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Abstract
The electronic Schrödinger equation is one of the most fundamental models in physics,
due to its capability of accurately predicting all properties of molecules. Having efficient
numerical methods for its solution would revolutionize drug- or material discovery –
among many other fields. However, while the equation itself is easily stated, its efficient
and accurate numerical solution poses formidable challenges. This has sparked decades-
long research on the development of a plethora of different highly specialized numerical
schemes. In recent years, methods based on Deep Learning have been introduced and
shown to outperform the previous state-of-the-art in terms of accuracy, allowing for in-
creasingly large systems to be computable to within chemical accuracy. In this paper we
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survey these exciting developments from the perspective of a (numerical) mathematician.
To this end, we first provide an introduction into the mathematical theory of the electronic
Schrödinger equation and then outline numerical methods to partially overcome some of
its considerable challenges. Finally we survey recent work on Deep Learning-based Vari-
ational Monte Carlo methods and showcase some numerical results.
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Electronic Schrödinger equation, Deep learning, Variational Monte Carlo, Fermionic
neural networks
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1 Introduction

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems without
too much computation.

P. Dirac (1929)

This famous quote taken from Dirac (1929) refers to the Schrödinger equation
of electronic systems, which is also the subject of the present survey article.
The Schrödinger equation represents a partial differential equation capable of
accurately describing all nonrelativistic properties of atoms and molecules. This
means that one can – theoretically – simulate all properties of molecules from
first principles without having to resort to expensive and time-consuming exper-
iments. This has in principle the potential to lower cost and enable the search
for new materials on a much greater scale than ever before. In view of this,
the importance of developing efficient numerical methods for the electronic
Schrödinger equation is hard to overstate and solving it can be considered the
“holy grail” of computational chemistry.

Solving the equation – i.e., finding a ground-state wavefunction for a given
molecule – is computationally challenging. Analytical solutions are only known
for atoms with a single electron (i.e., a single Hydrogen atom) and thus any sys-
tem of practical interest must be solved numerically. It has furthermore been
shown that for model-Hamiltonians such as the Hubbard model, finding the
ground-state wavefunction is a QMA-hard problem (Troyer and Wiese, 2005),
making it at least as hard as any NP-complete problem.

This has motivated a diverse range of computational methods, includ-
ing renowned techniques like Density Functional Theory (DFT), which was
awarded the Nobel Prize in 1998. On the one hand, there exist methods like DFT
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or Hartree Fock that can handle systems comprising hundreds of atoms with rel-
atively crude but efficient approximations. On the other hand, methods such as
CCSD(T), often named the gold standard when it comes to precise approxima-
tions, tend to exhibit scaling behavior typically in the order of O(n7

el), where nel

represents the number of electrons considered. In the case of the configuration
interaction singles, doubles, triples, quadruples (CISDTQ) method the scaling
can even go up to O(n10

el ) (Scherbela et al., 2022), limiting the method to rather
small system sizes. For an introduction to computational methods see Szabo and
Ostlund (1996).

In more recent years, methods from machine learning have made a signifi-
cant impact in improving the tradeoff between accuracy and computational cost.
These approaches can be roughly categorized into supervised and unsupervised.
In the supervised regime one typically starts from a data set of high accuracy cal-
culations for several different compounds. This data set is then used as training
data for a machine learning regressor. Once trained, such a regressor is capable
of speeding up calculations by many orders of magnitude while retaining the
accuracy of the training data set. We refer to Schütt et al. (2020) for an overview
focused on material discovery.

The supervised learning approach leaves open the key problem of generating
highly accurate solutions to the Schrödinger equation that can be subsequently
used as training data. To address this issue, and due to their excellent approxi-
mation properties (Elbrächter et al., 2021), deep neural networks have been ex-
plored as ansatz functions for electronic wave functions. These neural networks
are then trained in an unsupervised fashion to approximate wave functions
of electronic ground states. This approach – pioneered in Carleo and Troyer
(2017); Pfau et al. (2020); Hermann et al. (2020) and coined Deep Learning
Variational Monte Carlo (DL-VMC) – has been shown to significantly outper-
form classical methods in terms of accuracy. We refer to Hermann et al. (2022)
for a summary of recent results in this direction. With its apparent ability to
better describe wavefunctions of molecules when compared to classical repre-
sentations and the great progress that could already be achieved within the span
of only a few years, DL-VMC holds the potential to revolutionize the field of
computational chemistry.

Broadly speaking, DL-VMC can be regarded as a specific instance of so-
called PINNs (physics-informed-neural-networks (De Ryck and Mishra, 2024))
applied to the Schrödinger equation. While the analysis and development of
PINN methods for solving PDEs constitutes a highly active field of research,
these methods often lag behind more standard algorithms (such as finite ele-
ments or low rank methods) in terms of accuracy (Chuang and Barba, 2022) or
sample complexity (Bayer et al., 2023; Berner et al., 2023). DL-VMC is a rare
instance of a PINN-like method that actually surpasses conventional algorithms
in terms of accuracy, making it all the more interesting.

The present paper aims to provide a survey of these exciting developments
with a specific focus on a readership coming from the field of mathematical/nu-
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merical analysis. While empirical results of DL-VMC are convincing, the math-
ematical theory behind these successes has yet to be developed. We therefore
hope that our work can serve as an invitation to members of the mathematical
community to contribute to this vibrant field.

1.1 The molecular and electronic Schrödinger equations

We start with an informal description of the molecular and electronic Schrö-
dinger equations. A molecule can be described by nnuc nuclei with R =(
R1, . . . ,Rnnuc

) ∈ R
nnuc×3 denoting the nuclear coordinates and Z =(

Z1, . . . ,Znnuc

) ∈N
nnuc denoting their respective charges. These nuclei are sur-

rounded by a cloud of nel electrons with r= (r1, . . . , rnel

) ∈Rnel×3 denoting the
electron coordinates. In atomic units (meaning that electron mass, elementary
charge, Planck’s constant � and permittivity are equal to 1) we assume that the
mass of the I -th nucleus is equal to MI . The electrons and nuclei interact with
each other through Coulomb attraction and repulsion forces, which leads to the
molecular Hamiltonian

Hmol =−1

2

nnuc∑
I=1

1

MI

∇2
RI
− 1

2

nel∑
i=1

∇2
ri
+

nel−1∑
i=1

nel∑
j=i+1

1

|ri − rj |

+
nnuc−1∑
I=1

nnuc∑
J=I

ZIZJ

|RI −RJ | −
nel∑
i=1

nnuc∑
I=1

ZI

|ri −RI | . (1)

Here the term

−1

2

nnuc∑
I=1

1

MI

∇2
RI
− 1

2

nel∑
i=1

∇2
ri

represents the kinetic energy and the term

nel−1∑
i=1

nel∑
j=i+1

1

|ri − rj | +
nnuc−1∑
I=1

nnuc∑
J=I

ZIZJ

|RI −RJ | −
nel∑
i=1

nnuc∑
I=1

ZI

|ri −RI | ,

which should be understood as a multiplication operator, represents the poten-
tial energy induced by Coulomb forces. The state of a molecule can be quantum
mechanically described by its molecular wave function � =�(R, r). The time
evolution of such a state is governed by the time-dependent Schrödinger Equa-
tion

i
∂

∂t
�(t)=Hmol�(t). (2)

While (2) in principle allows for a full description of a given molecule, it is often
too complicated to be solved, even by numerical methods.

A common simplification is given by the Born-Oppenheimer approximation
which essentially assumes that the positions of the nuclei stay fixed so that the
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term corresponding to the kinetic energy of the nuclei can be omitted in the
Hamiltonian. Heuristically, this approximation is justified since nuclei are much
heavier than electrons and therefore the motion of the nuclei R can be assumed
to occur on a much slower timescale than the motion of the electrons. Hence (to
within a certain accuracy) the motion of the nuclei can be neglected. For a fixed
geometrical conformation described by nuclear coordinates and charges (R,Z)

this leads to the new Hamiltonian

HBO
(R,Z) =−

1

2

nel∑
i=1

∇2
ri
+

nel−1∑
i=1

nel∑
j=i+1

1

|ri − rj |

+
nnuc−1∑
I=1

nnuc∑
J=I

ZIZJ

|RI −RJ | −
nel∑
i=1

nnuc∑
I=1

ZI

|ri −RI | , (3)

which is now applied to electronic wavefunctions �e :Rnel×3 � (r1, . . . , rnel)→
C, depending on the electron coordinates only, whereas the geometric confor-
mation (R,Z) is treated as a parameter. We have therefore reduced the dimen-
sionality by 3 · nnuc. Studying the simplified quantum system described by the
Hamiltonian (3) is then referred to as the Born-Oppenheimer approximation.

Of specific interest is the time-independent electronic Schrödinger Equation,
which amounts to solving the eigenvalue problem

HBO
(R,Z)�

e = λ(R,Z)�
e, λ(R,Z) ∈R. (4)

The Eigenvalues λ(R,Z) correspond to the energies that the electronic system can
assume without breaking apart (Hunziker and Sigal, 2000). The correspond-
ing Eigenvectors describe precisely those electronic states �e whose energy
E = λ(R,Z) =

〈
HBO�e,�e

〉
can be measured without uncertainty. Their time

evolution under the time-dependent electronic Schrödinger equation

i
∂

∂t
�e(t)=HBO�e(t)

can be easily calculated to yield �e(t) = e−iEt�e(0). Therefore, knowledge
of the eigenstates allows for a simple solution of the time-dependent electronic
Schrödinger equation whenever the initial state is given as a superposition of
eigenstates.

The eigenvectors �
e,0
(R,Z)

corresponding to the smallest possible eigenvalue

λ0
(R,Z)

in (4) are called electronic ground states and generally represent the most
stable and likely electronic states. The eigenvectors corresponding to higher
eigenvalues are called excited states. For a fixed number of nuclei nnuc and
fixed nuclear charges Z, the mapping EZ : Rnnuc×3 � R �→ λ0

(R,Z)
is called the

potential energy surface (PES).
The PES contains a wealth of information about the chemical properties

of a given molecule. For example, it can be used as an approximation of
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the potential energy of the nuclear coordinates R leading to the force field
FZ (R) := −∇REZ(R) acting on the nuclei. Fig. 1 shows a calculation of a PES
of hydrogen chains using a deep learning ansatz (Scherbela et al., 2022). Using
these forces, the dynamics of the nuclei can be approximately simulated classi-
cally by solving Newton’s equations

MR̈(t)= FZ (R(t)) , M = diag(M1, . . . ,Mnnuc) ∈R
nnuc×nnuc .

This in turn allows for the determination of the structure of molecules or the ab
initio simulation of chemical reactions.

FIGURE 1 (a) Potential energy surface (PES) for the H10 chain. The variable a is representing the
distance between two H-atoms and x is the distance between two H2 molecules. The lowest ground
state of the PES describes the dimerization. (b) Cubic interpolation of the PES with force vectors for
the H10 chain. Red arrows depict force vectors computed by DeepErwin via the Hellmann-Feynman
theorem, whereas black arrows represent numerical gradients that are based on finite differences of
MRCI-F12 reference calculations. (c) Forces computed by DeepErwin plotted against the respective
forces obtained from finite differences of the MRCI-F12 reference calculation. Figure is taken from
Scherbela et al. (2022).

Furthermore, one can approximate the molecular ground state �0(R, r) by
the separated product �0(R, r) ∼ �

n,0
Z (R) · �e,0

(R,Z)
(r), where �

n,0
Z (R) solves

the time-independent nuclear Schrödinger Equation

�n = λ

(
−

nnuc∑
I

1

2MI

∇2
RI
+ EZ

)
�n, λ ∈R

with minimal eigenvalue. The degree to which these approximations are valid
depends on the structure of the eigenvalues of the electronic Hamiltonian, see
for example Jecko (2014) and the references therein. At any rate, it should be
clear that the PES is an extremely important quantity since it allows for the
computation of properties of molecules without having to conduct actual exper-
iments.

A grand goal of computational chemistry is thus as follows.

Find efficient and accurate algorithms for evaluating the PES (R,Z) �→ EZ(R)
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Efficient evaluation of the PES allows, for example, to perform a computational
structure search or to compute chemical reaction rates. However, for these types
of tasks, highly accurate estimates of the ground-state energy become essential.
For example, a study by Barone et al. (2013) demonstrated that the geometrical
conformations of the smallest amino acid, Glycine, are partitioned by transition
barriers of only∼20 millihartree (mHa). To put the scale of the transition barrier
into perspective, the ground-state energy is typically several Hartree (see Fig. 2
for a visual representation).

FIGURE 2 Conceptual visualization of the relevant energy-scales on the example of Glycine. Total
energies are often hundreds of Hartrees, whereas required accuracy to predict experiments is often
only milli-Hartrees. Figure adapted from Gerard et al. (2022).

The requirement of having to achieve very high accuracy in combination
with the high dimensionality of the problem (4) (the dimension being 3× the
number of electrons) renders the efficient evaluation of the PES a formidable
challenge. An additional complication is given by the Pauli Exclusion Principle,
which posits that the electronic wave function must satisfy certain antisymmetry
conditions, see Section 2.3 below.

As already mentioned, a plethora of methods have been developed over the
last decades to solve the Schrödinger Equation approximately. Some methods
such as the Hartree-Fock (HF) method are computationally cheap and scale well
with system size, but are only accurate for a limited class of systems. Other
methods such as Configuration Interaction (CI) and Coupled Cluster (CC) often
yield highly-accurate results that are in good agreement with experiments, but
scale poorly with system size and are thus limited to small systems (cf. Fig. 3).
Density Functional Theory (DFT) has emerged as a breakthrough, and has been
awarded the Nobel Prize in chemistry in 1998, since it yields surprisingly high
accuracy while scaling well with system size. However, DFT requires the use of
an essentially uncontrolled approximation, which can fail for many systems of
interest and is thus not universally applicable.

Broadly speaking, the aim of DL-VMC is to represent the wave function
as a neural network �θ and aim to approximate the electronic ground state by
minimizing the Raleigh-Ritz quotient corresponding to the Eigenvalue problem
(4), which amounts to minimizing the loss

L(θ) := 〈H
BO�θ,�θ 〉
〈�θ,�θ 〉 .
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FIGURE 3 A conceptual visualization of the computational scaling with respect to the estimated
accuracy for different Quantum Chemistry methods. The abbreviations stand for DFT: Density
Functional Theory; DL-VMC: Deep-Learning-based Variational Monte Carl; HF: Hartree-Fock;
MP2: Møller-Plesset 2nd order; CISD: Configuration Interaction (doubles); CCSD(T): Coupled-
Cluster; CISDTQ: Configuration Interaction (quadruples). The figure is adapted from Hermann et
al. (2022).

In recent years it has been demonstrated empirically (see for example Fig. 8)
that a judiciously chosen DL-VMC ansatz is capable of achieving considerably
more accurate ground state energies than previous methods, bringing us closer
to the aforementioned “grand goal”.

1.2 Outline

In Section 2 we provide a mathematical introduction into the spectral theory of
the electronic Schrödinger equation. In particular, we will see that the electronic
Hamiltonian is self-adjoint and induces a bounded and (up to a translation) coer-
cive bilinear form on H 1, characterizes its spectrum, and elaborates on the Pauli
exclusion principle.

Section 3 provides a concise introduction into variational Monte Carlo
(VMC) and introduces ansatz spaces of functions that satisfy the Pauli exclu-
sion principle. We furthermore present results and techniques related to efficient
Markov chain Monte Carlo (MCMC) quadrature methods and preconditioning
methods for optimization.

In Section 4 we describe various neural network architectures used in DL-
VMC. This includes constructions that are transferable among different geomet-
ric conformations.

Finally, in Section 5 we review numerical results.

1.3 Notation

We denote with L2(Rd), Hk(Rd) the usual Lebesgue space, resp. Sobolev
spaces, see Evans (2022). The symbols ‖ · ‖ and 〈·, ·〉 typically denote the norm
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and inner product in L2, unless stated otherwise. The inner product of two vec-
tors v,w ∈R

d will be denoted by v ·w and the norm of v ∈R
d by |v|.

2 Mathematical preliminaries

So far the main problem (4) does not stand on a rigorous mathematical footing.
Specifically, it is a priori not clear in which sense the eigenvalue equation (4)
is well-posed, what would be the correct domain of definition of HBO, whether
this operator is self adjoint and whether an isolated minimal eigenvalue exists.
Addressing these issues requires studying the spectral theory of the electronic
Hamiltonian HBO

(R,Z)
. This will be done in Section 2.2 after a brief introduction

into some mathematical foundations of quantum mechanics in Section 2.1.
Furthermore, electrons carry an additional variable, namely the spin, which

can assume the values ± 1
2 . Therefore, the electronic wave function actually de-

pends on spin coordinates

(
(r1, σ1), . . . , (rnel , σnel)

)
, σ = (σ1, . . . , σnel) ∈

{
−1

2
,

1

2

}nel

.

The Pauli Exclusion Principle states that every admissible wave function must
be antisymmetric with respect to permutations of different spin coordinates. We
elaborate on the consequences in Section 2.3.

For notational convenience we will often drop sub- and superscripts such as
in HBO. However, it is important to note that all objects that follow will depend
on the geometric conformation (R,Z).

2.1 Basic mathematical setting

In classical mechanics, the state of a single particle in R is completely deter-
mined as a point (x,p) in phase-space R

2. Its position is uniquely determined
as x, its momentum as p and, if it has mass m and is subjected to a force field
F(x)=−∇V (x), its energy as

E = p2

2m
+ V (x). (5)

Its motion is governed by Newton’s law mẍ(t)= F(x(t)), which conserves its
energy.

Quantum states are modeled as elements of a complex Hilbert space H . Two
elements �1,�2 ∈H represent the same state if there is c ∈C \ {0} with �1 =
c�2 and we can therefore assume that states are represented by unit vectors
in H .

The position of a single particle

As an example we may consider H = L2(R), where each � ∈ L2(R) with
‖�‖ = 1 describes the wave function of a single particle. Similar to classical
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mechanics, we would like to infer properties of quantum states. For example,
for a wave function � ∈ L2(R) of a single particle we may be interested in
determining its position, its momentum or its energy, etc. However, as it is well-
known, properties of quantum states are typically not fully determined. What
quantum mechanics provides instead is a probability distribution that models
the likelihood of a particular observable assuming its value in a specific set. Re-
turning to our example of � ∈ L2(R) modeling a single particle in R we may
define the probability that the position of � lies in a measurable set E ⊂R as

P
[
The position of � is observed in E

]= ∫
E

|�(x)|2dx,

implying that the expected position is given as

E [Position of �]=
∫
R

x|�(x)|2dx = 〈X�,�〉

with X� := (x �→ x ·�(x)) denoting the position operator, which is defined on
the dense subset D(X ) := {� ∈ L2(R) : x ·�(x) ∈ L2(R)

}⊂ L2(R). For E ⊂
R measurable define the projection operator μX (E) :�(x) �→ χE(x)�(x) with
χE denoting the indicator function of E. The mapping E �→ μX (E) is called
projection-valued measure. This projection-valued measure allows to formally
decompose X as

X =
∫
R

λdμX (λ) := lim
h→0

∑
i∈Z

hiμX ([ih, (i + 1)h]). (6)

It is not hard to verify that this Riemann sum converges in the sense that

lim
h→0

〈∑
i∈Z

hiμX ([ih, (i + 1)h])�,�

〉
= 〈X�,�〉 ∀� ∈D(X ).

Given our projection-valued measure we also have

P [X ∈E]= 〈μX (E)�,�〉. (7)

The decomposition (6) also defines a functional calculus that allows for the
study of functions of X : indeed for a measurable function f : R→ R we may
define the operator

f (X ) :=
∫
R

f (λ)dμX (λ). (8)

In our example it can be seen that f (X )�(x) = f (x) ·�(x), as expected. Fi-
nally we have that

E [f (Position of �)]= 〈f (X )�,�〉 =: 〈f (X )〉� (9)
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which provides a simple expression for moments of the distribution of the
position of �. For instance, the variance of the position of � is given by
V [Position of �]= 〈(X − 〈X 〉�)2〉

�
.

Self-adjoint operators

The properties of having a decomposition (6) which defines a probability dis-
tribution (7) and a functional calculus (8) are enjoyed by every self-adjoint
operator.

Definition 2.1. Let A be a linear operator on a Hilbert space H , defined on a
dense subset D(A)⊂H . Let

D(A∗) := {� ∈H : ∃C ∈ [0,∞) : ∀� ∈D(A) : |〈�,A�〉|� C · ‖�‖} .
(10)

In other words, D(A∗) consists of those � ∈ H such that the linear functional
L� : � �→ 〈�,A�〉 is bounded on the dense set D. The boundedness implies
that L� can be extended to a bounded linear functional on all of H and by the
Riesz representation theorem there exists a unique χ ∈H with L�(·) = 〈χ, ·〉.
We can then define the adjoint operator by A∗� = χ . A is called symmetric
if A=A∗ on D(A) and self-adjoint if additionally D(A) = D(A∗). Any self-
adjoint operator is called a quantum observable.

Remark 2.2. Note that for every symmetric operator it holds that D(A) ⊂
D(A∗). This is because for �,� ∈D(A) we have that

〈�,A�〉 = 〈A�,�〉� ‖A�‖ · ‖�‖.
Self-adjointness is a somewhat subtle definition since it involves a correct

specification of the domain of definition of A. It is however the right concept
in the context of quantum mechanics, as evidenced by the spectral theorem that
we only state in an informal way. For more details please consult the excellent
monograph by Hall (2013).

Definition 2.3. The resolvent set ρ(A) of an operator A : D(A)→H consists
of all λ ∈C such that A−λ :D(A)→H is boundedly invertible. The spectrum
σ(A) of A is defined as

σ(A)=C \ ρ(A).

λ ∈C is called an Eigenvalue of A if there is � ∈D(A) \ {0} with

A� = λ�. (11)

The subspace Eλ ⊂ H containing all � ∈ H such that (11) holds is called
the Eigenspace of A corresponding to the Eigenvalue λ. All � ∈ Eλ \ {0} are
called Eigenvector of A corresponding to the Eigenvalue λ. The dimension
mλ := dim(Eλ) of Eλ is called the multiplicity of the Eigenvalue λ and λ is
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of finite multiplicity if mλ ∈ N. An Eigenvalue λ is called isolated if there is
an open neighborhood B of λ in C with σ(A) ∩ B = {λ}. If A is self-adjoint,
the discrete spectrum σdisc(A) consists of all isolated Eigenvalues with finite
multiplicity and the essential spectrum equals σess(A) := σ(A) \ σdisc(A).

If A is self-adjoint, then the spectrum has the following intuitive characteri-
zation of consisting of those values λ for which there are states that are “almost”
Eigenvectors.

Lemma 2.4. For a self-adjoint operator A it holds that

λ ∈ σ(A)⇔∀ε ∈ (0,∞) ∃� ∈D(A) : ‖(A− λ)�‖� ε‖�‖. (12)

Proof. If the right hand side of (12) holds true, then A−λ cannot be boundedly
invertible.

On the other hand, suppose that λ does not satisfy the right hand side of (12).
Then there exists δ ∈ (0,∞) with

‖(A− λ)�‖� δ‖�‖ ∀� ∈D(A). (13)

This clearly implies that A − λ is injective. It also has closed range because
if we have a Cauchy sequence �n = (A − λ)�n in the range of A − λ with
�= limn→∞�n, then by (13) the limit � = limn→∞�n exists.

We now show that � ∈D(A−λ) and (A−λ)� =�. Let B :=A−λ. Then
B is self-adjoint. Let � ∈D(A) be arbitrary. Then

〈�,B�〉 = lim
n→∞〈�n,B�〉 = lim

n→∞〈B�n,�〉 = 〈�,�〉

Therefore it holds that � ∈D(B∗)=D(B) and B� = B∗� =�.
We still need to show that B is surjective. To this end suppose that � ∈

range(B)⊥. Then

‖B�‖2 = 〈B�,B�〉 = 〈�,B∗B�〉 = 0.

By (13) this implies that �= 0. Therefore, the range of B is dense and closed
and hence B is surjective. By (13) we conclude by the Closed Graph Theorem
that B =A− λ is boundedly invertible.

Remark 2.5. An examination of the proof of Lemma 2.4 shows the useful
property that every self-adjoint operator is closed, that is, the set {(�,A�) :
� ∈D(A)} is closed in H ×H .

Furthermore, one can easily deduce from Lemma 2.4 that the spectrum is
always closed.

By working a bit harder one can obtain a more detailed characterization of
the essential spectrum of self-adjoint operators.



DL-VMC for solving the electronic Schrödinger equation Chapter | 5 243

Theorem 2.6. For a self-adjoint operator A it holds that

λ ∈ σess(A)⇔∀n ∈N ∃�n ∈D(A) : ∥∥(A− λ)�n
∥∥� 1

n
· ‖�n‖∧

∀� ∈H : lim
n→∞〈�

n,�〉 = 0. (14)

Proof. ⇒: Suppose that λ ∈ σess(A).
We distinguish three cases.
Case 1: λ is an Eigenvalue with infinite multiplicity. Then there exist count-

ably many orthonormal corresponding Eigenvectors (�n)n∈N. Let � ∈H . Then∑∞
n=1〈�n,�〉2 � ‖�‖2 which implies that limn→∞〈�n,�〉 = 0.
Case 2: λ is not an Eigenvalue. Since λ ∈ σ(A) there exists by Lemma 2.4

a sequence �n ∈H with ‖�n‖ = 1 and ‖(A− λ)�n‖� 1
n

. Since the �n’s are
bounded, by the Banach-Alaoglu Theorem there exists a weak limit (possibly af-
ter passing to a subsequence), e.g. some  ∈H with limn→∞〈�n,�〉 = 〈,�〉
for all � ∈H . It holds for all � ∈D(A− λ) that

〈,(A− λ)�〉 = lim
n→∞〈�

n, (A− λ)�〉 = lim
n→∞〈(A− λ)�n,�〉 = 0.

Therefore it holds that  ∈D((A− λ)∗)=D(A− λ) and (A− λ)∗= (A−
λ)= 0. This implies that either  is an Eigenvalue or = 0. Since we already
excluded the former, it must hold that = 0 which is what we wanted to show.

Case 3: λ is an Eigenvalue with finite multiplicity that is not isolated.
W.l.o.g. assume λ �= 0. Let μA({λ}) be the orthogonal projection on the cor-
responding Eigenspace. Consider Ã := A − λμA({λ}). Then λ cannot be an
Eigenvalue of Ã. Since it holds that σ(A)\ {λ,0} = σ(Ã)\ {λ,0} and due to the
assumption that λ is an accumulation point of σ(A), λ must be an accumulation
point of σ(Ã). Therefore (since the spectrum is always closed) it must hold that
λ ∈ σ(Ã). By Case 2 there must thus exist �n with ‖�n‖ = 1, ‖(Ã−λ)�n‖� 1

n

and ∀� ∈ H : limn→∞〈�n,�〉 = 0. The last condition implies that for all
� ∈ H : limn→∞〈μA({λ})�n,�〉 = limn→∞〈�n,μA({λ})�〉 = 0 and, since
the range of μA is finite-dimensional, together with the fact that on finite
dimensional spaces strong and weak convergence coincide, it follows that
limn→∞‖μA({λ})�n‖ = 0. This implies that limn→∞‖(A−λ)�n‖ = 0 which
proves that the right hand side of (14) holds true.
⇐: For the other direction we assume that λ ∈ σdisc(A) and suppose w.l.o.g

that λ �= 0. Define again Ã :=A− λμA({λ}). Since λ is an isolated Eigenvalue
of A, it holds that λ /∈ σ(Ã). This can be argued as follows. If λ was in the
spectrum of Ã, then λ would necessarily have to be isolated. This implies that
λ would be an Eigenvalue of Ã (the reader can verify this as an exercise. It
will probably be convenient to use the Spectral Theorem 2.11). But this would
imply that there exists an Eigenvector of A that lies in the orthogonal comple-
ment of the Eigenspace range(μA({λ})) of A w.r.t. λ, which is a contradiction.
Therefore, the right hand side of (14) cannot hold for the operator Ã and λ.
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Now assume that the right hand side of (14) holds true for the operator A and
λ. Then, using the fact that the range of μA({λ}) is finite dimensional, we can
argue exactly as in Case 3 above to deduce that the right hand side of (14) must
also hold for Ã and λ, which would give a contradiction.

Corollary 2.7. For a self-adjoint operator A it holds that

σ(A)⊂R. (15)

Proof. Let λ= a + ib with b �= 0 and � ∈D(A). Then it holds that

〈(A− λ)�, (A− λ)�〉 = 〈(A− a)�, (A− a)�〉 + ib 〈�, (A− λ)�〉
+ ib 〈�, (A− λ)�〉 + b2‖�‖2

= 〈(A− a)�, (A− a)�〉 + b2‖�‖2 � b2‖�‖2,

where the last equality follows from the self-adjointness of A. Due to Lemma 2.4
it follows that λ cannot be in the spectrum.

Remark 2.8. It might be instructive to go back to the position operator X of a
single particle. It is not hard to check that X is self-adjoint. Its spectrum is all
of R but there are no eigenvalues. Indeed, for λ ∈R, any � with (X − λ)� = 0
would have to be vanished on all of R \ {λ} which is impossible. On the other
hand, it is easy to construct function � with ‖�‖ = 1 which are arbitrarily well
localized near λ in the sense of � being supported on [λ− ε/2, λ+ ε/2]. These
functions then satisfy the right hand side of (12) and therefore λ must be in
the spectrum of X . Furthermore it is easy to see that these functions converge
weakly to 0 as ε→ 0. Therefore, σ(X )= σess(X )=R.

The spectral theorem

We will now state the spectral theorem for unbounded self-adjoint operators.
Recall the definition of a projection-valued measure.

Definition 2.9. A mapping μ from the Borel sigma algebra on a set A⊂ R to
the set of orthogonal projections on H is called a projection-valued measure
supported on A if

1. μ(∅)= 0 and μ(A)= I ,
2. For all disjoint and measurable subsets (Ei)i∈N of A it holds that

μ(
⋃

i∈N Ei)=∑i∈N μ(Ei), and
3. For E1, E2 measurable we have μ(E1 ∩E2)= μ(E1)μ(E2).

For � ∈ H we denote μ� : E �→ 〈μ(E)�,�〉 and note that μ� is a positive
Borel measure on A.

We have the following important result
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Theorem 2.10. For μ a projection-valued measure supported on A and f :
A→C measurable, let

Df :=
{
� ∈H :

∫
A

|f (λ)|2dμ�(λ) <∞
}

.

Then Df is dense in H and there exists a unique (unbounded) operator, denoted∫
A

f (λ)dμ(λ) with D
(∫

A
f (λ)dμ(λ)

)=Df and〈
�,

∫
A

f (λ)dμ(λ)�

〉
=
∫

A

f (λ)dμ�(λ). (16)

Furthermore it holds that∫
A

f (λ) · g(λ)dμ(λ)=
∫

A

f (λ)dμ(λ)

∫
A

g(λ)dμ(λ) (17)

and ∫
A

f (λ)dμ(λ)=
(∫

A

f (λ)dμ(λ)

)∗
. (18)

Proof. See Hall (2013, Proposition 10.1 and Proposition 10.2).

We can now state the spectral theorem.

Theorem 2.11 (Spectral Theorem for unbounded self-adjoint Operators). For
every self-adjoint operator A the spectrum σ(A)⊂R there exists a unique spec-
tral measure μA supported on σ(A) such that

A=
∫

σ(A)

λdμA(λ). (19)

Proof. The proof is quite long and involved. See Hall (2013, Section 10) for an
excellent exposition.

The spectral theorem readily allows for the definition of a functional calculus
on self-adjoint operators.

Definition 2.12 (Functional calculus). Let A be self-adjoint with spectral mea-
sure μA. For f : σ(A)→C measurable we define

f (A) :=
∫

σ(A)

f (λ)dμA(λ).

We have now shown that all previous desirable properties of the position
operator X can be established for every self-adjoint operator. This motivates the
following definition.
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Definition 2.13. A self-adjoint operator A on a Hilbert space H is called a
quantum observable on H .

A quantum observable thus observes (or measures) a certain property of a
state �. The outcome of this measurement is random and the spectral measure
represents the probability measure on the measurement outcome lying in a set
E if the system is in the state � with ‖�‖ = 1:

P [The measurement A of a state � lies in E]= μA
� (E).

Remark 2.14. Note that a measurement can only be realized deterministically
if the measure μA

� is concentrated in a single point λ. This can only occur if λ

is an Eigenvalue of A and � a corresponding Eigenvector.

We close this paragraph with the following result that will be used later to
turn the Eigenvalue problem into an optimization problem.

Lemma 2.15. For a self-adjoint operator A let W(A) := {� ∈H : 〈A�,�〉<
∞}. Then it holds that

infσ(A)= inf {〈A�,�〉 : � ∈W(A), ‖�‖ = 1} . (20)

Proof. Let λ ∈ σ(A). Then, by Lemma 2.4 for every ε > 0 there is � ∈D((A))

with ‖�‖ = 1 and ‖(A− λ)�‖� ε. Therefore, by Cauchy-Schwarz

|〈A�,�〉 − λ| = |〈(A− λ)�,�〉|� ε

This implies that

inf {〈A�,�〉 : � ∈W(A), ‖�‖ = 1}
� inf {〈A�,�〉 : � ∈D(A),‖�‖ = 1}� infσ(A).

For the other direction we note that by the spectral theorem we have for � ∈H

with ‖�‖ = 1 that

〈A�,�〉 =
∫

σ(A)

λdμA
� (λ) � infσ(A) ·

∫
σ(A)

1dμA
� (λ)= infσ(A)

which implies that

inf {〈A�,�〉 : � ∈W(A), ‖�‖ = 1}� infσ(A).

Other observables and the Schrödinger equation

Returning to our example of a particle moving in R we would now like to find a
quantum mechanical analog of other observables, such as momentum or energy.
The momentum operator is defined as P := −i d

dx
. Intuitively this makes sense
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because P is simply the position operator in the Fourier domain. This also shows
that P is self-adjoint. Having position and momentum operators we can now
define the energy operator, or the Hamiltonian in analogy with (5) via

H= P2

2m
+ V (X )=− 1

2m

d2

dx2 + V (X ).

Remark 2.16. The process of constructing self-adjoint quantum observables
from classical observables f (x,p) is called quantization. Due to the fact that the
position and momentum operators do not commute, this is a highly nontrivial
problem, see Hall (2013).

One can show that the Hamiltonian is self-adjoint (this is not completely triv-
ial due to the conditions on the domains of self-adjoint operators!) and therefore,
the energy of a state � ∈D(H) with ‖�‖ = 1 is distributed according to μH

� .
The evolution of quantum systems is governed by the Schrödinger equation

�̇(t)= 1

i
H�(t). (21)

Using our functional calculus one can show that �(t) = e−itH�(0) and that
U(t)= e−itH is a unitary one-parameter group which is defined on all of L2(R)

(this is one part of the famous Stone-von Neumann Theorem (Stone, 1932; von
Neumann, 1932)). Using (21) we can now model a quantum particle moving
in R.

Molecules consist of several particles, each with coordinates in R
3. It is

straightforward how the position and momentum operators can be extended to
particles in R

3. This naturally leads to the definition of the molecular Hamilto-
nian Hmol and HBO from the introduction which is our main interest of study.

2.2 The Hamiltonian of the electronic Schrödinger equation

At this point it is not clear that the electronic Hamiltonian HBO
(R,Z)

is self-adjoint.
Furthermore, we would like to know more about the precise nature of the spec-
trum of HBO

(R,Z)
. Addressing these issues are the subject of this section. For

notational convenience we will omit the subscript describing the geometric con-
formation and simply write H=HBO

(R,Z)
.

Our main tool in asserting the self-adjointness of H will be the Kato-Rellich
theorem.

Theorem 2.17 (Kato-Rellich Theorem). Let A, B be self-adjoint with D(A)⊂
D(B). Suppose that there are a ∈ (0,1) and b ∈ (0,∞) with

‖B�‖� a‖A�‖+ b‖�‖ ∀� ∈D(A).

Then A+B is self-adjoint on D(A).
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Proof. See Kato (2013, Section V, Theorem 4.13) or Hall (2013, Theorem 9.37).

We rewrite the operator H of (3) as

H=−1

2
�+ V (r)

and aim to apply the Kato-Rellich Theorem with A=− 1
2� and B = V (r). To

this end the following result will prove useful.

Proposition 2.18 (Hardy Inequality). For any smooth and compactly supported
function u on R

3 it holds that∫
R3

1

|r|2 u(r)2dr � 4 ·
∫
R3
|∇u(r)|2dr.

Proof. See Yserentant (2010, Lemma 4.1).

Theorem 2.19. The operator H is self-adjoint on L2(Rnel×3) with D(H) =
H 2(Rnel×3).

Proof. We will show that the operators A = − 1
2� and B = V (r) satisfy the

conditions of the Kato-Rellich Theorem 2.17.
We will use the Fourier transform F on R

nel×3 and assume that the reader
is familiar with its basic properties. First note that the Fourier transform of the
Laplace operator is simply given by multiplication with |ω|2. Using this fact one
can easily show that � is self-adjoint with domain given by H 2.

Hardy’s inequality (Proposition 2.18) implies that there exists a constant C

(depending on (R,Z)) with

‖B�‖� C · ‖∇�‖. (22)

Therefore, by Plancherel’s theorem and the fact that the Fourier transform of the
gradient is a multiplication operator we have that

‖B�‖2 � C ·
∫
R

nel×3
|ω|2|F�(ω)|2dω.

Let ε > 0 arbitrary and Dε > 0 so that

|ω|2 � ε|ω|4 +Dε ∀ω ∈R
nel×3.

Then, we have that

‖B�‖2 � C · ε
∫
R

nel×3
|ω|4|F�(ω)|2dω+C ·Dε

∫
R

nel×3
|F�(ω)|2dω.
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Using Plancherel’s theorem again with the fact that the Laplace operator turns
into multiplication with |ω|2 in Fourier space yields that

‖B�‖2 � C · ε‖��‖2 +C ·Dε‖�‖2.

By choosing ε sufficiently small we can now satisfy the conditions of Theo-
rem 2.17, which proves the desired statement.

Having now established the self-adjointness of H we can now speak of the
associated Schrödinger equation and its spectrum in a rigorous way.

First we establish that the spectrum of H is bounded from below.

Theorem 2.20. It holds that

infσ(H) >−∞.

Proof. The proof goes by establishing a Gårding inequality for H. First note
that by Lemma 2.15 it suffices to show that

inf{〈H�,�〉 : ‖�‖ = 1}>−∞.

Next we observe that the Hardy inequality Proposition 2.18 and the Cauchy-
Schwartz Inequality imply that there is a constant C ∈ (0,∞) with

|〈V �,�〉|� C‖∇�‖‖�‖. (23)

This, together with the fact that 〈��,�〉 = ‖∇�‖2 implies that

2〈(H�,�)+
(

2C2 + 1

2

)
〈�,�〉

� ‖∇�‖2 − 2C‖�‖‖∇�‖+
(

2C2 + 1

2

)
‖�‖2

= 1

2

(
‖∇�‖2 + ‖�‖2

)
+ 1

2

(
‖∇�‖2 − 4C‖�‖‖∇�‖+ 4C2‖�‖2

)
= 1

2

(
‖∇�‖2 + ‖�‖2

)
+ 1

2
(‖∇�‖ − 2C‖�‖)2

� 1

2
(‖�‖ + ‖∇�‖2) � 0.

In particular, it follows that

〈H�,�〉�−C2 − 1

4
>−∞

for every � with ‖�‖ = 1, which is what we wanted to show
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Remark 2.21. A careful examination of our proof of Theorem 2.20 yields a
stronger statement. There exist constants c1, c2 ∈ (0,∞) such that

〈H�,�〉� c1‖�‖2
H 1 − c2‖�‖2 ∀� ∈H 1. (24)

Such an inequality is commonly referred to as Gårding inequality and shows
that a shifted version of H is coercive on H 1. Furthermore, using (23), it is easy
to see that there is another constant c3 ∈ (0,∞) with

|〈H�,�〉|� c3‖�‖H 1‖�‖H 1 ∀�,� ∈H 1. (25)

This shows that the Schrödinger equation can be formulated in a weak form on
H 1 and studied using familiar tools from the theory of elliptic operators. This
route is taken in Yserentant (2010).

Since H is an unbounded operator, its spectrum must be unbounded. In order
to find out more about its precise structure, we follow Yserentant (2010, Section
5) and define for T ∈ (0,∞) the quantity

�(T ) := (26)

inf
{
〈H�,�〉 : ‖�‖ = 1 ∧ ∀r ∈R

nel×3 \ {r ∈R
nel×3 : |r|� T } : �(r)= 0

}
Lemma 2.22. For all T > 0 it holds that �(T )� 0.

Proof. Observe that the Hardy inequality (Proposition 2.18), the Cauchy-
Schwartz Inequality, and the fact that 〈��,�〉 = ‖∇�‖2 imply that there is
a constant C ∈ (0,∞) with

〈H�,�〉� C ·
(
‖∇�‖2 + ‖∇�‖‖�‖

)
. (27)

Let � ∈ S be a function vanishing on the unit ball of Rnel×3 with ‖�‖ = 1.
Then for t ∈ (0,∞) the function �t := 1

t
nel×3

2

�
( ·

t

)
has unit norm and vanishes

on a ball of radius t . It is not hard to see (for example by a scaling argument)
that limt→∞‖∇�t‖ = 0 and therefore, since for t > T the function �t can be
considered in the infimum of (26), the estimate (27) implies that �(T ) � 0.

Definition 2.23. Define the ionization threshold

� := lim
T→∞�(T )� 0. (28)

Remark 2.24. By Lemma 2.22, the limit in (28) exists and is bounded above
by 0.

We now come to the main result about the structure of σ(H).
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Theorem 2.25. Assume that

infσ(H) < �. (29)

Then it holds that

infσess(H)=�.

In particular, the essential spectrum is nonempty and it holds that

σ(H)∩ [infσ(H),�)⊂ σdisc(H).

Proof. We follow the arguments in Yserentant (2010, Section 5, Theorem 5.6).

1. First we show that for all T > 0 and all λ ∈ σess(H) it holds that

λ� �(R). (30)

To this end, for any T > 0 let 1, 2 be functions with 2
1 +2

2 = 1 and
supp(1) ⊂ {r : |r| � T }. Since this implies that |∇�|2 = |∇(1�)|2 +
|∇(2�)|2 − (|∇1|2 + |∇2|2

)
�2, we get that

〈H�,�〉 = 〈H1�,1�〉 + 〈H2�,2�〉 −
∫ (

|∇1|2 + |∇2|2
)

�2.

Due to (24) there is μ > 0 with 〈H2�,2�〉�−μ‖2�‖2 and hence we
get that

〈H�,�〉� 〈H1�,1�〉 −
∫ (

μ2
2 + |∇1|2 + |∇2|2

)
�2.

Since 1� is supported in a ball of radius T we furthermore get that
〈H1�,1�〉� �(T )‖1�‖2 which implies that

〈H�,�〉� �(T )‖1�‖2 −
∫ (

μ2
2 + |∇1|2 + |∇2|2

)
�2.

Since ‖1�‖2 = ‖�‖2 − ‖2�‖2 it follows that

〈H�,�〉� �(T )‖�‖2 −
∫ (

(�(T )+μ)2
2 + |∇1|2 + |∇2|2

)
�2.

Define � := (�(T )+μ)2
2 + |∇1|2 + |∇2|2. Then � is compactly sup-

ported and for all � ∈D(H) it holds that

〈H�,�〉 + 〈��,�〉��(T )‖�‖2. (31)

By the assumption that λ ∈ σess(H) and Theorem 2.6 there is a sequence
�n with ‖�n‖ = 1, ‖(H − λ)�n‖ � 1

n
and �n converges weakly to 0.
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First of all this implies that there is a constant C with ‖�‖H 1 � C for
all n. To see this we observe that the condition ‖(H − λ)�n‖ � 1

n
im-

plies that there is a constant C > 0 with 〈H�n,�n〉 � C for all n. By
(24) this implies that the norms ‖�n‖H 1 must be uniformly bounded. Take
the function � from (31) and consider D := supp(�), which is a bounded
subset of Rnel×3. Since H 1(D) is compactly embedded into L2(D) by the
Rellich-Kondrachov Theorem, the uniform H 1 boundedness of the �n’s
implies that there is a subsequence of the �n’s that converges strongly in
L2(D). Since we also know that the �n’s converge weakly to 0 this im-
plies (possibly after passing to a subsequence) that limn→∞‖�n‖L2(D) = 0.
This implies that limn→∞〈��n,�n〉 = 0. This, together with the fact that
limn→∞〈H�n,�n〉 = λ, the fact that ‖�n‖ = 1, as well as (31) implies that
λ� �(T ). This proves (30).

2. In the other direction we show that any S with (−∞, S] ∩ σess(H)=∅ sat-
isfies that for every ε > 0 there exists Tε with

S − ε � �(Tε). (32)

In particular, this implies that infσess(H) � �.
To prove (32) we assume that S satisfies (−∞, S]∩σess(H)=∅. This means
that the set (−∞, S] ∩ σ(H) only contains isolated eigenvalues of finite
multiplicity. By Theorem 2.20 there can only be finitely many such Eigen-
values. Let �1, . . . ,�N be an orthonormal basis of the union of the finitely
many corresponding Eigenspaces of finite dimension and let λ1, . . . , λN de-
note the corresponding Eigenvalues. If N = 0, Lemma 2.15 implies that
S � inf{〈H�,�〉 : � ∈ D(H)} � � which implies (32). If N > 0 we de-
fine by P the orthogonal projection onto the span of the �n’s, i.e. P� =∑N

i=1〈�,�i〉�i . The spectral Theorem 2.11 together with the fact that for
every � the spectral measure μH

�−P�
is supported on [S,∞) implies that

〈H(� −P�),� −P�〉� S‖� −P�‖2

for all � ∈ D(H). Furthermore, the fact that the span of the �n’s is H-
invariant yields that

〈H�,�〉 = 〈H(� −P�),� −P�〉 +
N∑

i=1

λi〈�,�i〉2

Taken together the previous two inequalities yield that

〈H�,�〉� S‖�−P�‖2+
N∑

i=1

λi〈�,�i〉2 = S‖�‖2−
N∑

i=1

(S−λi)〈�,�i〉2

Now let T be the characteristic function of the set {r ∈ R
nel×3 : |r| � T }

and � ∈D(H) with ‖�‖ = 1 and supported on {r ∈R
nel×3 : |r|� T }. Then
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� =T � and taking the infimum of the previous inequality yields

�(T ) � S −
N∑

i=1

(S − λi)〈�,T �i〉2

Since limT→∞‖T �i‖ = 0, (S − λi) � 0, and |〈�,T �i〉|� ‖T �i‖ for
all i = 1, . . . ,N it follows that for every ε > 0 there is Tε with

∑N
i=1(S −

λi)〈�,T �i〉2 � ε. For this Tε it then holds that

�(Tε) � S − ε,

as claimed.

Remark 2.26. We comment on the assumption (29). Looking at the definition
of the ionization threshold we notice that � represents precisely the infimum of
energies that can be assumed by states whose electron positions are arbitrarily
far removed from the nuclei. This is called ionization. Assumption (29) posits
that it is energetically advantageous for electrons to stay bounded to the nuclei,
which is certainly a natural thing to assume.

FIGURE 4 Spectrum of a Hydrogen Atom. Negative energies correspond to isolated Eigenvalues
which cluster around the ionization threshold 0. The essential spectrum is made up by the positive
reals.

Fig. 4 plots the spectrum of the hydrogen atom. Theorem 2.25 shows that
for every molecule (that is capable of binding its electrons to the nuclei) the
spectrum qualitatively looks the same.

Remark 2.27. There is much more to say about the spectral properties of H.
For example, for λ ∈ σdisc(H) it holds that ‖e

√
2(�−λ)|·|�(·)|‖<∞ for any cor-

responding Eigenfunction. This means that any Eigenfunction corresponding to
an Eigenvalue below the ionization threshold decays exponentially. A proof can
be found in Yserentant (2010, Theorem 5.17). These estimates are however not
sharp. Since the potential does not decay equally fast in every direction, one can
get improved anisotropic decay estimates that precisely characterize the decay
of Eigenfunctions (Agmon, 2014).

Furthermore, one can show that the discrete spectrum is infinite (Hunziker
and Sigal, 2000) and clusters at the ionization threshold.

Corollary 2.28. Under the assumptions of Theorem 2.25 the quantity EZ(R) :=
infσ(H) is called the ground state energy. It is an isolated Eigenvalue of H of
finite multiplicity and corresponding Eigenvectors are called ground states.
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Furthermore it holds that

EZ(R)= min
�∈H 1

〈H�,�〉
〈�,�〉 (33)

and the minimizers are precisely the ground states.

Proof. This follows from Lemma 2.15 and by noting that W(H)=H 1(Rnel×3).
The fact that the infimum is a minimum that is attained by the ground states
follows from the fact that the infimum of σ(H) is an isolated Eigenvalue with
finite multiplicity by Theorem 2.25.

Our main interest will thus be to efficiently minimize the Raleigh quotient
(33).

2.3 Spin and the Pauli exclusion principle

We will again write H=HBO
(R,Z)

for notational convenience.
There is another serious complication that we have not addressed thus far.

The electrons r1, . . . , rnel are indistinguishable. This means that for every per-
mutation π of the set {1, . . . , nel} the state �(π ◦r) :=�(rπ(1), . . . , rπ(nel)) must
be identical to the state �. In other words, there must be τ(π) ∈ {z ∈C : |z| = 1}
with �(π ◦ r) = τ(π) · �(r). For two permutations π , η it clearly holds that
τ(π ◦ η) = τ(π) · τ(η). Furthermore, if π is a transposition (e.g., a permuta-
tion that exchanges two elements and leaves all other elements fixed) it holds
that π ◦ π = id, and therefore it holds that τ(π)2 = τ(id) = 1 which implies
that τ(π) ∈ {±1} if π is a transposition. Since for any two transpositions π ,
π ′ there exists a permutation η with π = η−1 ◦ π ′ ◦ η it follows that the phase
factor must be equal for all transpositions. Since all permutations arise as prod-
ucts of transpositions, this implies that either τ(π) = 1 for all permutations or
τ(π) = sign(π) for all permutations. In the first case the particles are called
bosonic, in the latter case fermionic. Electrons are fermionic which thus implies
that the electronic wave function � must be antisymmetric.

Furthermore, each electron has an additional property called spin which can

assume values in
{
− 1

2 , 1
2

}
. Therefore the electronic wave function really de-

pends on spin coordinates

(
(r1, s1), . . . , (rnel , snel)

) ∈ (R3 ×
{
−1

2
,

1

2

})nel

.

Definition 2.29. The Pauli exclusion principle states that any admissible elec-

tronic wave function � : ((r1, s1), . . . , (rnel , snel)
) ∈ (R3 ×

{
− 1

2 , 1
2

})nel → C

must be antisymmetric with respect to permutations of the spin coordinates. In
other words, for every permutation π and every admissible wavefunction � it
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must hold that

�
(
(rπ(1), sπ(1)), . . . , (rπ(nel), sπ(nel))

)= sign(π) ·� ((r1, s1), . . . , (rnel , snel)
)
.

(34)
Writing s= (s1, . . . , snel) we succinctly write

�(π ◦ (r, s))= sign(π) ·�(r, s).

For each s and each � :
(
R

3 ×
{
− 1

2 , 1
2

})nel → C we denote by �s : Rnel×3 →
C the function defined by �s(r)= �(r, s). The correct quantum Hilbert space
for electronic systems is thus given by

H fermi :=
{
� :
(
R

3 ×
{
−1

2
,

1

2

})nel

→C : � satisfies (34) and

∀s ∈
{
−1

2
,

1

2

}nel

: �s ∈ L2(Rnel×3)

}
with inner product

〈�,�〉H fermi :=
∑

s∈
{
− 1

2 , 1
2

}nel

〈�s,�s〉L2(Rnel×3). (35)

The electronic Hamiltonian on H fermi is defined componentwise as

(Hfermi�)s =H�s, (36)

for � ∈H fermi.

We still need to establish self-adjointness. This is done in the next result.

Theorem 2.30. The operator Hfermi is self-adjoint on H fermi with D(Hfermi)=[
H 2(Rnel×3)

]2nel ∩H fermi.

Proof. Let

H full :=
{
� :
(
R

3 ×
{
−1

2
,

1

2

})nel

→C :

∀s ∈
{
−1

2
,

1

2

}nel

: �s ∈ L2(Rnel×3)

}
.

We first show that Hfull, which is simply the extension of Hfermi to H full is self-
adjoint on H full. Not that the operators in this notation do not change, but only
their domain of definition.

Self-adjointness of Hfull follows from the fact that H full is a direct sum of
2nel copies of L2(Rnel) and Hfull is the direct sum of 2nel copies of a self-adjoint
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operator (namely the Hamiltonian H on Rnel×3). By Reed and Simon (1978,
Theorem XIII.85) a direct sum of self-adjoint operators is self-adjoint and there-
fore Hfull is self-adjoint on H full.

We want to show that the restriction of Hfull to the antisymmetric subspace
H fermi is still self-adjoint. We will make use of the following fact that is proven
in Hall (2013, Proposition 9.23): For any Hilbert space J and any symmetric
operator B on J it holds that

B self-adjoint ⇔ range(B± i)= J. (37)

Consider the antisymmetrization operator

A�(r, s) := 1

nel!
∑

π∈Snel

sign(π) ·�(π ◦ (r, s)), (38)

where Snel denotes the group of permutations of nel elements. Since A is the
identity on H fermi, A2 =A, and A is symmetric (and therefore self-adjoint since
it is bounded) it follows that A is the orthogonal projection from H full onto
H fermi.

Observe that

A
(
D(Hfull)

)
⊂D(Hfull) (39)

and

∀� ∈D(Hfull) : AHfull�=HfullA�. (40)

In view of (37) we need to prove that range(Hfermi ± i) = H fermi. To this end
let � ∈ H fermi be arbitrary. Since Hfull is self-adjoint, Eq. (37) implies that
there exists � ∈ D(Hfull) with (Hfull ± i)� = �. By (39) it holds that A� ∈
D(Hfull) and that (Hfull± i)A�=A(Hfull± i)�=A� =�. Thus, Hfermi± i

are surjective on H fermi which proves our desired claim.

Remark 2.31. While the original spectral problem for the operator H is gen-
erally already very high-dimensional and extremely challenging, the Pauli ex-
clusion principle adds another layer of intractability. Even evaluating the inner
product according to the formula (35) requires the evaluation of 2nel terms, each
of which is given as an integral of a 3 · nel dimensional function! This sounds
daunting. Fortunately, we will see that the spectral problem of Hfermi decouples
into only nel subproblems analogous to the spectral problem of H – one for
each number of electrons with spin equal to 1

2 – but with additional antisymme-
try constraints.

In order to clarify the connection between functions � = (�s)s∈{±1/2}nel ∈
H fermi and their components �s we need the following definition.
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Definition 2.32. For s ∈
{
± 1

2

}nel
define L2(Rnel×3)s as the subspace of

L2(Rnel×3) consisting of all functions � which are antisymmetric with respect
to all permutations that leave s invariant, i.e.,

�(π ◦ r)= sign(π) ·�(r) ∀π ∈Snel : π ◦ s= s.

Analogously we define the spaces Hk(Rnel×3)s. Finally we denote by Hs the
restriction of H to L2(Rnel×3)s and its ionization threshold �s in the same way
as (28) but with the infimum (26) taken only over L2(Rnel×3)s.

Remark 2.33. It is important to keep in mind that the operators Hs are really
independent of s and all equal to H. The only thing that distinguishes them is
their domain, which does depend on s and is given by H 2(Rnel×3)s (see Theo-
rem 2.34 below).

The operators Hs behave similarly to the operators H in terms of their spec-
tral properties.

Theorem 2.34. 1. For each s ∈
{
− 1

2 , 1
2

}nel
the operator Hs is self adjoint with

D(Hs)=H 2(Rnel×3)s.

2. For every permutation π ∈ Snel and every s ∈
{
− 1

2 , 1
2

}
, the operators Hs

and Hπ◦s are unitarily equivalent.
3. Assume that

infσ(Hs) < �s.

Then it holds that

infσess(Hs)=�s.

In particular, the essential spectrum is nonempty and it holds that

σ(Hs)∩ [infσ(Hs),�s)⊂ σdisc(Hs).

Proof. The fact that the restriction Hs of the self-adjoint operator H to L2
s is

self-adjoint can be argued in exactly the same way as the proof of Theorem 2.30.
The second point follows from the fact that Hs and Hπ◦s are unitarily equivalent
via the operator that permutes the electronic coordinates r via π . The proof of
the third point is identical to the proof of Theorem 2.25.

We now want to relate the spectral properties of the operators Hs to proper-
ties of the full Hamiltonian Hfermi.

Lemma 2.35. A function � ∈ L2(Rnel×3) is a component �s of a function � =
(�s)s∈{±1/2}nel ∈H fermi if and only if � ∈ L2(Rnel×3)s.
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Proof. First consider � = (�s)s∈{±1/2}nel ∈H fermi and fix s. Let π be a permu-
tation with π ◦ s= s.

Then

�s(π ◦ r)= sign(π) ·�π◦s(π ◦ s)= sign(π) ·�s(π ◦ r).

Therefore, �s ∈ L2(Rnel×3)s which proves the “only if” part.
For the other direction we assume that for a fixed s it holds that � ∈

L2(Rnel×3)s. We need to find � = (�t)t∈{±1/2}nel ∈H fermi with �s =�. Such a
� can be explicitly constructed as

�t(r) :=
∑

π∈Snel
sign(π)�(π ◦ r) · δπ◦t,s∑

π∈Snel
δπ◦t,t

. (41)

Theorem 2.36. It holds that

σ(Hfermi)=
⋃

s∈
{
− 1

2 , 1
2

}nel

σ(Hs). (42)

Proof. Let λ ∈ σ(Hfermi), then by Lemma 2.4 for every n ∈ N there is �n ∈
H fermi with ‖(Hfermi − λ)�n‖� 1

n
‖�n‖.

By definition this implies that∑
s∈{±1/2}nel

‖(Hs − λ)�n
s ‖2 � 1

n2

∑
s∈{±1/2}nel

‖�s‖2

and therefore, for each n ∈N there must exist sn such that

‖(Hsn − λ)�n
sn‖�

1

n
‖�n

sn‖.

Since there are only finitely many values that sn can assume, we conclude that
there exists s such that for infinitely many n ∈N there is �n

s ∈ L2(Rnel×3)s with

‖(Hs − λ)�n
s ‖�

1

n
‖�n

s ‖.

By Lemma 2.4 this implies that λ ∈ σ(Hs).
For the other direction suppose that λ ∈ σ(Hs) and for each n ∈ N let �n ∈

L2(Rnel×3)s satisfy that

‖(Hs − λ)�n‖� 1

n
‖�n‖.

The existence of �n follows from Lemma 2.4. Now construct �n ∈H fermi ac-
cording to (41), which only contains components for spin vectors t that arise
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from permuting the fixed spin vector s in the sense that s = π ◦ t. By Item 2 of
Theorem 2.34 the operators Ht for such spin vectors are unitarily equivalent to
Hs and therefore it holds that

‖(Ht − λ)�n(π ◦ r)‖ = ‖(Hs − λ)�n(r)‖� 1

n
‖�n

s ‖ =
1

n
‖�n

t ‖

This implies that

‖(Hfermi − λ)�n‖� 1

n
‖�n‖,

which by Lemma 2.4 implies that λ ∈ σ(Hfermi)

By Theorem 2.36 the spectrum of the full fermionic system H can be deter-
mined from solving the spectral problems of all operators Hs for s ∈ {− 1

2 , 1
2 }nel .

Since operators Hs and Ht are unitarily equivalent if s is a permutation of t, it
suffices to only consider spin assignments of the form

sn↑ :=

⎛⎜⎜⎜⎝1

2
, . . . ,

1

2︸ ︷︷ ︸
n↑ times

,−1

2
, . . . ,−1

2︸ ︷︷ ︸
nel−n↑ times

⎞⎟⎟⎟⎠ , n↑ ∈ {0, . . . , nel}, (43)

where n↑ corresponds to the number of electrons with positive spin. Since the
spectral problem does not change if positive spin electrons are changed into
negative spin electrons and vice versa, it suffices to solve the spectral problems
of the operators Hsn↑ for n↑ ∈

{
0, . . . , �nel

2 �
}

denoting the number of spin-up
electrons.

By Theorem 2.34 the lowest possible energy is given as an isolated eigen-
value (the ground state energy) and corresponding eigenvectors are the ground
states. By Lemma 2.15, the ground states and the ground state energies (and
thus the PES) can be determined as solutions of the minimization problems

En↑
Z (R)= min

�∈H 1
sn↑

〈H�,�〉
〈�,�〉 , n↑ ∈

{
0, . . . ,

⌊nel

2

⌋}
. (44)

Finally we note that, although the space H 1
sn↑

is a complex Hilbert space, we

can without loss of generality minimize (44) over the space of real-valued an-
tisymmetric H 1 functions. This is because the Hamiltonian acts separately on
the real and imaginary part which implies that the real (or imaginary) part of an
Eigenvector is still an Eigenvector.

Our goal is thus to

Find efficient and accurate algorithms for solving the minimization problems
(44).
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3 Introduction to variational Monte Carlo (VMC)

Given the problems (44) we would like to devise numerical algorithms that pro-
vide an accurate solution. The most straightforward idea to achieve this is to
start with a parametrized class of functions

F :=
{
�θ : θ ∈R

Nparam
}
⊂H 1(Rnel×3)sn↑ (45)

and (try to) solve the restricted minimization problem

min
θ∈RNparam

〈H�θ,�θ 〉
〈�θ,�θ 〉 , n↑ ∈

{
0, . . . ,

⌊nel

2

⌋}
(46)

in the parameter θ .
This approach has several obvious benefits:

1. It is conceptually simple
2. It is variational in the sense that for any approximate solution �θ∗ of (46)

(or rather any �θ∗ ∈H 1(Rnel×3)sn↑ ) we always have the upper bound

En↑
Z (R) � 〈H�θ∗ ,�θ∗〉

〈�θ∗ ,�θ∗〉 , n↑ ∈
{

0, . . . ,
⌊nel

2

⌋}
. (47)

This means that we can compare the quality of different algorithms a poste-
riori – the smaller the computed energy, the better.

3. Since by (24) and (25) the Hamiltonian is bounded and coercive on H 1,
one can in principle treat the corresponding Eigenvalue problem within the
well-developed mathematical framework of elliptic eigenvalue problems, see
Yserentant (2010) for results in this direction.

In reality, it is however extremely challenging to come up with efficient and
accurate algorithms. This is at least due to the following issues.

1. The problem is high-dimensional and potentially carries the curse of dimen-
sion (it may well be NP-hard (Troyer and Wiese, 2005)).

2. Enforcing the antisymmetry condition of Definition 2.32 is nonstandard and
challenging.

3. The minimization problem (47) is nonconvex and therefore algorithms can
get stuck on local minima.

4. The electronic ground state is not globally smooth, has cusps near the nu-
clei and for electron coordinates approaching each other (Kato, 1957) and
complicated long-range interactions. It is not at all clear how to choose F so
that such functions can be well approximated with a reasonable number of
parameters.

3.1 Slater determinants

We address the question of how to enforce the antisymmetry condition of Defi-
nition 2.32.
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Slater determinants

Suppose that there are n↑ electrons with spin 1
2 and nel− n↑ electrons with spin

− 1
2 . Then for sn↑ as in (43) a permutation π leaves sn↑ invariant if and only if

π can be decomposed into π = π↑ ◦π↓ where π↑ is any permutation of the first
n↑ electron coordinates and π↓ is any permutation of the last n− n↑ electron
coordinates.

Now take any set φi↑ : R3 → R for i = 1, . . . , n↑ and φi↓ : R3 → R for i =
1, . . . , nel − n↑ of H 1(R3) functions. Then it is easy to see that the function

D

(
φ1↑, . . . , φ

n↑
↑ ;φ1↓, . . . , φ

nel−n↑
↓

)
:=

1√
n↑!

∣∣∣∣∣∣∣∣∣
φ1↑(r1) . . . φ

n↑
↑ (r1)

...
. . .

...

φ1↑(rn↑) . . . φ
n↑
↑ (rn↑)

∣∣∣∣∣∣∣∣∣
· 1√

(nel − n↑)!

∣∣∣∣∣∣∣∣∣
φ1↓(rn↑+1) . . . φ

n−n↑
↓ (rn↑+1)

...
. . .

...

φ1↓(rnel) . . . φ
n−nel↓ (rnel)

∣∣∣∣∣∣∣∣∣ (48)

is in H 1
sn↑

. Here we denote by

∣∣∣∣∣∣∣
∗ . . . ∗
...

. . .
...

∗ . . . ∗

∣∣∣∣∣∣∣ denotes the determinant of a matrix.

We also note that the determinant can be evaluated in cubic complexity using
Gaussian elimination.

Functions of the Form (48) are called Slater determinants. A suitable ap-
proximation set F can now be constructed by choosing a basis set B =
χ1, . . . , χnbasis ∈H 1(R3), writing

φ(B,b) :=
nbasis∑
j=1

(bi )jχj .

Then one can define

FB :=
{
D

(
φ(B,b1↑), . . . , φ(B,b

n↑
↑ );φ(B,b1↓), . . . , φ(B,b

nel−n↑
↓ )

)
:

bi↑, bi↓ ∈R
nbasis

}
and solve the minimization problem (46). The resulting method is called the
Hartree Fock method and it corresponds to an antisymmetrized rank-1 approxi-
mation. The Hartree Fock method is computationally relatively cheap. However,



262 Numerical Analysis Meets Machine Learning

it disregards electron correlations (beyond the correlations caused by the anti-
symmetry constraint) and is therefore of very limited accuracy.

To improve accuracy one can try to use linear combinations of several dif-
ferent slater determinants which corresponds to an antisymmetrized low-rank
approximation. The corresponding approximation set is then given as

Fndet,B

:=
{

ndet∑
l=1

D

(
φ(B,b1,l

↑ ), . . . , φ(B,b
n↑,l
↑ );φ(B,b1,l

↓ ), . . . , φ(B,b
nel−n↑,l
↓ )

)
:

bi,l
↑ , bi,l

↓ ∈R
nbasis

}
.

Remark 3.1. These constructions can be augmented by multiplying each Slater
determinant with any function that leaves the antisymmetry property intact. This
holds for instance for symmetric functions. Such multiplicative corrections are
called Jastrow factor. Such Jastrow factors are important to capture the correct
cusp behavior of the ground state.

Approximation results for sets of the form Fndet,B are derived in Yserentant
(2010) where it is shown that the H 1 approximation error for the electronic
ground state decays as CNdet · n−1

det . Unfortunately, a close inspection of the
proofs in Yserentant (2010) reveals that the constant CNdet grows exponentially
in ndet which makes approximation by Fndet,B intractable. Overall it seems that
accurate and tractable approximations of electronic ground states using Slater
determinants are limited to quite small systems of up to around 15 electrons.

Generalized slater determinants

A key drawback of Slater determinants is their inability to efficiently model
electron correlations. To a certain extent this can be remedied by considering
generalized Slater determinants of the following form.

For n ∈N, l ∈ {1, . . . , n} denote the classes

Ol,n
↑ :={
φ ∈H 1(Rn×3) : φ(r1, . . . , rn) is symmetric in the variables (r2, . . . , rl)

and (rl+1, . . . , rn)
} (49)

and

Ol,n
↓ :={
φ ∈H 1(Rn×3) : φ(r1, . . . , rn) is symmetric in the variables (rl+2, . . . , rn)

and (r2, . . . , rl)
}
.

(50)
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We also introduce the following notation

{r↑} := {r1, . . . , rn↑}, {r↓} := {rn↑+1, . . . , rnel}, {rÖ

\j } := {rÖ} \ {rj }. (51)

Here, the symbol {·} should be understood as describing a multiset, meaning that
it can contain equal elements several times. For example, if r1 = r2 = 1, r3 = 2
and n↑ = 3 it holds that

{r↑} = {1,1,2} = {1,2,1} = {2,1,1} �= {1,2} = {r↑\1} = {r↑\2}.

Suppose that φ1↑, . . . , φ
n↑
↑ ∈On↑,nel

↑ and φ
n↑+1
↓ , . . . , φ

nel↓ ∈On↑,nel
↓ .

Then, we can define

�
i,j
↑ (r) := φi↑(rj ; {r↑\j }; {r↓}), i, j = 1, . . . , n↑, (52)

and

�
i,j
↓ (r) := φi↓(rj ; {r↑}; {r↓\j }), i, j = n↑ + 1, . . . , nel. (53)

Observe that due to the symmetry requirements of the functions φi
Ö

the set
notation (51) in (52) and (53) is justified since the respective coordinates are
independent of their order.

It is again easy to see that the function

Dfermi
(
ϕ1↑, . . . , ϕ

n↑
↑ ;ϕ1↓, . . . , ϕ

nel−n↑
↓

)
:=

1√
n↑!

∣∣∣∣∣∣∣∣∣∣
�

1,1
↑ (r) . . . �

n↑,1
↑ (r)

...
. . .

...

�
1,n↑
↑ (r) . . . �

n↑,n↑
↑ (r)

∣∣∣∣∣∣∣∣∣∣
· 1√

(nel − n↑)!

∣∣∣∣∣∣∣∣∣∣
�

n↑+1,n↑+1
↓ (r) . . . �

nel,n↑+1
↓ (r)

...
. . .

...

�
n↑+1,nel
↓ (r) . . . �

nel,nel↓ (r)

∣∣∣∣∣∣∣∣∣∣
(54)

is in H 1
sn↑

. In Pfau et al. (2020) such determinant functions are called generalized

Slater determinants.

Remark 3.2. The paper by Pfau et al. (2020, Appendix B) proves a univer-
sal approximation result that shows that one can approximate any function
L∞(Rnel×3)sn↑ arbitrarily well in the L∞ norm if one allows orbitals �i that

are discontinuous (and not in H 1). While this result is reassuring, an application
to solving the Schrödinger equation would require such results in the H 1 norm.
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It is an open question if such an approximation result from a single generalized
Slater determinant holds true, see however Ye et al. (2024) for recent progress
in this direction.

Given a pair of mappings

φ↑ :Rnoparams →On↑,nel
↑ and φ↓ :Rnoparams →On↑,nel

↓ (55)

we can now again construct an approximation set by using parametrized orbitals
φi↑, φi↓, e.g.,

φi↑ = φ↑(θ i↑) for some θi↑ ∈R
noparams (56)

and

φi↓ = φ↓(θ i↓) for some θi↓ ∈R
noparams . (57)

The corresponding approximation set using Ndet generalized Slater determi-
nants is then given as

F fermi
ndet,�↑,�↓ :={

ndet∑
l=1

Dfermi
(
φ↑(θ1,l

↑ ), . . . , φ↑(θ
n↑,l
↑ );φ↓(θ1,l

↓ ), . . . , φ↓(θ
nel−n↑,l
↓ )

)
:

θ
i,l
↑ , θ

i,l
↓ ∈R

noparams

}
.

(58)

Remark 3.3. One can further generalize (54) by considering nel spin-up orbitals
of the form (56) and nel spin-down orbitals of the form (57) and assembling the
nel × nel matrix (�i,j )

nel
i,j=1 with

�i,j =
⎧⎨⎩�

i,j
↑ j ∈ {1, . . . , n↑}

�
i,j
↑ j ∈ {n↑ + 1, . . . , nel},

and taking its determinant. It is easy to see that this approach yields functions
with the correct antisymmetry properties. Furthermore, the construction (54)
arises as a special case by letting �i↑ = 0 for all i = n↑ + 1, . . . , nel and �i↓ = 0
for all i = 1, . . . , n↑. This construction is sometimes referred to as full Determi-
nant (Lin et al., 2023).

Furthermore, the construction (58) is typically extended by including a Jas-
trow factor, i.e., a symmetric function as multiplicative correction term, see
Remark 3.1.

Having mappings (55) at hand we can thus construct corresponding param-
etrized classes of functions given by (58) and try to solve the minimiza-
tion problem (44) in terms of the parameter θ = (θ

i,l
↑ )l=1,...,ndet, i=1,...,n↑ ×
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(θ
i,l
↓ )l=1,...,Ndet, i=1,...,nel−n↑ ∼= Rndet×nel×noparams over this set. In this case we

have that nparams = ndet × nel × noparams and for θ = (θ
i,l
Ö

)i,l,Ö ∈R
nparams it then

holds that

�θ :=
ndet∑
l=1

Dfermi
(
φ↑(θ1,l

↑ ), . . . , φ↑(θ
n↑,l
↑ );φ↓(θ1,l

↓ ), . . . , φ↓(θ
nel−n↑,l
↓ )

)
∈H 1(Rnel×3)sn↑ . (59)

The key challenge is then to

Find parametrized orbitals (55) such that the sets (58) are maximally expres-
sive.

3.2 Sampling using the Metropolis-Hastings algorithm

For solving the optimization problem (44) we need to be able to efficiently eval-
uate the 3nel-dimensional integrals 〈H�θ ,�θ 〉〈�θ ,�θ

. Therefore, during optimization
of the parameters θ and to get a final prediction of the ground-state energy,
it is essential to have an efficient method for calculating the high-dimensional
integrals. In Variational Monte Carlo, one commonly employs Markov chain
Monte Carlo (MCMC), utilizing algorithms like Metropolis-Hastings. To per-
form Monte Carlo integration, one needs to rewrite the Rayleigh-Ritz Quotient

〈H�θ,�θ 〉
〈�θ,�θ 〉 =

∫ |�θ(r)|2
〈�θ,�θ 〉

H�θ(r)
�θ (r)

dr≈ 1

ns

ns∑
a=1

H�θ(ra)

�θ (ra)
(60)

with ns electron samples ra ∼ pθ(r) := |�θ (r)|2
〈�θ ,�θ 〉 .

The density pθ we sample from with MCMC gets updated during optimiza-
tion due to the dependence on θ (cf. Sec. 3.3). To ensure the sampled electron
positions follow the correct distribution, we have to perform multiple consecu-
tive steps of MCMC, whereas a single step with the Metropolis-Hastings algo-
rithm can be broken down into the following stages, as outlined in Algorithm 1.
Firstly, starting with an initial set of electron positions, either from a previ-
ous step or randomly initialized, represented as rn ∈ R

nel×3 a proposed state
rp ∈R

nel×3 is generated by sampling from a proposal function q. Subsequently,
the acceptance probability is computed, and the proposed state is accepted if
this probability exceeds a uniformly distributed random value. Thus, given a
suitable proposal function q, the algorithm produces a sample rn that is dis-
tributed according to pθ in the limit of n→∞. Intuitively, over multiple steps
n the sample tends to move towards high-probability regions because proposals
towards higher probability are always accepted, while proposals towards lower-
probability regions are often rejected. Because there is some chance to accept
proposals towards low-probability regions, the algorithm does not only return
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the value with highest probability, but a distribution of samples. Fig. 5a depicts
the convergence of the distribution of samples towards the target distribution pθ

for a simple 1D example.

Algorithm 1 Metropolis-Hastings sampling
Require: Probability density pθ(r), proposal distribution q(rp|rn), initial con-

figurations r0, number of steps N

for n= 0 to N − 1 do
rp ∼ q(rp|rn) " Propose new configuration rp

a =min
(

1,
pθ (rp)q(rn|rp)

pθ (rn)q(rp |rn)

)
" Compute acceptance probability a

if a � RandomUniform(0,1) then
rn+1 ← rp " Accept the proposal with probability a

else
rn+1 ← rn " Reject the proposal with probability 1− a

end if
end for
return rN " In the limit of N →∞, rN is distributed according to pθ(r)

A common choice for the proposal function q(rp|rn) is a multivariate Gaus-
sian distribution centered around rn and variance s2

q(rp|rn)∝ exp

(
− 1

2s2
|rp − rn|2

)
(61)

where s is a tuneable parameter known as the stepsize. It is a valid choice, be-
cause in principle any configuration can be reached from any other configuration
in a single step (since the Gaussian distribution has support on the whole do-
main) and thus the proposal satisfies ergodicity. Furthermore the fact that the
Gaussian is symmetric in rp and rn allows to omit the q-ratio on the calculation
of the acceptance rate since it is always 1. A slight modification to Algorithm 1 is
to divide the number of electrons into multiple blocks of electrons and separately
accepting / rejecting a subset of electron positions. This potentially reduces the
number of steps one needs to perform to reach more decorrelated electron posi-
tions (von Glehn et al., 2023).

One important aspect of the Metropolis-Hastings algorithm is that its accep-
tance criterion only depends on the ratio of probability densities but not on pθ

directly. Therefore, one can consider instead the unnormalized density |�θ |2.
An alternative to a Gaussian Proposal distribution is to bias proposals to-

wards increasing probability density to increase the probability of acceptance.
This is known as Metropolis Adjusted Langevin Algorithm (MALA) and in-
creases sampling efficiency (Schätzle et al., 2023) at the expensive of higher
computational cost to evaluate ∇pθ .

rp = rn + τ∇r logpθ(rn)+ sN (0,1) (62)
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The choice of the stepsize s is important to achieve fast convergence and mixing
of the Markov Chain: Choosing a very small stepsize only allows very small
changes in r, leading to slow convergence. Choosing a very large stepsize leads
to proposed configurations rp that are far from the original configuration rn

and are very often rejected, thus not moving at all. To address this issue, one
can set a target acceptance rate of around 50% and automatically adjust s to
approximately reach this acceptance rate.

FIGURE 5 1D example of MCMC on a 1D density pθ (r) consisting of two Gaussians. The initial
configurations r0 are drawn from a single Gaussian distribution. a: Histogram of samples after dif-
ferent number of MCMC steps N . After N ≈ 100 steps the distribution of rN aligns with the target
distribution pθ . b: Path of a single sample. Subsequent samples are strongly correlated, depicting
two distinct time-scales: A short time-scale corresponding to moves within a density peak and a
long time scale corresponding to moves between the two peaks.

In principle any initial distribution can be used for the samples r0, but choos-
ing an initial distribution that resembles the target distribution is obviously
advantageous. Therefore the typical approach is to first take a large number of
steps Nburn-in for the samples to converge to the target distribution. Then, to ob-
tain more samples one does not start again from the initial distribution, but uses
the latest sample as starting point for the next Nintermed steps to obtain a new
sample. In practice Nburn-in % Nintermed, for sampling from a wavefunction of
a small molecule Nburn-in ≈ 103, while Nintermed ≈ 101. A disadvantage of this
approach is that subsequent samples are not fully independent of each other,
but can still be correlated if Nintermed is too small. Fig. 5b shows the trajectory
of a single sample as a function of Metropolis-Hastings steps, clearly showing
correlations between subsequent samples. This issue is particularly pronounced
when pθ has multiple maxima that are separated by regions of low probability,
because it takes many steps to transition between these maxima.

Besides using Metropolis-Hastings to sample from |�θ |2, one can in prin-
ciple also design models which allow direct sampling from the probability
distribution.

One option are Normalizing Flows, a type of model that maps an easy to
sample probability distribution (e.g. a Gaussian) to the target probability dis-
tribution pθ . It has been applied to the Schrödinger Equation, but only in the
substantially simplified 1D case (Thiede et al., 2023).
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Another option are autoregressive models, which generate a full configura-
tion of electrons one electron at a time, by conditioning the probability distribu-
tion on all previously added electrons:

pθ(r1, . . . rnel)= pθ(r1)pθ (r2|r1)pθ (r3|r1, r2) . . . pθ (rnel |r1, . . . rnel−1)

(63)
Instead of sampling from the probability distribution of the left hand side of
Eq. (63), which is 3× nel-dimensional, all at once, one samples nel times from
a 3-dimensional probability distribution (each term on the right hand side of
Eq. (63)). This structure is the currently dominant paradigm in large language
models, which autoregressively sample one token / word at a time, from a prob-
ability distribution which is conditioned on the previously generated tokens
(Radford et al., 2021). This approach has also been applied to wavefunctions,
but so far only for model Hamiltonians (Hibat-Allah et al., 2020) and molecules
in second quantization (Barrett et al., 2022). In both cases the state space is dis-
cretized, simplifying the sampling from the low-dimensional conditional prob-
ability distributions.

3.3 Optimization

After discussing the variational principle and the sampling technique for the
high-dimensional integral, we can now delve into the problem of optimizing for
the parameters θ . Applying the variational principle, we can utilize the formu-
lation provided in Eq. (44) as our loss function:

L(θ)= 〈E〉r∼�2
θ
:=Er∼�2

θ

[H�θ(r)
�θ (r)

]
. (64)

To perform gradient descent, the computation of the gradient with respect to
the parameters would in general require third derivatives: second derivatives
with respect to r for the kinetic energy and first derivatives with respect to θ .
Furthermore, stochastic gradient descent potentially leads to a biased estimator
because the sampling process depends on the parameterized wave function �θ .
Fortunately, one can exploit the hermiticity of the Hamiltonian to rewrite the
gradient with respect to the parameters of the loss function as:

∇θL(θ)= 2

〈(H�θ(r)
�θ (r)

−L(θ)

)
∇θ log |�θ |

〉
r∼pθ (r)

. (65)

Eq. (65) allows the computation of an unbiased estimator for stochastic gradi-
ent descent with, at most, second derivatives. Additionally, in the case that �θ

represents the true wave function, the Monte Carlo estimator has zero variance
due to the local energy H�θ (r)

�θ (r) being spatially constant and equal to L(θ). A full
derivation of the gradient can be found for example in Inui et al. (2021). The
energy can be minimized using gradient based optimizers, such as Stochastic
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Gradient Descent (SGD) or the Adam optimizer (Kingma and Ba, 2017), used
in many deep-learning applications. The update rule for SGD with learning rate
λ is given by

θt+1 = θt − λ∇θL. (66)

Convergence of optimization can be substantially accelerated by not using
the energy gradient directly as in (66), but rather preconditioning it with the
following matrix S ∈R

nparam×nparam :

Sμν :=
〈∂ log |�|

∂θμ

∂ log |�|
∂θν

〉
−
〈∂ log |�|

∂θμ

〉〈∂ log |�|
∂θν

〉
(67)

and then using this preconditioned gradient for stochastic gradient descent

θt+1 = θt − λS−1∇θL. (68)

Here, and in what follows, we use the notation

〈�〉 := Er∼�2
θ
[�]

for any � :Rnel×3 →R.
The update rule (68) is known as Stochastic Reconfiguration in the physics

community (Becca and Sorella, 2017) (where S is then referred to as the Quan-
tum Geometric Tensor) and is very closely related to Natural Gradient Descent
in the machine learning community (Martens and Grosse, 2015) (where an ob-
ject closely related to S is referred to as the Fisher information matrix). The
following argument, adapted from Becca and Sorella (2017), should give some
perspective on why using S as a preconditioner is a sensible choice.

Stochastic reconfiguration as a local metric

When performing SGD, a crucial choice is the stepsize λ. One way of formu-
lating this is to consider at every step as loss L the original loss L(θ) plus an
additional regularization term, which penalizes large changes δ in parameter
space.

LSGD(δ)= L(θ + δ)+ λ

2
δT δ (69)

δ := θt+1 − θt (70)

When minimizing Eq. (69) with respect to all parameter updates δμ the classical
SGD update rule is recovered:

∂LSGD

∂δμ

= ∂L

∂δμ

+ λδμ
!= 0 (71)

δ =−λ∇θL. (72)
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SGD with a given learning-rate λ therefore minimizes the energy, while at the
same time minimizing the Euclidean norm of the parameter update. While this
is not an unreasonable choice per se, it would be better to minimize the energy,
while making minimal changes to the wavefunction. After all, the wavefunction
might be very sensitive to some parameters and insensitive to others. We would
therefore like to make small steps for sensitive parameters and larger steps for
insensitive parameters.

The following metric can be used to assess the distance between two unnor-
malized real-valued wavefunctions � and �:

s(�,�)2 = 1− 〈�,�〉2
〈�,�〉 〈�,�〉 (73)

Eq. (73) corresponds to 1 minus the squared overlap of the normalized wave-
functions and is thus 0 for �≡� and 1 for �⊥�. Using Eq. (73) as a metric
to regularize the loss yields

LSR(δ)= L(θ + δ)+ λ

(
1− 〈�θ,�θ+δ〉2

〈�θ,�θ 〉 〈�θ+δ,�θ+δ〉

)
. (74)

The updated wavefunction �θ+δ can be expressed as Taylor expansion up to
first order,

�θ+δ ≈�θ + δT∇θ�θ , (75)

yielding (subscripts θ omitted for clarity):

LSR(δ)= 〈E〉 + λ

(
1−

〈
�,� + δT∇θ�

〉2
〈�,�〉 〈� + δT∇θ�,� + δT∇θ�

〉) . (76)

Expanding the regularization term, dividing the denominator and enumerator by
〈�,�〉2, and introducing O yields

O : = ∇θ�

�
=∇θ log |�| (77)

L= 〈E〉 + λ

⎛⎜⎝1−
(

1+ δT 〈�,∇θ�〉
〈�,�〉

)2

1+ 2δT 〈�,∇θ�〉
〈�,�〉 + δT 〈∇θ�,∇θ�〉

〈�,�〉 δ

⎞⎟⎠ (78)

= 〈E〉 + λ

(
1−

(
1+ 〈δT O

〉)2
1+ 2δT 〈O〉 + δT

〈
OOT

〉
δ

)
+O(|δ|3). (79)

Expanding the denominator up to second order in δ (using (1+ x)−1 ≈ 1− x +
x2) and multiplying all terms finally yields

LSR(δ)= 〈E〉 + λδT Sδ +O(|δ|3) (80)
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S=
〈
OOT

〉
− 〈O〉 〈O〉T (81)

The regularized loss in Eq. (80) has the same structure as (69): The original
loss + a quadratic regularization term – the only difference being that this time
the metric is given by S instead of the Euclidean-norm. When minimizing this
regularized loss one obtains the stochastic reconfiguration update rule (up to a
factor of 2 in the learning rate)

δ =−2λS−1∇θL. (82)

Note that S has been motivated here using (73) as distance metric. The same
result (up to a constant factor) can be obtained by expanding the Kullback-
Leibler divergence – a well known divergence to measure the distance be-
tween probability distribution – between the probability distributions |�2

θ | and
|�θ+δ|2. If the probability distributions are normalized then 〈O〉 ≡ 0, simplify-
ing (81) to the first term and the corresponding update rule of natural gradient
descent.

Toy example: SR for 2-parameter system

Fig. 6 demonstrates the effect of this preconditioning on a 1D-example (a sin-
gle particle in a parabolical potential) with a wavefunction that has only two
parameters:

�(x)= e
− 1

2

(
x−θ2

2σ(θ1)

)2

, (83)

with the sigmoid function σ(θ) = 1
1+e−θ . This system has its ground-state

at θ1 = θ2 = 0, depicted as �GS in Fig. 6a and the corresponding point in
parameter-space θGS in Fig. 6b.

Starting from an arbitrary initial wavefunction �0 (and corresponding pa-
rameters θ0), two distinct new wavefunctions (and corresponding parameters)
are depicted. The parameters θSGD (and its wavefunction �SGD) are obtained
from the gradient descent update rule θSGD = θ0 − λSGD∇θE. The parameters
θSR (and its wavefunction �SR) are obtained from the stochastic-reconfiguration
update rule θSR = θ0 − λSRS−1∇θE. The learning rates λSGD and λSR are cho-
sen such that the Euclidean distance in parameter space is identical in both case
(as depicted in Fig. 6c). However, the change of the wavefunction is markedly
different: The SR-update rule leads to a much smaller change in the wavefunc-
tion (compared to the SGD update rule). This can be seen from the smaller
S-distance in Fig. 6d, as well as visually when comparing �SR and �SGD in
Fig. 6a. Overall this leads to a lower energy after the update step (as can be seen
in Fig. 6b) and will lead to overall faster convergence towards the ground-state
when iterating. The effect of the preconditioning is that the SR-update skews
the update step towards larger updates along the θ1 parameter, which is less
sensitive in this point of the parameter space.
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FIGURE 6 1D toy example for 2-parameter wavefunction: a) Plot of ground-state wavefunc-
tion �GS, initial wavefunction �0, and the resulting wavefunctions after update steps according
to stochastic gradient descent (SGD) and stochastic reconfiguration (SR). b-d) Contour-plots as a
function of wavefunction parameters θ1 and θ2 (darker colors correspond to lower values). b) En-
ergy expectation value of corresponding wavefunction. c,d) Distance from initial parameter vector
θ0 measured in Euclidean metric and the metric induced by the preconditioner S.

Practical considerations for stochastic reconfiguration

Computing S−1 can be practically challenging. The first complication is that
when S is being estimated from Ns samples it is at most of rank Ns:

Sμν =
〈
OμOν

〉− 〈Oμ

〉 〈Oν〉 (84)

=
〈(

Oμ −
〈
Oμ

〉)(
Oν − 〈Oν〉

)〉
(85)

≈
Ns∑

n=1

(
Oμ(rn)− Ōμ

)(
Oν(rn)− Ōν

)
(86)

Therefore for typical values of Ns ≈ 103 and nparam ≈ 106, S is rank deficient
and cannot be inverted. The latter problem is typically addressed via Tikhonov
regularization with a small damping constant ε:

Sreg = S+ ε 1Ns (87)

Another approach is to estimate S not only from the current batch, but as a mov-
ing average of the estimates from past batches, thus increasing the rank of the
estimator. This helps to reduce Monte Carlo noise in the estimation but typically
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still requires regularization to avoid a singular matrix S. The second complica-
tion arises due to the size of S, which is of dimension nparam×nparam. Therefore,
for a neural network wavefunction with≈ 106 parameters, even storing this ma-
trix with ≈ 1012 elements becomes impossible. Even worse, this large matrix
must be inverted, an operation that has computational cost O(nparam

3) using
Gaussian elimination. There are two viable routes in practice: Find a (sparse)
approximation of S and invert it exactly, or find a way to approximately invert S
without fully materializing S.

FIGURE 7 Comparing the optimizers Adam (grey) and KFAC (black) for three molecules (Beryl-
lium, Carbon, and Ammonia). The x-axis represents the wall clock time in seconds, and the y-axis
(log-scale) the energy error with respect to a highly accurate reference calculation in millihartree
(mHa).

KFAC (Kronecker-Factored Approximation of Curvature) (Martens and
Grosse, 2015) is of the first type, making two approximations to S. First it as-
sumes that there are no dependencies between parameters belonging to different
layers of the neural network, effectively assuming S to be block-diagonal. Sec-
ond it assumes that each remaining block can be expressed as an eponymous
Kronecker product of two smaller matrices. This allows inversion of the ap-
proximated S via inversion of many small matrices, which is computationally
feasible even for networks involving millions of parameters. KFAC has first
been applied to Neural Network wavefunctions by Pfau et al. (2020) and since
been used widely throughout the neural wavefunction community. Compared
to nonpreconditioned methods it yields substantially faster rates of convergence
as depicted in Fig. 7. While it is computationally efficient and can yield good
results, it has two downsides in practice. First, it involves approximations that
cannot be systematically improved upon. Second, the optimizer does not only
require access to the wavefunction, energies and their gradients, but also requires
access to intermediate activations and gradients of the model. This can introduce
substantial complexity for practical implementation and leads to some unwanted
coupling between the wavefunction model and the optimizer.
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An alternative approach is to make no approximations to S, but to only in-
vert it approximately. One common approach is to use the Conjugate Gradient
(CG) method to compute S−1∇E without materializing S. CG only requires
the repeated evaluation of the matrix-vector product Sx for arbitrary vectors
x. This can be obtained by a vector-jacobian-product (VJP) followed by a
jacobian-vector-product (VJP), which are implemented using back-propagation
and forward-mode differentiation respectively and don’t require materializing
the full jacobian.

Another approach is to use the fact that the regularized Sreg is a sum of a
full-rank, but easy to invert diagonal matrix (ε 1), and a rank-Ns matrix S. In-
version of Sreg can therefore be done using the Sherman-Morrison-Woodbury
formula (Woodbury, 1950), which only requires the inversion of a Ns × Ns

matrix. This forms the basis for the MinSR (Rende et al., 2023) and SPRING
optimizer (Goldshlager et al., 2024).

Supervised pretraining

In addition to the variational optimization, Pfau et al. (2020) proposed to per-
form a supervised optimization phase with respect to a reference method. This
step, referred to as supervised pretraining in the following, minimizes the dif-
ference between the neural network orbitals and reference orbitals (we omit the
spin dependence in the notation)

Lpre(θ)=Er∼pθ (r)

[ nel∑
k=1

nel∑
i=1

(
φref

k (ri)− φ(θi)(ri)
)2]

, (88)

whereas the neural network-based orbitals are calculated as described in (119)
and (120). As reference calculation, a mean field solution such as Hartree Fock,
is usually used, where each orbital depends on a single electron. Pfau et al.
(2020) argued that supervised pretraining can improve convergence and numer-
ical stability of the subsequent variational optimization. Compared to variational
optimization, supervised pretraining is computationally cheaper because it does
not require evaluation of the Hamiltonian; in particular it avoids the derivatives
associated with the kinetic energy. The downside of supervised pretraining is
that it unlike variational optimization it requires a reference method. Further-
more excessive pretraining can bias the network initialization, leading to less
accurate results after subsequent variational optimization (Gerard et al., 2022).

4 Deep learning VMC

In this section we introduce the DL-VMC method. In particular, we review how
neural networks can be used to construct suitable parametrized orbitals (55) that
can serve as a numerical ansatz in the VMC problem (44).
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4.1 Multilayer perceptrons

The multi layer perceptron (MLP) forms the basic building block of all deep-
learning based architectures. It consists of L layers, alternating between affine
transformations and elementwise nonlinear functions. Given an input x0 ∈R

d0 ,
the output of each subsequent layer l = 1 . . .L is computed as

yl
n =

∑
m

wl
nmxl−1

m + bl
m l = 1 . . .L (89)

xl
n = σ(yl

n) l = 1 . . .L− 1 (90)

MLP
(
x0
)
:= yL, (91)

with trainable weights wl ∈ R
dl×dl−1 , bl ∈ dl for every layer l and a nonlinear

function σ , referred to as activation function. Common choices for this activa-
tion function include

σ(x)= tanh(x) (92)

σ(x)= SiLU(x)= x

1+ e−x
(93)

Note that ReLU(x) := max(x,0), which is used extensively in many deep-
learning applications, is not used for neural wavefunctions, because its first
derivative is discontinuous and its second derivative (required for the kinetic
energy of HBO) is zero everywhere.

4.2 Overall structure of neural network wavefunctions

To model the functions �
k,i
↑ (r) (52) and �

k,i
↓ (r) (53), several different architec-

tures have been proposed, which all follow the following structure. All functions
in this section can depend on parameters θ , but we suppress this index for clarity.

1. Input features: Compute features xi ∈ R
nel

feat for single-electrons and pij ∈
R

nel-el
feat for pairs of electrons i, j from the coordinates r and spins σ .

xi = f el(ri , σi, (R,Z)) i = 1 . . . nel (94)

pij = f el-el(ri , σi, rj , σj ) i, j = 1 . . . nel (95)

Analogous to the multisets {r↑}, {r↓} defined in (51) we define the following
multisets of features:

{p↑i } := {(x1,pi,1), . . . , (xn↑ ,pi,n↑)},
{p↓i } := {(xn↑+1,pi,n↑+1), . . . , (xnel ,pi,nel)} (96)

{p↑i,\i} := {p↑i } \ {(xi,pi,i )},
{p↓i,\i} := {p↓i } \ {(xi,pi,i )} (97)
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2. Embedding: Compute a high-dimensional embedding hi ∈ Rdemb for each
electron i. These embeddings not only depend on the input features of elec-
tron i but also on the multisets of input features of all other electrons.

hi = h
(
xi, {p↑i,\i}, {p↓i,\i}

)
, i = 1 . . . nel (98)

3. Orbitals: Compute entries φ
d,k,i
↑↓ from the embeddings hi for each orbital k

and determinant d .

φ
d,k,i
↑ = φ

↑
dk(hi) i = 1 . . . n↑, k = 1 . . . nel, d = 1 . . . ndet (99)

φ
d,k,i
↓ = φ

↓
dk(hi) i = n↑ + 1 . . . nel, k = 1 . . . nel, d = 1 . . . ndet (100)

4. Slater determinant: Compute � as a sum of Slater determinants of these
orbitals φ

d,k,i
↑ (cf. (54)) and optionally multiply it with a Jastrow factor J

that is invariant under permutation of electrons with the same spin.

� = J
({hi}i=1...n↑ , {hi}i=n↑+1...nel

)
×
∑
d

det
(
φ

d,1
↑ , . . . , φ

d,n↑
↑ , φ

d,n↑+1
↓ , . . . , φ

d,nel↓
)

(101)

Note that by construction the embeddings hi are equivariant under permu-
tation of electrons of the same spin and therefore the whole ansatz satisfies
antisymmetry. In the following we discuss a few common choices for each of
these four steps.

4.3 Input features

Pairwise features

For the pairwise features pij , typically 3D difference vectors ri − rj and the
pairwise distances |ri − rj | are being used. Some ansätze (Pfau et al., 2020;
Gerard et al., 2022; Gao and Günnemann, 2022) use a simple concatenation
(denoted by [·, ·]) of these features

pconcat
ij =

[
ri − rj , |ri − rj |

]
, pconcat

ij ∈R
4. (102)

Others additionally include trainable functions of these distances and difference
vectors. For example, Gao and Günnemann (2023a) proposed

pMOON
ij,ν =MLPν(ri − rj )

∑
μ

Wνμ exp

(
−|ri − rj |2

ζμ

)
ν = 1 . . . nel-el

feat , μ= 1 . . . nfilters (103)



DL-VMC for solving the electronic Schrödinger equation Chapter | 5 277

It may seem redundant to include both ri − rj and |ri − rj | as an input feature,
because the norm is just a function of ri − rj . But including |ri − rj | which has
discontinuous derivatives at ri = rj allows the network to model functions that
are not smooth at ri = rj , which is required to satisfy the Kato cusp conditions
(Kato, 1957). Early approaches (Hermann et al., 2020) used only the distances
|ri − rj | as input features, but this has been recognized to be insufficiently ex-
pressive (Gerard et al., 2022).

For large molecules the interparticle distances |ri − rj | can become very
large, making training of neural networks using them numerically challenging.
von Glehn et al. (2023) proposed to logarithmically scale the interparticle dis-
tances and differences to alleviate this problem:

r̃ij = log
(
1+ |ri − rj |

)
(104)

p
log
ij =

[
r̃ij

|ri − rj |
(
ri − rj

)
, r̃ij

]
, p

log
ij ∈R

4. (105)

Single electron features

The single electron features xi are typically computed as functions of the
electron-nuclei distances and differences. FermiNet (Pfau et al., 2020) proposed
a simple concatenation of all electron-nucleus pairs

xconcat
i =

[
ri −R1, |ri −R1|, . . . , ri −Rnnuc , |ri −Rnnuc |

]
, pconcat

i ∈R
4nnuc ,

(106)
whereas Gao and Günnemann (2022); Gerard et al. (2022) use sums of trainable
functions of the differences and distances.

xMLP
i =

nnuc∑
J=1

MLP
(

[ri −RJ , |ri −RJ |]
)

(107)

While some architectures (von Glehn et al., 2023) encode spin explicitly as
a feature xi = σi , many others do not encode spin explicitly, but instead opt for
different subsequent embedding functions depending on spin.

4.4 Embedding

The role of the embedding network is to take simple input features xi and pij

and compute embeddings hi that form expressive basis functions for the sub-
sequent many-body orbitals. To do this, the embedding network must on the
one hand be able to incorporate information from all other electrons i �= j , and
on the other hand be able to represent arbitrary functions of a single electron
i. These two requirements are typically addressed by interleaving two kinds of
computation over multiple rounds l: A function f that gathers information from
other electrons and function that acts only on a single electron (typically imple-
mented as MLP or a single affine transformation). Most embedding networks
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thus follow the following structure:

h0
i = xi Initialization (108)

m
↑,l
i =

∑
j∈{↑\i}

f ↑(hl−1
i , hl−1

j ,pij ) Gather information across electrons

(109)

m
↓,l
i =

∑
j∈{↓\i}

f ↓(hl−1
i , hl−1

j ,pij )

hl
i =MLP

([
hl−1

i , m
↑,l
i , m

↓,l
i

])
Single-electron computation (110)

The sets {↑ \i} and {↓ \i} correspond to the electron-indices of all electrons of
a given spin excluding i:

{↑ \i} := {1 . . . n↑} \ {i}, {↓ \i} := {n↑ + 1 . . . nel} \ {i} (111)

The initial embeddings are h0 ∈R
nel

feat , and hl ∈R
demb for l > 0.

After iterating Eq. (109) and (110) for l = 1 . . .L, the final embeddings are
given by the output of the last layer, i.e. hi = hL

i . A few design considerations
are worth discussing:

• The messages m
↑↓,l
i in Eq. (109) are a sum over all particles of a given spin.

Since the sum is a permutation invariant operation, the resulting message is
invariant under permutation of two electrons of the same spin. This ensures
that hi has the structure defined in (98), ultimately ensuring wavefunction
antisymmetry.

• Not all parts of the network have the same impact on computational cost.
While the functions f (hi, hj ,pij ) in Eq. (109) are evaluated for every pair of
electrons – and thus have computational cost scaling as O(nel

2) – the MLP in
Eq. (110) is only evaluated for every electron, thus scaling as O(nel). This dif-
ference in scaling is typically reflected by the fact that most architectures use
wide (and thus costly) MLPs for the one-electron computations (Eq. (110)),
and computationally cheaper functions for f ↑ and f ↓ (Eq. (109)).

• Some architectures differentiate between messages from up- and down-
electrons (as denoted in Eq. (109)), while others differentiate between mes-
sages from spin-parallel or spin-antiparallel electrons. The latter choice en-
forces invariance w.r.t. exchanging all spin-up particles with spin-down par-
ticles and has been shown to be advantageous for closed-shell systems (Gao
and Günnemann, 2023b).

Given this very general framework, the key difference between the various
embedding architectures lies therefore in the message functions f ↑, f ↓, with a
few common choices outlined below.
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Hartree-Fock

If no information from other electrons is gathered (e.g. f ↑ ≡ f ↓ ≡ 0), the final
embedding hi only depends on the input features of that electron xi . The net-
work cannot capture any correlation effects and thus the best possible accuracy
is Hartree-Fock.

FermiNet

In FermiNet (Pfau et al., 2020; Spencer et al., 2020) the message-function f

simply concatenates the feature vectors of embedding hj and an MLP of pij .

f ↑(hj ,pij )= f ↓(hj ,pij )=
[
hj , MLP

(
pij

)]
(112)

FermiNet clearly improves upon a simple noninteracting embedding, by includ-
ing in every layer information about all other electron embeddings as well as
their relative positions. Note however that in FermiNet all electron embeddings
hj contribute equally to the message mi , irrespective of the distance between
electron i and j . This runs against physical intuition, which suggests that elec-
trons at large separations would have a smaller influence.

Graph convolutional neural networks

In a Graph Convolutional Neural Network (GCN) (Zhou et al., 2020), the con-
tributions of each electron j to the message mi are weighted by their relative
geometric positions encoded in pij . This weighting is commonly achieved us-
ing an elementwise product along the feature dimension, denoted by ':

f ↑(hj ,pij )=MLPh
(
hj

)'MLP↑p
(
pij

)
, (113)

f ↓(hj ,pij )=MLPh
(
hj

)'MLP↓p
(
pij

)
. (114)

Empirically, including graph convolutions can improve the accuracy and con-
vergence of the ansatz compared to the purely MLP-based FermiNet (Gerard et
al., 2022). One potential reason for the improved performance is that it enables
the network to put larger weight on closer neighboring electrons than electrons
which are far apart. Some approaches (Gao and Günnemann, 2023a) enforce
this prior knowledge explicitly, by multiplying the MLP

(
pij

)
with functions

that explicitly decay as a function of the distance between electrons i and j .

Self-attention based

Neither in FermiNet nor the GCN embedding does the message mi explicitly
depend on the message receiver hi , but instead only depends on the message
sender hj and the pairwise features pij . Self-attention is an approach where
the weighting of each message j is computed as an inner product between a
query vectors qi (derived from the receiving embedding hi) and a key vector kj

(derived from the sending embedding hj ). For embeddings h ∈ R
nel×demb and
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trainable matrices W q,W k,W v ∈ Rdemb×dattn the weights w ∈ Rnel×nel and the
corresponding message function are given as

q = hW q, kj = hW k, vj = hW q, q, k, v ∈R
nel×dattn (115)

ŵ = exp

(
qkT

√
dattn

)
, ŵ ∈R

nel×nel (116)

wij = ŵij∑′
j ŵij ′

(117)

f ↑(hi, hj )= f ↓(hi, hj )=wij vj . (118)

The message mi explicitly depends on the embedding for electron i and
j , but no longer explicitly depends on their pairwise features pij . This geo-
metric information must be inferred from the inner product of qi and kj , and
thus requires that the single-electron input features contain information about
their absolute positions. This architecture was implemented by von Glehn et al.
(2023) and has been empirically shown to be among the most expressive an-
sätze.

4.5 Orbitals

Given permutation equivariant embeddings hi , the elements φ
d,k,i
↑↓ of the slater

matrix are typically computed as

φ
d,k,i
↑ =

(
W
↑
dk · hi

)
ϕ̃
↑
dk(ri), i = 1 . . . n↑ (119)

φ
d,k,i
↓ =

(
W
↓
dk · hi

)
ϕ̃
↓
dk(ri), i = n↑ + 1 . . . nel (120)

where W↑↓ are trainable matrices W↑,W↓ ∈ R
ndet×nel×demb , and ϕ̃ is an enve-

lope function enforcing that φ→ 0 as ri →∞.
For molecules the envelope function is typically expressed as a sum over

nuclei, leading to

ϕ̃dk(ri)=
nnuc∑
J=1

ϕdkJ (ri). (121)

The most common choice for the envelope function, originally proposed by
Pfau et al. (2020) and simplified by Spencer et al. (2020) is exponential en-
velopes

ϕdkJ (ri)= πdkJ e−αdkJ |ri−RJ |, (122)

with trainable parameters π,α ∈R
nel×ndet×nnuc .

An alternative proposed by Hermann et al. (2020) is using the single-particle
orbitals from a Hartree-Fock calculation
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ϕdkJ (ri)= ϕHF
kJ (ri)=

nbasis∑
μ=1

ckJμ bμ(ri −RJ ), (123)

where bμ : R3 → R are atom-centered basis functions and ckJμ ∈ R are the
expansion coefficients of orbital ϕHF

k in this basis.
Given that Hartree-Fock yields a good approximation of the groundstate

wavefunction, one might think that using Hartree-Fock orbitals as envelopes
provides a useful prior and good starting point for optimization. However, in
practice the exponential envelopes are not only simpler to implement but also
lead to substantially more accurate results (Gerard et al., 2022), potentially due
to a bias introduced by the Hartree-Fock orbitals.

Even though using the HF-envelopes directly can decrease accuracy – and
several groups that originally used them (Hermann et al., 2020; Scherbela et
al., 2022), replaced them in later work with exponential envelopes (Gerard et
al., 2022; Schätzle et al., 2023) – there is still information in the HF-orbitals
which can be used: First, different HF-orbitals typically have different length-
scales: Some orbitals (known by chemists as core orbitals) are tightly localized
on an atom, whereas other orbitals (known by chemists as valence orbitals)
are somewhat delocalized. This can be quantified and used to initialize the ex-
ponents α of the exponential envelopes, using large values for α to initialize
strongly localized core orbitals and small values to initialize delocalized va-
lence electrons. Numerical experiments show that this initialization accelerates
wavefunction optimization (Gerard et al., 2022), in particular for heavy atoms
where the length-scale of core orbitals differs by an order of magnitude from the
length-scale of the valence electrons. Second, one can use the expansion coef-
ficients of an HF-orbital as a descriptor of that orbital. This can be useful when
designing a transferable wavefunction (cf. Sec. 4.7).

4.6 Jastrow factor

The wavefunction can be multiplied with a function J (r) :Rnel×3 →R, which is
invariant under permutations of electrons with the same spin, without affecting
the total antisymmetry of the wavefunction. It is common to use a Jastrow-factor
that does not alter the sign of �, by enforcing J > 0 via J = exp(Ĵ ) with an
arbitrary permutation invariant function Ĵ .

The Jastrow factor generally serves two purposes: Increasing expressivity of
the wavefunction ansatz and enforcing the Kato cusp conditions (Kato, 1957).
The first can be achieved by a permutation invariant pooling of the embeddings
hi , e.g. as

J = exp

⎛⎝ n↑∑
i=1

MLP↑ (hi)+
nel∑

i=n↑+1

MLP↓ (hi)

⎞⎠ . (124)
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The latter refers to cusps that are present in the groundstate wavefunction
whenever the positions of two particles coincide. The local energy H�

�
of the

groundstate wavefunction is constant, but the individual terms in the Hamilto-
nian are not. In particular the potential energy terms in Eq. (3) diverge whenever
the distance between two particles approaches zero. To obtain a constant lo-
cal energy, the kinetic energy – given by the curvature of the wavefunction –
must diverge with opposite sign, leading to discontinuous first derivatives of the
wavefunction � whenever two particles coincide. These cusps of high electron
density (when an electron approaches a nucleus) or low electron density (when
an electron approaches another electron) can be represented by an ansatz that
has discontinuous derivatives at distance |ri − rj | = 0. A choice used by Her-
mann et al. (2020); von Glehn et al. (2023) is:

J cusp = exp

⎛⎝ nel∑
i=1

nel∑
j=i+1

a

b+ |ri − rj |

⎞⎠ (125)

with parameters a, b.
The full wavefunction � is then given as

� = J cuspJ

ndet∑
d=1

det [�d ] (126)

4.7 Architectures for transferable wavefunctions

In many instances it is advantageous to have an ansatz which not only accu-
rately represents �(R,Z)(r) for a fixed geometry (R,Z), but which explicitly
depends on the molecule and yields accurate groundstate wavefunctions across
molecules. For example, when computing a Potential Energy Surface EZ(R),
which requires finding the minimum eigenvalue for many instances of HBO,
it can be more efficient to train a single transferable ansatz for all geometries,
rather than training a separate ansatz for every geometry.

The architectures described in this section so far parameterize a wavefunc-
tion �(R,Z)(r) which explicitly depends on the electron coordinates, but only
implicitly depends on the molecular geometry contained in (R,Z). For example
the nuclear coordinates R are used explicitly to compute input features in most
architectures, but in many architectures the wavefunction � does not explicitly
depend on the nuclear charges Z. Any realization of a wavefunction with pa-
rameters θ obtained through variational optimization will still implicitly depend
on Z – because HBO used throughout optimization depends on Z – but evalu-
ating it for a molecule with different Z, will not yield the correct groundstate
wavefunction for this new molecule.

Several approaches for such transferable wavefunctions have been proposed
by Gao and Günnemann (2022, 2023b,a); Scherbela et al. (2024, 2023), which
make the following changes to the architecture outline in Sec. 4.2:
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Input features and embedding

The input features explicitly depend on (R,Z). To encode the nuclear charges Z,
one-hot-encodings are typically used. The embeddings hi no longer depend only
on xi , {p↑i,\i}, {p↓i,\i}, but also explicitly depend on the multiset of all nuclear
positions and their nuclear charges:

hi = h
(
xi, {p↑i,\i}, {p↓i,\i}, {(R,Z)}

)
(127)

{(R,Z)} := {(R1,Z1), . . . , (Rnnuc ,Znnuc)} (128)

This extra dependence is typically implemented in a similar fashion as the de-
pendence on the set of other electrons, for example using graph convolutional
networks or self-attention.

Orbitals

The widely used computation of orbitals in (119), (120) poses a challenge in
designing transferable architectures, which generalize not only across differ-
ent geometries R, but also across molecules with different number of electrons.
Because the dimensions of the trainable matrices W↑,W↓ ∈ R

nel×ndet×demb ex-
plicitly depend on nel (corresponding to the number of orbitals in the Slater
determinant), they cannot be transferred across different molecules with vary-
ing nel. This is in contrast to other parts of the architecture (e.g. the GCN
embedding) where the number of parameters does not depend on nel, because
all parameterized functions are only applied to objects corresponding to single
electrons or pairs of electrons. The computational cost grows with system size –
because the functions must be evaluated for more electrons / pairs of electrons
– but the number of parameters is independent of nel.

A solution proposed by Gao and Günnemann (2023a); Scherbela et al.
(2024) is to compute Wk as a function of some features ck ∈R

norb
feat of each orbital

k. The features ck in turn are evaluated using a conventional method that yields
orbitals for a given molecule (R,Z). Gao and Günnemann (2023a) propose a
heuristic based on chemical bonds to obtain orbital positions and ultimately
features ck . Scherbela et al. (2024) propose to use the Hartree-Fock orbitals –
which are typically already computed for the purpose of supervised pretraining
(cf. Eq. (88)) – to provide atom-wise orbital features ckJ . Given Hartree-Fock
orbitals ϕHF

k (ri), expanded in atom-centered basis functions bμ :R3 →R

ϕHF
k (ri)=

nnuc∑
J=1

nbasis∑
μ=1

ckJμ bμ(ri −RJ ), (129)

with corresponding expansion coefficients c ∈ R
nel×nnuc×nbasis , these expansion

coefficients can be used as orbital features with norb
feat = nbasis. To this end the ex-

pansion coefficients are first mapped to ŴdkJ ∈R
demb and âdkJ ∈R using MLPs
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and then used to evaluate the orbitals analogous to (119) and (122). Omitting
spins for clarity, this leads to

ŴdkJ =MLPW (ckJ ) MLPW :Rnbasis →R
demb (130)

âdkJ =MLPa (ckJ ) MLPa :Rnbasis →R (131)

φd,k,i =
nnuc∑
J=1

(
ŴdkJ · hi

)
e−âdkJ |ri−Rj |, (132)

which no longer requires a number of trainable parameters dependent on nel.

5 Results

In this section we survey numerical results that have been achieved using DL-
VMC.

5.1 Highly accurate variational energies

In general architectures like FermiNet introduced in Sec. 4.2 are capable of
accurately representing the ground-state wavefunction and allow for highly ac-
curate ground-state energy predictions. For example, Fig. 8 compares a neural
network architecture proposed in 2022 against other computational approaches
for a set of molecules up to 42 electrons (Gerard et al., 2022). The work finds
that across a range of molecules, Deep Learning-based Variational Monte Carlo
is able to reach lower energy predictions than conventional approaches and,

FIGURE 8 Energies relative to the previously known best estimate, (lower is better). Blue bars
depict best published variational energies, footnotes mark the method: a: FermiNet VMC (Pfau et
al., 2020; Spencer et al., 2020), b: Conventional DMC (Seth et al., 2011; Nemec et al., 2010; Clark
et al., 2011), c: FermiNet DMC (Ren et al., 2023), d: MRCI-F12. Note that Eref is not necessary
variational and thus may underestimate the true energy. Figure and caption is taken from Gerard et
al. (2022).
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therefore, better estimates for the ground state, due to the variational principle.
The figure distinguishes between the best estimate and other variational ener-
gies, whereas the best estimate can include methods such as CCSD(T), which
is widely considered the gold standard for highly accurate ground-state energy
predictions. However, a notable drawback of CCSD(T) lies in its nonvariational
nature, potentially leading to an underestimation of the ground-state energy and
offering no uncertainty guarantees. In contrast, DL-VMC exceeds all conven-
tional variational approaches, including Diffusion Monte Carlo, except for the
case of Benzene, the largest system tested, where another deep learning-based
approach outperforms the proposed architecture. Since the architecture’s initial
publication, further improvements have been made in incorporating interparti-
cle correlation, enhancing the presented results even further (Li et al., 2023; von
Glehn et al., 2023; Gao and Günnemann, 2023a). These advancements under-
score the potential of Variational Monte Carlo and its capabilities in the field.

5.2 Transfer learning for ground-state energy predictions

A potential direction to improve the method’s efficiency and reduce training
cost, is to use techniques such as deep transfer learning (Devlin et al., 2018;
Alayrac et al., 2022). The idea is to pretrain a neural network ansatz on a
specific set of molecules to predict the ground-state energy and subsequently
transfer this pretrained model to novel, previously unencountered molecules.
As discussed in the preceding Sec. 4.7, a common challenge with the proposed
architectures lies in the inherent dependence of the ansatz’s parameter count on
the system size due to the unique construction of the orbital matrix. To address
this issue, Scherbela et al. (2023) proposed an approach to map computationally
cheap orbital descriptors from methods such as Hartree Fock to highly accurate
deep-learning-based orbitals.

To assess the transfer capabilities of a pretrained model, Scherbela et al. pre-
trained a single neural network ansatz on a diverse set of molecules, comprising
approximately 100 molecules, each containing up to four heavy atoms (counted
as the number of nonhydrogen atoms). In Fig. 9, the model was evaluated on
test sets, each containing four randomly perturbed molecules, grouped by the
number of nonhydrogen atoms with up to 7 heavy atoms. To prevent any poten-
tial train/test leakage, none of the molecules in the test set were included in the
training set. Utilizing a pretrained model, the authors achieved CCSD(T) accu-
racy with a 2Z basis set without the need for additional variational optimization
steps (zero-shot) for molecules containing up to 6 heavy atoms. Additional op-
timization steps further improved accuracy (refer to Fig. 9 b). To benchmark
the performance against other state-of-the-art Deep Learning-based Variational
Monte Carlo methods, the energy error as a function of optimization steps, was
compared for molecules with three heavy atoms. Specifically, an attention-based
approach (von Glehn et al., 2023) without pretraining was used as a baseline.
In summary, a pretrained model can generally achieve certain levels of accu-
racy orders of magnitude faster but may be outperformed after more prolonged
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FIGURE 9 Absolute energies: Energies relative to CCSD(T)-CBS (complete basis set limit) when
re-using the pretrained model on molecules of varying size without optimization (a) and after fine-
tuning (b). (c) depicts energy for the test set containing 3 heavy atoms as a function of optimization
steps and compares against SOTA method. Solid lines are with pretraining, dashed lines without.
Gray lines correspond to conventional methods: Hartree-Fock in the complete basis set limit (HF-
CBS), and CCSD(T) with correlation consistent basis sets of double to quadruple valence (CC-nZ).
Figure and caption is taken from Scherbela et al. (2023).

optimization. This phenomenon could be related to the orbital construction, po-
tentially suggesting that the proposed transferable ansatz might be inherently
less expressive (Scherbela et al., 2023).

The more challenging task of relative energies was evaluated in a second
experiment. By relative energies we denote the energy difference between dif-
ferent geometrical conformations of the same molecule. The authors show that
by using only a few additional variational optimization steps qualitatively and
quantitatively correct results can be achieved.

For instance, in Fig. 10a, the relative energy of five conformers to the
equilibrium-state geometry of Bicyclobutane is illustrated. This system is of
particular interest because CCSD(T) tends to inaccurately predict the relative
energy for the “dis-TS” conformer, significantly underestimating the energy
by approximately 60 mHa. While the pretrained deep learning model correctly
predicts the sign of the relative energies without the need for additional opti-
mization steps, it does yield quantitatively different relative energies. Therefore,
additional optimization steps are necessary to bring the model into closer align-
ment with the Diffusion Monte Carlo reference method and FermiNet. With just
700 optimization steps per geometry, the pretrained model achieved a maximum
deviation of 2.1 millihartree (mHa) to the reference method compared to Fer-
miNet, which required 10,000 steps for a maximum deviation of 7.1 mHa.

Another frequently encountered test case involves the dissociation curve of
the Nitrogen dimer. The dimer serves as another example wherein methods like
CCSD(T) commonly struggle by notably overestimating the energy for confor-
mations in the bond-breaking regime (i.e. a distance of 3-4 Bohr between the
Nitrogen atoms). In this scenario, the pretrained model also tended to overesti-
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FIGURE 10 Challenging relative energies: Relative energies obtained with and without fine-
tuning on 4 distinct, challenging systems, compared against high-accuracy reference methods. a)
Relative energy of bicyclobutane conformers vs. the energy of bicyclobutane; b) Potential energy
surface (PES) of N2; c) global rotation of propadiene; d) relative energy of twisted vs. untwisted
propadiene. Figure and caption is taken from Scherbela et al. (2023).

mate the energy significantly. However, it only required a few optimization steps
to better align with the reference method (cf. Fig. 9 c).

The ground-state energy in general is invariant under global rotation of the
molecule. Although the energy is invariant, this is in general not the case for the
wavefunction. Enforcing complete invariance of the wavefunction under global
rotation would be overly restrictive, as discussed in the work by Gao and Günne-
mann (2022). To address this, Scherbela et al. incorporated data augmentation
during pretraining, involving random rotations of the entire molecules. While
this proved to be a suitable proxy, with energy variations of approximately 1
mHa for propadiene, it was not entirely sufficient, leading to outliers with vari-
ations reaching up to 5 mHa. A short variational optimization phase once again
helped to mitigate larger energy errors, achieving chemical accuracy as depicted
in Fig. 10c.

For the final evaluation, the transition barrier of propadiene twisted around
the C=C bond was examined. The equilibrium and transition states are differ-
entiated by an energy difference of approximately 110 mHa. The model was
intentionally pretrained on twisted molecules, encompassing equilibrium con-
formations, transition conformations, and one intermediate twist. However, as
depicted in Fig. 10, this proves insufficient to accurately predict the complete
transition path without the incorporation of additional optimization steps. How-
ever, again only a short amount of fine-tuning allowed for an accurate prediction
of the whole path.
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5.3 Literature overview

Research into Deep Learning-based Variational Monte Carlo has expanded
rapidly over the last years, rendering a comprehensive overview of the field im-
possible. For further reviews on this subject we refer the reader to Hermann et
al. (2022); Zhang et al. (2023); Schätzle et al. (2023); Medvidović and Moreno
(2024) and highlight several advances in key areas below.

Embedding architectures

FermiNet (Pfau et al., 2020; Spencer et al., 2020) and PauliNet (Hermann et
al., 2020) have been the first two neural network architectures to successfully
demonstrate the potential of neural network-based wavefunctions for molecules
in first quantization. As discussed in Sec. 4.2, a significant portion of research
has been invested in improving the originally proposed embedding architectures
by incorporating attention-based techniques (von Glehn et al., 2023; Pescia et
al., 2023; Li et al., 2023) and graph-based approaches (Gerard et al., 2022; Gao
and Günnemann, 2023a). Currently, the two state-of-the-art architectures, Lap-
Net (Li et al., 2023) and PsiFormer (von Glehn et al., 2023), in terms of accuracy
are based on attention mechanisms.

Antisymmetrization

In terms of antisymmetrization, as previously discussed, a common technique
is to employ Slater determinants. From a scaling perspective, the determinant
is the leading factor with cubical scaling. Therefore, efforts have been made to
reduce the theoretical scaling using sorting algorithms (Richter-Powell et al.,
2023) or products of two-particle functions (Han et al., 2019). Although the
results are partially promising, they are still at a proof-of-concept stage, and
the Slater determinant remains the most commonly used antisymmetrization
method. However, for certain systems, such as for the case of superfluids, it
was shown that approaches like antisymmetric geminal powered wavefunctions
(Lou et al., 2024) or Pfaffian wavefunctions (Kim et al., 2023) can be bene-
ficial. A recent preprint (Ye et al., 2024) proposed antisymmetrization using
Vandermonde-like determinants, and showed that any continuous antisymmet-
ric function can be represented by O(nel) of these objects, potentially yielding
another approach to antisymmetrization with favorable scaling of computational
cost.

Generalization across molecules

By taking advantage of regularities within the geometrical conformation space
of molecules, several approaches have been proposed to learn neural network-
based wavefunctions simultaneously across a range of geometrical conforma-
tions. Either by only sharing parts of the neural network architecture (Scherbela
et al., 2022) or by using a meta neural network to predict the linear mappings
within the orbital construction (Gao and Günnemann, 2022, 2023b). Although



DL-VMC for solving the electronic Schrödinger equation Chapter | 5 289

they achieve faster evaluation of the potential energy surface of a molecule by
an order of magnitude, they don’t allow the efficient transfer to new molecules.
A key reason for this is the explicit dependence of the parameter count of the
architecture on the system size due to the unique construction of the orbital ma-
trix. Therefore, Gao and Günnemann (2023a) and Scherbela et al. (2024, 2023)
generalized the existing approach to allow for efficient optimization of a single
neural network across a diverse range of molecules. This again allowed for a
significant reduction in optimization steps, as discussed in Sec. 5.2.

Optimization

Another active area of research involves enhancing neural network optimiza-
tion techniques. In Deep Learning-based Variational Monte Carlo, it is com-
mon to employ second-order methods like Natural Gradient Descent. Conse-
quently, there arises the need to invert a preconditioner matrix with dimensions
nparams× nparams. FermiNet has proposed the use of KFAC as an approximation
technique, which relies on the assumption that the matrix is block-diagonal.
Another very recent line of work showed that it is possible to convert the prob-
lem of inverting the matrix of shape nparams × nparams to a problem of inverting
a matrix of shape nsamples × nsamples, whereas nsamples ) nparams represent the
number of Monte Carlo samples (Goldshlager et al., 2024; Rende et al., 2023).
On the other hand, Neklyudov et al. (2023) interpreted the optimization in Vari-
ational Monte Carlo as a gradient flow and by improving the underlying metric
of the distribution space the author reached empirically faster convergence.

Observables and applications

Besides the improvements to the neural network-based architecture and the
computation of the ground-state energy for molecules in first quantization, the
method was also applied to a plethora of other observables and systems. For
example the method has been applied to the computation of forces (Qian et al.,
2022; Scherbela et al., 2022) and excited states (Entwistle et al., 2023; Pfau
et al., 2023), as well as to other systems such as solids including real-solids
and the homogeneous electron gas (Pescia et al., 2023; Cassella et al., 2023;
Li et al., 2022a), superfluids (Lou et al., 2024; Kim et al., 2023), positron-
molecule complexes (Cassella et al., 2024) and discrete systems (Carleo and
Troyer, 2017). Also, techniques like effective core potentials (Li et al., 2022b)
or Diffusion Monte Carlo (Ren et al., 2023) have been explored in the context
of Deep Learning-based methods for the electronic Schrödinger equation to im-
prove the scaling and accuracy further.
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