

Zhang, Z., Wing Tat, L., Schaeffer, H., 2023b. Belnet: basis enhanced learning, a mesh-free neural
operator. Proceedings of the Royal Society A 479 (2276), 20230043.

	6 Theoretical foundations of physics-informed neural networks and deep neural operators
	1 Introduction
	2 Neural networks
	3 Mathematical formulations
	3.1 Stability
	3.2 Strong formulation
	3.3 Weak/variational formulations
	3.4 Extended PINN: domain decomposition
	3.5 Useful techniques

	4 Approximation error for PINN in strong formulations
	4.1 A posteriori estimate
	4.2 A priori estimate

	5 Training/optimization methods
	5.1 Initialization schemes
	5.2 Generic methods: stochastic gradient descent
	5.3 Quasi-Newton methods of 1.5-order

	6 Approximation theory with small weights
	7 PINN with observational data
	8 Deep operator networks
	8.1 Introduction
	8.2 Vanilla DeepONets
	8.3 Approximation rates for general Hölder operators
	8.4 Error estimates for solution operators from PDEs
	8.5 Training DeepONets
	8.6 Extending DeepONets
	8.7 Benchmark test: Burgers’ equation

	Acknowledgments
	Appendix 6.A Approximation of elementary functions with ReLU NNs
	Appendix 6.B Approximation of piecewise polynomials
	Appendix 6.C Approximation of horizon functions
	Appendix 6.D Proof of Theorem 6.1
	References

