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Abstract

Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used
to decompose complex, nonlinear systems into a set of modes, revealing underlying pat-
terns and dynamics through spectral analysis. This review presents a comprehensive and
pedagogical examination of DMD, emphasizing the role of Koopman operators in trans-
forming complex nonlinear dynamics into a linear framework. A distinctive feature of
this review is its focus on the relationship between DMD and the spectral properties of
Koopman operators, with particular emphasis on the theory and practice of DMD algo-
rithms for spectral computations. We explore the diverse “multiverse” of DMD methods,
categorized into three main areas: linear regression-based methods, Galerkin approx-
imations, and structure-preserving techniques. Each category is studied for its unique
contributions and challenges, providing a detailed overview of significant algorithms and
their applications as outlined in Table 1. We include a MATLAB® package with ex-
amples and applications to enhance the practical understanding of these methods. This
review serves as both a practical guide and a theoretical reference for various DMD meth-
ods, accessible to both experts and newcomers, and enabling readers to explore their areas
of interest in the expansive field of DMD.

Keywords
Dynamical systems, Koopman operator, Data-driven discovery, Dynamic mode decom-
position, Spectral theory, Spectral computations
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1 Introduction

Dynamical systems provide a powerful framework for modeling the evolution
of various scientific and engineering systems over time. They are crucial for
understanding complex phenomena ranging from weather patterns and popula-
tion growth to stock market fluctuations. We consider discrete-time dynamical
systems represented as:

Xus1 =F(xy), n=0,1,2,..., (1.1)

where x € Q denotes the state of the system, and Q2 C RY is the state space.
The function F : Q2 — Q governs the system’s evolution. The classical approach
to analyzing such systems, tracing back over a century to the seminal work of
Poincaré (1899), is geometric. It involves local analysis of fixed points, periodic
orbits, and stable or unstable manifolds. While Poincaré’s framework has sig-
nificantly advanced our understanding of dynamical systems, it faces two main
challenges in modern applications:

e Global understanding of nonlinear dynamics: Unlike linear systems, there
is no comprehensive mathematical framework for nonlinear systems. The
principle of linear superposition is not applicable in this context. Local mod-
els can predict long-term dynamics near fixed points and attracting manifolds
but have limited predictive power for other initial conditions. Consequently,
the global understanding of nonlinear dynamics in state space is predomi-
nantly qualitative.

e Incomplete knowledge of evolution: Many systems cannot be analytically
described due to their complexity or our incomplete understanding. Typically,
our knowledge is limited to discrete-time snapshots of the system, i.e., a finite
dataset

M
{x(m), y(’")} such that y(m) =Fx™), m=1,...,M.

m=1
We concisely write this data in the form of snapshot matrices
X = (Xm <@ . x(M>) e RDM

Y:(yu) yO y(M)>eRdXM. (1.2)

Advances in measurement technologies have significantly enhanced our abil-
ity to collect detailed multimodal and multi-fidelity snapshot data. Data could
be collected from one long trajectory or multiple shorter trajectories. It can
come from experimental observations or numerical simulations. The question
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becomes how to use this data to meaningfully study the dynamical system in

(1.1).
The advent of big data (Hey et al., 2009), coupled with strides in modern sta-
tistical learning (Hastie et al., 2009) and machine learning (Mohri et al., 2018),
has heralded a new era of data-driven algorithms to address these issues. This
review will focus on one of the most prominent of these algorithms, Dynamic
Mode Decomposition (DMD)), closely connected with Koopman operators.

Koopman Operators — In 1931, Koopman introduced his operator-theoretic
approach to dynamical systems, initially to describe Hamiltonian systems
(Koopman, 1931). This theory was further expanded by Koopman and von Neu-
mann (1932) to include systems with continuous spectra. Koopman operators
offer a powerful alternative to the classical geometric view of dynamical systems
by addressing the fundamental issue of nonlinearity. We lift a nonlinear system
(1.1) into an infinite-dimensional space of observable functions g : 2 — C us-
ing a Koopman operator K:

[Kgl(x) =g(F(x)), sothat [Kgl(x,)=gXut1).

Through this approach, the evolution dynamics become linear, enabling the use
of generic solution techniques based on spectral decompositions. Initially, the
primary application of Koopman operators was in ergodic theory (Eisner et al.,
2015), notably playing a pivotal role in proving the ergodic theorem by von Neu-
mann (Neumann, 1932) and Birkhoff (Birkhoff, 1931; Birkhoff and Koopman,
1932). More recently, they have been extensively used in data-driven methods
for studying dynamical systems.

Dynamic Mode Decomposition — A significant objective of modern Koop-
man operator theory is to identify a coordinate transformation under which even
strongly nonlinear dynamics may be approximated by a linear system. This
coordinate system is related to the spectrum of the Koopman operator. DMD
was initially developed by Schmid (2009, 2010) (see also Schmid and Ses-
terhenn, 2008) in the context of fluid dynamics. Mezi¢ (2005) introduced the
Koopman mode decomposition, providing a theoretical basis for Rowley et al.
(2009) to connect DMD with Koopman operators. This connection validated
DMD’s application in nonlinear systems and offered a powerful yet straightfor-
ward, data-driven approach for approximating Koopman operators. The fusion
of contemporary Koopman theory with an efficient numerical algorithm has
led to significant advancements and a surge in research. DMD is now the cen-
tral algorithm for computational approximations of Koopman operators with
applications in various fields beyond fluid mechanics, such as neuroscience, dis-
ease modeling, robotics, video processing, power grids, financial markets, and
plasma physics. The simplicity and effectiveness of DMD have led to numerous
innovations, giving rise to a diverse array of DMD methods, playfully described
here as a “multiverse”, aimed at addressing specific challenges.

This Review — We provide a comprehensive tour of this “multiverse” of
DMD methods. Our primary focus is on the interplay between DMD, the spec-
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tral properties of Koopman operators, and their numerical computations. At the
time of writing, these methods can be broadly categorized into three main areas:

e DMD methods based on linear regression;
e DMD methods utilizing Galerkin approximations;
e DMD methods aimed at preserving structures or symmetries of (1.1).

These distinctions are not rigid, and some methods encompass multiple flavors.
This review navigates these key areas and variants, summarized in Table 1,
where we also highlight the unique challenges each algorithm addresses (see
also Section 2.4). We provide detailed summaries and examples of these algo-
rithms in action. Accompanying this review is a MATLAB package:

https://github.com/MColbrook/DMD-Multiverse

featuring user-friendly implementations and examples from the paper, most of
which are new. We aim for readers to utilize this paper as a practical manual
for various DMD methods. Although extensive, the review is structured modu-
larly, enabling readers to selectively engage with DMD versions and topics that
interest them most.

Differentiating itself from prior reviews, this review specifically focuses on
the theory and practice of DMD algorithms for computing spectral properties of
Koopman operators, complementing other reviews on the subject. Mezi¢ (2013)
and the more recent review of Schmid (2022) (see also Taira et al., 2017, 2020)
focus on developments associated with applications in fluid dynamics. While the
initial applications of Koopman and DMD techniques were in fluid problems,
their utility has been demonstrated in a broader range of fields. We also briefly
explore the applications of DMD in control theory, and readers seeking further
exploration in this area are encouraged to read (Otto and Rowley, 2021). An
excellent early review of “Applied Koopmanism” is presented by Budisic et al.
(2012). More recently, Brunton et al. (2022) have provided a broad overview of
Koopman operators and their applications, with connections to other fields.

This review is organized into several sections. In Section 2, we introduce the
basic DMD algorithm, offering a concise introduction to Koopman operators
and their spectral properties, before presenting the fundamental DMD algo-
rithm and its two key interpretations: regression and projection. We discuss three
canonical examples, followed by an examination of the goals and challenges of
DMD. Section 3 focuses on variants from the regression viewpoint, including
noise reduction, compression, randomized linear algebra, multiscale dynam-
ics, and control. The connection with Koopman operators is further explored
in Section 4, where we discuss nonlinear observables, time-delay embedding
methods, and methods for controlling the infinite-dimensional projection error
of DMD (e.g., to ensure convergence). In Section 5, we review recent methods
that preserve the structures of dynamical systems. These methods often lead to
greater noise resistance, improved generalization, and reduced data demands for
training. We conclude in Section 6 by discussing further connections and open
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TABLE 1 Executive summary of the DMD methods discussed in detail in this review. Numerous others are also discussed. The
bold horizontal lines separate the different flavors of regression (top), Galerkin (middle), and structure-preserving (bottom).
The fundamental DMD algorithm, exact DMD, is given in Algorithm 1. NB: For measure-preserving systems, discretizations that
preserve the measure are crucial for convergence, recovering the correct dynamical behavior, stability, robustness to noise, and
improved qualitative and long-time behavior.

DMD Method Challenges Overcome Key Insight/Development Key Reference(s)
Forward-Backward Sensor noise bias. Take geometric mean of forward and backward ~ Dawson et al. (2016)
DMD propagators for the data.
Total Least-Squares  Sensor noise bias. Replace least-squares problem with total Hemati et al. (2017)
DMD least-squares problem. Dawson et al. (2016)
Optimized DMD Sensor noise bias. Exponential fitting problem, solve using variable ~Chen et al. (2012)
Bagging Optimized ~ Optimal collective processing of snapshots. projection method. Askham and Kutz (2018)
DMD Statistical bagging sampling strategy. Sashidhar and Kutz (2022)
Compressed Sensing  Computational efficiency. Unitary invariance of DMD extended to settings  Tu et al. (2014a)
Temporal or spatial undersampling. of compressed sensing (e.g., RIP, S.L. Brunton et al. (2016b)
sparsity-promoting regularizers). Erichson et al. (2019a)
Randomized DMD  Computational efficiency. Sketch data matrix for computations in Erichson et al. (2019b)
Memory usage. reduced-dimensional space.
Multiresolution DMD Multiscale dynamics. Filtered decomposition across scales. Kutz et al. (2016b)
DMD with Control  Separation of unforced dynamics and actuation. ~ Generalized regression for globally linear control Proctor et al. (2016)
framework.

continued on next page
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TABLE 1 (continued)

DMD Method
Extended DMD

Hankel DMD

HAVOK
Residual DMD

Physics-Informed
DMD

Measure-Preserving
Extended DMD

Compactification
Methods

Challenges Overcome

Nonlinear observables.

Delay-embedding for ergodic systems.
Convergence under invariant subspace
assumption.

Lack of closed linear models for chaotic systems.

Infinite-dimensional projection errors,
verification (general systems).

Computation of Koopman spectra (general
systems).

Spectral measures (measure-preserving systems).

Preserving structure of dynamical systems.
Numerous instances given in general framework.

Measure-preserving discretizations of system.
Convergence to Koopman spectral properties
(including continuous spectra/spectral measures).

Continuous-time generator of measure-preserving
system.

Convergence to Koopman spectral properties
(including continuous spectra/spectral measures).
Conditioning of dictionary.

Key Insight/Development

Arbitrary (nonlinear) dictionaries, recasting of
DMD as a Galerkin method.

Connection with Krylov subspace methods and
Birkhoff’s ergodic theorem.

Delay-embedding with chaos as forcing.

Append EDMD with additional matrix (available
from the snapshot data) to compute
infinite-dimensional residuals and overcome the
nonconvergence of EDMD.

Restrict the least-squares optimization to lie on a
matrix manifold.

Alter EDMD to be measure-preserving with
respect to a learned inner product. (via a polar
decomposition of EDMD)

Compactification of generator or its resolvent
using kernel integral operators, dictionary of
kernel eigenvectors.

Key Reference(s)
Williams et al. (2015a)

Arbabi and Mezi¢ (2017a)

Brunton et al. (2017)

Colbrook and Townsend
(2023)
Colbrook et al. (2023a)

Baddoo et al. (2023)

Colbrook (2023)

Das et al. (2021)
Valva and Giannakis
(2023)
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problems. I hope the reader enjoys this tour of the DMD multiverse as much as
I have enjoyed writing it!

Due to the sheer breadth and thousands of papers written on DMD, it is
impossible for this review to cover every version of DMD in great detail. Sig-
nificant DMD algorithms that are not discussed in their own sections are still
discussed in some detail. If the reader searches this paper, they will find dozens
of DMD algorithms. I have included all significant references I am aware of,
but many others may not have been included. I apologize for that in advance
and encourage all readers to inform the author about results that deserve more
discussion.

2 The basics of DMD

To understand the DMD “multiverse”, we must first study the basic DMD algo-
rithm. We begin with Koopman operator theory, the theoretical underpinning of
DMD, before moving on to the fundamental DMD algorithm and two important
viewpoints. We then provide three canonical examples and discuss the goals and
challenges of DMD.

2.1 The underlying theory: Koopman operators and spectra

In this section, we recall the definition of Koopman operators and equip the
reader with a crash course on their relevant spectral properties. At its core, DMD
is an algorithm that uses the snapshot data in (1.2) to approximate the spectral
properties of Koopman operators.

2.1.1  What is a Koopman operator?

To define a Koopman operator, we begin with a space F of functions g : 2 — C,
where 2 is the state space of our dynamical system. The functions g, referred
to as observables, serve as tools for indirectly measuring the state of the system
described in (1.1). Specifically, g(x,) indirectly measures the state x,,. Koopman
operators enable us to capture the time evolution of these observables through
a linear operator framework. For a suitable domain D(K) C F, we define the
Koopman operator via the composition formula:

[Kgl(x) =[g o F](x) = g(F(x)), g € D(K). 2.1)

In this context, [g](x,) = g(F(x,)) = g(X,+1) represents the measurement of
the state one time step ahead of g(x,). This process effectively captures the
dynamic progression of the system. The overarching concept is summarized in
Fig. 1.

The key property of the Koopman operator [ is its linearity. This linearity
holds irrespective of whether the system’s dynamics, as represented in (1.1), are
linear or nonlinear. Consequently, the spectral properties of X become a pow-
erful tool in analyzing the dynamical system’s behavior. To study spectra, we
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¢ g(x2) g(x3)
g 3 o
®g(x1)
L4 g(Xo) g(xn)

g(xo)  g(x1)  g(x2)  g(x3)  g(xn)
Linear . ] . . ¢ Infinite-Dimensional

* . e . .
Nonlinear * F hd F hd F - >e Finite-dimensional
X0 X1 X2 X3 Xn

FIGURE 1 Summary of the idea of Koopman operators. By lifting to a space of observables, we
trade a nonlinear finite-dimensional system for a linear infinite-dimensional system.

assume that F is a Banach space.' For the spectrum of K to be meaningful and
nontrivial, we assume that its domain, D(K), is dense in F and that K itself is
a closed operator.2 If these conditions are not met, the spectrum would encom-
pass the entirety of C. It is crucial to recognize that the Koopman operator is not
uniquely defined by the dynamical system in (1.1); rather, it is fundamentally
dependent on the choice of the space of observables F. In this review, we focus
on cases where F is defined as the following Hilbert space:

F=L*,») withinner product (g1, g2) =/ g1(x)g2(x) dw(x) and
Q

norm [Ig|l = +/{g, &),

for some positive measure w.’ In going from a pointwise definition in (2.1) to the
space L%(Q2, w), a little care is needed since L>($2, w) consists of equivalence
classes of functions. We assume that the map F is nonsingular with respect to
, meaning that

w(E)=0 1impliesthat w({x:F(x)e€ E})=0.

This ensures that the Koopman operator is well-defined since g1 (x) = g2(x) for
w-almost every x implies that g (F(x)) = g2(F(x)) for w-almost every x. The
above Hilbert space setting is standard in most of the Koopman literature for two

1" A Banach space is a normed vector space that is complete, i.e., every Cauchy sequence converges.
Thus, a Banach space has no ‘holes’ in it. We have deliberately kept the background functional
analysis to a minimum in this review.

2 An operator being ‘closed’ means that its graph {(g, Cg) : g € D(K)} is a closed subset within
the product space F x F.

3 We do not assume that this measure is invariant. For Hamiltonian systems, a common choice of
o is the standard Lebesgue measure, for which the Koopman operator is unitary on L%(Q, w). For
other systems, we can select  according to the region where we wish to study the dynamics, such as
a Gaussian measure. In many applications, @ corresponds to an unknown ergodic physical measure
on an attractor.
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reasons. First, it is a reasonable assumption for many dynamical systems, partic-
ularly if we study the dynamics on an attractor. Second, working with operators
in a Hilbert space is much easier computationally than in a Banach space. For
Koopman operators on more general spaces, see Mezi¢ (2020). Practical algo-
rithms for Koopman operators on more general Banach spaces remain a largely
open problem (see Section 6.4).

Since K acts on an infinite-dimensional function space, we have exchanged
the nonlinearity in (1.1) for an infinite-dimensional linear system. This means
that the spectral properties of I can be significantly more complex than those
of a finite matrix, making them more challenging to compute. While this might
seem disheartening, as we will explore in Section 4, methodologies exist that
enable the analysis of infinite-dimensional spectral properties through a series
of finite-dimensional approximations.

2.1.2 Crash course on spectral properties of Koopman operators

We will now review the relevant spectral properties of K. Readers primarily
interested in applying DMD algorithms will still find the dynamical interpreta-
tions of these properties insightful. The sole assumption made throughout this
paper is that I is a closed and densely defined operator. Specifically, unless
stated otherwise, we do not presuppose that X possesses a nontrivial* finite-
dimensional invariant subspace, nor do we assume it has an eigenvector basis.
These two assumptions are often implicitly (and sometimes wrongly) assumed
in DMD papers and can lead to confusion if care is not taken.

Koopman spectra

If g € L2(Q, w) is an eigenfunction of K with eigenvalue X, then g exhibits
perfect coherence’ with

g(xn) = [K"gl(x0) = A"g(x0) VneN. (2.2)

The oscillation and decay/growth of the observable g are dictated by the com-
plex argument and absolute value of the eigenvalue A, respectively. In infinite
dimensions, the appropriate generalization of the set of eigenvalues of K is the
spectrum, denoted by Sp(K), and defined as

Sp(K) = {z € C: (K — zI)~! does not exist as a bounded operator} cC.

Here, I denotes the identity operator. The spectrum Sp(XC) includes the set of
eigenvalues of /C, but in general, Sp(K’) contains points that are not eigenvalues.

4 If the measure  is finite, then the constant function g(x) = 1 is a trivial eigenfunction with eigen-
value 1. It is deemed trivial because the dynamics of a constant observable lack useful information.
5 In the setting of dynamical systems, coherent sets or structures are subsets of the phase space
where elements (e.g., particles, agents, etc.) exhibit similar behavior over some time interval. This
behavior remains relatively consistent despite potential perturbations or the chaotic nature of the
system.
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This is because there are more ways for (O —z/)~! to not exist in infinite dimen-
sions than in finite dimensions. For example, we may have continuous spectra.
The standard Lorenz system on the Lorenz attractor gives rise to a Koopman
operator that has no nontrivial eigenvalues, yet the spectrum is the whole unit
circle!

In general, we cannot numerically approximate an eigenfunction perfectly.
Moreover, the operator X may not have any nontrivial eigenfunctions, for in-
stance, if the system is weakly mixing. Instead, the so-called approximate point
spectrum is the following subset of Sp(/C):

$Pp0) = {3 € C:3gahnen € LA, )

such that g, [ = 1, lim [|(K — A1) gl = 0} ccC.
n—0o0

An observable g with ||g]| =1 and ||(K — AI)g| <€ for A € C is known as €-
pseudoeigenfunction. Such observables are important for the dynamical system
(1.1) since

IK"g —A"g|l = O(ne) VneN.

In other words, A describes an approximate coherent oscillation and de-
cay/growth of the observable g with time. The pseudoeigenfunctions and
Sp,p(K) encode information about the underlying dynamical system (Mezic,
2021). For example, the level sets of certain eigenfunctions determine the in-
variant manifolds (Mezi¢, 2015) and isostables (Mauroy et al., 2013), and the
global stability of equilibria (Mauroy and Mezi¢, 2016) and ergodic partitions
(Budisic et al., 2012; Mezi¢ and Wiggins, 1999) can be characterized by pseu-
doeigenfunctions and Sp,, (K).

Koopman pseudospectra

Approximate point spectra and pseudoeigenfunctions are related to the notion
of pseudospectra (Trefethen and Embree, 2005). For a finite matrix A € C"*"
and € > 0, the e-pseudospectrum of A is the set’

Sp.(A) = {x eC:(A=rD| > 1/6} = U spa+s.
BeCwn | B <e

The e-pseudospectra of A are regions in the complex plane enclosing the eigen-
values of A. These regions tell us how far an e-sized perturbation can perturb
an eigenvalue. Pseudospectra of Koopman operators must be defined with some
care because £ may be an unbounded operator and hence the resolvent norm
|(]C — AI)~!|| can be constant on open subsets of C\Sp(XC) (Shargorodsky,

6 Some authors use a strict inequality in the definition of e-pseudospectra. We prefer the given
definition since then the pseudospectrum is a closed subset of C.
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2008). We define the e-pseudospectrum of K as (Roch and Silbermann, 1996,
Prop. 4.15):

SO =Cl((reC:c—2n~ > 1/e)) =cl| |J spc+B) |,
1Bl <e
(2.3)
where CI denotes the closure of a set. To see the connection with Spap (K), note
that if || (JC — A1) g|| < € for an observable g with ||g|| = 1, then ||(,C — AT) ™! || >
1/e. We care about pseudospectra for several reasons, but two stand out as the
most important:

e Pseudospectra allow us to determine which regions of computed spectra are
accurate and trustworthy. This could be in terms of the numerical stability, but
also pseudospectra aid in detecting so-called spectral pollution (see Figs. 7
and 9). These are spurious eigenvalues arising from discretization that are
unrelated to the underlying Koopman operator. The term spectral pollution
refers to the accumulation of these spurious eigenvalues at points outside the
spectrum of K as the discretization size increases (Lewin and Séré, 2010).
This occurs even when K is a normal operator (see Fig. 8). It is essential to
realize that spectral pollution leads to spurious modes that are not linked to
stability issues but are a consequence of discretizing the infinite-dimensional
operator K to a finite matrix.

e If the Koopman operator is nonnormal, the system’s transient behavior can
differ significantly from the asymptotic behavior captured by Sp(K). Pseu-
dospectra can be employed to detect and quantify transients not represented
by the spectrum (Trefethen et al., 1993) (Trefethen and Embree, 2005, Sec-
tion IV).

Pseudospectra also provide a means of computing spectra since
lim, o Sp, (K) = Sp(K). This convergence occurs in the so-called Attouch—
Wets metric space (Beer, 1993), which roughly means that we obtain uniform
convergence on any compact region of C. This observation goes beyond Koop-
man operators and has been behind some recent breakthroughs in the computa-
tion of spectra in infinite dimensions (Ben-Artzi et al., 2020; Colbrook, 2020,
2022; Colbrook and Hansen, 2022; Colbrook et al., 2019).

Koopman mode decompositions and spectral theorems beyond eigen-
values

One of the most useful features of Koopman operators is the Koopman Mode
Decomposition (KMD) (Mezi¢, 2005). The KMD expresses the state x or an
observable g(x) as a linear combination of dominant coherent structures. It can
be considered a diagonalization of the Koopman operator. As a result, the KMD

7 While Roch and Silbermann (1996, Prop. 4.15) consider bounded operators, it can be adjusted to
cover unbounded operators (Trefethen and Embree, 2005, Thm. 4.3).
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is invaluable for tasks such as dimensionality and model reduction. It generalizes
the space-time separation of variables typically achieved through the Fourier
transform or singular value decomposition (SVD). It is crucial to realize that
an exact KMD is rigorously justified only if /C possesses some form of spectral
theorem, which extends the concept of diagonalization to infinite dimensions.
Nevertheless, obtaining an approximate KMD is still possible even without a
spectral theorem.

For example, suppose that the system (1.1) is measure-preserving with re-
spect to the positive measure w. This means that w(E) = o ({x: F(x) € E}) for
any measurable set E C 2. In other words, the dynamical system preserves a
volume. Measure-preserving systems encompass many systems of interest such
as Hamiltonian flows (Arnold, 1989), geodesic flows (Dubrovin et al., 1984),
Bernoulli schemes (Shields, 1973), physical systems in equilibrium (Hill, 1986),
and ergodic systems (Walters, 2000). Furthermore, many dynamical systems
either admit invariant measures (Kryloff and Bogoliouboff, 1937) or exhibit
measure-preserving post-transient behavior (Mezié, 2005). In fact, if €2 is a com-
pact metric space and F is continuous, then there is an invariant measure Mané
(1987, Prop. 8.1).® For a measure-preserving system, the Koopman operator K
is an isometry, i.e., || Cg|| = |Ig| for all observables g € D(K) = L*(2, w). For
simplicity, we further assume that XC is unitary, implying that it is normal (it
commutes with its adjoint).”

Under these conditions, the spectral theorem (Conway, 2007, Thm. X.4.11)
allows us to diagonalize the Koopman operator K. There is a projection-valued
measure £ supported on Sp(K). For readers unfamiliar with the spectral the-
orem, Halmos (1963) provides an excellent and readable introduction. In our
example, K is unitary, which implies that Sp(K) lies within the unit circle T.
The measure £ associates an orthogonal projector with each Borel measurable
subset of T. For such a subset S C T, £(S) is a projection onto the spectral
elements of /C inside S. For any observable g € L?(Q2, w),

g:(f dE(A))g and Kg:(/kdﬁ(k))g.
T T

The essence of this formula is the decomposition of g according to the spectral
content of K. The projection-valued measure £ simultaneously decomposes the
space L?(€2, w) and diagonalizes the Koopman operator. For example, we have

g(xn) = [K"gl(x0) = [(/T A dc‘f(K)) g} (X0)- 2.4

8 of course, whether or not this is useful or whether our chosen w is invariant is another matter.
oA Koopman operator that is an isometry need not be unitary, e.g., the Koopman operator associ-
ated with the tent map. However, an isometry can always be extended to a unitary operator, and the
spectral measures associated with forward-time dynamics are independent of the chosen extension
(Colbrook, 2023).
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This directly extends (2.2). The spectral theorem can be perceived as offering a
custom Fourier-type transform specifically for the operator K that extracts co-
herent features. Of particular interest are scalar-valued spectral measures. Given
a normalized observable g € L?(2, ) with || g|| = 1, the scalar-valued spectral
measure of /C with respect to g is a probability measure defined as

g (8) = (£(5)g, 8)-

These measures can be further refined using Lebesgue’s decomposition into a
pure point part, supported on the eigenvalues of /C, and a continuous part. The
continuous part can further be decomposed into an absolutely continuous part
with a density function and a singular continuous part. The moments of the
measure (tg are the correlations

(/Cng,g):[ﬂ‘kn dug(r), neZ.

For example, if our system corresponds to the dynamics on an attractor, these
statistical properties allow comparison of complex dynamics (Mezi¢ and Ba-
naszuk, 2004). More generally, the spectral measure of X with respect to
g € L*(22, w) is a signature for the forward-time dynamics of (1.1).

Going one step further, £ leads to a decomposition of L?(2, ) into parts
associated with quasiperiodic evolution and weak-mixing dynamics. Namely,
we have the following orthogonal decomposition into two K-invariant subspaces
(Halmos, 2017)

L*(Q, ) = Hpp ® He.

Here, the subspace H,,p, consists of the closure of the linear span of eigenvectors
and admits an orthonormal basis of eigenvectors {¢;} of K with eigenvalues
{A;}. This means that we can write

K'g=>"a"g.¢;)b; Vg€Hp.neN. 25)
J

The spectrum of K [, need not be a discrete subset of T. For example, an
ergodic rotation on the circle has eigenvalues that densely fill T. In contrast to
(2.5), observables in the continuous part H, exhibit a decay of correlations that
is typical of chaotic systems. Namely, for any € > 0 (Katznelson, 2004, p.45),

1
lim —
n—oon

n
. €
S |wie. | =0 VeeH. reL@ o).
j=l1

This result says that |(K/g, f)| converges to zero in density, that is, for any
§ > 0, the proportion in all sufficiently large intervals of integers j such that
|<IC/ g f )| > § is arbitrarily small.
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The above dichotomy is an example of how the decomposition of £ into
atomic and continuous parts often characterizes a dynamical system. For exam-
ple, suppose that F is measure-preserving and bijective, and w is a probability
measure. Then, the dynamical system is (Halmos, 2017)

e Ergodic if and only if A =1 is a simple eigenvalue of /C,

e Weakly mixing if and only if A = 1 is a simple eigenvalue of K and there are
no other eigenvalues,

e Mixing if A = 1 is a simple eigenvalue of ', and KC has absolutely continuous
spectrum on span{1}=.

Different spectral types find interpretations across various applications, includ-
ing fluid mechanics (Mezi¢, 2013), anomalous transport (Zaslavsky, 2002), and
the analysis of invariants/exponents related to trajectories (Kantz and Schreiber,
2006). The approximation of £ is critical in many applications. For example, the
approximate spectral projections provide reduced-order models (Mezi¢ and Ba-
naszuk, 2004; Mezi¢, 2005). The computation of spectral measures is discussed
in Section 6.2.

2.2 The fundamental DMD algorithm

With the definition of a Koopman operator in hand, we can now present the
fundamental DMD algorithm and two interpretations. The first interpretation
of DMD is as a linear regression. The second is as a projection method. Both
interpretations are instrumental, and understanding their interplay is often key
to unlocking the power of DMD.

2.2.1 The linear regression interpretation

The simplest and historically first interpretation of DMD is as a linear regres-
sion. Given the snapshot matrices X, Y € C**™ in (1.2), we seek a matrix
Kpwmp such that Y =~ KpypX. We can think of this as constructing a linear and
approximate dynamical system. To find a suitable matrix Kpyp, we consider
the minimization problem

min [[Y — KpmpX|lg, (2.6)

Kpwmpe Cdxd

where || - ||r denotes the Frobenius norm. Similar optimization problems will be
at the heart of the various DMD-type algorithms we consider in this review. A
solution to the problem in (2.6) is

KDMD = YX]L € (CdXd,

where { denotes the Moore—Penrose pseudoinverse. Often, the matrices X and
Y are tall and skinny, meaning that d >> M. In this scenario, we typically first
project onto a low-dimensional subspace to reconstruct the leading nonzero
eigenvalues and eigenvectors of the matrix Kpyp without explicitly comput-
ing it. The standard DMD algorithm does this using an SVD and is summarized
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Algorithm 1 The exact DMD algorithm (Tu et al., 2014b), which has become
the workhorse DMD algorithm.

Input: Snapshot data X € Cd*M and Y € C4*M  rank r € N.

1: Compute a truncated SVD of the data matrix X ~ UXV*, U € cdxr,
Y e R™", Ve CM*", The columns of U and V are orthonormal and X
is diagonal.

2: Compute the compression Kpwmp = U*YVE ! e Cr>7,

3: Compute the eigendecomposition KpvpW = WA.

The columns of W are eigenvectors and A is a diagonal matrix of eigenval-
ues.

4: Compute the modes ® = YVI~'W.

Output: The eigenvalues A and modes ® € C?*".

in Algorithm 1, where we have assumed that the projected DMD matrix is diag-
onalizable.!” Algorithm 1 is known as exact DMD (Tu et al., 2014b) and often
the modes are further scaled by A~!. There are several remarks about this algo-
rithm that are worth mentioning:

e The rank r is usually chosen based on the decay of singular values of X.
If low-dimensional structure is present in the data (Udell and Townsend,
2019), the singular values decrease rapidly, and small » captures the dominant
modes. Moreover, the lowest energy modes may be corrupted by noise, and
low-dimensional projection is a form of spectral filtering which has the pos-
itive effect of dampening the influence of noise (Hansen et al., 2006).!! The
question of how best to truncate is difficult to answer and is often performed
heuristically. If the measurement error is additive white noise, there are al-
gorithmic choices (Gavish and Donoho, 2014). In the context of Koopman
operators, r is equivalent to the size of the space spanned by basis functions,
and a good choice depends on the chosen observables. For example, we shall
see below that Algorithm 1 corresponds to a linear set of basis functions,
which may not capture the relevant nonlinear dynamics. Hence, a larger r
may be suitable for other basis choices. Often, the choice of r is modest,
meaning that randomized methods (Halko et al., 2011) for computing the
SVD can significantly reduce the computational cost. We will explore this
and other compression methods in Section 3.2.

10" We make this assumption about various matrices throughout. Mathematically, a Jordan decom-
position may be substituted for an eigendecomposition, and the modes corresponding to a single
Jordan block can be considered as interacting modes. However, computing a Jordan block should be
avoided. A stable alternative is a Schur decomposition that provides an orthogonal set of interacting
modes (in sharp contrast with what is typically considered a DMD mode) or a block-diagonal Schur
decomposition with nearly confluent eigenvalues grouped together.

n Low-energy modes can be important though, for example, in optimized control (Rowley, 2005;
Rowley et al., 2006).
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e We can interpret the algorithm as constructing a linear model of the dynami-
cal system on projected coordinates X = U*x. Namely, X, 11 & KpmpX,,. The
left singular vectors U are known as proper orthogonal decomposition (POD)
modes (Berkooz et al., 1993).

e If the SVD is exact, so that X = UX V*, then

Kpmp = YVE~1U*.
Using this relation, we have

T Sy p— -1
Kpvp[YVE T 'W]=YVX U YVZ W=[YVI WI]A,
Kpmp

and hence Algorithm | computes exact eigenvalues and eigenvectors of
Kpwmp. Moreover, one can show that this process identifies all of the nonzero
eigenvalues of Kpyp (Tu et al,, 2014b, Thm. 1). It is common to call
YVE~'W exact modes and UW projected modes.

e Originally, DMD was developed in connection with Krylov subspaces and
the Arnoldi algorithm. In this version, it is assumed that data is gathered
along a single trajectory. The SVD version, on the other hand, is capable of
handling more general trajectory data. Strategies for using this flexibility to
reduce computational cost and average snapshot data noise are given in Tu
et al. (2014b). The SVD version is also more numerically stable. Drmac has
carefully analyzed the stability of DMD (Drmac et al., 2018, 2019; Drmac,
2020; Drmac et al., 2020).

e Centering the data before applying DMD can be helpful if the mean-
subtracted data have linearly dependent columns, especially if the dynamics
are perturbations about an equilibrium (Hirsh et al., 2020). This is equiva-
lent to including an affine term in the linear regression. However, computing
the DMD of centered data can have undesirable consequences (Chen et al.,
2012).

The above interpretation of DMD is simple and intuitive. However, using
DMD to analyze nonlinear dynamics globally seems dubious, as there is an un-
derlying assumption of approximately linear dynamics in (2.6). Nevertheless,
we shall now demonstrate that DMD can be interpreted as an approximation to
Koopman spectral analysis. This provides a solid theoretical foundation for ap-
plying DMD in analyzing nonlinear dynamics, which will be further elaborated
upon in Section 4.

2.2.2 The Galerkin interpretation: connecting to Koopman
operators

The connection between Algorithm 1 and Koopman operators is revealed once
we interpret DMD as a Galerkin method. Consider the two correlation matrices

l—— 1
G=—UXUX)", A=-—-UXUY)' .
M M
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We can think of the jth row of the POD matrix U*X as an affine function u ; on
the state space 2 evaluated at the snapshot data:

ujx) =[U. 1'%, u;x"™) =[U"X]jn.

It follows that G can be interpreted as a Gram matrix with respect to the posi-
tive semidefinite Hermitian form induced by the probability measure with equal
point masses at the {x")}. Namely,

| M
Go= D K (x) = /Q 1 0k () deoyy (%),
m=1

1 M
wpy = M Z (Sx(m).
m=1

Writing (-, -)y7 for the form induced by wys, we can argue similarly for A and
succinctly write

Gk = (uk, uj)m,

M
1 [ -
Ajk= - > ujxMu(y™) = / u; (ug (F(x)) doy (x) = (Kug, u;)p.

m=1 2

Assuming that the matrix U*X is of rank r, and using U*X = ¥ V*, we can write
Khp=2"'VYTU=X"U0)'Y'U=G""A.

The matrix G™'A is an approximation of the action of X on the subspace
spanned by the functions {”,/'};':1- Namely, if g is an observable that can be
expressed as the linear combination

r

g(x) = Zuj(x)gj, for some geC’,
j=1

then

(Kl ~ Y u;(0(G'Ag); =D u; (0 (Kfypg);-

j=1 j=1

In other words, KEMD is a matrix that approximates the action of the Koopman
operator on expansion coefficients. More precisely, it is a Galerkin method cor-
responding to K and the form (-, -) 5. This connection is explored more deeply
in Section 4.1.

If (-, -) i converges to (-, -) in the large data limit M — oo, then DMD can be
considered to be a numerical approximation to Koopman spectral analysis. The
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terms DMD mode and Koopman mode are often used interchangeably in the
literature. It is important to note that the Koopman modes and eigenfunctions
are distinct mathematical objects, requiring different approaches for approxi-
mation. The right eigenvectors of Kpmp give rise to time-invariant directions in
the state space x, whereas the left-eigenvectors give rise to Koopman eigenfunc-
tions, which are similarly time-invariant directions in the space of observables.

2.2.3 The Koopman mode decomposition

We can now connect DMD with the spectral expansions discussed in Sec-
tion 2.1.2. First, we approximate an initial condition X¢ in the eigenvector
coordinates via

X0~ &b, b= ®'x.

This is not the only choice, but it is the simplest. The KMD then provides an
approximation of the dynamics by

%n ~ K ypXo ~ Kl i ®b = ®A”b, 2.7)

which echoes (2.4). Since zero eigenvalues do not contribute to the dynamics,
this decomposition further justifies the compression in Algorithm 1. The KMD
has also been related to other decompositions in various situations, particularly
those that have arisen in the fluid dynamics community (Taira et al., 2017, 2020).
These include POD (Towne et al., 2018), optimal mode decomposition (Wynn
etal., 2013), and resolvent analysis (Sharma et al., 2016; Herrmann et al., 2021).
Under suitable conditions, the KMD converges as we increase the dimension of
the projected Koopman operator (see Section 4.1.3 and Section 5.2.2).

2.3 Three canonical examples

Having grasped the notion of Koopman operators and the basic DMD algorithm,
it is time for some examples. As a warm-up for the reader, we consider three
canonical well-studied examples of Algorithm 1, each with a unitary Koopman
operator:

e The flow past a cylinder wake at Re = 100 with a state space dimension d =
160,000 that corresponds to the number of spatial measurement points in the
flow. The associated Koopman operator has a pure point spectrum consisting
of powers of a fundamental eigenvalue.

e The Lorenz system on the Lorenz attractor with a state space dimension d =
3. The associated Koopman operator possesses no eigenvalues, except for the
simple eigenvalue A = 1 whose eigenfunction is the constant function. The
rest of the spectrum is continuous.

e The Duffing oscillator with a state space dimension d = 2. The associ-
ated Koopman operator possesses no eigenvalues, except for A = 1, whose
eigenspace now corresponds to the conserved Hamiltonian energy of the sys-
tem and indicator functions associated with invariant sets of positive area.
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Despite its large ambient space dimension, the first example is the easiest to ad-
dress using Algorithm 1. This is because the cylinder wake exhibits an attracting
limit cycle, and the Koopman operator has a basic spectrum. The other two ex-
amples demonstrate three difficulties of DMD: noise, projection error (which
can lead to spurious modes and missing parts of the spectrum), and continuous
spectra. These and further challenges are discussed in Section 2.4.

2.3.1 Flow past a cylinder wake

We first consider the classic DMD example of low Reynolds number flow past
a circular cylinder. Due to its simplicity and relevance in engineering, this is
one of the most studied examples in modal-analysis techniques (Rowley and
Dawson, 2017, Table 3) (Chen et al., 2012; Taira et al., 2020). Re = 100 is
chosen so that it is larger than the critical Reynolds number at which the flow
undergoes a supercritical Hopf bifurcation, resulting in laminar vortex shedding
(Jackson, 1987; Zebib, 1987). This limit cycle is stable and is representative of
the three-dimensional flow (Noack and Eckelmann, 1994; Noack et al., 2003).
The Koopman operator of the post-transient flow has a pure point spectrum with
a lattice structure on the unit circle (Bagheri, 2013).

To collect snapshot data, we numerically compute the velocity field of a flow
around a circular cylinder of diameter D = 1 using an incompressible, two-
dimensional lattice-Boltzmann solver (J6zsa et al., 2016; Szbke et al., 2017).
The temporal resolution of the flow is chosen so that approximately 24 snapshots
of the flow field correspond to the period of vortex shedding. The computational
domain size is 18 D in length and 5D in height, with a 800 x 200 grid resolution.
The cylinder is positioned 2D downstream of the inlet at the mid-height of the
domain. The cylinder side walls are defined as bounce-back and no-slip walls,
and a parabolic velocity profile is given at the inlet of the domain. The outlet
is defined as a nonreflecting outflow. After simulations converge to steady-state
vortex shedding, we collect M = 120 snapshots for the DMD algorithm and a
further 880 snapshots to test the prediction of the KMD. One should think of this
as training data and test data, respectively. Letting V, () denote the vectorized
horizontal velocity field at time ¢, our snapshot matrices have the form

X=(Vx(0) V.(Af) - Vx(119At)),
Y=<Vx(At) V. QAL - Vx(IZOAt)>.

We use a rank of r = 47 to recover the trivial mode corresponding to A = 1
and 24 conjugate pairs of modes up to the timescale of vortex shedding. The
eigenvalues come in conjugate pairs due to processing real-valued data X and Y.

Fig. 2 shows the output of Algorithm 1. In the left panel, we see the lattice
structure of the DMD modes correctly identified by Algorithm 1. In the middle
plot, we show the predictive error of (2.7). The relative error is computed by
taking the 2-norm of the error in the velocity field V, and normalizing it by
the 2-norm of the mean-subtracted flow at each time step. Due to the periodic
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FIGURE 2 Output of Algorithm 1 for the flow past a cylinder wake. Left: The DMD eigenval-
ues. Middle: The total relative prediction error of (2.7). Right: Example modes of the horizontal
component of the velocity field. The magenta disc corresponds to the cylinder. The zeroth mode

corresponds to the time-averaged flow.
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nature of the flow, there is excellent agreement between the KMD and flow, with
slow algebraic growth of the error beyond the snapshot data time window. The
right panel of Fig. 2 shows the real part of some of the Koopman modes for the
horizontal velocity field.

2.3.2 lorenz system

The Lorenz (63) system (Lorenz, 1963) is the following three coupled ordinary
differential equations:

x=10y—x), y=x(28—2)—y, z=xy—8z/3.

We consider the dynamics of X = (x, y, z) on the Lorenz attractor. The system is
chaotic and strongly mixing (Luzzatto et al., 2005). It follows that A = 1 is the
only eigenvalue of /C, corresponding to a constant eigenfunction, and that this
eigenvalue is simple. We consider a discrete-time dynamical system by sam-
pling with a time-step Ar = 0.001. We use time-delay embedding, which is a
popular method for DMD-type algorithms (Susuki and Mezié, 2015; Arbabi
and Mezié, 2017a; Brunton et al., 2017; Das and Giannakis, 2019; Kamb et al.,
2020; Pan and Duraisamy, 2020a) and corresponds to building a Krylov sub-
space. This technique is justified through Takens’ embedding theorem (Takens,
2006), which says that under certain technical conditions, delay embedding a
signal coordinate of the system can reconstruct the attractor of the original sys-
tem up to a diffeomorphism. In this example, we augment x by N — 1 further
time-delays of length A¢’ = 0.2 and consider M = 5 x 103 snapshots along a
single trajectory. Specifically, our snapshot matrices have the form

x(0) X(At) e X((M—1)At)
x(At) X(A'+AD) . X(A+(M—1)At)
x((N—’l)At/) x((N—l)‘At/—i-At) - x((N—l)At’.vL(M—l)At)

GR?)NXM,
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FIGURE 3 DMD eigenvalues for the Lorenz system and different choices of N (the number of
eigenvalues is 3N). The logarithm of the eigenvalues is plotted to align with the continuous-time
system. As N increases, the eigenvalues cluster to approximate the continuous spectrum.

x(At) x(2At) x(M At)
x(At'+Ar) x(At'+2Ar1) x(At'+M Ar)
Y =
x(N—DAY+Ar) x(N—DA'+2At) -+ x(N=1)Ar'+M Ar)
c R3NXM.

We use the ode45 command in MATLAB to collect the data after an initial burn-
in time to ensure that the initial point x(0) is (approximately) on the Lorenz
attractor. The system is chaotic, so we cannot hope to integrate for long periods
accurately numerically. However, convergence is still obtained in the large data
limit M — oo due to an effect known as shadowing.

In addition to a discrete time-step At, we can consider Koopman operators
associated with continuous-time dynamical systems. The continuous-time in-
finitesimal generator is defined by

K -
Lg=lim “A8 8

) 2.8
At}0 At 28)

where K, is the Koopman operator corresponding to a time-step At. The gen-
erator satisfies

Kar =exp(AtL),

which can be made precise through the theory of semigroups (Pazy, 2010).
Hence, in this example, we consider the following time-scaled logarithms of
the eigenvalues:

log(A)/At =log(|A])/ At +iarg(A)/At.

Fig. 3 shows the DMD eigenvalues for various choices of N. The horizontal line
corresponds to a portion of the spectrum of the Koopman operator. The DMD
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FIGURE 4 DMD eigenfunctions corresponding to log(A)/(i At) ~ £8.2 rad/s. These are similar
to the singularity in spectral measures detected in Korda et al. (2020).

N=40 Z N =50 /Q P N=100 Z)
- ) - N 7

Nl 4

—

FIGURE 5 DMD eigenfunctions corresponding to log(})/(i At) ~ 6 rad/s. We see increasing
oscillations as N gets larger and the eigenfunctions resemble unstable periodic orbits, see also Col-
brook and Townsend (2023).

eigenvalues fall below this line, corresponding to a dampening effect in the dy-
namics encapsulated by DMD. For these choices of parameters, this error is
largely due to the finite amount of trajectory data and noise in the data matrices
from the numerical solver. In Section 3.1.5, we shall see that this effect can be
reduced using DMD methods designed to be robust to noise and by increasing
M. Another reason for the dampening of the eigenvalues is the projection er-
ror (from projecting onto a finite matrix). Another interesting feature of Fig. 3
is the clustering of the DMD eigenvalues with increasing N as they attempt to
approximate the continuous spectrum. Recall from above that the Koopman op-
erator for this example has no eigenvalues except the trivial eigenvalue A = 1. In
Section 5.2, we shall see that Measure-Preserving Extended DMD (Colbrook,
2023) can deal with continuous spectra (see also the discussion in Section 6.2
for further methods).

We next show DMD eigenfunctions, but associated with the matrix X'Y.
The discussion in Section 2.2.2 shows that these correspond to pseudoeigen-
functions of K. Note that these pseudoeigenfunctions do not approximate true
eigenfunctions - since eigenfunctions do not exist for this system! For visualiza-
tion over the attractor, we plot function values along the trajectory of snapshot
data. In Fig. 3 there are DMD eigenvalues close to the horizontal line with
log(A)/(iAt) ~ £8.2 rad/s. These correspond to an apparent singularity in
the spectral measure detected in Korda et al. (2020). Fig. 4 shows the corre-
sponding pseudoeigenfunctions. These bear a striking resemblance to the local
spectral projections in Korda et al. (2020, Figure 13), which the authors at-
tributed to an almost-periodic motion of the z component during the time that
the state resides in either of the two lobes of the Lorenz attractor. In Fig. 5,
we plot the pseudoeigenfunctions corresponding to the DMD eigenvalue with
log(A)/(i At) closest to 6 rad/s. In this case, we see increasing oscillations as
N gets larger, and the pseudoeigenfunctions resemble unstable periodic orbits,
which in a sense, form a backbone of the attractor (Eckmann and Ruelle, 1985;
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Tufillaro et al., 1993). For further examples of these kinds of pseudoeigenfunc-
tions, see Colbrook and Townsend (2023).

2.3.3 Duffing oscillator

We now consider the Hamiltonian system

=y, y=x-—x°,

known as the (undamped nonlinear) Duffing oscillator with state x = (x, y) €
Q = RR2. This dynamical system has three fixed points at x = (0, 0) (a saddle),
and x = (£1, 0) (centers). The Hamiltonian for this system is H = y2—x2/2+
x*/2. We consider the corresponding discrete-time dynamical system by sam-
pling with a time-step At = 0.25. Instead of using the state x or time-delay
embedding to form our snapshot matrices, we consider an example of Extended
DMD (Williams et al., 2015a), discussed in more detail in Section 4.1. Specif-
ically, we consider 103 random points sampled uniformly in [—-2, 212, and then
the trajectory of these points for 50 times steps. This leads to M = 5 x 10* snap-
shots {x("™) y(m)}nﬁle. We then partition these into N clusters using k-means,
and use these as centers ¢; for N radial basis functions of the form

¥ (%) =exp(—=y [Ix —¢;1]),

where y is the squared reciprocal of the average ¢Z>-norm of the snapshot data
after it is shifted to mean zero. Our snapshot matrices are then given by

Ui xD) g x@) ey (x )
< D) Yrx®) o g x®))
yn D) Yy x®) o gy x®)
iy @) M)
v | D $2G®) e
ynyD) Yne®) o ™)

Fig. 6 shows some of the Koopman eigenfunctions corresponding to A = 1
and computed using N = 1000. For visualization, the values of the functions are
plotted at the data points. We see that the level sets of the eigenfunctions cor-
respond to trajectories, as expected. However, moving away from A = 1 in the
spectral plane becomes more challenging. Fig. 7 shows the DMD eigenvalues
for various choices of N, along with the unit circle, which is the spectrum of the
Koopman operator. Most of the DMD eigenvalues are spurious and correspond



The multiverse of dynamic mode decomposition algorithms Chapter | 4 151

FIGURE 6 Some examples of computed eigenfunctions of the Duffing oscillator corresponding
to A = 1. The black lines show trajectory orbits and correspond to level sets of the eigenfunctions,
which are invariant in time.
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FIGURE 7 DMD eigenvalues (red dots) computed for various choices of N. The spectrum is the
unit circle (green); hence, most eigenvalues are spurious. This occurs because a projection error
occurs when the Koopman operator K is approximated by a finite DMD matrix.
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FIGURE 8 Histograms of the errors of the DMD eigenpairs. The errors are computed using Res-
DMD in Algorithm 11 and show the persistence of heavy spectral pollution of DMD as N increases.

to spectral pollution. This occurs because we have approximated the infinite-
dimensional Koopman operator C, by a finite matrix. These errors persist, even
as we increase N.

To measure the errors, we can use Residual DMD (ResDMD) (Colbrook and
Townsend, 2023; Colbrook et al., 2023a) to compute the error ||(X — A;1)g; |l
associated with a DMD eigenfunction g; and eigenvalue A ;. In other words, we
can compute the projection error of DMD. This is detailed in Section 4.3. Fig. 8
shows the histograms of these projection errors. Only a small proportion of reli-
able DMD eigenvalues persist as N increases. Finally, we can also use ResDMD
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FIGURE 9 Pseudospectra (see (2.3)) computed using ResDMD (see Algorithm 12) and visualized
by plotting several contour plots of € on a logarithmic scale. The pseudospectra demonstrate the
heavy spectral pollution present in Fig. 7. Note also that these pseudospectra are computed using
the same snapshot data and dictionary used for Figs. 6 to 8. As N — oo, the algorithm converges to
the pseudospectra.

to compute pseudospectra. Algorithm 12 converges to the pseudospectrum as
N — oo. The output is shown in Fig. 9, where we visualize pseudospectra by
plotting several contour plots of € on a logarithmic scale. For this example, the
pseudospectra are the annuli Sp,_(K) = {A € C: ||A| — 1| < €}. The projection
errors are computed using the same snapshot data and dictionary used for Figs. 6
to 8. ResDMD allows us to compute and minimize projection errors directly in
infinite dimensions to avoid spectral pollution and spurious modes.

In summary, DMD can suffer from closure issues (projection errors) as-
sociated with approximating the infinite-dimensional Koopman operator by a
finite-dimensional matrix. This phenomenon is well-known (S.L. Brunton et
al., 2016a; Kaiser et al., 2021). Nevertheless, by computing projection errors,
we can avoid difficulties (such as spurious modes) associated with the infinite-
dimensional nature of the Koopman operator.

2.4 The goals and challenges of DMD

The core goal of DMD is to apply linear algebra and spectral techniques to
the analysis, prediction, and control of nonlinear dynamical systems. However,
DMD often faces several challenges (Kutz et al., 2016a), many of which are
discussed in Table 1. These challenges have been a driving force for the many
versions of the DMD algorithm that have appeared.

For example, the KMD in (2.7) highlights the potential usefulness of DMD
in forecasting. In instances where DMD is applied to noise-free data, such
as in generating reduced-order models from high-fidelity numerical simula-
tions (Kutz et al., 2016b; Alla and Kutz, 2017; Lu and Tartakovsky, 2020b),
DMD proves effective for both reconstruction and accurate forecasting of the
solutions. However, practitioners familiar with DMD’s performance in noisy
conditions recognize its shortcomings; the algorithm often fails to forecast and
reconstruct even the time series it was trained on. In particular, the prediction
error in Fig. 2 is somewhat misleading of what a user might expect in the general
case. Even after over a decade, the application of DMD for forecasting or recon-
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structing time-series data remains limited, typically restricted to high-quality,
low-noise scenarios. In Section 3.1, we will focus on methods that mitigate the
effect of noise in snapshot data. Many of the structure-preserving methods we
discuss in Section 5 have an in-built robustness to noise.

Generally speaking, the error of DMD and its approximate KMD can be split
into three types:

e The projection error is due to projecting/truncating the Koopman operator
onto a finite-dimensional space of observables. This is linked to the issue of
closure and lack of (or lack of knowledge of) nontrivial finite-dimensional
Koopman invariant subspaces.

e The estimation error is due to estimating the matrices that represent the pro-
jected Koopman operator from a finite set of potentially noisy trajectory data.

e Numerical errors (e.g., roundoff, stability, further compression, etc.) incurred
when processing the finite DMD matrix.

In particular, Wu et al. (2021) highlight the issues of robustness to noise and clo-
sure/projection errors as the two fundamental challenges for DMD methods. In
Section 4 we will consider methods that directly connect DMD with Koopman
operators through the Galerkin perspective. Ways of controlling and measuring
the projection error are discussed in Section 4.3.

DMD’s primary value has been as a diagnostic tool, and the interpretabil-
ity of DMD modes and frequencies is crucial to this role. Most DMD pa-
pers focus on analyzing DMD modes and eigenvalues. This emphasis shapes
much of this review. The KMD approximated by DMD modes and eigenval-
ues facilitates dimensionality reduction and model simplification, analogous
to classical methods like the Fourier transform or SVD (Brunton and Kutz,
2022). There are numerous software packages for DMD methods, includ-
ing https://github.com/dynamicslab/pykoopman, https://github.com/mathLab/
PyDMD, and https://github.com/decargroup/pykoop. Moreover, there are nu-
merous repositories connected to the papers cited below. Drmac has imple-
mented the DMD algorithm and extensions in LAPACK (Drmac, 2022a,b).

3 Variants from the regression perspective

This section gives the reader a flavor of DMD variants from the regression per-
spective.'” We focus on four key aspects that have proved influential over the
last decade or so:

Noise reduction;
Compression and randomized linear algebra;
Multiscale dynamics; and

[ ]
[ ]
[ ]
e Control.

12 As we shall see, there is less convergence theory (e.g., in the large data limit M — oo or as the

number of observables increases) for DMD methods based on this viewpoint than for those based
on the Galerkin viewpoint in Section 4. This is due to a looser connection with Koopman operators.
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The methods we discuss are only some of the variants - it is impossible to
do justice to the breadth of techniques! Notable omissions include the follow-
ing. Bayesian DMD (Takeishi et al., 2017a) transfers the Bayesian formulation
into DMD. Higher order DMD (Le Clainche and Vega, 2017) applies time-
delay embedding to build a larger state space after projecting onto POD modes.
Parametric DMD (Huhn et al., 2023) performs DMD independently per pa-
rameter realization and interpolates the resulting Koopman operators. See also
Andreuzzi et al. (2023). Refined Rayleigh—Ritz data driven modal decomposi-
tion (Drmac et al., 2018) produces refined Ritz pairs of the finite DMD matrix
Kpwmp. Spatio-temporal Koopman decomposition (Vega and Le Clainche, 2021)
approximates spatio-temporal data as a linear combination of (possibly growing
or decaying exponentially) standing or traveling waves. Klus et al. (2018b); Klus
and Schiitte (2016) develop tensor-based DMD methods for computing eigen-
functions of the Koopman operator. For example, tensor-based DMD exploits
low-rank tensor decompositions of the data matrices to improve efficiency and
memory use. There are extensions of this approach based on reproducing kernel
Hilbert spaces (RKHSs) (Fujii and Kawahara, 2019) and EDMD (Niiske et al.,
2021). Recent work has also explored connections between DMD and tensor
factorizations (Redman, 2021).

3.1 Increasing robustness to noise

A challenge of DMD is that the computed eigenvalues are biased in the pres-
ence of sensor noise. Noise typically dampens the eigenvalues, meaning that for
discrete-time systems, the absolute values of the eigenvalues are decreased, and
the Koopman modes become distorted. For studies of this effect in various phys-
ical systems, see Duke et al. (2012); Bagheri (2014); Pan et al. (2015). Dawson
et al. (2016) provide an exceptionally clear discussion of this topic. The bias
occurs because standard algorithms treat the data “snapshot to snapshot” rather
than as a whole and favor one direction (forward in time). Several variants of
DMD aim to address this bias. In addition to the methods presented below, other
techniques include utilizing Kalman filters (Nonomura et al., 2018, 2019; Jiang
and Liu, 2022), adapting DMD to online data (Hemati et al., 2014, 2016), ro-
bust principal component analysis (Scherl et al., 2020), and using a second set
of noisy observables that meet some independence requirements (Wanner and
Mezié, 2022). Moreover, the structure-preserving methods we discuss in Sec-
tion 5 often have an inbuilt robustness to noise. Finally, in Section 6.3, we
discuss the stochastic Koopman operator, which can handle both system and
Sensor noise.

3.1.1 The problem of noise

We can understand the bias often encountered in DMD as follows. Assume that
the snapshots come with additive sensor noise that affects only our measure-
ments of a given system and does not interact with the true dynamics. This
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means that we have access to noisy data matrices
Xy =X+Nx, Y;=Y+Ny,

where Ny and Ny are random matrices representing sensor noise, and X and
Y are the noise-free snapshots. We then represent the data in a truncated POD
mode basis so that

X;=X+Nx, Y,=Y+Ny,

and assume that a subset of POD modes has been selected so that f(sfi:‘ is invert-
ible. Assuming the noise is sufficiently small, the DMD matrix can be expanded
as

IN(DMD = ?Ail = ?35(:(5(35(?)_1
~ ~ ~ ~ - - - - —1
= (Y +Np) X+ Ny)* [(X+NX)(X+NX)*]
= (Y +Ny)(X + Ny)* (XX ™!
[I—(NXX*+XN* + Ny N (XX~ + ]

Dawson et al. (2016) discard high-order terms in the expectation of this expan-
sion to arrive at

E(Kpmp) ~ YX 1 (I — E(NxN%)(XX*) 7. 3.1

This indicates that DMD has an inherent bias due to sensor noise, causing a
dampening effect. Interestingly, this bias depends only on Ny and not Ny. The
reason is that the least squares problem in (2.6) is optimal only when assuming
that all of the n01se is in Y, but not in X. Another way of seeing this is that the
expression YX ! is linear in Y, but not in X, which is why perturbations to X
do not have to propagate through the equation in an unbiased manner.

If the noise structure is known, DMD can be adjusted using a method called
noise-corrected DMD (ncDMD) (Dawson et al., 2016). However, it is preferable
to have methods that correct for noise without requiring explicit knowledge of
its structure. We will now outline three popular DMD variants that address this
bias without specific assumptions about the noise. The first two can be executed
directly using SVDs. The final method requires an iterative method for solving
an optimization problem and is more expensive yet more robust.

3.1.2  Forward-backward dynamic mode decomposition (fbDMD)

Forward-Backward DMD (fbDMD) can be considered a correction to the uni-
directional bias of Algorithm 1 (Dawson et al., 2016). Let X = Ux X x V% and
Y= UyEyV*;, be truncated SVDs of the matrices X and Y, respectively. We
define

K;=UyYVxZ,', K,=U}XVyZ,'
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Algorithm 2 Forward-backward DMD (Dawson et al., 2016).
Input: Snapshot data X € C“*M and Y € C**M | rank r € N.

1: Compute a truncated SVD X~ UXLV*, U e (Cdxi, Y e R Ve CMxr,

2: Compute the projected data matrices X = U*X, Y = U*Y and their econo-
mized SVDs X =UxXx V%, Y=UyXy V3.

3: Compute the forward and backward matrices K F= U}QS?VX):QI, K;, =
UsXvyz,l

4: Coerute the matr~ices Sy = \?VXE;, S, = iVyE{,l, and Ky =
S/KsS}, Ky =S,K,8].

- 1/2
5: Compute the DMD matrix K = (KfK;I) and its eigendecomposition

KW = WA.
6: Compute the modes ® = YV ~!W.
Output: The eigenvalues A and modes ® € C?*".

which represent forward and backward propagators for the data, analogous to
Algorithm 1. Assuming the system’s dynamics are invertible and K, is also
invertible, the matrix

~ _ o \1/2

K=(K/K;")
provides a debiased estimate of the forward propagator. The method is presented
in Algorithm 2. Nonetheless, caution is required due to the nonuniqueness of the
matrix square root (Higham, 2008). Dawson et al. (2016) suggest selecting the
square root that is closest to K 7 in norm, although this can be computation-
ally costly. A more economical alternative involves measuring closeness in the
computed eigencoordinates. Sometimes, the nonuniqueness can be avoided. For
instance, if the samples are snapshots from a continuous system whose signal
has a bandwidth of Ap and the time-step satisfies At < 7 /(2Ap), then the dis-
crete eigenvalues expected to be recovered will have a positive real part, which
resolves the ambiguity mentioned previously. The square root issue is further
analyzed in Drmac et al. (2018, Section 5.4). Finally, Askham and Kutz (2018)
recommend first projecting onto r POD modes before applying fbDMD, an
alteration that has demonstrated superior performance in practice. For a varia-

tional problem involving forward and backward dynamics, see Consistent DMD
(Azencot et al., 2019).

3.1.3 Total least-squares dynamic mode decomposition (t/sDMD)

Total Least-Squares DMD (tIsDMD) addresses the asymmetric treatment of
noise in X and Y by Algorithm 1. The least-squares problem in (2.6) can be
formulated as

mlén |Eyllg suchthat Y+ Ey =KX.
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Algorithm 3 Total least-squares DMD (Dawson et al., 2016; Hemati et al.,
2017).

Input: Snapshot data X € C**M and Y € C**M | rank r € N.

1: Compute a truncated SVD X~ UZV*, U e (Cdxf, Y e R Ve CMxr,
2: Compute the projected data matrices X = U*X, Y = U*Y.

3: Form the matrix Z = (XT ?T)T and compute its reduced SVD Z =
UzX ZV*

4: SetU;=Uz(:r,1:71), U2—Uz(r+1 2r,1:r).

5. Compute the DMD matrix K = U2U and its eigendecomposition KW =
WA.

6: Compute the modes ® = YVE~'W.

Output: The eigenvalues A and modes ® € C¢*".

Considering the reverse time direction, as in fbDMD, leads to the problem

mKin IEx|lg suchthat Y=KX+Ey).

While fbDMD accounts for both directions of error, a more direct approach
utilizes the total least-squares problem (Van Huffel and Vandewalle, 1991):

(=)

This problem can be solved via an SVD, and we follow the version presented by
Dawson et al. (2016), which is similar in spirit to that of Hemati et al. (2017).
First, we project X and Y onto r < M /2 POD modes to obtain X and Y. We
then define

min suchthat Y+ Ey =KX+ Ey).

K

F

and compute its reduced SVD Z = Uz X 7 V%.. The matrix K= Uz(r+1:2r,1:
r)Uz(1:r,1:r)~! then provides a debiased estimate of the forward propagator.
The method is summarized in Algorithm 3.

3.1.4 Optimized dynamic mode decomposition (optDMD)

Optimized DMD (optDMD) is a variation of DMD that processes all data snap-
shots collectively (Chen et al., 2012). This approach reduces much of the bias
associated with exact DMD. Nonetheless, it necessitates solving a nonlinear
optimization problem, initially thought to hinder its practical application. How-
ever, Askham and Kutz (2018) demonstrated that an approximate solution to the
optimization problem can be efficiently computed using the variable projection
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method (Golub and Pereyra, 1973). In this framework, DMD is reformulated as
an exponential data fitting problem (Pereyra and Scherer, 2010), which brings
an additional advantage: the data snapshots do not have to be equidistant in time.
For further DMD methodologies tailored for data with irregular time intervals,
see Tu et al. (2014a); Guéniat et al. (2015); Leroux and Cordier (2016).

Initially, we project onto » POD modes to construct the data matrix X =
[z z1 - - -Zpr], which corresponds to the projected data at times fo, t1, ..., y.
Depending on the data structure, the projected matrix Y may also be incorpo-
rated into this matrix. We posit that the data represents the solution to a linear
system of differential equations, expressed as

z(t) ~ Ser'STz ,
where S € C"*" and A € C"*". This representation can be reformulated to

X"~ ®@B, B;; =S, (STz()) ,

i

where ®(a) € C"TD>" whose elements are ®(a);,j = exp(et;). From this,
we arrive at an exponential fitting problem:

min
aeCr,BeCrxr

X - <I>(oc)BHF.

The optimized DMD eigenvalues are determined by A ; = e ;. This optimization
problem is solved using the variable projection method, which exploits the spe-
cific structure of the exponential data fitting problem to eliminate many of the
variables from the optimization process. A summary is provided in Algorithm 4,
with practical details given in Askham and Kutz (2018), including strategies for
selecting the initial guess (e.g., employing an alternate DMD algorithm).

While this nonlinear, nonconvex optimization problem is not guaranteed to
be solved globally, and the method may be computationally intensive due to
its iterative nature, optDMD often yields significant enhancements over tradi-
tional DMD approaches. Moreover, optDMD’s efficacy can be further height-
ened by employing Breiman’s statistical bagging sampling strategy (Breiman et
al., 2017), which assembles a collection of models to reduce model variance,
mitigate overfitting, and facilitate uncertainty quantification. This augmented
method is referred to as bagging optimized DMD (bopDMD) (Sashidhar and
Kutz, 2022).

3.1.5 Examples

For simplicity, we focus on the error associated with the approximated eigen-
values. Other error metrics related to the modes or the accuracy of the decom-
position in fitting the data or forecasting are also frequently considered in the
literature, often yielding similar results.
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Algorithm 4 Optimized DMD, algorithmic details are given in Askham and
Kutz (2018).
Input: Snapshot data X € C¥*M+D rank r € N, initial guess for o.

1: Compute a truncated SVD X ~ UXV*, U € Ci*r ¥ e R Ve
(C(M+l)><r'

2: Compute the projected data matrix X = U*X.
3: Solve the problem

min
acCr BeCrxr

X7 — <I>(oe)BH
F

using a variable projection algorithm.
4 Setr;j=a;and ®(,i) = (JUBT(:,i)[,2) 'UBT ().
Output: The eigenvalues A and modes ® € C¢*".
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FIGURE 10 Left: Mean error (error bars correspond to the standard deviation across noise real-
izations) in the first 11 eigenvalues of the cylinder example. Right: Mean value of | log(|1|)/At| for
the DMD eigenvalues for the Lorenz system. We have not shown the results for fbDMD since they
are almost identical to tisDMD.

Noisy cylinder wake

We revisit the example of flow past a cylinder from Section 2.3.1. We center
and normalize the data grid-wise before adding 40% Gaussian random noise to
the measurements. Fig. 10 (left) shows the mean relative £2 error of the first 11
eigenvalues (see Fig. 2), averaged over 100 realizations of random noise. The
errors are calculated by comparison with eigenvalues computed from noise-free
snapshots that have converged in terms of both the size of the truncated SVD
and the number of snapshots. The error bars represent one standard deviation
from the mean. All methods exhibit a decreasing error as M increases, which is
largely attributable to the truncation in the SVD used in DMD. As often noted in
the literature, the fbDMD and tlsDMD methods perform comparably. However,
optDMD demonstrates a significantly smaller error.
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Lorenz system

We revisit the Lorenz system example from Section 2.3.2. Since the spectrum
is continuous (apart from the trivial eigenvalue A = 1), measuring the error of
individual DMD eigenvalues is meaningless unless methods such as the residual
in Section 4.3 are used. However, | log(|A|)/At| vanishes on the spectrum of the
Koopman operator. Therefore, we select N = 10 and compute the mean value of
|log(|A])/ At| over the DMD eigenvalues. Fig. 10 (right) shows the results, aver-
aged over 50 randomly selected initial conditions on the attractor for the initial
value x(0). For exact DMD, this error metric plateaus as M increases. Generally,
the eigenvalues computed using DMD with delay embedding are damped and
lie strictly within the unit disk (Korda et al., 2020, Corollary 2). Consequently,
their logarithms are in the left-half plane, corresponding to positions below the
horizontal line in Fig. 3. Conversely, the eigenvalues computed by tisDMD and
optDMD approach the unit disk with increasing M and exhibit greater robust-
ness to noise in the measurements.

3.2 Compression and randomized linear algebra

With ever-increasing volumes of measurement data from simulations and ex-
periments, modal extraction algorithms such as DMD can become prohibitively
expensive, particularly for online or real-time analysis. Dynamics often evolve
on low-dimensional attractors, indicating sparsity in a suitable coordinate sys-
tem or an intrinsic low rankness. However, the SVD used in Algorithm 1 scales
with the dimension of the measurements, not with the intrinsic dimension of the
data. This section explores two principles aimed at mitigating this computational
cost:

e Compressed sensing (Donoho, 2006; Candes et al., 2006) facilitates the re-
construction of sparse signals from a limited number of measurements, allow-
ing for undersampling below traditional Shannon—Nyquist limits (Nyquist,
1928; Shannon, 1948). Applying compressed sensing to DMD can substan-
tially improve computational efficiency, particularly during the SVD step of
the algorithm. Acquiring high-resolution, time-resolved measurements can
be challenging. Nevertheless, temporally and spatially sparse signals may be
sampled less frequently than traditionally expected, which is crucial if data
acquisition is costly.

e Randomized numerical linear algebra (Martinsson and Tropp, 2020) of-
fers a way to solve certain linear algebra problems much faster than classical
methods. The randomized SVD is a fast and straightforward technique for
computing an approximate low-rank SVD (Halko et al., 201 1). It is robust and
amenable to parallelization and can benefit from GPU architectures. When
coupled with randomized SVD, DMD scales with the intrinsic rank of the
data matrices rather than the measurement dimension. The approximation er-
ror is manageable through oversampling and power iterations, providing a
balance between computational speed and accuracy. Moreover, it can accom-
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modate large datasets that exceed the capacity of fast memory by using a
blocked matrix approach.

Beyond the methods detailed here, several DMD variants are based on re-
lated principles. For instance, due to the nonorthogonality of DMD modes,
choosing an appropriate low-rank representation can be difficult (Kou and
Zhang, 2017). Sparsity-Promoting DMD (Jovanovi¢ et al., 2014) aims to strike
a balance between accuracy and the number of modes by identifying a sparse
subset of modes. Other techniques for selecting dominant modes include rank-
ing each DMD mode’s importance by time integration (Kou and Zhang, 2017) or
by assessing the time-averaged modal energy contribution (Tissot et al., 2014).
Furthermore, one can apply DMD recursively to achieve orthogonality (Noack
et al., 2016), a method termed Recursive DMD, which blends the principles of
POD and DMD. Additionally, regularization terms can be imposed to encourage
sparsity in the Koopman matrix (Sinha et al., 2019).

Finally, it is crucial to recognize that the usefulness of the methods in this
section presumes the dynamics are evolving on a low-dimensional subspace
characterized by a quickly decaying singular value spectrum. While not a funda-
mental limitation of DMD, this is a common underlying assumption which may
not hold for all dynamical systems. Erichson et al. (2019b) provide a turbulent
flow example that demonstrates the limits of the approaches in this section when
this assumption does not hold.

3.2.1 Compressed sensing meets DMD (cDMD and csDMD)

A full description of the extensive field of compressed sensing is beyond the
scope of this review. We outline the key points to understand its interplay with
DMD. The reader is encouraged to consult the excellent textbooks (Foucart and
Rauhut, 2013; Adcock and Hansen, 2021) for a comprehensive understanding
or (Candes and Wakin, 2008) for a concise introductory tutorial. Compressed
sensing is founded on two central principles: sparsity, which pertains to the
signals of interest, and incoherence, which relates to the sensing methodology.

Consider a signal x € C? that is approximately sparse in some basis B €
C4*4 meaning that x = Bz, where the vector z can be well approximated by
a sparse vector. Many natural signals, such as images and audio, are approx-
imately sparse in specific bases like the Fourier or wavelet bases. When we
transform an image using Fourier or wavelet transformations, most coefficients
are small and can be disregarded while still retaining the quality of the image.
We assume that we have access to measurements:

x. = Cx=CBz,

where C € C”*¢ is a measurement matrix with p < d. Compressed sensing
theory implies that, under suitable conditions, we can recover an accurate ap-
proximation of z (and hence x) from the subsampled measurements x.. For
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Algorithm 5 Compressed DMD (S.L. Brunton et al., 2016b), suitable when
given access to the full snapshots.

Input: Snapshot data X € CI*M and Y € C4*M rank r € N, and measurement
matrix C € CP*4,
1: Compress X and Y to X, = CX and Y. = CY.
2: Apply Algorithm | with input X, and Y, and outputs A., W, V. and X_.
3: Reconstruct full-state modes via ® = YVCZJ;1 W..
Output: The eigenvalues A. and DMD modes ® € C¢*".

example, consider the £'-minimization problem
min ||z]|,1  subjectto x.= CBz. (3.2)

Specifically, the measurement matrix C must be incoherent with respect to the
sparse basis B, meaning that the rows of C are uncorrelated with the columns of
B. If the matrix CB satisfies a restricted isometry property (RIP)'*:

(1 =801zl < ICBz|7, < (14 80)zll?, for k-sparse vectors z,

then we can prove results about how close solutions of (3.2) are to the true
z, how issues such as only approximately numerically solving (3.2) affect the
solution, robustness to noise, and so forth. Beyond the above 2! -minimization
problem, many successful optimization problems and algorithms approximate
their solutions in compressed sensing.

Tu et al. (2014a) combine temporal compressed sensing with ideas from
DMD to recover POD modes. For the remainder of this section, we focus in-
stead on spatial compressed sensing, following the methods of S.L. Brunton
et al. (2016b). In essence, S.L. Brunton et al. (2016b) demonstrated that the
unitary invariance of the DMD algorithm can be extended to approximate in-
variance under transformations satisfying a RIP, provided that the data is sparse
in a basis that is incoherent with respect to the measurements. For compressed
data matrices

X, =CX, Y.=CY,

there are essentially two approaches, depending on whether one has access to
the matrix Y or not. Algorithm 5 illustrates compressed DMD (cDMD) (see also
Erichson et al., 2019a), where one performs the standard DMD algorithm on the
compressed data matrices, and then reconstructs the full-state modes using Y.

13 There are no known large matrices with bounded restricted isometry constants since comput-
ing these constants is NP-hard and hard to approximate. Typically, one builds random matrices so
that the RIP holds with overwhelming probability. For example, Bernoulli and Gaussian random
measurement matrices satisfy the RIP for a generic basis B with high probability (Candes and Tao,
2006).
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Algorithm 6 Compressed sensing DMD (S.L. Brunton et al., 2016b), suitable
when given access to only compressed data. The £!'-minimization can be re-
placed with a plethora of similar minimization problems from the compressed
sensing literature.

Input: Compressed snapshot data X, € C?*M and Y, € C?*M measurement
matrix C € CP*4 and basis B € C9>4,
1: Apply Algorithm 1 with input X, and Y. and outputs A, and ®,..
2: Apply £'-minimization (3.2) columnwise to reconstruct modes ®; € C4*".
3: Recover full-state modes via ® = B®;.

Output: The eigenvalues A, and DMD modes ® € C?*".

If access to Y is not available, we can use an optimization problem such as
(3.2) to recover the modes in the sparse basis ®;, and then reconstruct the full-
state modes. This approach, known as compressed sensing DMD (csDMD), is
outlined in Algorithm 6.

3.2.2 Randomized dynamic mode decomposition (rDMD)

Early uses of DMD with randomized SVD include Erichson and Donovan
(2016), who utilized it to expedite DMD applications in video background sub-
traction, and Bistrian and Navon (2017), who applied it as a component of a
reduced-order model for two-dimensional fluid flows. Although this method is
reliable and robust to noise, it only accelerates the computation of the SVD,
with subsequent computational steps in the DMD algorithm remaining costly.
Instead, Erichson et al. (2019b) developed a randomized DMD (rDMD) algo-
rithm. This algorithm relies on sketching the range of X and executing the entire
DMD process in a reduced-dimensional space, ultimately recovering the DMD
of the original system at the end.

The idea is to use randomness as a computational strategy to find a smaller
representation, known as a sketch. This smaller matrix sketch can be used to
compute an approximate low-rank factorization for the high-dimensional data
matrix. rDMD utilizes the off-the-shelf probabilistic framework proposed in the
seminal work of Halko et al. (2011). Given a target rank 7, the aim is to compute
a near-optimal basis Q € C?*” for the input matrix X such that X ~ QQ*X. A
test matrix & € RY*" is drawn from a normal Gaussian distribution to sample
the range of X via

7 =XQ.

To mitigate the O(d Mr) cost of dense matrix multiplication, more sophisticated
random test matrices, such as the subsampled randomized Hadamard transform,
can also be used, leading to a complexity of O(dM log(r)). The orthonormal
basis Q is then obtained via QR decomposition of Z. In practice, we slightly
oversample the desired rank r by a constant factor (typically, 10 suffices). A
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Algorithm 7 Randomized range finder. Other choices of random test matrices
may be employed for computational efficiency. The QR algorithm is written
using MATLAB notation.

Input: Snapshot data X € C?*M  target rank r € N, oversampling factor p € N,
and power iteration factor g € NU {0}.

1: Generate a random Gaussian matrix & € RM¥*+7) and form the matrix
7 =XQ.
2: for j=1,...,q do
3: [Q,~]1=qr(Z, econ’)
4: [C, ~]=qr(X*Q, ’econ’)
5: 7 =XC
6: end for
7: [Q, ~]1=qr(Z, econ’).
Output: Range matrix Q € C4*(+p),

Algorithm 8 Randomized DMD (Erichson et al., 2019b).

Input: Snapshot data X € C**M and Y € C4*M target rank r € N, oversam-
pling factor p € N, and power iteration factor ¢ € N U {0}.

1: Run Algorithm 7 to generate the matrix Q.

2: Compress X and Y to X, = Q*X and Y, = Q*Y.

3: Apply Algorithm | with input X, and Y, and outputs A, and ®..
4: Reconstruct full-state modes via ® = Q®...

Output: The eigenvalues A and DMD modes ® € C¢*",

second strategy to improve performance involves power iterations (Rokhlin et
al., 2010; Gu, 2015). Particularly, a slowly decaying singular value spectrum
of the input matrix can significantly affect the quality of the approximated ba-
sis matrix Q. Power iterations are employed to preprocess the input matrix to
promote a more rapidly decaying spectrum. The sampling matrix obtained is

Z = (XX*)IXQ,

and as few as g = 2 power iterations can considerably improve the approxima-
tion quality, even when the singular values of the input matrix decay slowly. This
procedure is outlined in Algorithm 7, and we direct the reader to Martinsson and
Tropp (2020, Section 11) for probabilistic error bounds. With the matrix Q in
hand, we can perform DMD on the lower-dimensional space, as summarized in
Algorithm 8. One can also simultaneously sketch the range and corange of X.
This method, known as sketchy DMD, was proposed by Ahmed et al. (2022).
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FIGURE 11 Left: Errors of cDMD (Algorithm 5) for the first 6 eigenvalues and DMD modes.

Middle: Errors of rDMD (Algorithm 8) for the first six eigenvalues and DMD modes. Right: Com-
putational times vs eigenvalue error.
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FIGURE 12 DMD modes constructed using csDMD (Algorithm 6) with a 99.5% compression in
the dimension of the measurements.

3.2.3 Examples
Cylinder wake

We return to the cylinder wake discussed in Section 2.3.1 as an illustrative
example. For cDMD and csDMD, we use the (inverse) two-dimensional dis-
crete Fourier transform as our basis B and Gaussian random measurements C.
Fig. 11 shows the results for cDMD and csDMD when recovering the first six
modes plotted in Fig. 2. In the left and middle panels, we have shown the mean
eigenvalue error and the DMD mode error (computed as a subspace angle) av-
eraged over 20 random realizations. The errors quickly become negligible for
p,r = O(10). In the right panel, we have displayed the mean execution times
on a standard laptop (without GPU) against the eigenvalue error. Even for this
simple example with rapidly decreasing singular values, cDMD performs better
than exact DMD, while rDMD is the clear winner.

Fig. 12 shows the modes computed by csDMD with p = 800, which cor-
responds to a 99.5% compression in the dimension of the snapshot matrices.
We employ the CoSaMP algorithm (Needell and Tropp, 2009) to perform the
¢'-minimization step. When only compressed measurements are available, it is
still possible to reconstruct full-state modes using compressed sensing. How-
ever, this typically requires more measurements and computational resources
than cDMD or rDMD.
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FIGURE 13 Eigenvalues and dynamic modes of the SST data set computed using exact DMD and
rDMD. The eigenvalue plot shows the unit circle as a black line.

Sea surface data

We now consider high-resolution sea surface temperature (SST) data. SST data
are widely studied in climate science for climate monitoring and prediction
(Reynolds et al., 2007, 2002; Smith and Reynolds, 2005), and measurements
are constructed by combining infrared satellite data with observations provided
by ships and buoys. The data are available from the National Oceanic and At-
mospheric Administration at https://www.esrl.noaa.gov/psd/ for the years 1981
to 2023, with a grid resolution of 0.25°. Omitting data over land results in
d = 691,150 spatial grid points. The following experiments, similar in spirit to
Erichson et al. (2019b), were performed using a system with Intel(R) Xeon(R)
Gold 6126 CPU at 2.60GHz (48 cores) and 767GiB system memory.

We first consider a temporal resolution of one day and a data matrix X €
RO1L150x15,097 "Fig 13 shows the eigenvalues and dynamic modes computed
using exact DMD and rDMD (with r = 10), demonstrating the accuracy of
rDMD. The bottom left mode is reminiscent of an El Nifio mode generated
from the El Nifio-Southern Oscillation (ENSO). El Nifio is the warm phase of
the ENSO cycle. It is associated with a band of warm ocean water that develops
in the central and east-central equatorial Pacific, including off the Pacific coast
of South America (see also Fig. 15).

Next, we compare the accuracy and computational times for a temporal res-
olution of one week and a data matrix X € R%1.150x2156 of \eekly averages.
Fig. 14 shows the relative error in the Frobenius norm of the reconstructed data
matrix and time taken for exact DMD, rDMD, and blocked rDMD (using four
blocks). We observe substantial gains in computational time when using rDMD
while maintaining an accuracy similar to the full deterministic exact DMD.

3.3 Multiresolution dynamic mode decomposition (mrDMD)

Multiscale systems are widespread across various scientific disciplines. Model-
ing the interactions between microscale and macroscale phenomena, which may
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FIGURE 14 Left: Accuracy of exact DMD, rDMD, and batched rDMD for the SST data set.
Middle: The computational times of each method. Right: The speedup of rDMD and batched rDMD
compared to exact DMD. All plots show the mean of 10 independent runs.

differ by orders of magnitude either spatially or temporally, poses a consider-
able challenge. Wavelet-based methods and windowed Fourier transforms are
well-suited for multiresolution analysis (MRA), as they systematically isolate
temporal or spatial features through recursive refinement when sampling from
the targeted data (Daubechies, 1992). Typically, MRA is employed separately
in either space or time, but it is seldom applied to both simultaneously.

Multiresolution DMD (mrDMD) (Kutz et al., 2016b) integrates DMD with
core principles from wavelet theory and MRA. It adjusts the sampling window
of the data collection process in line with wavelet theory, filtering information
across various scales. The process is iteratively refined through progressively
shorter snapshot sampling windows, leading to the recursive extraction of DMD
modes from slow to rapidly changing timescales. The benefits of this approach
include enhanced prediction of the near-future state of the system, which is vital
for control; effective management of transient phenomena; and improved han-
dling of moving (translating/rotating) structures within the data. The latter two
points underscore significant challenges inherent in standard DMD methods.
The mrDMD algorithm has led to practical applications such as determining
optimal sensor placement (Manohar et al., 2019).

3.3.1 The algorithm

When using mrDMD, it is typical to work with an M such that a full-rank ap-
proximation with r = M in Algorithm 1 is feasible and such that high- and
low-frequency content is present. We assume that data is collected along a sin-
gle time trajectory with time-step Ar and express the eigenvalues in terms of
their time-scaled logarithms n = log(})/At. In the first pass, mrDMD separates
the approximation in (2.7) into slow modes and fast modes:

x~ Y ¢ expmnb®)+ > ¢ exp(unbk),  (3.3)

nkl<t [k|>T

slow modes fast modes

where ¢,({1) = ®(:, k), and the superscript (1) indicates the level. The first sum
in the expression (3.3) represents the slow-mode dynamics, whereas the second
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sum is everything else. How to choose the slow modes is important in the prac-
tical implementation. In the original mrDMD paper, it is suggested to set the
threshold t to select eigenvalues whose temporal behavior allows for at most
one wavelength to fit within the sampling window.

The fast modes in (3.3) can be collected into a data matrix Xys/2, where we
let my denote the number of slow modes in (3.3). The matrix Xy, is now split
into two matrices, where the first matrix contains the first M /2 snapshots, and
the second matrix contains the remaining M /2 snapshots. The process is now
repeated, where m, slow modes are collected at the second level and computed
separately in the first and second intervals of snapshots. This process is repeated
to obtain the decomposition

mi

X(t) ~ Zb,({l)qb,((l) exp(n(l)t) + Zb(z) @) exp(n(z)t)
k=1
+ Zb(z) ®3) exp(n(3)t) +enl

where the ¢,(f) and n,(f) are the DMD modes and eigenvalues at the £th level of
the decomposition, the b,(f) are the initial projections of the data onto the time
interval of interest, and the m, are the number of slow modes retained at each
level. The idea is that different spatiotemporal DMD modes are used to represent
key multiresolution features. Thus, no single set of modes dominates the SVD
and potentially marginalizes features at other time scales.
We can make the mrDMD more precise, letting L denote the number of lev-
els of the decomposition. The solution is a sum with ¢ indexing the level, j =
L2080 indexing the time bins [t(z) (g)l] ineachleveland k=1, ..., my
1ndex1ng the modes extracted at each level To simplify the sum, define the fol-
lowing indicator function

(£) (L’)
foit) = 1, 1fte[t /+1]
0, otherwise
L 2/ 1 my
e, l, e,
so that  Xmpmp() =D Y O fo ;b8 expin,“n).
t=1 j=1 k=1

In particular, each mode is represented in its respective time bin and level. Al-
ternatively, this solution can be interpreted as yielding the least-squares fit to the
dynamics within a given time bin at each level of the decomposition.
Numerous innovations enhance the practical implementation of mrDMD.
Since only slow modes matter within a window, we can limit sampling to a
fixed number of points per window, reducing the data matrix size for more man-
ageable SVD computations. The sampling window locations are flexible, and
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FIGURE 15 Application of mrDMD on sea surface temperature data from 1990 to 2010. The
left panel illustrates the process for a 4-level decomposition. At each level, the slowest modes are
extracted. Mode (c) clearly shows the El Nifio mode of interest that develops in the central and
east-central equatorial Pacific. The El Nifio mode was absent in 1999, as is clear from mode (d).
Reproduced with permission from Kutz et al. (2016b), copyright © 2016 Society for Industrial and
Applied Mathematics, all rights reserved.

smoothing their edges can prevent the Gibbs phenomenon due to abrupt data
cutoffs. One can also employ wavelet functions, like Haar, Daubechies, or Mex-
ican Hat, for the sifting function fy ; (). Finally, overlapping windows prevent
data loss during sampling. A sliding window approach can robustly track data
features, enabling pattern correlation across windows akin to a Gabor transform-
generated spectrogram.

3.3.2 Example

The following example is from Kutz et al. (2016b). We consider the global sea
surface temperature (see Section 3.2.3) with data that spans 20 years from 1990
to 2010. Fig. 15 illustrates the outcomes of employing a 4-level mrDMD de-
composition. At the first level, mrDMD identifies two modes: the mean ocean
temperature, denoted as ¢§1’1), and an annual cycle, represented by ¢§1’1). In-
triguingly, at the fourth level, the approximate zero mode of the sampling win-
dow uncovers noteworthy phenomena; specifically, it isolates the 1997 El Nifio
event. In contrast, when the same sampling window is applied to the year 1999,
the El Nifio mode is absent, aligning with the recognized oceanic patterns of
that year. These insights would not have been obtainable using traditional DMD
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without preselecting the correct sampling windows. Moreover, even if such a
step were taken, the slow modes identified at the first level, as shown in Fig. 15
(a) and (b), would pollute the data at the level of investigation. For additional
techniques identifying approximate eigenfunctions that provide a rectified repre-
sentation of the ENSO and function as (approximate) semiconjugacies or factor
maps with circle rotations, see Froyland et al. (2021).

3.3.3 Nonautonomous systems

The use of mrDMD to detect transient behavior is tantalizing! Most DMD meth-
ods are designed for autonomous dynamical systems, where the function F
on the right-hand side of (1.1) has no time dependence. However, there has
been some recent initial work on nonautonomous systems, and we expect this
area to grow significantly over the next few years. Mezi¢ and Surana (2016)
were the first to extend the Koopman operator framework to nonautonomous
dynamical systems, applying the methodology to linear-periodic and quasiperi-
odic nonautonomous systems. Giannakis (2019) developed a strategy inspired
by time-changed dynamical systems that involves rescaling the generator; this
can be applied to a class of time-changed mixing systems. Further development
of this approach, using delay-coordinate maps for recovering the dynamical sys-
tem on tori with multiple time scales, is presented in Das and Giannakis (2019).
The extraction of spatiotemporal patterns using an extension of approximation
techniques developed in Giannakis (2019) on the space-time manifold defined as
a skew-product structure is considered in Giannakis and Das (2020); Giannakis
et al. (2019). For the online computation of windowed DMD using rank-one
updates, see Online DMD (Zhang et al., 2019). Macesic et al. (2018) provides
an error analysis for DMD with moving stencils. For extensions to actuated
systems, see Williams et al. (2016); Bai et al. (2020). Redman et al. (2023) de-
velop an episodic memory approach that saves spectral objects associated with
temporally local approximations of the Koopman operator, and utilizes this in-
formation to make new predictions. Nonautonomous systems have also been
studied using transfer operators, which are the dual of Koopman operators (see
the discussion in Section 6.1), and space-time manifolds (Froyland and Koltai,
2023).

3.4 Control

One of the most successful applications of the Koopman operator framework
lies in control (Mauroy et al., 2020; Otto and Rowley, 2021), with demon-
strated successes in various challenging applications. These include fluid dy-
namics (Arbabi et al., 2018; Peitz and Klus, 2020), robotics (Abraham et al.,
2017; Bruder et al., 2019; Mamakoukas et al., 2019; Haggerty et al., 2023),
power grids (Korda et al., 2018; Netto and Mili, 2018), biology (Hasnain et al.,
2020), and chemical processes (Narasingam and Kwon, 2019). The key point is
that Koopman operators represent nonlinear dynamics within a globally linear
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framework. This approach leads to tractable convex optimization problems and
circumvents theoretical and computational limitations associated with nonlin-
earity. Moreover, it is amenable to data-driven, model-free approaches (Proctor
et al., 2016; Williams et al., 2016; Korda and Mezi¢, 2018a; Proctor et al.,
2018; Surana, 2016; Kaiser et al., 2021, 2018a; Peitz and Klus, 2019; Abraham
and Murphey, 2019). The resulting models reveal insights into global stability
properties (Sootla and Mauroy, 2016; Mauroy and Mezi¢, 2016), observabil-
ity/controllability (Vaidya, 2007; Goswami and Paley, 2017; Yeung et al., 2018),
and sensor/actuator placement (Sinha et al., 2016; Sharma et al., 2019) for the
underlying nonlinear systems.

Koopman operator theory was first extended to actuated systems by Mezié
and Banaszuk (2004), with stochastic forcing interpreted as actuation. Proctor
et al. (2016) developed the first control schemes based on DMD. A signifi-
cant strength of DMD is the ability to describe complex and high-dimensional
dynamical systems with a few dominant modes. Reducing the system’s dimen-
sionality enables faster and lower-latency prediction and estimation, leading to
high-performance, robust controllers.

3.4.1 Dynamic mode decomposition with control (DMDc)

We will focus on the DMD with control (DMDc) algorithm (Proctor et al., 2016).
DMDc extends DMD to disambiguate between unforced dynamics and the ef-
fect of actuation. The DMD regression of Section 2.2.1 is generalized to

Xp+1 =F(x,,u,) ~ Ax, 4+ Bu,,

where u, € C? is a vector of control inputs for each time-step. Here A €
C9*4 and B € C?*4 are unknown matrices. Snapshot triplets of the form
{x(’”), y(”’), u(’”)}f‘n"':1 are collected, where we assume that

y(m) %F(x(m),u(’")), m=1,....,M.

The control portion of the snapshots is arranged into the matrix Y =
(u(l) a®@ ... g )) € C7*M  The optimization problem in (2.6) is replaced by

min |Y — (A B)Q[Z, where Q= <X> e CU+DxM
(A B) Y

A solution is given as (A B) = YQ'. In practice, we seek a reduced-order model
by performing a truncated SVD on both the input and output space. The full
algorithm is summarized in Algorithm 9 and is an extension of Algorithm I.
DMDc has been used with Model-Predictive Control (MPC) for enhanced con-
trol of nonlinear systems in Korda and Mezi¢ (2018a); Kaiser et al. (2018b),
with the DMDc method performing surprisingly well, even for strongly nonlin-
ear systems. Extensions are discussed in Section 3.4.3.
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Algorithm 9 DMD with control (Proctor et al., 2016).
Input: Snapshot data X € C¥*M | 'Y € C*M and Y € C4*M | ranks r, p € N.

1: Compute a truncated SVD of the input matrix ('):') ~ ULV U e

U
CU+Dxr 5 e RP*P V € CM*P_ Break up the matrix U into U* = [fJT ﬁ;]
where U; € C4%P andﬁzeC"X”;\AA R R R
2: Compute a truncated SVD of Y ~ UL V*, U € C4*", T e R"™*", V e CM*",
3: Compute the compressions A = ﬁ*YVf_lfj’lkﬁ € C and B =
OYVE 05 e o,
4: Compute the eigendecomposition AW = WA. The columns of W are
eigenvectors and A is a diagonal matrix of eigenvalues.
5: Compute the modes ® = YVf_lﬁTﬁW.

Output: The eigenvalues A and modes ® € C4*".

3.4.2 Example

We illustrate DMDc for system identification on a high-dimensional, linear
system with spectral sparsity following Proctor et al. (2016, Section 4.3). We
consider a two-dimensional torus discretized by a 128 x 128 equispaced grid
such that x € R128%128 = R16.384 ‘Taking the two-dimensional discrete Fourier
transform of x, we obtain X. The system evolves according to

f‘nJrl = Af(n + Bﬁn-

Here, A is a diagonal matrix with five nonzero entries representing the modes,
each with a randomly chosen frequency and small damping. The random input
signal, @, is one-dimensional and directly influences the sparse modes, resulting
in a localized negative control input when transformed back to the spatial do-
main. This back-transformation yields our dynamical system in physical space.
The system is constructed by sampling a continuous-time system at time steps of
At =0.01. We collect M = 400 snapshots of the data for our analysis. Further
details of this system can be found in S.L. Brunton et al. (2016b).

Fig. 16 displays the true eigenvalues alongside those computed by DMDc
and exact DMD. Ten eigenvalues are present in conjugate pairs due to process-
ing real-valued data. DMDc demonstrates greater accuracy than exact DMD,
which inaccurately estimates some eigenvalues and generates unstable modes.
The true DMD modes for this system appear at the top Fig. 17. The DMDc
modes in the middle row align almost perfectly with the true modes. The sub-
space angle between the true modes and the DMDc-computed modes is on the
order of machine precision. In contrast, the modes produced by exact DMD
show significant distortion.
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FIGURE 16 True eigenvalues of the torus example and those computed by DMDc and exact DMD.
The logarithm of the eigenvalues are plotted to align with the continuous-time system.
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FIGURE 17 The true DMD modes for the torus example, alongside those computed by DMDc
and exact DMD. The modes obtained from DMDc are accurate to machine precision, whereas those
computed using exact DMD are significantly distorted.

3.4.3 Extensions and connection with Koopman operators

Koopman theory has been used in combination with the Linear Quadratic Reg-
ulator (LQR) (S.L. Brunton et al., 2016a; Mamakoukas et al., 2019, 2021),
state-dependent LQR (Kaiser et al., 2021), and MPC (Korda and Mezi¢, 2018a;
Kaiser et al., 2018b). Other noteworthy directions include optimal control for
switching control problems (Peitz and Klus, 2019, 2020), Lyapunov-based sta-
bilization (Huang et al., 2018, 2020), eigenstructure assignment (Hemati and
Yao, 2017), and active learning (Abraham and Murphey, 2019). Additionally,
deep learning architectures have been employed to represent the nonlinear ob-
servables in combination with MPC (Li et al., 2019), see also (Liu et al., 2018;
Han et al., 2020), and (Peitz and Klus, 2019; Peitz et al., 2020; Klus et al.,
2020b) for parametrized models.

Koopman theory is closely related to Carleman linearization (Carleman,
1932), which embeds finite-dimensional dynamics into infinite-dimensional lin-
ear systems using a polynomial basis. Carleman linearization has been used for
decades to obtain truncated linear (and bilinear) state estimators (Krener, 1974;
Brockett, 1976) and to examine stability, observability, and controllability of the
underlying nonlinear system (Loparo and Blankenship, 1978).
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The DMDc framework may be extended to nonlinear observables using
EDMD (see Section 4), an approach called eDMDc (Williams et al., 2016).
Korda and Mezi¢ (2018a) integrated eDMDc into MPC. Here, the Koopman op-
erator is characterized as an autonomous operator on the extended state vector
(x",u")T, with observables that may be nonlinear functions of both the state
and the input. In practical applications, simplifications are employed to ensure
the control problem remains convex (Korda and Mezié, 2018a; Proctor et al.,
2018). This method has been applied for control in the coordinates of Koopman
eigenfunctions (Kaiser et al., 2021, 2018a; Folkestad et al., 2020) and in inter-
polated Koopman models (Peitz, 2018; Peitz et al., 2020). Convergence can be
established under the assumption of an infinite amount of data and an infinite
number of basis functions. Koopman Lyapunov-based MPC guarantees closed-
loop stability and controller feasibility (Narasingam and Kwon, 2019; Son et
al., 2020). However, general guarantees regarding the optimality, stability, and
robustness of the controlled dynamical system are still limited.

The Koopman operator’s eigenfunctions (or approximate eigenfunctions)
are a natural choice of observables due to their simple temporal behavior. It
is crucial to validate computed eigenfunctions to ensure that their evolution is
consistent with the predictions of their associated eigenvalues, particularly for
prediction tasks. They have been used for observer design within the Koopman
canonical transform (Surana, 2016; Surana and Banaszuk, 2016) and within the
Koopman reduced-order nonlinear identification and control framework (Kaiser
et al., 2021), which both typically yield a global bilinear representation of the
underlying system. Subsequent research has focused on directly identifying
Koopman eigenfunctions (Korda and Mezi¢, 2020; Pan et al., 2021) and ap-
proximate invariant subspaces (Haseli and Cortés, 2023).

The efficacy of Koopman-based MPC is currently at odds with the diffi-
culties of approximating the Koopman operator and its spectra. Only a limited
number of systems with a known Koopman-invariant subspace and verifiable
eigenfunctions exist for model analysis and evaluation. Furthermore, the linear-
ity of Koopman eigenfunctions is seldom validated. Nevertheless, Koopman-
based MPC demonstrates remarkable resilience with models of marginal pre-
dictive ability. Despite notable successes, understanding how well the Koopman
operator is actually approximated and producing error bounds remains largely
incomplete.

4 Variants from the Galerkin perspective

We now explore variants of DMD from the Galerkin (or projection) perspec-
tive, building on the connection established in Section 2.2.2. This approach
particularly focuses on addressing the infinite-dimensional nature of Koopman
operators. Given that a Koopman operator transforms a finite-dimensional non-
linear system into an infinite-dimensional linear one, a significant part of this
section will address nonlinear observables. We will concentrate on three meth-
ods designed to tackle these challenges:
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o Extended DMD: This represents a fundamental extension of DMD that treats
it as a Galerkin method.'* In particular, it introduces nonlinear observables
to form a dictionary, which generates a subspace within L?($2, w). Adopting
the Galerkin perspective enables the application of numerical tools for ad-
dressing infinite-dimensional spectral problems. However, the well-studied
challenges of infinite-dimensional spectral computations are significant. Gen-
erally, EDMD will not converge to the spectral properties of the Koopman
operator, either theoretically or practically (see Section 4.1.3 and common
pitfalls in Section 4.3).

e Time-delay Embedding: This technique is commonly used to construct a
dictionary of observables for EDMD and generates a Krylov subspace. Our
focus will be on two methods: Hankel-DMD, which is a widely used tech-
nique suitable for ergodic systems that have a low-dimensional attractor, and
HAVOK (Hankel Alternative View Of Koopman) analysis, which produces a
linear model using the leading delay coordinates and includes forcing terms
represented by low-energy delay coordinates.

e Residual DMD: This algorithm computes verified spectral properties of
Koopman operators via an infinite-dimensional residual corresponding to
the projection error of (E)DMD. This residual is computed from the snap-
shot data by augmenting EDMD with an additional matrix. This leads to the
computation of spectra and pseudospectra without spectral pollution (general
systems) and can be used to compute spectral measures (measure-preserving
systems). Since the algorithms have error control, ResDMD allows a poste-
riori verification of spectral quantities, Koopman mode decompositions, and
learned dictionaries. '

4.1 Nonlinear observables: extended dynamic mode decomposition
(EDMD)

The standard DMD algorithm can accurately characterize periodic and quasi-
periodic behaviors in nonlinear systems. However, DMD models based on linear
observables generally fail to capture truly nonlinear phenomena. To address this
limitation, Williams et al. (2015a) introduced Extended DMD (EDMD), which
also elucidated the interpretation of DMD as a Galerkin method. Specifically,
they demonstrated that EDMD converges to the numerical approximation ob-
tained by a Galerkin method in the limit of large data sets. Prior research in
a similar vein includes (Tu et al., 2014b). Moreover, the connection between
EDMD and the earlier variational approach of conformation dynamics (No¢ and
Niiske, 2013; Niiske et al., 2014) from molecular dynamics is explored in Wu et
al. (2017); Klus et al. (2018c¢).

14 Though once nonlinear observables have been chosen, one can also apply the regression inter-
pretation of Section 3.
15 One can often show that a priori error control is impossible (Colbrook et al., 2019).
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4.1.1 The algorithm

Following the discussion of Koopman operators in Section 2.1, the objective of
EDMD is to approximate the Koopman operator with a matrix. For the sake of
simplicity, the initial formulation of EDMD assumes that the columns of the
snapshot matrix X are independently sampled from the distribution w. In our
discussion, we extend EDMD to accommodate any given snapshot matrices

X:(X(l) @ . X(M)) and Yz(y(l) yO y(M)),

and consider the X" as quadrature nodes used for integration with respect to w.
This adaptability permits the application of various quadrature weights tailored
to the specific scenario. It will be shown that EDMD generalizes the setup of
Section 2.2.2.

One first chooses a dictionary {yrq, ..., ¥y}, i.e., a list of observables, in the
space L2(2, w). These observables form a finite-dimensional subspace Vy =
span{y/q, ..., ¥y}. EDMD selects a matrix K € C¥*V that approximates the
action of /C confined to this subspace. We desire that

N
[Kyjlx) =y Fx) ~ Y Kijhi(x), 1<j<N

i=1
Define the vector-valued feature map
Qx> ¥ =[yi® - yxm]eC.
Any g € Vi can be written as g(x) = lev: 1 ¥ (X)g; = ¥(x) g for some vector
g e CVN. Hence

N

[Kgl(x) =¥ (F(x) g =¥ (x)(Kg) + Z vi(Fx)g; — ¥x)(Kg)
j=1

=:R(g,x)

Typically, Vy is not an invariant subspace of . Hence, there is no choice of K
that makes R(g, x) zero for all g € Viy and w-almost every x € Q. Instead, it is
natural to select K as a solution of

min {/ max |R(g,x)|2 dw (x)
Q

KeCNxN geCV | Cgl 2 =1

:/Q qu(F(x))C*1 — w(xKC!

2
B da)(x)}. A.1)
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Here, || - || 2 denotes the standard Euclidean norm of a vector, and C is a positive
self-adjoint matrix that controls the size of g = Wg. One should think of this
C as choosing an appropriate norm. This is important since not all norms on
an infinite-dimensional vector space are equivalent (for an example in DMD
analysis of fluid flow, see Colbrook, 2023, Figure 7).

In practical, data-driven contexts, it is not possible to directly evaluate
the integral in (4.1). Instead, we approximate it via a quadrature rule with
nodes {x(’”)}f‘,;[:l and weights {wm}nﬂle. For notational convenience, let D =
diag(wi, ..., wy) and

v (x) ey ™)
Uy = : eCMXN Wy = : e CMXN 4.2)
v x*) w(y ™)
The discretized version of (4.1) is the following weighted least-squares problem:
M 2
min { 3wy, H ¥y - KC|

KeCNxN

m=1

2
_ HDl/z\IlyC’l _ D2y KC™! HF} 4.3)

where we remind the reader that || - || denotes the Frobenius norm. By reducing
the size of the dictionary if necessary, we may assume without loss of generality
that D'/2Wy has rank N. For example, we can do this in DMD by projecting
onto POD modes. Regularization through a truncated singular value decompo-
sition may also be considered. A solution to (4.3) is

K= D"2wy) D2y, = (WiDW¥y) ¥iDWy,

where ‘f’ denotes the pseudoinverse. Note that this solution is independent
of the matrix C. However, a suitable choice of C is vital once we add con-
straints to the optimization problem in (4.1), see Section 5.2.1. As observed in
Section 2.2.2, if the quadrature weights are equal and ¥ = [u1 e ur] con-
stitutes an appropriate linear dictionary, then K is the transpose of the DMD
matrix. Conceptually, DMD can be regarded as a particular instance of EDMD
employing a set of linear basis functions.
We now generalize Section 2.2.2 by defining the two correlation matrices

M
G=V;DV¥y= Z Wiy W (X)W (xM))

m=1
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Algorithm 10 The EDMD algorithm (Williams et al., 2015a).

Input: Snapshot data X € C**M and Y € C¥*M | quadrature weights {w,,}
and a dictionary of functions {/;} ?’:1.
1: Compute the matrices Wy and Wy defined in (4.2) and D =
diag(wy, ..., wy).
2: Compute the EDMD matrix K = (D'/2W ) D!/2W¥y ¢ CN*N |
3: Compute the eigendecomposition KV = VA.
The columns of V are eigenvector coefficients and A is a diagonal matrix
of eigenvalues.

M
m=1"

Output: The eigenvalues A and eigenvector coefficients V.e CNV*V

M
A=ViDVy = Z Wi W (x™) W (™), (4.4)

m=1

If we consider the discrete measure wy = szl Wy 8yom), then

Gi= [ IO dow . A= [ TWER) dow (.
If the quadrature converges, then
Jim Gye=(Wn.y;) and lm Aj= Ky, @5)

where (-,-) is the inner product associated with L?*(2, w). Hence, in the
large data limit, K = G'A approaches a matrix representation of Py, ICP;*,N,
where Py, denotes the orthogonal projection onto Vy. In essence, EDMD is
a Galerkin method. The EDMD eigenvalues thus approach the spectrum of
PVNICP"jN, and EDMD is an example of the so-called finite section method
(Bottcher and Silbermann, 1983) (Mezi¢, 2022, Section 4). Since the finite
section method can suffer from spectral pollution (spurious modes), spectral
pollution is a concern for EDMD (Williams et al., 2015a). We saw an explicit
example in Section 2.3.3. See also Mezi¢ (2022, Example 2) for the worked
example F(x) = x* on the unit circle.

Algorithm 10 summarizes the procedure for computing eigenvalues and
eigenvectors. We can also use EDMD to compute Koopman modes. Given an
observable g = Wg € Vi, we may expand g in terms of the eigenvectors of K
as

g= Vg =WV [V_lg] , (4.6)
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where V is the matrix of eigenvectors of K with eigenvalues {A }?]:1. Similarly,

for general g € L?(R2, )\ Vy, we obtain an approximate expansion
T
g~ WV [V—I(Dl/z\pxﬁnl/z (g(x“>), o g(x“”))) ] ) 4.7
This expansion is called the KMD of g.'® With an abuse of notation, if g ¢ Vy,
we set
-
g=D"2w0"D2 (sx),....ex ™)) .

As M — oo, assuming that the quadrature rule underlying EDMD converges,
the approximation g ~ Wg converges to the projected observable Py, g. As a
particular case, we can vectorize and obtain

T
x~ W)V |:V—1(D1/2\I,X)'}'D1/2 (X(l), L X(M)) i| .

The jth row of the matrix in square brackets is known as the jth Koopman
mode, which we denote as & ; € clxd, Generalizing (2.7), the KMD provides
an approximation of the dynamics by

£ £ N
X X WEOK'V| | =W VA" | [ =) W&oV, HAjES.
EN ev) 7
Similarly, for general g, we obtain
N
2(%) X W(x)K'VV ™ lg = W(x) VA"V g = " W(x0)V(, HA}IV gl
j=1

which includes the triple of Koopman eigenvectors, eigenvalues, and modes.

4.1.2 Choices of dictionary

We have already met two examples of EDMD in this review: the Lorenz system
discussed in Section 2.3.2, where a dictionary was constructed from delay em-
bedding, and the Duffing oscillator discussed in Section 2.3.3, where we utilized
a dictionary of radial basis functions. The selection of the dictionary signif-
icantly affects the efficacy of EDMD. In their original formulation, Williams
et al. (2015a) suggest various dictionary choices, such as polynomials, Fourier

16 Unfortunately, there are numerous meanings of the term KMD in the literature. There is the
KMD of Mezi¢ (2005), which we discussed in Section 2.1.2 and is based on the spectral theorem
for unitary Koopman operators. There is also the (typically approximate) KMD produced by DMD
and EDMD.
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modes, spectral elements, and radial basis functions. Subsequent extensions
have primarily focused on addressing the challenges of large state-space dimen-
sions and mitigating the curse of dimensionality.

Kernelized EDMD (Williams et al., 2015b) (developed in parallel in Kawa-
hara, 2016) uses the kernel trick (Scholkopf, 2001) to perform EDMD with a
choice of dictionary determined implicitly by a choice of a kernel function. This
approach can help circumvent the curse of dimensionality and can be very ef-
fective when the state-space dimension d is large. Numerous papers have been
written on the approximation of Koopman operators in a RKHS (Klus et al.,
2018a; Fujii and Kawahara, 2019; DeGennaro and Urban, 2019; Alexander and
Giannakis, 2020; Das and Giannakis, 2020; Klus et al., 2020c,a; Mezié, 2020;
Burov et al., 2021; Baddoo et al., 2022; Kostic et al., 2022; Khosravi, 2023;
Philipp et al., 2023). This also includes methods for continuous-time dynamical
systems (Das et al., 2021; Rosenfeld et al., 2022). A challenge associated with
RKHS techniques is that a general RKHS does not exhibit invariance under the
action of the Koopman operator. This situation renders the selection of a repro-
ducing kernel a delicate task. Ideally, one should choose the kernel so that the
Koopman operator on the RKHS is not only densely defined but also closable.
Finding such a kernel is generally nontrivial, as indicated in Ikeda et al. (2022).

Kernel analog forecasting (KAF) (Zhao and Giannakis, 2016) is a kernel
method used for nonparametric statistical forecasting of dynamically generated
time series data. Under measure-preserving and ergodic dynamics, KAF con-
sistently approximates the conditional expectation of observables that are acted
upon by the Koopman operator of the dynamical system and are conditioned
on the observed data at forecast initialization (Alexander and Giannakis, 2020).
KAF yields optimal predictions in the sense of minimal root mean square error
with respect to the invariant measure in the asymptotic limit of large data. This
connection facilitates the analysis of generalization error and uncertainty quan-
tification. KAF has been used with streaming kernel regression (Giannakis et
al., 2023) and for multiscale systems (Burov et al., 2021).

Diffusion forecasting (Berry et al., 2015) uses the diffusion maps algorithm
(Coifman and Lafon, 2006) to construct a data-driven basis. Leveraging spec-
tral convergence results for kernel integral operators (Garcia Trillos et al., 2020;
von Luxburg et al., 2008), this approach produces a well-conditioned and con-
sistent approximation as both the amount of training data and the number of
basis functions increase. Giannakis et al. (2015); Giannakis (2019) use the dif-
fusion forecasting technique in a framework that approximates the generator £
of measure-preserving ergodic flows on manifolds by an advection-diffusion op-
erator L; = L — T A, where t is a regularization parameter, and A is a Laplace-
type diffusion operator. A Galerkin method was developed for the eigenvalue
problem of £,, which was observed to perform efficiently for systems with a
pure point spectrum, such as ergodic rotations on tori. The most straightforward
case for analyzing the spectral properties of diffusion-regularized generators
arises when the regularizing operator A commutes with £. Das and Giannakis
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(2019); Giannakis (2019) demonstrated that a commuting operator A can be
derived from the infinite-delay limit of a family of kernel integral operators con-
structed using time-delay embedding.

Another prevalent method involves training neural networks as a suitable
dictionary to construct Koopman forecasts, as demonstrated in several studies
(Li et al., 2017; Takeishi et al., 2017b; Wehmeyer and Noé, 2018; Yeung et al.,
2019; Azencot et al., 2020; Eivazi et al., 2021; Li and Jiang, 2021; Alford-Lago
et al., 2022). This approach is typically implemented in two ways: by identify-
ing a few key latent variables or by lifting to a higher-dimensional input space.
Variational autoencoders (VAMPnets) have been employed for stochastic dy-
namical systems such as in molecular dynamics (Mardt et al., 2018; Wehmeyer
and Noé, 2018), wherein the mapping back to the physical configuration space
from the latent variables is probabilistic. The integration of Koopman analysis
with graph convolutional neural networks has been explored to learn the dy-
namics of atoms within materials (Xie et al., 2019). Lusch et al. (2018) employ
an auxiliary network to parameterize the continuously varying spectral parame-
ter, enabling a network structure that offers both parsimony and interpretability.
A notable challenge when incorporating EDMD with neural networks is the
trade-off between representing data accurately and the potential for overfitting,
particularly with limited data. To address this issue, Otto and Rowley (2019)
proposed an architecture that combines an autoencoder with linear recurrent dy-
namics in the encoded space. Beyond employing neural networks for learning
Koopman embeddings, Koopman theory has also been applied to understand
the behavior of neural networks themselves (Manojlovi¢ et al., 2020; Dogra and
Redman, 2020) and algorithms more broadly (Dietrich et al., 2020; Redman et
al., 2022).

4.1.3 Convergence theory

We now outline the convergence theory for EDMD. Unfortunately, the type of
convergence (in the strong operator topology) is too weak to ensure the con-
vergence of spectral properties. To take into account the snapshot data and
dictionary, we let Ky »s denote the EDMD matrix. When considering the con-
vergence of EDMD and related methods, there are two limits of interest:

e The large-data limit which corresponds to M — oo;
e The large-subspace limit which corresponds to N — oc.

To compute the spectral properties of K, a double limit

lim lim K N,M
N—o00o M—00
must be considered. Generally, these limits do not commute. More broadly (and
beyond the above specific interpretations of the two limits), the use of successive
limits is a common occurrence in spectral problems and other areas of scientific
computation and cannot be overcome regardless of the choice of algorithm (Col-
brook, 2020, 2022; Colbrook and Hansen, 2022; Ben-Artzi et al., 2020).
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We saw above that if the quadrature rule converges, i.e., (4.5) holds, then
limps—, oo Ky, i = Ky is a Galerkin matrix. There are essentially three options
for the quadrature rule:

e Random sampling: We may draw x" at random according to a probabil-
ity measure that is absolutely continuous with respect to w, and select the
quadrature weights according to the corresponding Radon—-Nikodym deriva-
tive. This was essentially observed in (Williams et al., 2015a). Convergence
holds with probability one (Klus et al., 2016, Section 3.4) provided that w is
not supported on a zero level set that is a linear combination of the dictio-
nary (Korda and Mezi¢, 2018b, Section 4). The convergence rate is typically
O(M~1/2) (Caflisch, 1998), but is a practical approach if the state-space di-
mension is large. One could also consider quasi-Monte Carlo integration,
which can achieve a faster rate of O(M~1) (up to logarithmic factors) un-
der suitable conditions (Caflisch, 1998).

e Ergodic sampling: If the system is ergodic, then we can replace the strong
law of large numbers with Birkhoff’s Ergodic theorem (Birkhoff, 1931):

n—1

n—1
1

Jim — E (K7 g1(x0) HILH;O;E g(x;)
j=0

/g(x)dw(x) Ve L'(Q,0w). (4.8)
Q

We may select X" = x,,_ from a single trajectory starting at w-almost any
initial condition X and wy,, = 1/M. Often, the measures are ‘physical,” mean-
ing that the set of initial points with convergence has a positive Lebesgue
measure.'” For example, taking g = [[Cy] - llj‘_j in (4.8), we obtain

M—-1

lim — Z Wk(XnJr])WJ(Xn) = (K, ¢j>

M—oco M

=Aj

Convergence in this scenario is analyzed in Arbabi and Mezi¢ (2017a);
Korda and Mezi¢ (2018b). The convergence rate in M is problem depen-
dent (Kachurovskii, 1996; Mezi¢ and Sotiropoulos, 2002). For periodic and
quasiperiodic attractors, the error of approximating the inner products is gen-
erally O(M ™). For strongly mixing systems, the rate of convergence slows
down to O(M ~1/2). However, convergence rates cannot be established for the
general class of ergodic systems. For convergence rates of von Neumann’s er-
godic theorem in the context of Koopman operators, see Aloisio et al. (2022).

17 There is also the notion of SRB measure, which often coincides. For a survey of these measures
and their definitions, see Young (2002).
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e High-order quadrature: If the state space dimension d is not too large and
Q is sufficiently simple, it can be effective to choose {(x”, w,,)} according
to a high-order quadrature rule. Even changing the weights {w,,} for a fixed
set of sample points {x"™} can lead to a considerable acceleration of the
convergence (Colbrook and Townsend, 2023).

Colbrook et al. (2023b) provide concentration bounds on the error of the fi-
nite M EDMD matrix. Mollenhauer et al. (2022) provide a rigorous analysis
of kernel autocovariance operators, including nonasymptotic error bounds un-
der classical ergodic and mixing assumptions. Niiske et al. (2023) presented the
first rigorously derived probabilistic bounds on the finite-data approximation
error for the truncated Koopman generator of stochastic differential equations
(SDEs) and nonlinear control systems. Two settings were analyzed: indepen-
dent and identically distributed sampling and ergodic sampling, where it was
assumed that the Koopman semigroup is exponentially stable for the latter. Lu
and Tartakovsky (2020b) provide bounds for parabolic PDEs.

Suppose the quadrature rule converges and we have passed to the limit M —
oo. Korda and Mezi¢ (2018b) show that under a natural density assumption of
Vn as N — oo, Ky converges strongly to K for bounded Koopman operators.
This means that

lim |Kg—WKnPv, gl 2.0 =0 YgeL*(Q o), (4.9)
N—oo

where, with an abuse of notation, Py, g denotes the vector of coefficients of
Pvy 8. It is straightforward to drop the assumption that X is bounded by mak-
ing natural assumptions on the dictionary and considering g in the domain of X
(Colbrook and Townsend, 2023). Unfortunately, strong convergence is insuffi-
cient to ensure that the spectral properties of Ky converge to that of I - Mezi¢
(2022) provides an explicit example. We also saw an example of this effect in
Section 2.3.3. In Section 4.3, we will show how Residual DMD provides con-
vergence and error control in the final limit N — oo.

4.1.4 Infinitesimal generators

Several methods have also been proposed for continuous-time systems and ap-
proximating the Koopman infinitesimal generator defined in (2.8). For example,
generator EDMD (gEDMD) (Klus et al., 2020b) uses time derivatives of the dic-
tionary to extend EDMD to compute the generator, see also Klus et al. (2020a);
Rosenfeld et al. (2022). Other methods include computing the matrix logarithm
of the Koopman operator (Mauroy and Goncalves, 2020; Drmac et al., 2021),
approximating the Koopman operator family, and using finite-differences to
compute the Lie derivative of the Koopman operator (Giannakis, 2021; Sechi
et al., 2021). Finally, Das and Giannakis (2019); Giannakis (2019); Giannakis
and Das (2020) approach the problem of approximating both the Koopman and
its generator as a manifold-learning problem on a space-time manifold. This
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FIGURE 18 Left: EDMD eigenvalues computed over the entire state space. Middle: Eigenfunction
that parametrizes the basins of attraction. Right: EDMD eigenvalues obtained after restricting the
process to one basin of attraction. The powers of the dominant damped mode are shown in blue.

challenge was successfully addressed for ergodic dynamical systems, such as
those evolving on a chaotic attractor.

4.1.5 Example

As an example of EDMD, we revisit the Duffing oscillator from Section 2.3.3
but follow the experiment of Williams et al. (2015a) closely. Namely, we con-
sider the damped system:

xX=y, )'1:—0.5y+x—x3.

In this regime, there are two stable spirals at (&1, 0) and a saddle at the ori-
gin. Almost every initial condition, except those on the stable manifold of the
saddle, is drawn to one of the spirals. We collect trajectory data and form the
dictionary of observables {i j}j.vzl in the same manner as before. Fig. 18 (left)
shows the eigenvalues computed using EDMD with N = 2000. The system is
now damped, and there is a lattice structure of dominant but damped modes,
{A", M ineN, A ~0.8831 + 0.3203i} shown in blue. The lattice structure
can be understood as follows: if g and f are eigenfunctions of I corresponding
to eigenvalues A and u, respectively, and if the product fg is within the function
space that forms the domain of /C, then

[K(f1x) = fEFE)gF X)) = [LfIX[Lg]x) = Aunf (x)g(x).

Namely, further eigenvalues and eigenfunctions can be constructed by taking
products.

For this system, the eigenspace corresponding to A = 1 is spanned by the
constant function and the indicator function of the invariant set corresponding
to the two basins of attraction. This is illustrated in the middle of Fig. 18. Utiliz-
ing the level sets of this eigenfunction, we limit the data to the basin of (—1, 0)
and rerun the process to compute a new dictionary. The resulting EDMD eigen-
values are displayed on the right side of Fig. 18, where the eigenvalue A? is
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FIGURE 19 Top row: Absolute value of eigenfunction. Bottom row: Complex argument of eigen-
function. Left to right: Eigenfunctions corresponding to powers A1, A%, }L? and A‘l‘ of the fundamental
eigenvalue A1.

now more distinctly observable. In Fig. 19, we plot the eigenfunctions corre-
sponding to the powers A1, )\%, A3, and )»‘1‘ of the fundamental eigenvalue. Note
that the eigenfunctions are successive powers of one another. Furthermore, the
amplitude and phase of a Koopman eigenfunction are analogous to an ‘action—
angle’ parametrization of the basin of attraction. The level sets of the absolute
values of the eigenfunctions are the so-called isostables, while the level sets of
the arguments of the eigenfunctions are termed isochrons (Mauroy et al., 2013).

4.2 Time-delay embedding

In many applications, only partial observations of the system are available, lead-
ing to hidden or latent variables. Additionally, the explicit construction of a
robust nonlinear dictionary can be challenging, particularly when the system
evolves on a low-dimensional attractor that may be unknown or fractal. Never-
theless, it is often feasible to utilize time-delayed measurements of the system
to construct an augmented state vector. This approach yields an intrinsic coor-
dinate system that is hoped to form an approximate invariant subspace. This
technique was discussed in Section 2.3.2, where it was justified by Takens’ em-
bedding theorem (Takens, 2006). Mezi¢ and Banaszuk (2004) established the
connection between delay embeddings and the Koopman operator via a statisti-
cal Takens’ embedding theorem.

Employing the same time step for both the delay interval and the frequency
of measurements results in a data matrix with a Hankel structure. Hankel ma-
trices have been used in system identification for decades, as seen in the eigen-
system realization algorithm (Juang and Pappa, 1985) and singular spectrum
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analysis (Broomhead and Jones, 1989). Although these early algorithms were
initially developed for linear systems, they have frequently been applied to
weakly nonlinear systems as well. The practice of computing DMD on a Han-
kel matrix was introduced by Tu et al. (2014b) and subsequently utilized in the
field of neuroscience (B.W. Brunton et al., 2016). In this section, we focus on
two prevalent methods: Hankel-DMD, which is essentially EDMD applied to
a dictionary created from time-delay embedding, and the Hankel Alternative
View of Koopman (HAVOK) framework, which enhances the DMD model by
incorporating a forcing term.

4.2.1 Hankel dynamic mode decomposition (Hankel-DMD)

Hankel-DMD, introduced by Arbabi and Mezi¢ (2017a) and closely related to
the Prony approximation of the KMD (Susuki and Mezi¢, 2015), represents a
specialized instance of EDMD where the dictionary is constructed through time-
delay embedding. This approach is particularly effective for ergodic systems
that exhibit low-dimensional attractors. We saw a slightly generalized variant
of this algorithm in Section 2.3.2, where we employed distinct time steps for
sampling trajectories and the lengths of the time delays. Typically, Hankel-DMD
utilizes the same time steps for delay embedding and trajectory data collection.

Suppose the map F in (1.1) is ergodic. We can construct a dictionary by
starting with an observable g and forming the Krylov subspace

Vy =span{g, Kg, K?g, ..., KN lg}.

Given a single trajectory of the observable, {g(xp), g(X1), ..., g(Xp+n—1)}, the
matrices Wy and Wy in (4.2) are given explicitly by the Hankel matrices

g(xo) gx1) -+ g(xXy-1)
gx1))  gx2) .- g(xn)
‘I’X = )
gxy—1) gxm) - g(Xmin-2)
gx1) gx2) .- g(xn)
g(x2) g(x3) -+ g(Xn+1)
=" ' ' _ . (4.10)
gxy) g(xXm+1) - g(Xman-1)

Applying Birkhoff’s ergodic theorem (4.8), we obtain the convergence specified
in (4.5). A common simplifying assumption in Hankel-DMD is the existence of
a finite-dimensional KC-invariant subspace V of L2(Q, w) generated by g. K-
invariance means that 'V C V and allows us to study a portion of the spectral
properties of /C by restricting to the finite-dimensional subspace V. Suppose
such a subspace exists and has dimension k, then V; = V. We can identify this
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FIGURE 20 Left: Singular values of Wy for the Hankel-DMD algorithm applied to the cylinder
wake with N =100 and M = 120. In essence, we are building a Krylov subspace by measuring the
horizontal component of the velocity field at a single point. Middle: Eigenvalues computed using
Hankel-DMD. Right: Convergence to the first 11 eigenvalues with increasing amount of data M.

invariant subspace as M — oo by selecting N = k and employing the aforemen-
tioned dictionary. This is proven in Arbabi and Mezié¢ (2017a) and is derived
from the ergodic theorem in conjunction with the quadrature interpretation of
EDMD. These findings also apply when constructing a Krylov subspace from
multiple initial observables g1, ..., g,. Nonetheless, the existence of such a sub-
space is not guaranteed, and even if it is, the dimension & is typically unknown.
Practically, one postulates an approximate invariant subspace and truncates to
r < N modes for the basis by executing an SVD.

As an example, we revisit the cylinder wake discussed in Section 2.3.1. For
the observable g, we choose the horizontal velocity at a single point in the mid-
dle of the channel, situated 4D downstream from the center of the cylinder.
Initially setting N = 100 and M = 120, we plot the singular values of the data
matrix ¥y on the left side of Fig. 20. It is crucial to recognize that although the
spectrum is pure point in this example, g does not generate a finite-dimensional
invariant subspace since g projects nontrivially onto each eigenspace. Guided by
these singular values, we apply Algorithm | with r = 39, using the transposes
of Wy and Wy as the snapshot matrices. The eigenvalues are illustrated in the
middle of Fig. 20 and should be compared with a subset of the eigenvalues from
Fig. 2. On the right side of Fig. 20, we present the relative £2 error for the first
11 eigenvalues as a function of M. The convergence is remarkable. Nonetheless,
we must stress that this example is rather straightforward. Systems such as the
Lorenz system, as discussed in Section 2.3.2 and tackled in Arbabi and Mezi¢
(2017a, Section 4.1), pose a substantially more significant challenge. This is
further exemplified by a slow decay of singular values in the data matrices.

4.2.2 Hankel alternative view of Koopman (HAVOK)
Consider the (truncated) SVD of the transpose of the matrix ¥y in (4.10),
Vi ~UZV*, UeCV¥, TeR™, veCM,

We can view the columns of the matrix V as coordinates for a state v =
[vi va --- v.]. If our discrete-time dynamical system corresponds to sampling
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FIGURE 21 Decomposition of chaos into a linear system with forcing. A time series x(f) is
stacked into a Hankel matrix, the SVD of which yields a hierarchy of eigen time series that produce
a delay-embedded attractor. A best-fit linear regression model is obtained on the delay coordinates;
the linear fit for the first » — 1 variables is excellent, but the last coordinate v, is not well-modeled
as linear. Instead, v, is an input that forces the first » — 1 variables. Rare forcing events correspond
to lobe switching in the chaotic dynamics. Reproduced with permission from Brunton et al. (2022),
copyright © 2022 Society for Industrial and Applied Mathematics, all rights reserved. This in turn

was adapted from Brunton et al. (2017).

a continuous-time dynamical system, DMD/EDMD results in a linear regression
model

av - ) A
o= Kv, forsome matrix KeC™.

This can be very effective for weakly nonlinear systems (Champion et al., 2019)
and if r is sufficiently large to capture an almost invariant subspace (Arbabi
and Mezi¢, 2017a). However, it can be challenging to identify a small (approxi-
mately) closed linear model for chaotic systems.

An alternative, known as the Hankel Alternative View of Koopman (HAVOK)
framework, proposed by Brunton et al. (2017), is to build a linear model on the
first r — 1 variables V= [v; vy --- v,_1] and impose the last variable, v,, as
a forcing term:

% =KV +Buv,, forsome matrices KeC 1 Be —1x1

Here, v, acts as an input forcing to the linear dynamics of the model, which
approximates the nonlinear dynamics of the original system. Typically, the
statistics of v, are non-Gaussian. For instance, in Fig. 21, we summarize the
results for the Lorenz system. The long tails in the statistics of v, correspond
to rare-event forcing that drives lobe switching. For strategies on using HAVOK
in systems with multiple time scales, see Champion et al. (2019). Hirsh et al.
(2021) established connections between HAVOK and the Frenet-Serret frame
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from differential geometry, motivating a more accurate computational modeling
approach.

4.3 Controlling projection errors: residual dynamic mode
decomposition (ResDMD)

We saw in Section 4.1 that EDMD builds a finite matrix approximation of the
Koopman operator. In particular, for a dictionary {yrq, ..., ¥y} forming a finite-
dimensional subspace Vi = span{yy, ..., ¥}, the EDMD matrix corresponds
to the projected operator Py, ICP‘*,N. Care must be taken when discretizing or
truncating an infinite-dimensional operator to a finite matrix to compute spectral
properties. In general, several well-studied pitfalls include:

e Spectral Pollution: This term describes false eigenvalues that accumulate at
points not in the spectrum as the discretization size increases.

e Spectral Invisibility: Discretizing an operator can cause us to miss parts of
its spectrum, even as the size of the discretization increases.

e Lack of Verification: Even if a method converges as the discretization pa-
rameter grows, how much of the output can we trust for a finite discretization
size?

e Continuous Spectra: Discretizing to a finite matrix results in a discrete set
of eigenvalues. How can we recover continuous spectra?

We have already encountered these effects in this review (e.g., spectral pollu-
tion as discussed in Fig. 7), and they are well-known throughout the Koopman
literature. In the following section, we will consider strategies to mitigate these
issues, focusing on controlling projection errors when transitioning from K to
PVNIC’P;’jN. The algorithm that does this is Residual DMD (ResDMD), intro-
duced by Colbrook and Townsend (2023).

4.3.1 The algorithm

The main idea behind ResDMD is to compute an infinite-dimensional residual.
We follow the notation of Section 4.1 that described EDMD. Consider an ob-
servable g = Wg € Vy, which we aim to be an approximate eigenfunction of K
with an approximate eigenvalue A. For now, the method of determining the pair
(%, g) is left unspecified. In connection with pseudospectra and the approximate
point spectrum discussed in Section 2.1.2, a way to measure the suitability of
the candidate pair (A, g) is through the relative residual

gl Jolg®)1? do(x)

_ / Kg.Kg) - 2ig. Kg) — 7Kg, &) + hP(g. 8)
(8. 8) '

I =Dl _ / JIIKg1(x) — g (0| do ()
(

@.11)
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For instance, if K is a normal operator (one that commutes with its adjoint), then

I =2D fIl _ 1K = ADg]
A1 B gl

In the case of a nonnormal /C, the residual in (4.11) is closely related to the
concept of pseudospectra. Adopting the quadrature interpretation of EDMD, we
can define a finite data approximation of the relative residual as:

dist(A, Sp(K)) = ir}f

res(x, g) = [|(D"/?Wy — AD'2Wy)g|| /D" * W g| 2.
We then have
g [¥iDV¥y — A¥;DWx — AWLDWy + [A[>¥5DV¥x]|g
gDV xg
g[¥;DWy — MA* —2A + |A°G]g

= , 4.12
o Gg (4.12)

[res(h, g)1* =

where G and A are the same matrices from (4.4). The right-hand side of (4.12)
has an additional matrix L := ¥} DWy. Under the assumption that the quadra-
ture rule converges, this matrix approximates K*/C:

lim L = (K, Kyrj). (4.13)
M— o0
Comparing (4.11) and the square-root of (4.12), we observe that

lim res(h, g) = [|(KK —ADgll/llgll.
M— o0

Note that there is no approximation or projection on the right-hand side of this
equation. Consequently, we can compute an infinite-dimensional residual di-
rectly using finite matrices, achieving exactness in the limit of large data sets.
ResDMD leverages this residual in a suite of algorithms to compute various
spectral properties of K, two of which are the focus of the subsequent discus-
sion.

As a first approach, we can implement the EDMD algorithm (Algorithm 10)
to generate candidate eigenpairs (A, g), followed by the computation of residu-
als. This process is outlined in Algorithm 1 1. Importantly, this approach is not
more computationally demanding than EDMD itself. Additionally, it is worth
noting that one is not restricted to using EDMD exclusively for selecting can-
didate eigenpairs; any suitable method can be employed. We can avoid spectral
pollution by setting a threshold to discard residuals that exceed a certain toler-
ance. This also serves as a validation mechanism for the computations. However,
it is crucial to recognize that Algorithm 11, when relying on EDMD for com-
puting candidate eigenpairs, does not inherently circumvent the issue of spectral
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Algorithm 11 ResDMD for computing residuals (Colbrook and Townsend,
2023).

Input: Snapshot data X € C¥*M and Y € C4*M | quadrature weights {wy, }1_ |,
and a dictionary of functions {; }j'v:r

1: Compute the matrices Wy and Wy defined in (4.2) and D =
diag(wy, ..., wy).

2: Compute the EDMD matrix K = (D'/?W ) D!/2Wy, ¢ CN*V,

3: Compute the eigendecomposition KV = VA. The columns of V =
[vi---v,] are eigenvector coefficients and A is a diagonal matrix of eigen-
values Ay, ..., Ay

4: For each eigenpair (Aj,vj) compute res(Aj, ¥v;) =
[(DY2Wy —x;DYV2Wx)v [l 2/ IDY2W x v | 2.

Output: The eigenvalues A, eigenvector coefficients V.€ CV*V and residuals
{res(A;, Wv;)}.

invisibility. To address this, we need to consider approaches that approximate
the pseudospectrum.

For computing pseudospectra, working in the standard £> norm is beneficial
instead of the norm induced by the matrix G. We compute an economy QR
decomposition of the data matrix

D!/2Wy =QR, QeCM*N ReCN*V,

where Q has orthonormal columns and R is upper triangular with positive diag-
onals. Letting w = Rg, we have

ID'2Wxg|?, = g*'R*Q*QRg = g*R*Rg = w*w = || w]|7,.
Consequently, the residual can be expressed as:
res(z, g) = [|(D'2WyR™" —z2Q)wll2/ Wl 2. (4.14)

For a given z € C, our objective is to minimize this residual, which corre-
sponds to finding the smallest singular value of the matrix (D'/?WyR~! —zQ)
CM*N Denoting the smallest singular value by oiy,¢, we must do this for var-
ious values of z. Given that M > N, a computational advantage is gained by
considering the N x N matrix (D!/2WyR~! — zQ)*(D!/2¥yR~! — zQ) and
computing

Vot (D2WyR=1 — zQ)*(D!/2Wy R~ — 2Q)) = 0ins(D'/?WyR™! — 2Q).

Typically, computing singular values in this manner is not recommended due to
the potential loss of precision owing to the square root. However, in most ap-
plications, the resulting error is significantly smaller than the errors inherent in
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Algorithm 12 ResDMD for computing pseudospectra (Colbrook and
Townsend, 2023). One can also compute the singular values directly (of a CM >V
matrix) without the square root.

Input: Snapshot data X € C?*M and Y € C?*M | quadrature weights {w,, }

m=1>

dictionary of functions {wj}?/:l, accuracy goal € > 0, and grid of points
{ze}f_, cC.
1: Compute the matrices Wy and Wy defined in (4.2) and D =
diag(wy, ..., wyr).

2: Compute an economy QR decomposition D'/>Wx = QR, where Q €
(CMXN,RE(CNXN.
3: Compute C; = (R*) " 'W¥DWyR~! and C; = Q*D!/2¥y R
4: Compute 7¢ = oinf(C2 — z¢C] — 7¢Cy + 1ze|*D) for € = 1,...,k (oinf is
smallest singular value).
(If wanted, compute the corresponding right-singular vectors w, and set
vj= R™! Wj.)
Output: Estimate of the pseudospectrum {zy : 7, < €} (if wanted, corresponding
pseudoeigenfunctions {Wv, : 7y < €}).

the data matrices or the quadrature approximation of inner products. If preci-
sion becomes a concern, crinf(Dl/ 2yyR! — 1Q) can be computed directly in
subsequent algorithms. Since Q*Q = I, we have

D2¥yR™' —zQ)*(D"*¥yR™! ~2Q)
=R 'WEDU, R — zR*)T'WID!/2Q — 7Q*D/2 Wy R 4 |71

The minimum singular values of this matrix are then computed across a grid of
z values. This procedure is detailed in Algorithm 12, where the approximation
of the e-pseudospectrum is defined as the set of grid points where the minimized
residual falls below €. If required, the algorithm can also be extended to compute
e-pseudoeigenfunctions (discussed in Section 2.1.2).

When M < N

In the above discussion, we assumed that M > N. If M < N, then there are two
options. One can consider two subsets of snapshot data (training and test) (Col-
brook and Townsend, 2023). Or, as developed in Colbrook (2024), in particular
for exact DMD and kernelized EDMD, one can compute dual residuals.

4.3.2 Convergence theory

Colbrook and Townsend (2023) present several convergence results concern-
ing ResDMD. We have already discussed that if the quadrature rule underlying
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EDMD converges,
lim res(A, g) = [[(K —ADgl/lgll.
M— o0

Therefore, we can avoid spectral pollution in the large data limit by selecting
eigenpairs with small residuals (as computed in Algorithm 11). Let F;v, u be
the output {zy : 7¢ < €} of Algorithm 12. With a minor modification for the
boundary case where 7 =€,

Jim T, )y =T, C Sp(K).

In other words, ResDMD provides verified approximations of pseudospectra.
Moreover, under mild conditions on the dictionary and an N-dependent grid

k
{Z@}g:p

lim I'§, =
N—o0 N

cl ([,\ € C:3g € L3(Q, w) such that [|g]| = 1, (K — AD)g]| < e})

As € | 0, the set on the right-hand side converges to the approximate point spec-
trum Spap(lC). Thus, ResDMD allows us to compute Spap(lC) via a convergent
algorithm. Colbrook and Townsend (2023) further discuss alterations that al-
low the computation of the full pseudospectrum Sp, (K), and consequently the
complete spectrum Sp(K). In summary, ResDMD addresses the challenges of
spectral pollution and spectral invisibility, providing a method for verified spec-
tral computations of general Koopman operators.

A careful reader will note that a few of these algorithms require us to take
several parameters successively to infinity. This was also the case for EDMD,
as discussed in Section 4.1.3. These limits do not generally commute, and it
may be impossible to rewrite them with fewer limits or develop a different al-
gorithm that uses fewer limits. This is a generic feature of infinite-dimensional
spectral problems (Colbrook, 2020) and has given rise to the Solvability Com-
plexity Index (Hansen, 2011; Ben-Artzi et al., 2020; Colbrook, 2022; Colbrook
and Hansen, 2022). We do not go into the details, but there are many open
questions on the foundations of computing spectral properties of Koopman op-
erators. In particular, lower bounds on the number of successive limits needed
to compute spectra of Koopman operators are an ongoing research problem (see
Section 6.4).

We have yet to discuss continuous spectra, the final pitfall mentioned in
the bullet point list at the start of this section. Using ResDMD, Colbrook and
Townsend (2023) also provide an algorithm that computes spectral measures of
Koopman operators associated with generic measure-preserving systems. This
approach and others for spectral measures are discussed in Section 6.2.
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FIGURE 22 Left: Large-scale wall-resolved turbulent flow past a periodic cascade of aerofoils.
Right: Comparison of computed Koopman modes using ResDMD and DMD across various fre-
quencies. ResDMD highlights stronger acoustic waves between cascades and larger-scale turbulent
fluctuations past the trailing edge, which is crucial for understanding acoustic interactions with
engine turbines and nearby structures. The residuals in ResDMD underscore its capability to cap-
ture nonlinear dynamics accurately and verifiably. Reproduced with permission from Colbrook and
Townsend (2023).

4.3.3 Examples

We have already seen an example of ResDMD in action in Section 2.3.3. Here,
we present some examples from Colbrook and Townsend (2023); Colbrook et
al. (2023a).

The first example we consider is a large-scale wall-resolved turbulent flow
past a periodic cascade of aerofoils depicted on the left in Fig. 22. This setup
is motivated by ongoing efforts to mitigate noise sources from aerial vehicles.
The data is collected from a high-fidelity simulation solving the fully nonlin-
ear Navier—Stokes equations (Koch et al., 2021), with a Reynolds number of
3.88 x 107 and a Mach number of 0.07. A two-dimensional slice of the pressure
field is recorded at 295,122 points across trajectories of length 798 and sam-
pled every 2 x 107 seconds. ResDMD can be used with kernelized EDMD,
and we use N = 250 functions in our dictionary. Fig. 22 (right) shows the
computed Koopman modes for a range of representative frequencies. We also
show the corresponding Koopman modes computed using DMD. For the first
column, ResDMD shows stronger acoustic waves between the cascades. De-
tecting these vibrations is essential as they can damage engine turbines (Parker,
1984). ResDMD shows larger-scale turbulent fluctuations past the trailing edge
for the second and third columns. This can be crucial for understanding acous-
tic interactions with nearby structures such as subsequent blade rows (Woodley
and Peake, 1999). The residuals for ResDMD are small, particularly given the
enormous state-space dimension. This example demonstrates two benefits of
ResDMD compared with DMD: (1) ResDMD can capture the nonlinear dynam-
ics (just like EDMD), and (2) it computes residuals, thus providing an accuracy
certificate.

With its capability to verifiably compute spectra, ResDMD can be employed
for validating dictionaries in methods like EDMD and verifying the efficacy
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FIGURE 23 ResDMD applications in validating EDMD and KMD. Left: Comparison of two
dictionaries (linear: truncated SVD, nonlinear: kernel method) for turbulent boundary layer flow
analysis, with the nonlinear dictionary showing smaller residuals and revealing verified transient
modes (bottom of the figure). Right: Demonstration of KMD’s ability to capture a highly nonlinear
shockwave, where ordering modes by residual values enables efficient data compression and precise
shockwave prediction. Reproduced with permission from Colbrook et al. (2023a).

of KMD itself. We present two illustrative examples in Fig. 23, adapted from
Colbrook et al. (2023a). The comparison of two dictionaries used for analyzing
turbulent boundary layer flow is shown on the left. Here, the nonlinear dictionary
demonstrates smaller residuals, leading to the identification of verified transient
modes, as depicted at the bottom of the figure. On the right, the figure illustrates
the proficiency of KMD in capturing a highly nonlinear shockwave. By ordering
modes based on their residual values, we achieve efficient data compression and
accurate prediction of the shockwave dynamics.

5 Variants that preserve structure

One of the most exciting recent developments in DMD is the introduction of
methods that preserve structures of the underlying dynamical system in (1.1).
When studying a system from a data-driven perspective, it is often the case
that one possesses partial knowledge of the system’s underlying physics. Meth-
ods that leverage this structure typically exhibit a greater resistance to noise,
better generalization, and demand less data for training. Structure-preserving
algorithms have a deep-rooted history in geometric integration (Hairer et al.,
2010) and have recently gained traction in data-driven methods (Celledoni et
al., 2021; Greydanus et al., 2019; Herndndez et al., 2021; Hesthaven et al., 2022;
Karniadakis et al., 2021; Loiseau and Brunton, 2018; Otto et al., 2023b). In the
context of DMD, this area is burgeoning. We will concentrate on three methods:

e Physics-Informed DMD: This provides a framework for incorporating sym-
metries into DMD through additional constraints in the least-squares problem
(2.6). The original paper focused on five fundamental physical principles:
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conservation, self-adjointness, localization, causality, and shift-equivariance.
The idea is far more general and has ushered in a new wave of DMD methods.

e Measure-Preserving EDMD: This enforces measure-preserving EDMD
truncations, leading to a Galerkin method whose eigendecomposition con-
verges to the spectral quantities of Koopman operators (including spectral
measures and continuous spectra) for general measure-preserving dynamical
systems. Like EDMD, it can be used with any dictionary of observables and
with different data types. Preserving the measure is crucial for convergence,
recovering the correct dynamical behavior, stability, robustness to noise, and
improved qualitative and long-time behavior.

e Compactification: These methods for continuous-time measure-preserving
systems are based on the compactification of the Koopman generator or its
resolvent. They automatically lead to skew-adjoint approximations whose
spectral properties converge to that of the Koopman generator. Additionally,
approximations are expressed in a well-conditioned basis of kernel eigenvec-
tors computed from trajectory data.

Subsequently, we will discuss additional DMD methods based on preserving
structure. The methods we discuss open the door to future extensions to more
general structure-preserving methods for Koopman operators and data-driven
dynamical systems.

5.1 Physics-informed dynamic mode decomposition (piDMD)

5.1.1 The framework

Physics-Informed DMD (piDMD), introduced by Baddoo et al. (2023), provides
an overarching framework for integrating physical principles — such as symme-
tries, invariances and conservation laws — into DMD. The idea is to replace the
optimization problem in (2.6) by a constrained optimization problem

L |Y — KpipmpX | - (5.1)

The matrix manifold M is dictated by the known physics of the system in (1.1).
One selects M so that its members satisfy certain symmetries of the system.
The optimization problem in (5.1) is known as a Procrustes problem,'® which
comprises of finding the optimal transformation between two matrices subject
to certain constraints. Numerous exact solutions exist for Procrustes problems,
including the notable cases of orthogonal matrices (Schonemann, 1966), and
symmetric matrices (Higham, 1988). When exact solutions are not possible, al-
gorithmic solutions can be effective (Boumal et al., 2014). Procrustes analysis
finds relevance in many fields, as detailed in the monograph of Gower and Di-
jksterhuis (2004).

18 1n Greek mythology, Procrustes was a bandit who would stretch or amputate the limbs of his
victims to force them to fit onto his bed. Herein, X plays the role of Procrustes’ victim, Y is the bed,
and Kpipmp is the ‘treatment” (stretching or amputation).
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To apply piDMD, we first identify the system’s known or suspected physi-
cal properties. Once the physical principles we wish to enforce are determined,
these laws must be translated into the matrix manifold where the linear model
will be constrained. With a defined target matrix manifold, we numerically solve
the relevant Procrustes problem in (5.1). The concluding step encompasses ex-
tracting physical information from the refined model. For instance, one might
analyze the spectrum, DMD modes, and the related KMD.

Baddoo et al. (2023) focus on five fundamental physical principles: conser-
vation, self-adjointness, localization, causality, and shift-equivariance. Several
closed-form solutions and efficient algorithms for the corresponding piDMD
optimizations are derived. With fewer degrees of freedom, piDMD models are
typically less prone to overfitting, require less training data, and are often less
computationally expensive to build than standard DMD models. This reduction
in the size of required training data is connected with the problem of matrix re-
covery from matrix-vector products, whereby enforcing structures reduces the
number of queries needed (Halikias and Townsend, 2023). A fundamental issue
related to the DMD algorithm is the fact that low-rank matrices are not provably
recoverable from snapshot pairs (without access to adjoints) until there are at
least as many pairs as state dimensions (Otto et al., 2023a, Thm. 2.5).

5.1.2 Examples

To showcase the breadth of piDMD, Fig. 24 shows six physical examples. Bad-
doo et al. (2023) provide full experimental details for each example. Each row
corresponds to a different system, and the corresponding constraint is listed in
the second column. Exact DMD (Algorithm 1) is compared to piDMD in terms
of the computed matrix K and the eigenvalues. In general, constraining the
matrix K to lie on the appropriate manifold M leads to more accurate approxi-
mations of the eigenvalues. The advantage of preserving structure is striking!

5.1.3 Future work

We have only started to tap the potential of adding constraints in the optimiza-
tion problem in (2.6). This idea will likely be an active research area over the
next few years. With that in mind, it is worth mentioning several challenges and
directions of future work pointed out by Baddoo et al. (2023):

e Knowing the physics: In some scenarios where the physics is poorly un-
derstood, determining suitable physical laws to impose on the model can be
challenging. Is it possible to learn symmetries and then incorporate them as
constraints?

e Complicated manifolds: For problems with intricate geometries and multi-
ple dimensions, interpreting the physical principle as a matrix manifold can
be a roadblock, as the manifold can become exceedingly complicated.

e Regularizers: In many applications, such as when the data are very noisy
or the physical laws and constraints are only approximately understood, it



198 Numerical Analysis Meets Machine Learning

physics

i data exact DMD physics-informed DMD
(matriz structure) i

system

Rkt e K
convection-diffusion A ey
: g 53 local ° A e
du u | 9*u ; o
o SN (2 tri-diagonal b poad || E g
o = O + o ( gonal) \ 1 g 0 e
% & ,®

=g
Schrédinger equation S . al |
self-adjoint h & i
1 . e 6o o8 coo E oo o8 06
iﬁéﬂ'(')) — A)w(0) (Hermitian) j ~,‘I a |

cylinder flow K'K _ K'K
=0
ou fu.v conservative ) A‘% “‘2
—+u-Vu -
ot (unitary) QJ Ag 2‘ i U '
Ly, I $
= e Vu —Vp A? F
K K
2D advection = I &
shift-invariant x
5 A a
O _ c-Vu (block circulant) . Sosdboodoodboced |
ot V) |
. L
K K
Volterra integro- = [ \
differential equation causal a )

S

(upper triangular)

du s
5 ;/,‘ K(&v)u(v,t) dv

channel flow

=12 ”E I
Su shift-invariant . sk it
— @ ] B xR §
R Yu (block circulant) 8 3 E g § 5 madox T8
= lviu-v : g 8 g8 fq §§;i§§:;§§
= Vu-"p g 8¢ 8 R s 2 8

s

FIGURE 24 A comparison of the models learned by exact DMD (Algorithm 1) and piDMD for a
range of applications. The structure of the model matrices is also illustrated. In the spectrum sub-
plots, the true eigenvalues are shown as O, the DMD eigenvalues as A, and the piDMD eigenvalues
as X. In each case, the eigenvalues of piDMD are more accurate than exact DMD. Reproduced with
permission from Baddoo et al. (2023).

may be more appropriate to merely encourage K towards M, e.g., through a
regularizer.

e Nonlinear observables: It is not always clear how to extend the approach
of piDMD to nonlinear observables and EDMD. Such an approach is cru-
cial for strongly nonlinear systems to maintain the connection with Koopman
operators. For example, if the dictionary consists of the state vector X, an up-
per triangular matrix K can have a clear meaning in terms of causality. But
how should one incorporate causality into other choices of dictionaries? The
manifold can depend on the chosen dictionary in a highly complex manner.

e Convergence: In connection with the previous point in this list, proving the
convergence of piDMD in the large data limit or large dictionary limit typi-
cally requires a Galerkin interpretation as in Section 4. This connection is not
always immediate.

We expect these last two points, in particular, to lead to many exciting future
works.
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5.2 Measure-preserving extended dynamic mode decomposition
(mpEDMD)

Measure-Preserving EDMD (mpEDMD), introduced by Colbrook (2023), en-
forces that the EDMD approximation is measure-preserving. The system being
measure-preserving is equivalent to the Koopman operator K being an isometry.
Namely, ||Kg| = |Ig|l for any observable g € L?(R2, w). The mpEDMD algo-
rithm is simple and robust, with no tuning parameters. We outline the method,
discuss its convergence properties, and end with two examples. Note that we do
not need to assume the system is ergodic or invertible.

5.2.1 The algorithm

We follow the notation of Section 4.1 that described EDMD. Recall that we
have a dictionary {1, ..., ¥y}, 1.€., alist of observables, in the space L2(S2, w).
These observables form a finite-dimensional subspace Vy = span{yrq, ..., ¥n}.
Our starting point is the observation that the Gram matrix G = W3, DW in (4.4)
provides an approximation of the inner product (-, -) on L*($2, w). Namely, we
have the following inner product induced by G:

N N
h*Gg= ) hmGi~ Y hjg(¥i, ¥)) = (¥g, ¥h).  (5.2)
Jj.k=1 Jk=1

If the convergence in (4.5) holds, then the left-hand side of (5.2) converges to
the right-hand side as M — oco. Hence, if g = ¥g € Vy and we approximate the
action of /C on Vy by a matrix K,

lgl>~g"Ge, IKgl* ~ | ¥Kgll* ~ g"K*GKeg.
Since K is an isometry, ||g||> = ||Cg||>. Therefore, it is natural to enforce
g*Gg =g*K*GKg VvgeCV.

This condition holds if and only if K*GK = G. Returning to the optimiza-
tion problem in (4.1), we now make two changes. First, we set C = G!'/2 so
that |Cgll,2 = Vg*Gg ~ ||gll. Second, we enforce the additional constraint
K*GK = G. This leads us to the optimization problem

1/2 1/2 2
min H\II(F(X))G_/ —W(KG H do (). (5.3)
KeCN*N Jq 02
K*GK=G

In a nutshell, we enforce that our Galerkin approximation is an isometry with
respect to the learned, data-driven inner product induced by G. After applying
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the quadrature rule we used for EDMD, the discretized version of (5.3) is

M
min > wp ”\Il(y(’”))G_l/z W (xM)KG™? (5.4)

KeCNxN
K*GK=G Mm=1

2
2

Letting K = G™'/?BG !/ for some matrix B, the problem in (5.4) is equivalent
to
min

BcCNxN
B*B=I

2
D2y, G~'/2B — D2y, G !/ ”F (5.5)

where I denotes the identity matrix. The optimization problem in (5.5) is known
as the orthogonal Procrustes problem (Schonemann, 1966; Arun, 1992). The
predominant method for computing a solution is via an SVD. First, we compute
an SVD of

G 2wiDU G2 =GT2PAY G2 = U 2L,

where A = Wi DWy is the matrix from (4.4). A solution of (5.5) is then B =
U,U7 and we take K = G_l/zUzU’l‘Gl/z.

Since K is similar to a unitary matrix, its eigenvalues lie along the unit circle.
For stability purposes, the best way to compute the eigendecomposition of K is
to do so for the unitary matrix U,U}. To numerically ensure an orthonormal
basis of eigenvectors, we use MATLAB’s schur command in the examples of
this paper. It is also beneficial to replace the square root G/ with a suitable
upper triangular matrix R such that G = R*R. Such an upper triangular matrix
can be computed using an economy QR decomposition of the data matrix as

D'?Wyx =QR, QeC"¥ ReC¥*V,

where Q has orthonormal columns and R is upper triangular with positive di-
agonals. This leads to a mathematically equivalent algorithm but is faster and
more numerically robust in practice.'” The computation of K and its eigende-
composition is summarized in Algorithm 13. Arguing as we did for EDMD, we
obtain a KMD via

T

g WY [V*(DI/Q\IIX)TD”2 (s, gx™)) } . gel}(Q,0).

Explicitly applied to the state vector x, we have (transposed) Koopman modes
o' =V D 2wy)D!/? (xm, cee X(M))T eCNxd,

Note that mpEDMD can be used with generic choices of dictionary that generate
G and A.

19 T am indebted to Zlatko Drmag for pointing this out.



The multiverse of dynamic mode decomposition algorithms Chapter | 4 201

Algorithm 13 The mpEDMD algorithm (Colbrook, 2023).

Input: Snapshot data X € C?*M and Y € C*M | quadrature weights {w,,}
and a dictionary of functions {1} j-v:]-
1: Compute the matrices Wy and Wy defined in (4.2) and D =
diag(wiy, ..., wy).

2: Compute an economy QR decomposition D'/>Wyx = QR, where Q €
CMXN’ Re (CNXN.
3: Compute an SVD of (R™! )*\Il*{,Dl/zQ =U2U;.
4: Compute the eigendecomposition U,U} = VAV* (via a Schur decomposi-
tion). .
5: Compute K=R"'U,U*R and V=R"!V.
Output: Koopman matrix K, with eigenvectors V and eigenvalues A.

M
m=1"

Finally, the relationship between mpEDMD and piDMD is worth comment-
ing on. For conservative systems, piDMD enforces the DMD matrix in (2.6) to
be orthogonal and uses linear observables. This implicitly assumes that these
linear observables (and the coordinates used) are orthonormal in L2($2, ®), an
assumption that typically does not hold. In contrast, mpEDMD works in a data-
driven inner product space induced by G. The resulting Gram matrix of the
observables must be included in a measure-preserving discretization; otherwise,
the wrong measure may be preserved (see the example of turbulent flow in Col-
brook, 2023 where mpEDMD and piDMD are contrasted). Thus, we can think
of the relationship between mpEDMD and piDMD as akin to the relationship
between EDMD and DMD (see the discussion in Sections 2.2.2 and 4.1.1), with
an additional difference arising from the use of the inner product arising from
the Gram matrix G.

5.2.2 Convergence theory

Several convergence results for mpEDMD are proven in Colbrook (2023). First,
echoing Section 4.1.3, we can consider the two limits M — oo and N — o0. As-
suming that the quadrature rule underlying EDMD converges, i.e., (4.5) holds,
the EDMD matrix corresponds to Py, ICP‘*}N. In contrast, the mpEDMD ma-
trix corresponds to the unitary part of a polar decomposition of Py, K'Py, . Call
this matrix Ky . Under a natural density assumption of Vy as N — oo, Ky
converges strongly to X', meaning that (4.9) holds.

We can consider the spectral measures from Section 2.1.2 for a measure-
preserving system. These spectral measures provide a diagonalization of the
Koopman operator K and form the foundation of the KMD. As the dictionary
{¥r1,...,¥n} used in EDMD becomes richer, the spectral measures computed
by EDMD do not typically converge in any sense to that of /C.”" This contrasts

20 Even more fundamentally, the eigenvalues of EDMD typically lie within and accumulate within
the unit disk. So, the measures are not even on the same space.
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the convergence of the spectral measures of mpEDMD (Colbrook, 2023). The
critical step in making this convergence work is that mpEDMD provides a uni-
tary Galerkin approximation of /C.

The mpEDMD algorithm leads to the following approximations of spectral
measures, where K, V=[v; --- vy] and A =diag(A1, ..., Ay) are the outputs
of Algorithm 13. To approximate the spectral measure £, we consider the spec-
tral measure, &y, p, of the matrix K on the Hilbert space CVN with the inner
product in (5.2) induced by G:

N
dEn.m () = Vv;viG8(h — ;) dA.
j=I

Let g € L?(2, w) with ||g|| = 1. We approximate Mg by u,éN‘M), where

N
AN () = "8 (k= 1)) |viGgl*dA
j=1

and g is normalized so that g*Gg = 1. Since {G'/?v j}?’:l is an orthonormal

basis for CV, ,u(gN’M) is a probability measure on the unit circle T.

The most natural way for measures to converge is in a weak sense. We say
that a sequence of measures w, converges weakly to a measure p on T if for
any continuous function ¢ : T — C,

lim / () din () = / 6 () du(h).
n—o0 'JI‘ T

This convergence is captured by the so-called Wasserstein 1 metric between
probability measures:

Wiu,v) =

sup {/ dr)d(p —v)(A) : ¢ : T — R Lip. cts., Lip. constant < 1} .
T

Under mild conditions on the dictionary as N — oo, mpEDMD has the follow-
ing convergence properties. If limy_, o, ¥gy = g and ¢ : T — C is continuous,
then

lim limsup f o) dEN)g — \Ilf o) dEn m(M)gn || =0.
N—>0 pm_so00 T T
Moreover, for the scalar-valued spectral measures,
lim limsup W, (Mg,MgVM) =0. (5.6)

N—=00 Moo
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Furthermore, if {g, Kg, ..., KV ~1g} C Vy (time-delay embedding), then
limsup Wy (g, nd™) <log(Ly)/Ly. (5.7)
M— o0

The bound in (5.7) provides an explicit convergence rate in the number of delays
used.

Further properties of mpEDMD proven in Colbrook (2023) include respect-
ing invariance subspace properties of X, well-conditioning of the matrix K and
its eigendecomposition (these do not hold for EDMD in general), convergence
of KMDs, and

lim limsup sup dist(A, {A1,...,An})=0.
N—>0oo o0 AeSpap(lC)

In other words, we avoid spectral invisibility and do not miss parts of the spec-
trum. We can also combine with the techniques of Section 4.3 to avoid spectral
pollution. Finally, in connection with Section 3.1, the solution to the orthogonal
Procrustes problem (5.5) is also the solution to the corresponding constrained
total least squares problem (Arun, 1992). Hence, in a similar vein to tisDMD in
Section 3.1.3, mpEDMD is optimally robust when noise is present in both data
matrices in (5.5) (Van Huffel and Vandewalle, 1991).

5.2.3 Examples

We consider two examples of mpEDMD. The first shows the convergence to
spectral measures for a system with continuous spectra. The second shows the
conservation of energy and statistics for a turbulent boundary layer flow, where
the snapshots are collected experimentally.

Convergence to continuous spectra

We first revisit the Lorenz system from Section 2.3.2, but now with a discrete
time step of Ar =0.1. An arbitrary observable is chosen as

g(x) = g(x,y,z) =ctanh((xy — 32)/5),

where ¢ is a normalization constant ensuring ||g|| = 1. We employ delay-
embedding to construct a Krylov subspace Vy = {g,Kg,...,K¥"1g}. The
matrices Wy and Wy are computed by evaluating g pointwise at the snapshot
matrices of X. A set of M = 10* snapshots is collected along a single trajectory
following an initial burn-in period. It is important to recall that the spectrum of
the Koopman operator is continuous, featuring an embedded trivial eigenvalue
at A = 1. Therefore, we demonstrate the convergence of the mpEDMD approx-
imation of . For visualization purposes, we transition from variables in T to
complex-arguments in the interval [—, 7). For a probability measure . on T,
its cumulative distribution function (cdf) on [—m, ) is defined as

F,(0) = n({exp(it): —m <t <6}).

One can express the metric Wy in terms of these cdfs (Hundrieser et al., 2022).
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FIGURE 25 First three subplots: The cdfs computed by mpEDMD for various values of N. Far-
(N)

right: The W metric between the spectral measure computed by mpEDMD, "7, and the spectral
measure of the Koopman operator, wg. The Wy distance to ug is computed by comparing to an
approximation with larger N selected large enough to have a negligible effect on the shown errors.
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FIGURE 26 (a) Experimental wall-jet boundary layer flow setup with Reynolds number 6.4 x
10*. (b) Horizontal averages of the forecasts for turbulent kinetic energy, which show the stability
of mpEDMD. (c) Wavenumber spectra measure the energy content of various turbulent structures
as a function of their size, thus providing an efficient measure of a flow reconstruction method’s
performance over various spatial scales. This demonstrates the importance of structure-preserving
discretizations (mpEDMD). Reproduced with permission from Colbrook (2023), copyright © 2023
Society for Industrial and Applied Mathematics, all rights reserved.

4
Fig. 25 displays the cdfs of M;N) = ,uéN’lO ) for various choices of N, illus-

trating the convergence of spectral measures. Notably, there is a discontinuity
in the cdfs at 6 = 0, corresponding to the eigenvalue at A = 1. Away from this
value, the cdfs show pointwise convergence. The error measured in the Wasser-
stein 1 metric is depicted on the far right of the plot. Consistent with (5.7), this
error decreases as O(1/N). For similar analyses and examples regarding the
projection-valued spectral measures, see Colbrook (2023).

Conservation of energy and statistics for turbulent boundary layer flow

We now examine the boundary layer formed by a thin jet injecting air onto
a smooth, flat wall, as depicted in panel (a) of Fig. 26. The experiments are
conducted in the wind tunnel at Virginia Tech (Szdke et al., 2021). We utilize
a two-component, time-resolved particle image velocimetry system to capture
103 snapshots of the two-dimensional velocity field of the wall-jet flow. These
snapshots are taken over a spatial grid and a period of 1 second. The jet velocity
is set at Ujer = 50 m/s, corresponding to a jet Reynolds number of 6.4 x 10%,
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The field-of-view spans approximately 75 mm by 40 mm, with a spatial resolu-
tion of approximately Ax = Ay =~ 0.24 mm. This setup leads to a dimension
d = 102,300 in (1.1). An SVD of the data matrix is employed to create a
dictionary with N = 1000. The flow exhibits zero pressure gradient turbulent
boundary layer characteristics within the region between the wall and the ve-
locity profile peak at approximately y = 15.5 mm. Above this region, the flow
is dominated by a two-dimensional shear layer characterized by large, energetic
flow structures. This scenario presents a significant challenge for conventional
DMD approaches due to the multiple turbulent scales within the boundary layer.

We investigate the conservation of energy and flow statistics using the
KMD for future state predictions. We consider the velocity profiles predicted
by mpEDMD and EDMD over 5 seconds, five times the observation window,
starting from an initial state Xxo randomly selected from the trajectory data. The
results are averaged over 100 such random initializations. Panel (b) of Fig. 26
shows the turbulent kinetic energy (TKE) of the predictions, averaged in the
homogeneous horizontal direction and normalized by szet' The instability of
EDMD is evident. In contrast, mpEDMD preserves the inner product associated
with the TKE.

To examine the statistics of the predictions, panel (c) of Fig. 26 presents
the wavenumber spectrum. This spectrum is computed by applying the Fourier
transform to the spatial autocorrelations of the predictions in the horizontal
direction, as detailed in Glegg and Devenport (2017, Chapter 8). The wavenum-
ber spectrum provides insights into the energy content of various turbulent
structures based on their size. It also serves as an efficient measure of a
flow-reconstruction method’s performance across different spatial scales. The
wavenumber spectrum derived from mpEDMD shows remarkable alignment
with the actual flow, demonstrating its efficacy. In contrast, EDMD completely
fails to capture the correct turbulent statistics.

5.3 Compactification methods for continuous-time systems

For continuous-time invertible measure-preserving systems, the Koopman gen-
erator £, as defined in (2.8), is skew-adjoint. A sophisticated suite of methods
exists aimed at approximating such generators through compactification. Work-
ing in continuous time presents at least two advantages. First, the generator
L is skew-adjoint, while the Koopman operators KCa; are unitary. Develop-
ing projection methods that preserve skew-adjointness is generally much more
straightforward than preserving unitarity (although we have seen that mpEDMD
leads to an appropriate unitary discretization). Second, by computing the spec-
tral properties of the generator £, we are no longer constrained by the need to
select a specific discrete time step. We gain comprehensive spectral information
for the entire family of Koopman operators {{Ca; : At > 0}.

Das et al. (2021) developed an approach based on a one-parameter family
of reproducing kernels, {p; : T > 0}, satisfying mild regularity assumptions.
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This method utilizes corresponding integral operators to perturb the Koop-
man generator £ to a compact operator on the corresponding RKHS, H;.
Assuming ergodic flow, Das et al. (2021) constructed a one-parameter family
of skew-adjoint compact operators, Wy : H; — H., where W; = P, LP} and
P; : L*(Q, w) — H, is the integral operator defined by

[Prg](X')='/S;Pr(X’,X)g(X)dw(X)-

The operators W, are unitarily equivalent to L£; = %/ Z,CGi/ 2 acting on

L2(Q, w), with G; = P} P;. The operators £, are compact, skew-adjoint, and
converge in the strong resolvent sense to the generator £ as t — 0. Since
each L, is compact, its spectrum can be computed by projection onto finite-
dimensional subspaces without spectral pollution and without missing parts of
the spectrum in the limit of infinite discretization size (Ben-Artzi et al., 2020).
This procedure yields approximate Koopman eigenvalues and eigenfunctions,
which have been demonstrated to lie within the e-pseudospectrum of the Koop-
man operator, with the value of € dependent on an RKHS-induced Dirichlet en-
ergy functional. In particular, approximate eigenfunctions with small Dirichlet
energy as T — 0 are approximately cyclical, slowly decorrelating observables
under potentially mixing dynamics. It is important to note that two limits are
implicitly involved here: the first concerns the parameter that controls the pro-
jection size used to approximate spectra of L., and the second is as t approaches
zero. Another potential limitation of this method is its use of finite-difference
schemes on time-ordered data. Although the error from these approximations
can be controlled in the limit of a vanishing sampling interval via RKHS regu-
larity, finite differencing generally reduces noise robustness.

Another approach involves the resolvent of the generator, (£ —zI)~!, where
z € C\iR. By taking the Laplace transform of the Koopman semigroup, we can
observe that (Susuki et al., 2021)

o0
(L—zD)"' = —/ eI ardt, Re(z) > 0. (5.8)
0

Valva and Giannakis (2023) combine the compactification approach from Das
et al. (2021) and the integral representation of the resolvent used in Susuki et
al. (2021) to construct a compact operator that acts as the resolvent of a skew-
adjoint operator. The result is a family of skew-adjoint unbounded operators
with compact resolvents, whose spectral measures converge weakly to those of
L. This method not only preserves skew-adjointness but also eliminates the need
for finite-difference approximations of the generator by using a quadrature ap-
proximation for the integral in (5.8). It offers a flexible framework that allows
for the control of approximation accuracy by varying z in relation to the sam-
pling interval and the timespan of the training data. Additionally, the finite-rank
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operators are expressed in a well-conditioned basis of kernel eigenvectors, com-
puted from trajectory data with convergence assurances in the large-data limit
(Das et al., 2021). These basis vectors are particularly well-suited to invariant
measures supported on sets with complex geometries (e.g., fractal attractors)
that are embedded in high-dimensional ambient spaces.

53.1 Example

The Rossler system (Rossler, 1976) consists of the following three coupled or-
dinary differential equations:

x=—y—z, y=x+01ly, z=0.14+z(x—14).

We consider the dynamics of x = (x, y, z) on the Rossler attractor. The Rossler
system is often viewed as a simplified analog of the Lorenz (63) system. How-
ever, despite the simplicity of its governing equations, it exhibits complex dy-
namical characteristics. Theorems on the existence and measure-theoretic mix-
ing properties of the Rossler system analogous to those for the Lorenz system
have not been established. Nevertheless, the system has been studied extensively
through analytical and numerical techniques, supporting the hypothesis that the
Rossler system is mixing (Peifer et al., 2005). Assuming this, it follows that O is
the only eigenvalue of £, corresponding to a constant eigenfunction and is sim-
ple. The integral in (5.8) is approximated by truncating the domain of integration
(taking advantage of the exponential decay in the integrand) and Simpson’s
quadrature rule. Full algorithmic details of the method are given in Valva and
Giannakis (2023, Algorithm 1). Data is collected along a single trajectory of
length 64,000 with time-step At = 0.04. We use MATLAB’s ode45 command
to collect the data after an initial burn-in time to ensure that the initial point
is (approximately) on the attractor. The dictionary consists of 2001 data-driven
kernel eigenfunctions, and the smoothing parameter is set as 7 =2 x 107°.

Fig. 27 shows three approximate eigenfunctions along with the correspond-
ing values of o, so that io lies in the spectrum of L. To the figure’s right, we
illustrate the trajectory of these approximate eigenfunctions. The chaotic be-
havior of the Rossler system predominantly occurs in the (r = /x2 + y2, 7)
coordinates, while the evolution of the azimuthal angle 6 in the z = 0 plane
proceeds at a near-constant angular frequency, approximately equal to one in
natural time units. We suspect this distinction contributes to the challenge of
capturing the approximate eigenfunctions in Fig. 27. The first two approximate
eigenfunctions are highly coherent, predominantly functions of the azimuthal
phase angle, and evolve near-periodically over several Lyapunov times. The
third approximate eigenfunction (bottom row) exhibits manifest radial variabil-
ity in state space and amplitude-modulated time series. Additionally, resolving
the radial direction may be more challenging in a data-driven basis, as most
variability in the input data occurs in the azimuthal or vertical directions.

We have also presented the Dirichlet energies, indicative of the function’s
variability or roughness. The approximate eigenfunction corresponding to a
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FIGURE 27 Approximate eigenfunctions of the Rossler system computed using the method of
Valva and Giannakis (2023). On the right, we show the trajectories of these functions. A trajectory on
the unit circle corresponds to coherent periodic behavior. The bottom row displays an approximate
eigenfunction with radial variability and larger deviations from the unit circle.

o|[—o ~1.0261
107 | — o ~ 2.0516

o~ 0.3785
- — Lyapunov Time

¢(t) — exp(iat)(0)[/ ]|

1072

1072 10° 102
Time (s)
FIGURE 28 Relative residuals of the approximate eigenfunctions in Fig. 27 plotted as a function
of time. The residuals increase steadily up to the characteristic Lyapunov timescale.

frequency of o = 0.3785 demonstrates relatively low variability compared to
the others. Furthermore, the increase in energy from the eigenfunction with
frequency 1.0261 to its harmonic with frequency 2.0516 also mirrors this vari-
ability increase. Denoting each approximate eigenfunction’s trajectory by ¢ (1),
Fig. 28 displays the relative residual ||¢ (r) —exp(iot)¢(0)||/]@]|. These resid-
uals steadily increase up to the characteristic Lyapunov time of the system and
exhibit a larger residual for the third approximate eigenfunction. To summarize,
as an a posteriori metric, Dirichlet energy is generally independent from pseu-
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dospectral residuals. The information it provides can be useful in supervised
learning tasks, e.g., when performing out-of-sample evaluation of the eigenfunc-
tions in prediction problems. In practice, eigenfunctions with small Dirichlet
energy also tend to have small pseudospectral residuals, though the precise or-
dering obtained from the two approaches may differ.

5.4 Further methods

Huang and Vaidya (2018) were among the first to enforce structure in DMD
by introducing Naturally Structured DMD. This variant ensures positivity and
offers the added option of the Markov property. In another early paper, Salova
et al. (2019) investigated dynamical systems with symmetries characterized by
a finite group. Utilizing representation theory, the authors demonstrated that the
Koopman operator and its EDMD approximations can be block diagonalized
using a symmetry basis. This basis respects the isotypic component structure
related to the underlying symmetry group and the actions of its elements, pro-
viding insights into suitable dictionaries. However, the data must align with the
system’s symmetries to achieve an exact block-diagonal approximation matrix.
In an earlier work, Sharma et al. (2016) connected the spatiotemporal sym-
metries of the Navier—Stokes equation with its spatial and temporal Koopman
operators. Kaiser et al. (2018a) presented a method to detect conservation laws
using Koopman operator approximations, which can subsequently be employed
to control Hamiltonian systems.

We saw that mpEDMD and compactification methods are well-suited to
measure-preserving systems. Govindarajan et al. (2019, 2021) provide another
approach that is similar to the Ulam approximation of the Perron—Frobenius
operator (Ulam, 1960; Li, 1976). They proposed periodic approximations for
Koopman operators under conditions where €2 is compact, w is absolutely con-
tinuous with respect to the Lebesgue measure, and the system is both measure-
preserving and invertible (Govindarajan et al., 2019). This framework was de-
veloped into an algorithm for systems on tori and extended to continuous-time
systems in Govindarajan et al. (2021). The technique hinges on constructing a
periodic approximation of the dynamics via a state-space partition, thus enabling
the approximation of the Koopman operator’s action through a permutation. The
concept of periodic approximations has roots in the works of Halmos (1944)
and Lax (1971). This method yields measures that converge weakly to the spec-
tral measures of the Koopman operator. Furthermore, periodic approximations
are positive operators and uphold the multiplicative structure of the Koopman
operator, i.e., K(fg) = (K f)(Kg). A significant unresolved question is how
these results can be generalized to handle systems that are not necessarily in-
variant with respect to a Lebesgue absolutely continuous measure, such as those
defined on intricate domains like chaotic attractors, and how to develop ef-
ficient schemes in high dimension. Boullé and Colbrook (20242a) introduced
Multiplicative DMD which enforces the multiplicative structure of Koopman
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operators, improving the selection of observables and enabling efficient matrix
approximation to better reflect spectral properties, with demonstrated robustness
to noise across several examples.

DMD fails in translational problems, such as wave-like phenomena, mov-
ing interfaces, and moving shocks (Kutz et al., 2016a). This limitation can
be attributed to the dominant advection behavior propagating through the en-
tire high-dimensional domain. This propagation makes establishing a global
spatiotemporal basis challenging within a low-dimensional subspace. Drawing
inspiration from Lagrangian POD (Mojgani and Balajewicz, 2017), Lu and Tar-
takovsky (2020a) introduced Lagrangian DMD that constructs a reduced-order
model within the Lagrangian framework. Temporally evolving characteristic
lines are selected as a central observable, and a low-dimensional structure in
the Lagrangian framework is identified. Port-Hamiltonian DMD (Morandin et
al., 2023) adapts the DMD within the port-Hamiltonian systems framework to
ensure the system satisfies a dissipation inequality. Symmetric DMD (Cohen et
al., 2020) mandates the dynamics matrix to be symmetric. Constrained DMD
(Krake et al., 2022) ensures the presence of specific frequencies by incorporat-
ing constraints into DMD. Hermitian DMD (Baddoo et al., 2023; Drmac, 2022b)
provides a self-adjoint approximation that converges for self-adjoint Koopman
operators (Boullé and Colbrook, 2024b).

On the transfer operator side, Mehta et al. (2006) address symmetries of the
Perron—Frobenius operator in relation to the admissible symmetry properties of
attractors. Constrained Ulam DMD (Goswami et al., 2018) uses a minimization
problem with constraints that guarantee a positive operator with a row sum equal
to one. Beyond DMD, Mardt et al. (2020) developed deep learning Markov and
Koopman models with physical constraints. Pan and Duraisamy (2020b) learn
continuous-time Koopman operators with deep neural networks and enforce
stability by ensuring that eigenvalues have nonpositive real parts. Hirsh et al.
(2021) presented a theoretical connection between time-delay embedding mod-
els and the Frenet—Serret frame (intrinsic coordinates formed by applying the
Gram-Schmidt procedure to the derivatives of the trajectory) from differential
geometry. This was used to develop structured HAVOK models.

6 Further topics and open problems

We conclude this review of DMD with further topics that are connected with
DMD and Koopman operators, followed by outlining some future challenges in
the field.

6.1 Transfer operators

Perron—Frobenius operators, also known as Ruelle (Ruelle, 1968) or transfer
operators, act on measures through pullbacks. When considering appropri-
ately chosen spaces of observables and measures, the Koopman and Perron—
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Frobenius operators emerge as dual pairs, thereby offering equivalent informa-
tion. In the context of ergodic dynamical systems, natural spaces of observables
are typically L? spaces of complex-valued scalar functions associated with in-
variant probability measures, while natural spaces of measures involve complex
measures with L? densities. The operational distinction between Koopman and
Perron—Frobenius operators has led to the development of two distinct families
of approximation techniques. However, recent works, such as Klus et al. (2016),
have started to bridge this gap.

For data-driven techniques employing Perron—Frobenius operators, see the
seminal work of Dellnitz and Junge (1999). A prevalent approach in these
methods involves approximating the Perron—Frobenius operator’s spectrum us-
ing Ulam’s method (Ulam, 1960; Li, 1976). This method involves partitioning
the state space into a finite set of disjoint subsets. The transition probabilities
between these subsets are then estimated by counting transitions observed in
extensive simulations or experimental data. The derived transition probabil-
ity matrix essentially serves as a Galerkin projection of a smoothed compact
transfer operator, slightly perturbed by noise. The matrix’s eigenvectors, corre-
sponding to eigenvalues at or near the unit circle, are instrumental in identifying
coherent sets. Subsequent research by Dellnitz, Froyland, and colleagues (Dell-
nitz et al., 2000; Froyland and Dellnitz, 2003; Froyland, 2007, 2008; Froyland
et al., 2014a) focused on specific system classes with quasicompact Perron—
Frobenius operators. Their work rigorously demonstrated Ulam’s method’s ef-
ficacy in accurately approximating isolated Perron—Frobenius eigenvalues and
their associated eigenfunctions.

The Perron—Frobenius operator has been used to analyze the global behav-
ior of dynamical systems across various fields. Its applications span molecular
dynamics (Schiitte and Sarich, 2013; Schiitte et al., 2023), fluid dynamics (Froy-
land et al., 2014b, 2016), meteorology and atmospheric sciences (Tantet et al.,
2015, 2018; Froyland et al., 2021), as well as engineering (Vaidya et al., 2010;
Ober-Blobaum and Padberg-Gehle, 2015). Various toolboxes, such as GAIO
(Dellnitz et al., 2001), can compute almost invariant sets or metastable states.
These toolboxes utilize adaptive box discretizations of the state space to approx-
imate the system’s behavior efficiently. However, it is important to note that this
approach is generally more suited to low-dimensional problems.

6.2 Continuous spectra and spectral measures

In Section 2.1.2, we saw how Koopman operators associated with measure-
preserving systems have spectral measures that provide a KMD. In the course
of this review, we have met several methods that converge to spectral measures:
mpEDMD in Section 5.2 (see Fig. 25 for an example), methods based on com-
pactification in Section 5.3, and partitioning of the state space to obtain periodic
approximations in Section 5.4. There are other methods that are not based on the
eigenvalues of a finite matrix. Korda et al. (2020) approximate the moments of
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spectral measures of ergodic systems using (4.8), and then use the Christoffel—
Darboux kernel to analyze the atomic and absolutely continuous parts of the
spectrum. They also compute the spectral projection on a given segment of
the unit circle. See also Arbabi and Mezi¢ (2017b), who use harmonic averag-
ing and Welch’s method (Welch, 1967) to compute the discrete and continuous
spectrum of the Koopman operator for post-transient flows. Using the resolvent
operator and ResDMD, Colbrook and Townsend (2023) compute smoothed ap-
proximations of spectral measures associated with general measure-preserving
dynamical systems. They prove explicit high-order convergence theorems for
the computation of spectral measures in various senses, including computing
the density of the continuous spectrum, spectral projections of subsets of the
unit circle, and the discrete spectrum. These smoothing techniques can also be
used for self-adjoint operators (Colbrook et al., 2021). Rigged DMD (Colbrook
et al., 2024) takes this even further and computes generalized eigenfunctions of
Koopman operators.

However, we end this discussion with the following warning to the reader
about recovering atomic parts of spectral measures that should be kept in mind
for all of the above methods. As soon as the spectral measure ug has atoms
(i.e., K has eigenvalues, and g is not orthogonal to all the eigenspaces), the
map A — ug({A}) is discontinuous. One can prove that, in general, separating
the point spectrum from the rest of the spectrum, either in terms of spectral
measures or spectral sets, is impossible for any algorithm. This holds even for
simple classes of operators (Colbrook, 2021), unless we know a priori that the
spectrum is discrete in a region of interest (Colbrook et al., 2021, Section 7.3).
An excellent example and discussion of this point is provided on the second
page of Govindarajan et al. (2019). This is one reason the above methods can
only compute spectral measures in a weak or setwise sense. It also helps explain
why many of these techniques involve some form of smoothing.

6.3 Stochastic dynamical systems

Stochastic dynamical systems are widely used to model and study systems that
evolve under the influence of both deterministic and random effects. It is com-
mon to replace (1.1) with a discrete-time Markov process

Xn+1 = F (X, ), n=0,1,2,..., 6.1)

where {t,} € Q; are independent and identically distributed random variables
with distribution p supported on 4, and F : Q x Q; — Q is a function. The
stochastic Koopman operator (also called the Kolmogorov operator) is the ex-
pectation:

[Kglx) = / g(F(x, 7))dp(7). (6.2)

Qg
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In contrast to the deterministic case, stochastic Koopman operators typically
have discrete spectra due to diffusion. A primary focus has been the challenge
of noisy observables in EDMD-type methods (Takeishi et al., 2017c; Wanner
and Mezi¢, 2022), and debiasing DMD (Hemati et al., 2017; Dawson et al.,
2016; Takeishi et al., 2017¢). Crnjaric’—Zic et al. (2020) developed a stochastic
Hankel-DMD algorithm for numerical approximations of the stochastic Koop-
man operator. Klus et al. (2020b) used gEDMD to derive models for SDEs with
applications in control. Sinha et al. (2020) provided an explicit optimization-
based approximation of stochastic Koopman operators. Wu and Noé (2020)
developed a variational approach for Markov processes that finds optimal fea-
ture mappings and optimal Markovian models of the dynamics from the top
singular components of the Koopman operator.

The definition in (6.2) involves an expectation. Colbrook et al. (2023b)
demonstrated the benefits and necessity of going beyond expectations of trajec-
tories. They incorporated the concept of variance into the Koopman framework,
establishing its relationship with batched Koopman operators. This led to an
extension of ResDMD, resulting in convergence to the spectral properties of
stochastic Koopman operators, a Koopman analog of a variance-bias decom-
position, and the concept of variance-pseudospectra as a measure of statistical
coherency.

6.4 Some open problems

There has been substantial interest in Koopmanism over the last decade, and
we expect this interest only to grow. This is an exciting time to be working in
this field, which is at the crossroads of dynamical systems theory, data analysis,
spectral theory, and computational analysis. We end with some open problems
that the author believes will lead to important breakthroughs in the coming
years:

e Banach (and other function) spaces: We have focused on Koopman opera-
tors defined on the Hilbert space L%(Q, w). In some cases, it is more appro-
priate to consider function spaces that are Banach spaces (Mohr and Mezic,
2014; Mezié¢, 2020). Computational tools for infinite-dimensional spectral
problems on Banach spaces are less developed than those for Hilbert spaces.
An exception is the transfer operator community, which has developed meth-
ods for quasicompact Perron—Frobenius operators (see Section 6.1). Another
challenge is the development of the theory of the KMD in the absence of
spectral theorems. These issues are expected to be particularly significant in
applying the Koopman framework and DMD to transient and off-attractor
dynamics.

For some chaotic systems under appropriate conditions, the eigenvalues in
the large subspace limit of EDMD correspond to the eigenvalues of trans-
fer operators in suitable function spaces, as discussed in Slipantschuk et al.
(2020); Wormell (2023); Bandtlow et al. (2023). Reconciling these general-
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ized eigenfunctions, the L? flavor of DMD methods, and appropriate Banach
spaces is a key open problem. These questions could be crucial for under-
standing and improving the effectiveness of EDMD, including guidance on
the choice of dictionary.

e Choice of dictionary: One of the most significant open problems in EDMD
is the selection of observables or dictionaries. At present, this process can be
considered more of an art than a science. While well-conditioned bases can
be constructed for some systems, as outlined in Section 5.3, this task often
presents a substantial challenge. This is also true for methods based on delay-
embedding, where the choice of delay itself is a classical problem with many
available heuristics.

e Foundations: All of the convergence results for DMD and Koopman oper-

ators rely on algorithms that depend on several parameters, with successive
limits of these parameters taken to achieve convergence. This is not accidental
and occurs generically in infinite-dimensional spectral computations (Ben-
Artzi et al., 2020). It is possible to classify the difficulty of computational
problems, including data-driven ones. To date, the Koopman community has
only provided upper bounds, i.e., algorithms that converge for specific classes
of problems. A significant open problem is the development of lower bounds,
i.e., universal impossibility results that indicate an intrinsic difficulty in a
problem that cannot be overcome by any algorithm. Such results are be-
ginning to emerge in the world of deep learning, particularly regarding the
existence vs. trainability of neural networks (Colbrook et al., 2022). We ex-
pect them to be equally fruitful in the Koopman context.
Lower bounds are essential for several reasons. First, they prevent futile
searches for nonexistent algorithms. Second, they often elucidate why certain
algorithms cannot exist. When combined with upper bounds, this knowledge
can lead to natural assumptions about the dynamical systems or the data re-
quired to achieve our computational goals.

e Further structure-preserving methods: We have already outlined several
open problems stimulated by piDMD in Section 5.1.3. Understanding the
relationships between structures or symmetries in dynamical systems and
their manifestation in the Koopman spectrum lies at the forefront of current
knowledge. A crucial challenge is extending constraints applicable to DMD
with linear observables to EDMD with nonlinear observables, which will be
instrumental in applying structure-preserving methods to nonlinear systems
effectively. Another related open problem is establishing the convergence of
constrained DMD methods to the spectral properties of Koopman operators
and the convergence of KMDs.

e Verified control: An exciting development area in modern Koopman the-
ory is its use for controlling nonlinear systems. In Section 3.4.3, we dis-
cussed how the practice of Koopman control currently surpasses the the-
oretical understanding. Only a limited number of systems with a known
Koopman-invariant subspace and verifiable eigenfunctions exist. Thus, devel-
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oping methods to validate Koopman models for control purposes is a crucial
problem. Successfully addressing this issue will likely lead to further insights
and enhancements in the practice of Koopman control.
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