
Chapter 3

A mathematical guide to
operator learning
Nicolas Boulléa,∗ and Alex Townsendb

aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

Cambridge, United Kingdom, bDepartment of Mathematics, Cornell University, Ithaca, NY, United
States∗Corresponding author: e-mail address: nb690@cam.ac.uk

Contents
1 Introduction 84

1.1 What is a neural operator? 86
1.2 Where is operator learning

relevant? 86
1.3 Organization of the paper 88

2 From numerical linear algebra to
operator learning 88
2.1 Low rank matrix recovery 89
2.2 Circulant matrix recovery 91
2.3 Banded matrix recovery 92
2.4 Hierarchical low rank matrix

recovery 93
3 Neural operator architectures 94

3.1 Deep operator networks 95
3.2 Fourier neural operators 97
3.3 Deep Green networks 100
3.4 Graph neural operators 102

3.5 Multipole graph neural
operators 103

4 Learning neural operators 105
4.1 Data acquisition 106

4.1.1 Distribution of source
terms 106

4.1.2 Numerical PDE solvers 109
4.1.3 Amount of training data 110

4.2 Optimization 112
4.2.1 Loss functions 112
4.2.2 Optimization algorithms

and implementation 113
4.2.3 Measuring convergence

and superresolution 114
5 Conclusions and future challenges 116
Acknowledgments 119
References 119

Abstract
Operator learning aims to discover properties of an underlying dynamical system or par-
tial differential equation (PDE) from data. Here, we present a step-by-step guide to oper-
ator learning. We explain the types of problems and PDEs amenable to operator learning,
discuss various neural network architectures, and explain how to employ numerical PDE
solvers effectively. We also give advice on how to create and manage training data and
conduct optimization. We offer intuition behind the various neural network architectures
employed in operator learning by motivating them from the point-of-view of numerical
linear algebra.

Handbook of Numerical Analysis, Volume 25, ISSN 1570-8659, https://doi.org/10.1016/bs.hna.2024.05.003
Copyright © 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

83

mailto:nb690@cam.ac.uk
https://doi.org/10.1016/bs.hna.2024.05.003

84 Numerical Analysis Meets Machine Learning

Keywords
Scientific machine learning, Deep learning, Operator learning, Partial differential equa-
tions

MSC Codes
47-02, 47A58, 47F99, 65-02, 65F55, 65J10

1 Introduction

The recent successes of deep learning (LeCun et al., 2015) in computer vi-
sion (Krizhevsky et al., 2012), language model (Brown et al., 2020), and bi-
ology (Jumper et al., 2021) have caused a surge of interest in applying these
techniques to scientific problems. The field of scientific machine learning
(SciML) (Karniadakis et al., 2021), which combines the approximation power
of machine learning (ML) methodologies and observational data with traditional
modeling techniques based on partial differential equations (PDEs), sets out to
use ML tools for accelerating scientific discovery.

SciML techniques can roughly be categorized into three main areas: (1) PDE
solvers, (2) PDE discovery, and (3) operator learning (see Fig. 1). First, PDE
solvers, such as physics-informed neural networks (PINNs) (Raissi et al., 2019;
Lu et al., 2021b; Cuomo et al., 2022; Wang et al., 2023), the deep Galerkin
method (Sirignano and Spiliopoulos, 2018), and the deep Ritz method (E and
Yu, 2018), consist of approximating the solution a known PDE by a neu-
ral network by minimizing the solution’s residual. At the same time, PDE
discovery aims to identify the coefficients of a PDE from data, such as the
SINDy approach (Brunton et al., 2016; Champion et al., 2019), which relies
on sparsity-promoting algorithms to determine coefficients of dynamical sys-
tems. There are also symbolic regression techniques, such as AI Feynman in-
troduced by Udrescu and Tegmark (2020); Udrescu et al. (2020) and genetic
algorithms (Schmidt and Lipson, 2009; Searson et al., 2010), that discover
physics equations from experimental data.

Here, we focus on the third main area of SciML, called operator learning (Lu
et al., 2021a; Kovachki et al., 2023). Operator learning aims to discover or
approximate an unknown operator A, which often takes the form of the solu-
tion operator associated with a differential equation. In mathematical terms, the
problem can be defined as follows. Given pairs of data (f,u), where f ∈ U and
u ∈ V are from function spaces on a d-dimensional spatial domain � ⊂ R

d , and
a (potentially nonlinear) operator A : U → V such that A(f) = u, the objec-
tive is to find an approximation of A, denoted as Â, such that for any new data
f ′ ∈ U , we have Â(f ′) ≈ A(f ′). In other words, the approximation should be
accurate for both the training and unseen data, thus demonstrating good gener-
alization.

This problem is typically approached by representing Â as a neural oper-
ator, which is a generalization of neural networks as the inputs and outputs

A mathematical guide to operator learning Chapter | 3 85

FIGURE 1 Illustrating the role of operator learning in SciML. Operator learning aims to discover
or approximate an unknown operator A, which often corresponds to the solution operator of an
unknown PDE. In contrast, PDE discovery aims to discover coefficients of the PDE itself, while
PDE solvers aim to solve a known PDE using ML techniques.

are functions, not vectors. After discretizing the functions at sensor points
x1, . . . , xm ∈ �, one then parametrizes the neural operator with a set of param-
eters θ ∈ R

N , which could represent the weights and biases of the underlying
neural network. Then, one typically formulates an optimization problem to find
the best parameters:

min
θ∈RN

∑
(f,u)∈data

L(Â(f ; θ), u), (1)

where L is a loss function that measures the discrepancy between Â(f ; θ) and
u, and the sum is over all available training data pairs (f,u). The challenges
of operator learning often arise from selecting an appropriate neural operator
architecture for Â, the computational complexities of solving the optimization
problem, and the ability to generalize to new data.

A typical application of operator learning arises when learning the solution
operator associated with a PDE, which maps a forcing function f to a solution
u. One can informally think of it as the (right) inverse of a differential operator.
One of the simplest examples is the solution operator associated with Poisson’s
equation with zero Dirichlet conditions:

− ∇2u = f, x ∈ � ⊂ R
d, u|∂� = 0, (2)

where ∂� means the boundary of �. In this case, the solution operator, A, can
be expressed as an integral operator:

A(f) =
∫

�

G(·, y)f (y)dy = u,

86 Numerical Analysis Meets Machine Learning

where G is the Green’s function associated with Eq. (2) (Evans, 2010, Chapt. 2).
A neural operator is then trained to approximate the action of A using training
data pairs (f1, u1), . . . , (fM,uM).

In general, recovering the solution operator is challenging, as it is often non-
linear and high-dimensional, and the available data may be scarce or noisy.
Nevertheless, unlike inverse problems, which aim to recover source terms from
solutions, the forward problem is usually well-posed. As we shall see, learn-
ing solution operators lead to new insights or applications that can complement
inverse problem techniques, as described in two surveys (Stuart, 2010) and (Ar-
ridge et al., 2019).

1.1 What is a neural operator?

Neural operators (Kovachki et al., 2023; Lu et al., 2021a) are analogues of neural
networks with infinite-dimensional inputs. Neural operators were introduced to
generalize standard deep learning techniques to learn mappings between func-
tion spaces instead of between discrete vector spaces R

d1 to R
dL , where d1 is

the input dimension of a neural network and dL is the output dimension. In its
most traditional formulation, a fully connected neural network can be written as
a succession of affine transformations and nonlinear activation functions as

N (x) = σ(AL(· · ·σ(A1x + b1) · · ·) + bL),

where L ≥ 1 is the number of layers, Ai are the weight matrices, bi are the
bias vectors, and σ : R → R is the activation function, often chosen to be the
ReLU function σ(x) = max{x,0}. Neural operators generalize this architecture,
where the input and output of the neural network are functions instead of vec-
tors. Hence, the input of a neural operator is a function f : � → R

d1 , where
� ⊂ R

d is the domain of the function, and the output is a function u : � → R
dL .

The neural operator is then defined as a composition of integral operators and
nonlinear functions, which results in the following recursive definition at layer i:

ui+1(x) = σ

(∫
�i

K(i)(x, y)ui(y)dy + bi(x)

)
, x ∈ �i+1, (3)

where �i ⊂ R
di is a compact domain, bi is a bias function, and K(i) is the

kernel. The kernels and biases are then parameterized and trained similarly to
standard neural networks. However, approximating the kernels or evaluating the
integral operators could be computationally expensive. Hence, several neural
operator architectures have been proposed to overcome these challenges, such
as DeepONets (Lu et al., 2021a) and Fourier neural operators (Li et al., 2021a).

1.2 Where is operator learning relevant?

Operator learning has been successfully applied to many PDEs from different
fields, including fluid dynamics with simulations of fluid flow turbulence in the

A mathematical guide to operator learning Chapter | 3 87

Navier–Stokes equations at high Reynolds number (Li et al., 2023b; Peng et
al., 2022), continuum mechanics (You et al., 2022), astrophysics (Mao et al.,
2023), quantum mechanics with the Schrödinger equation (Li et al., 2021a), and
weather forecasting (Kurth et al., 2023; Lam et al., 2023). The following four
types of applications might directly benefit from operator learning.

Speeding up numerical PDE solvers

First, one can use operator learning to build reduced-order models of complex
systems that are computationally challenging to simulate with traditional numer-
ical PDE solvers. For example, this situation arises in fluid dynamics applica-
tions such as modeling turbulent flows, which require a very fine discretization
or the simulation of high dimensional PDEs. Moreover, specific problems in en-
gineering require the evaluation of the solution operator many times, such as in
the design of aircraft or wind turbines. In these cases, a fast but less accurate
solver provided by operator learning may be used for forecasting or optimiza-
tion. This is one of the main motivations behind Fourier neural operators in Li et
al. (2021a). There are also applications of operator learning (Zheng et al., 2023)
to speed up the sampling process in diffusion models or score-based generative
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), which
require solving complex differential equations. However, one must be careful
when comparing performance against classical numerical PDE solvers, mainly
due to the significant training time required by operator learning.

Parameter optimization

In our experience, the computational efficiency of operator learning is mainly
seen in downstream applications such as parameter optimization. Once the so-
lution operator has been approximated, it can be exploited in an inverse problem
framework to recover unknown parameters of the PDE, which may be computa-
tionally challenging to perform with existing numerical PDE solvers. Addition-
ally, neural operators do not rely on a fixed discretization as they are mesh-free
and parameterized by a neural network that can be evaluated at any point. This
property makes them suitable for solving PDEs on irregular domains or trans-
ferring the model to other spatial resolutions (Kovachki et al., 2023).

Benchmarking new techniques

Operator learning may also be used to benchmark and develop new deep learn-
ing models. As an example, one can design specific neural network architectures
to preserve quantities of interest in PDEs, such as symmetries (Olver, 1993a),
conservation laws (Evans, 2010, Sec. 3.4), and discretization independence.
This could lead to efficient architectures that are more interpretable and general-
ize better to unseen data, and exploit geometric priors within datasets (Bronstein
et al., 2021). Moreover, the vast literature on PDEs and numerical solvers can
be leveraged to create datasets and assess the performance of these models in

88 Numerical Analysis Meets Machine Learning

various settings without requiring significant computational resources for train-
ing.

Discovering unknown physics

Last but not least, operator learning is helpful for the discovery of new
physics (Lu et al., 2021a). Indeed, the solution operator of a PDE is often un-
known, or one may only have access to a few data points without any prior
knowledge of the underlying PDE. In this case, operator learning can be used to
discover the PDE or a mathematical model to perform predictions. This can lead
to new insights into the system’s behavior, such as finding conservation laws,
symmetries, shock locations, and singularities (Boullé et al., 2022a). However,
the complex nature of neural networks makes them challenging to interpret or
explain, and there are many future directions for making SciML more interpre-
tative.

1.3 Organization of the paper

This paper is organized as follows. We begin in Section 2 by exploring the
connections between numerical linear algebra and operator learning. Then, we
review the main neural network architectures used to approximate operators in
Section 3. In Section 4, we focus on the data acquisition process, a crucial step
in operator learning. We discuss the choice of the distribution of source terms
used to probe the system, the numerical PDE solver, and the number of train-
ing data. Along the way, we analyze the optimization pipeline, including the
possible choices of loss functions, optimization algorithms, and assessment of
the results. Finally, in Section 5, we conclude with a discussion of the remain-
ing challenges in the field that include the development of open-source software
and datasets, the theoretical understanding of the optimization procedure, and
the discovery of physical properties in operator learning, such as symmetries
and conservation laws.

2 From numerical linear algebra to operator learning

There is a strong connection between operator learning and the recovery of
structured matrices from matrix-vector products. Suppose one aims to approx-
imate the solution operator associated with a linear PDE using a single layer
neural operator in the form of Eq. (3) without the nonlinear activation function.
Then, after discretizing the integral operator using a quadrature rule, it can be
written as a matrix-vector product, where the integral kernel K : � × � →R is
approximated by a matrix A ∈ R

N×N . Moreover, the structure of the matrix is
inherited from the properties of the Green’s function (see Table 1). The matrix’s
underlying structure—whether it is low-rank, circulant, banded, or hierarchical
low-rank—plays a crucial role in determining the efficiency and approach of
the recovery process. This section describes the matrix recovery problem as a

A mathematical guide to operator learning Chapter | 3 89

helpful way to gain intuition about operator learning and the design of neural
operator architectures (see Section 3). Another motivation for recovering struc-
tured solution operators is to ensure that the neural operators are fast to evaluate,
which is essential in applications involving parameter optimization and bench-
marking (Kovachki et al., 2023).

TABLE 1 Solution operators associated with linear PDEs can often be rep-
resented as integral operators with a kernel called a Green’s function. The
properties of a linear PDE induce different structures on the Green’s func-
tion, such as translation-invariant or off-diagonal low-rank. When these
integral operators are discretized, one forms a matrix-vector product, and
hence the matrix recovery problem can be viewed as a discrete analogue of
operator learning. The dash in the first column and row means no PDE has
a solution operator with a globally smooth kernel.

Property of the PDE Solution operator’s kernel Matrix structure
— Globally smooth Low rank

Periodic BCs & const. coeffs Convolution kernel Circulant

Localized behavior Off-diagonal decay Banded

Elliptic / Parabolic Off-diagonal low rank Hierarchical

Consider an unknown matrix A ∈ R
N×N with a known structure such as

rank-k or banded. We assume that the matrix A is a black box and cannot be
seen, but that one can probe A for information via matrix-vector products, i.e.,
the maps x
→ Ax and x
→ A�x, with A� representing the transpose of A. The
matrix recovery problem is the task of approximating the matrix A using as few
queries to x
→ Ax and x
→ A�x as possible. Every matrix with N columns can
be deduced in a maximum of N matrix-vector product queries, as Aej for 1 ≤
j ≤ N returns the j th column, where ej denotes the j th standard basis vector.
However, if the matrix A has a specific structure such as low-rank, circulant,
banded, or hierarchical low-rank, it is often possible to recover A using far fewer
queries. This section describes how to recover structured matrices efficiently
using matrix-vector products. We prefer doing matrix recovery with Gaussian
random vectors because the infinite-dimensional analogue of these vectors are
random functions drawn from a Gaussian process, which is a widespread choice
of training input data in operator learning.

2.1 Low rank matrix recovery

Let A ∈ R
N×N be a rank-k matrix, then it can be expressed for some C ∈R

N×k

and R ∈ R
k×N as

A = CR.

Halikias and Townsend (2023) showed that at least 2k queries are required to
capture the k-dimensional row and column spaces and deduce A. Halko et al.
(2011); Martinsson and Tropp (2020) introduced the randomized singular value

90 Numerical Analysis Meets Machine Learning

decomposition (SVD) as a method to recover a rank-k matrix with probability
one in 2k matrix-vector products with random Gaussian vectors. The random-
ized SVD can be expressed as a recovery algorithm in Algorithm 1.

Algorithm 1 Randomized singular value decomposition.

1: Draw a random matrix X ∈ R
N×k with i.i.d. standard Gaussian entries.

2: Perform k queries with A: Y = AX.
3: Compute the QR factorization of Y = QR.
4: Perform k queries with A�: Z = A�Q.
5: Return A = QZ�.

A randomized algorithm is crucial for low-rank matrix recovery to prevent
input vectors from lying within the N − k dimensional nullspace of A. Hence,
recovering any low-rank matrix with a deterministic algorithm using fixed input
vectors is impossible. Then, for the rank-k matrix recovery problem, Algo-
rithm 1 recovers A with probability one. A small oversampling parameter p ≥ 1
is used for numerical stability, such as p = 5. This means that X ∈ R

N×(k+p),
preventing the chance that a random Gaussian vector might be highly aligned
with the nullspace of A.

A convenient feature of Algorithm 1 is that it also works for matrices with
numerical rank1 k, provided that one uses a random matrix X with k + p

columns. In particular, a simplified statement of Halko et al. (2011, Thm. 10.7)
shows that the randomized SVD recovers a near-best low-rank matrix in the
sense that

P

[
‖A − QZ�‖F ≤

(
1 + 15

√
k + 5

)
min

rank(Ak)≤k
‖A − Ak‖F

]
≥ 0.999,

where ‖ · ‖F is the Frobenius norm of A. While other random embeddings
can be used to probe A, Gaussian random vectors give the cleanest probabil-
ity bounds (Martinsson and Tropp, 2020). Moreover, ensuring that the entries
in each column of X have some correlation and come from a multivariable
Gaussian distribution allows for the infinite-dimensional extension of the ran-
domized SVD and its application to recover Hilbert–Schmidt operators (Boullé
and Townsend, 2022, 2023). This analysis allows one to adapt Algorithm 1 to
recover solution operators with low-rank kernels.

Low-rank matrix recovery is one of the most straightforward settings to mo-
tivate DeepONet (see Section 3.1). One of the core features of DeepONet is to
use the trunk net to represent the action of a solution operator on a set of basis
functions generated by the so-called branch net. Whereas in low-rank matrix
recovery, we often randomly draw the columns of X as input vectors, Deep-
ONet is trained with these functions. However, like DeepONet, low-rank matrix

1 For a fixed 0 < ε < 1, we say that a matrix A has numerical rank k if σk+1(A) < εσ1(A) and
σk(A) ≥ εσ1(A), where σ1(A) ≥ σ2(A) ≥ . . . ≥ σN (A) ≥ 0 are the singular values of A.

A mathematical guide to operator learning Chapter | 3 91

recovery is constructing an accurate approximant whose action is on these vec-
tors. Many operators between function spaces can often be represented to high
accuracy with DeepONet in the same way that the kernels of solution opera-
tors associated with linear PDEs often have algebraically fast decaying singular
values.

2.2 Circulant matrix recovery

The FNO (Li et al., 2021a) structure is closely related to circulant matrix recov-
ery. Consider an N × N circulant matrix Cc, which is parameterized a vector
c ∈ R

N as follows:

Cc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 cN−1 · · · c2 c1

c1 c0 cN−1
. . . c2

... c1 c0
. . .

...

cN−2
. . .

. . .
. . . cN−1

cN−1 cN−2 · · · c1 c0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To recover Cc with a random Gaussian vector g, we recall that Cc can be in-
terpreted as a multiplication operator in the Fourier basis. By associativity of
multiplication, we have

Ccg = Cgc.

If we perform the matrix-vector product query y = Ccg, we can find the vec-
tor c by solving the linear system Cgc = y. Since c completely defines Cc, we
have recovered the circulant matrix. Moreover, the linear system Cgc = y can
be solved efficiently using the fast Fourier transform (FFT) in O(N logN) op-
erations. A convenient feature of circulant matrices is that given a new vector
x ∈ R

N , one can compute Ccx in O(N logN) operations using the FFT.
Circulant matrix recovery motivates Fourier neural operators. Hence, FNOs

leverage the fast Fourier transform to efficiently parameterize the kernel of a so-
lution operator, essentially capturing the operator in a spectral sense. Similarly,
circulant matrices are diagonalized by the discrete Fourier transform matrix. The
infinite-dimensional analogue of a circulant matrix is a solution operator with
a periodic and translation invariant kernel, and this is the class of solution op-
erators for which the FNO assumptions are fully justified. FNOs are extremely
fast to evaluate because of their structure, making them popular for parameter
optimization and favorable for benchmarking against reduced-order models.

92 Numerical Analysis Meets Machine Learning

2.3 Banded matrix recovery

We now consider a banded matrix A ∈R
N×N with a fixed bandwidth w, i.e.,

Aij = 0, if |i − j | > w.

The matrix A can be recovered with w+2 matrix-vector products, but not fewer,
using the w + 2 columns of the following matrix as input vectors:

[
Iw+2 · · · Iw+2

]�
,

where Iw+2 is the (w + 2) × (w + 2) identity matrix. Since every wth column
has disjoint support, these input vectors recover the columns of A. Of course,
this also means that a A can be recovered with w + 2 Gaussian random vectors.

FIGURE 2 (a) A generic 12 × 12 banded matrix with bandwidth 2, with a maximum of 5 diag-
onals, and the corresponding graph (b). Here, each vertex is a column of the banded matrix, and
two vertices are connected if their corresponding columns do not have disjoint support. The col-
oring number of 5 determines the minimum number of matrix-vector products needed to recover
the structure. Generally, an N × N banded matrix with bandwidth w can be recovered in 2w + 1
matrix-vector products.

There is a way to understand how many queries one needs as a graph-
coloring problem. Consider the graph of size N , corresponding to an N × N

banded matrix with bandwidth w, where two vertices are connected if their
corresponding columns do not have disjoint support (see Fig. 2). Then, the min-
imum number of matrix-vector product queries needed to recover A is the graph
coloring number of this graph.2 One can see why this is the case because all
the columns with the same color can be deduced simultaneously with a single
matrix-vector product as they must have disjoint support.

Banded matrix recovery motivates Graph neural operators (GNOs), which
we will describe later in Section 3.4, as both techniques exploit localized struc-
tures within data. GNOs use the idea that relationships in nature are local
and can be represented as graphs with no faraway connections. By only al-
lowing local connections, GNOs can efficiently represent solution operators
corresponding to local solution operators, mirroring the way banded matrices

2 Recall that the coloring number of a graph is the minimum number of colors required to color the
vertices so that no two vertices connected by an edge are identically colored.

A mathematical guide to operator learning Chapter | 3 93

are concentrated on the diagonal. Likewise, with a strong locality, GNOs are
relatively fast to evaluate, making them useful for parameter optimization and
benchmarking. However, they may underperform if the bandwidth increases or
the solution operator is not local.

2.4 Hierarchical low rank matrix recovery

An N ×N rank-k hierarchical off-diagonal low rank (HODLR) matrix, denoted
as HN,k , is a structure that frequently appears in the context of discretized so-
lution operators associated with elliptic and parabolic PDEs (Hackbusch et al.,
2004). To understand its recursive structure, we assume N to be a power of 2
and illustrate the structure in Fig. 3(a).

FIGURE 3 (a) A HODLR matrix HN,k after three levels of partitioning. Since HN,k is a rank-k
HODLR matrix, Ui , Vi , Wi , and Zi have at most k columns. The matrices Aii are themselves rank-k
HODLR matrices of size N/8 × N/8 and can be further partitioned. (b) Graph corresponding to a
hierarchical low-rank matrix with three levels. Here, each vertex is a low-rank block of the matrix,
where two vertices are connected if their low-rank blocks occupy the same row. At each level, the
number of required matrix-vector input probes to recover that level is proportional to the coloring
number of the graph when restricted to submatrices of the same size. In this case, the submatrices
that are identically colored can be recovered simultaneously.

Since a rank-k matrix requires 2k matrix-vector product queries to be re-
covered (see Section 2.1), a naive approach to deducing HN,k is to use 2k

independent queries on each submatrix. However, one can show that some of
the submatrices of HN,k can be recovered concurrently using the same queries.
We use a graph coloring approach (Levitt and Martinsson, 2022b) to determine
which submatrices can be recovered concurrently. This time, we consider the
graph where each vertex is a low-rank submatrix of HN,k and connect two ver-
tices if their corresponding low-rank submatrices occupy the same column as
in Fig. 3(b). The low-rank submatrices that are identically colored at each level

94 Numerical Analysis Meets Machine Learning

can be recovered concurrently in only 2k queries. Hence, it can be shown that an
N ×N hierarchical rank-k matrix can be recovered in fewer than 10k�log2(N)�
matrix-vector products (Halikias and Townsend, 2023). The precise coloring of
the graph in Fig. 3(b) can also be used to derive a particular algorithm for hier-
archical matrix recovery known as peeling (Levitt and Martinsson, 2022a,b; Lin
et al., 2011; Martinsson, 2011). These peeling algorithms have been recently
generalized to the infinite-dimensional setting by Boullé et al. (2023).

HODLR recovery can be seen as the simplest version of a multipole graph
neural operator (MGNO) (see Section 3.5) as both emphasize the importance of
capturing operators at multiple scales. MGNOs are based on a hierarchical graph
with interactions at different scales or levels (see Section 3.4). By incorporat-
ing local (near-field) and global (far-field) interactions, MGNOs can effectively
learn complex patterns. MGNOs are often great at representing solution oper-
ators due to their multiscale nature. The price to pay is that the final neural
operator can be computationally expensive to evaluate, and it is a complicated
structure to implement.

3 Neural operator architectures

In this section, we review the main neural operator architectures used in the liter-
ature, namely DeepONets (Lu et al., 2021a), Fourier neural operators (Li et al.,
2021a), and Deep Green networks (Gin et al., 2021; Boullé et al., 2022a). We
also refer to the recent survey by Goswami et al. (2023) for a review of the dif-
ferent neural operator architectures and their applications. Each of these archi-
tectures employs different discretization and approximation techniques to make
the neural operator more efficient and scalable by enforcing certain structures on
the kernel such as low-rank, periodicity, translation invariance, or hierarchical
low-rank structure (see Table 2).

TABLE 2 Summary table of neural operator architectures, describing the
property assumption on the operator along with the discretization of the
integral kernels.

Neural operators Property of the operator Kernel parameterization
DeepONet Low-rank Branch and trunk networks

FNO Translation-invariant Fourier coefficients

GreenLearning Linear Rational neural network

DeepGreen Semilinear Kernel matrix

Graph neural operator Diagonally dominant Message passing network

Multipole GNO Off-diagonal low rank Neural network

Most neural operator architectures also come with theoretical guarantees on
their approximation power. These theoretical results essentially consist of uni-
versal approximation properties for neural operators (Chen and Chen, 1995;

A mathematical guide to operator learning Chapter | 3 95

Kovachki et al., 2023; Lu et al., 2021a), in a similar manner as neural net-
works (DeVore, 1998), and quantitative error bounds based on approximation
theory to estimate the size, i.e., the number of trainable parameters, of a neu-
ral operator needed to approximate a given operator between Banach spaces to
within a prescribed accuracy (Lanthaler et al., 2022; Yarotsky, 2017).

3.1 Deep operator networks

Deep Operator Networks (DeepONets) are a promising model for learning non-
linear operators and capturing the inherent relationships between input and
output functions (Lu et al., 2021a). They extend the capabilities of traditional
deep learning techniques by leveraging the expressive power of neural net-
works to approximate operators in differential equations, integral equations, or
more broadly, any functional maps from one function space to another. A key
theoretical motivation for DeepONet is the universal operator approximation
theorem (Chen and Chen, 1995; Lu et al., 2021a). This result can be seen as an
infinite dimensional analogue of the universal approximation operator for neural
networks (Cybenko, 1989; Hornik, 1991), which guarantee that a sufficiently
wide neural network can approximate any continuous function to any accu-
racy. Since the introduction of DeepONets by Lu et al. (2021a), several research
works focused on deriving error bounds for the approximation of nonlinear op-
erators by DeepONets in various settings, such as learning the solution operator
associated with Burger’s equation or the advection-diffusion equation (Deng et
al., 2022), and the approximation of nonlinear parabolic PDEs (De Ryck and
Mishra, 2022; Lanthaler et al., 2022).

A DeepONet is a two-part deep learning network consisting of a branch
network and a trunk network. The branch net encodes the operator’s input
functions f into compact, fixed-size latent vectors b1(f (x1), . . . , f (xm)), . . . ,

bp(f (x1), . . . , f (xm)), where {xi}mi=1 are the sensor points at which the input
functions are evaluated. The trunk net decodes these latent vectors to produce
the final output function at the location y ∈ � as

N (f)(y) =
p∑

k=1

bk(f (x1), . . . , f (xm))tk(y).

A schematic of a deep operator network is given in Fig. 4. The defining
feature of DeepONets is their ability to handle functional input and output,
thus enabling them to learn a wide array of mathematical operators effec-
tively. It’s worth mentioning that the branch network and the trunk network
can have distinct neural network architectures tailored for different purposes,
such as performing a feature expansion on the input of the trunk network as

y →
(
y cos(πy) sin(πy) . . .

)
to take into account any potential oscilla-

tory patterns in the data (Di Leoni et al., 2023). Moreover, while the interplay
of the branch and trunk networks is crucial, the output of a DeepONet does not

96 Numerical Analysis Meets Machine Learning

FIGURE 4 Schematic diagram of a deep operator network (DeepONet). A DeepONet
parametrizes a neural operator using a branch network and a truncation (trunk) network. The branch
network encodes the input function f as a vector of p features, which is then multiplied by the trunk
network to yield a rank-p representation of the solution u.

necessarily depend on the specific input points but rather on the global property
of the entire input function, which makes it suitable for learning operator maps.

One reason behind the performance of DeepONet might be its connection
with the low-rank approximation of operators and the SVD (see Section 2.1).
Hence, one can view the trunk network as learning a basis of functions {tk}pk=1
that are used to approximate the operator, while the branch network expresses
the output function in this basis by learning the coefficients {bk}pk=1. More-
over, the branch network can be seen as a feature extractor, which encodes the
input function into a compact representation, thus reducing the problem’s di-
mensionality to p, where p is the number of branch networks. Additionally,
several architectures, namely the POD-DeepONet (Lu et al., 2022) and SVD-
DeepONet (Venturi and Casey, 2023), have been proposed to strengthen the
connections between DeepONet and the SVD of the operator and increase its
interpretability.

A desirable property for a neural operator architecture is to be discretiza-
tion invariant in the sense that the model can act on any discretization of the
source term and be evaluated at any point of the domain (Kovachki et al., 2023).
This property is crucial for the generalization of the model to unseen data and
the transferability of the model to other spatial resolutions. While DeepONets
can be evaluated at any location of the output domain, DeepONets are not dis-
cretization invariant in their original formulation by Lu et al. (2021a) as the
branch network is evaluated at specific points of the input domain (see Fig. 4).
However, this can be resolved using a low-rank neural operator (Kovachki et al.,
2023), sampling the input functions at local spatial averages (Lanthaler et al.,
2022), or employing a principal component analysis (PCA) alternative of the
branch network (de Hoop et al., 2022).

The training of DeepONets is performed using a supervised learning process.
It involves minimizing the mean-squared error between the predicted output
N (f)(y) and the actual output of u the operator on the training functions at

A mathematical guide to operator learning Chapter | 3 97

random locations {yj }nj=1, i.e.,

min
θ∈RN

1

|data|
∑

(f,u)∈data

1

n

n∑
j=1

|N (f)(yj) − u(yj)|2. (4)

The term inside the first sum approximates the integral of the mean-squared
error, |N (f)−u|2, over the domain � using Monte-Carlo integration. The opti-
mization is typically done via backpropagation and gradient descent algorithms,
which are the same as in traditional neural networks. Importantly, DeepONets
allow for different choices of loss functions, depending on the problem. For ex-
ample, mean squared error is commonly used for regression tasks, but other loss
functions might be defined to act as a regularizer and incorporate prior physi-
cal knowledge of the problem (Goswami et al., 2022; Wang et al., 2021b). The
selection of an appropriate loss function is a crucial step in defining the learn-
ing process of these networks and has a substantial impact on their performance
(see Section 4.2.1).

DeepONet has been successfully applied and adapted to a wide range of
problems, including predicting cracks in fracture mechanics using a variational
formulation of the governing equations (Goswami et al., 2022), simulating the
New York-New England power grid behavior with a probabilistic and Bayesian
framework to quantify the uncertainty of the trajectories (Moya et al., 2023),
as well as predicting linear instabilities in high-speed compressible flows with
boundary layers (Di Leoni et al., 2023).

3.2 Fourier neural operators

Fourier neural operators (FNOs) (Li et al., 2021a; Kovachki et al., 2023) are
a class of neural operators motivated by Fourier spectral methods. FNOs have
found their niche in dealing with high-dimensional PDEs, which are notoriously
difficult to solve using traditional numerical methods due to the curse of dimen-
sionality. They’ve demonstrated significant success in learning and predicting
solutions to various PDEs, particularly those with periodic boundary conditions
or those that can be transformed into the spectral domain via Fourier transform.
This capability renders FNOs an invaluable tool in areas where PDEs play a cen-
tral role, such as fluid dynamics, quantum mechanics, and electromagnetism.

The main idea behind FNOs is to choose the kernels K(i) in Eq. (3) as
translation-invariant kernels satisfying K(i)(x, y) = k(i)(x − y) (provided the
input and output domains are torus) such that the integration of the kernel can
be performed efficiently as a convolution using the Fast Fourier Transform
(FFT) (Cooley and Tukey, 1965), i.e., multiplication in the feature space of
Fourier coefficients. Hence, the integral operation in Eq. (3) can be performed
as∫

�i

k(i)(x−y)ui dy = F−1(F(k(i))F(ui))(x) = F−1(R ·F(ui))(x), x ∈ �i,

98 Numerical Analysis Meets Machine Learning

where F denotes the Fourier transform and F−1 its inverse. The kernel K(i) is
parametrized by a periodic function k(i), which is discretized by a (trainable)
weight vector of Fourier coefficients R, and truncated to a finite number of
Fourier modes. Then, if the input domain is discretized uniformly with m sensor
points, and the vector R contains at most kmax ≤ m modes, the convolution
can be performed in quasilinear complexity in O(m logm) operations via the
FFT. This is a significant improvement over the O(m2) operations required to
evaluate the integral in Eq. (3) using a quadrature rule. In practice, one can
restrict the number of Fourier modes to kmax � m without significantly affecting
the accuracy of the approximation whenever the input and output functions are
smooth so that their representation in the Fourier basis enjoy rapid decay of the
coefficients, thus further reducing the computational and training complexity of
the neural operator.

FIGURE 5 Schematic diagram of a Fourier neural operator (FNO). The networks P and Q, re-
spectively, lift the input function f to a higher dimensional space and project the output of the last
Fourier layer to the output dimension. An FNO mainly consists of a succession of Fourier layers,
which perform the integral operations in neural operators as a convolution in the Fourier domain
and component-wise composition with an activation function σ .

We display a diagram of the architecture of an FNO in Fig. 5. The input
function f is first lifted to a higher dimensional space by a neural network P .
Then, a succession of Fourier layers is applied to the lifted function, which
is parametrized by a vector of Fourier coefficients Ri , a bias vector bi , and a
weight matrix W . Then, the output of the FNO at the ith layer is given by

vi = σ(Wivi−1 +F−1(Ri ·F(ui−1)) + bi),

where σ :R → R is the activation function whose action is defined component-
wise, often chosen to be the ReLU function. The weight matrix Wi and bias
vector bi perform a linear transformation of the input function vi . After the
last Fourier layer, the output of the FNO is obtained by applying a final neural
network Q on the output of the last Fourier layer to project it to the output
dimension.

The training of FNOs, like DeepONets, is carried out via a supervised learn-
ing process. It typically involves minimizing a loss function that measures the

A mathematical guide to operator learning Chapter | 3 99

discrepancy between the predicted and the true output of the operator on the in-
put functions with respect to the trainable parameters of the neural network as in
Eq. (4). Here, one needs to perform backpropagation through the Fourier layers,
which is enabled by the implementation of fast GPU differentiable FFTs (Math-
ieu et al., 2014) in deep learning frameworks such as PyTorch (Paszke et al.,
2019) and TensorFlow (Abadi et al., 2016).

While FNOs have been proposed initially to alleviate the computational ex-
pense of performing integral operations in neural operators by leveraging the
FFT, they have a distinctive advantage in learning operators where computations
in the spectral domain are more efficient or desirable. This arises naturally when
the target operator, along with the input and output functions, are smooth so
that their representation as Fourier coefficients decay exponentially fast, yield-
ing an efficient truncation. Hence, by selecting the architecture of the FNO
appropriately, such as the number of Fourier modes kmax, or the initialization
of the Fourier coefficients, one can obtain a neural operator that preserves spe-
cific smoothness properties. However, when the input or output training data
is not smooth, FNO might suffer from Runge’s phenomenon near discontinu-
ities (de Hoop et al., 2022).

One main limitation of the FNO architectures is that the FFT should be per-
formed on a uniform grid and rectangular domains, which is not always the case
in practice. This can be overcome by applying embedding techniques to trans-
form the input functions to a uniform grid and extend them to simple geometry,
using a Fourier analytic continuation technique (Bruno et al., 2007). Recently,
several works have been proposed to extend the FNO architecture to more gen-
eral domains, such as using a zero padding, linear interpolation (Lu et al., 2022),
or encoding the geometry to a regular latent space with a neural network (Li et
al., 2022, 2023a). However, this might lead to a loss of accuracy and additional
computational cost. Moreover, the FFT is only efficient for approximating trans-
lation invariant kernels, which do not occur when learning solution operators of
PDEs with nonconstant coefficients.

Other related architectures aim to approximate neural operators directly in
the feature space, such as spectral neural operators (SNO) (Fanaskov and Os-
eledets, 2022), which are based on spectral methods and employ a simple feed-
forward neural network to map the input function, represented as a vector of
Fourier or Chebyshev coefficients to an output vector of coefficients. Finally,
Raonic et al. (2023) introduce convolutional neural operators (CNOs) to al-
leviate the aliasing phenomenon of convolutional neural networks (CNNs) by
learning the mapping between bandlimited functions. Contrary to FNOs, CNOs
parameterize the integral kernel on a k × k grid and perform the convolution in
the physical space as∫

�

k(x − y)f (y)dy =
k∑

i,j=1

kij f (x − zij), x ∈ �,

where zij are the grid points.

100 Numerical Analysis Meets Machine Learning

Similarly to DeepONets, Fourier neural operators are universal approxi-
mators, in the sense that they are dense in the space of continuous operators
(Bhattacharya et al., 2021; Kovachki et al., 2023, 2021). However, even while
being universal approximators, FNOs could, in theory, require a huge number
of parameters to approximate a given operator to a prescribed accuracy ε > 0.
As an example, Kovachki et al. (2021) showed that the size of the FNO must
grow exponentially fast as ε decreases to approximate any operator between
rough functions whose Fourier coefficients decay only at a logarithmic rate.
Fortunately, these pessimistic lower bounds are not observed in practice when
learning solution operators associated with PDEs. Indeed, in this context, one
can exploit PDE regularity theory and Sobolev embeddings to derive quantita-
tive bounds on the size of FNOs for approximating solution operators that only
grow sublinearly with the error. Here, we refer to the analysis of Darcy flow and
the two-dimensional Navier–Stokes equations by Kovachki et al. (2021).

3.3 Deep Green networks

Deep Green networks (DGN) employ a different approach compared to Deep-
ONets and FNOs to approximate solution operators of PDEs (Gin et al., 2021;
Boullé et al., 2022a). Instead of enforcing certain properties on the integral
kernel in Eq. (3), such as being low-rank (DeepONet) or translation-invariant
(FNO), DGN learns the kernel directly in the physical space. Hence, assume
that the underlying differential operator is a linear boundary value problem of
the form

Lu = f in �, and u = 0 on ∂�. (5)

Under suitable regularity assumptions on operator L (e.g., uniform ellipticity or
parabolicity), the solution operator A can be expressed as an integral operator
with a Green kernel G : �×� → R∪{∞} as (Evans, 2010; Boullé et al., 2022b;
Boullé and Townsend, 2023)

A(f)(x) = u(x) =
∫

�

G(x, y)f (y)dy, x ∈ �.

Boullé et al. (2022a) introduced GreenLearning networks (GL) to learn the
Green kernel G directly from data. The main idea behind GL is to parame-
terize the kernel G as a neural network N and minimize the following relative
mean-squared loss function to recover an approximant to G:

min
θ∈RN

1

|data|
∑

(f,u)∈data

1

‖u‖2
L2(�)

∫
�

(
u(x) −

∫
�

N (x, y)f (y)dy

)2

dx. (6)

Once trained, the network N can be evaluated at any point in the domain, sim-
ilarly to FNO and DON. A key advantage of this method is that it provides a

A mathematical guide to operator learning Chapter | 3 101

more interpretable model, as the kernel can be visualized and analyzed to re-
cover properties of the underlying differential operators (Boullé et al., 2022a).
However, this comes at the cost of higher computational complexity, as the in-
tegral operation in Eq. (6) must be computed accurately using a quadrature rule
and typically requires O(m2) operations, as opposed to the O(m logm) oper-
ations required by FNOs, where m is the spatial discretization of the domain
�.

FIGURE 6 Schematic diagram of a GreenLearning network (GL), which approximates the integral
kernel (Green’s function) associated with linear PDEs using rational neural networks.

As Green’s functions may be unbounded or singular, Boullé et al. (2022a)
propose to use a rational neural network (Boullé et al., 2020) to approximate the
Green kernel. A rational neural network is a neural network whose activation
functions are rational functions, defined as the ratio of two polynomials whose
coefficients are learned during the training phase of the network. This choice of
architecture is motivated by the fact that rational networks have higher approx-
imation power than the standard ReLU networks (Boullé et al., 2020), in the
sense that they require exponentially fewer layers to approximate continuous
functions within a given accuracy and may take arbitrary large values, which is
a desirable property for approximating Green kernels. A schematic diagram of
a GL architecture is available in Fig. 6.

When the underlying differential operator is nonlinear, the solution operator
A cannot be written as an integral operator with a Green’s function. In this case,
Gin et al. (2021) propose to learn the solution operator A using a dual auto-
encoder architecture Deep Green network (DGN), which is a neural operator
architecture that learns an invertible coordinate transform map that linearizes
the nonlinear boundary value problem. The resulting linear operator is approx-
imated by a matrix, which represents a discretized Green’s function but could
also be represented by a neural network if combined with the GL technique. This
approach has been successfully applied to learn the solution operator of the non-
linear cubic Helmholtz equation non-Sturm–Liouville equation and discover an
underlying Green’s function (Gin et al., 2021).

Other deep learning-based approaches (Lin et al., 2023; Peng et al., 2023;
Sun et al., 2023) have since been introduced to recover Green’s functions using
deep learning, but they rely on a PINN technique in the sense that they re-
quire the knowledge of the underlying PDE operator. Finally, Stepaniants (2023)
proposes to learn the Green kernel associated with linear partial differential op-

102 Numerical Analysis Meets Machine Learning

erators using a reproducible kernel Hilbert space (RKHS) framework, which
leads to a convex loss function.

3.4 Graph neural operators

As described in Section 3.3, solution operators associated with linear, elliptic, or
parabolic PDEs of the form Lu = f can be written as an integral operator with
a Green kernel G (Evans, 2010, Sec. 2.2.4). For simplicity, we consider Green
kernels associated with uniformly elliptic operators in divergence form defined
on a bounded domain � in spatial dimension d ≥ 3:

Lu = −div(A(x)∇u) = f, on � ⊂ R
d, (7)

where A(x) is a bounded coefficient matrix satisfying the uniform ellipticity
condition A(x)ξ · ξ ≥ λ|ξ |2 for all x ∈ � and ξ ∈ R

d , for some λ > 0. In this
section, we present a neural operator architecture that takes advantage of the
local structure of the Green kernel associated with Eq. (7), inferred by PDE
regularity theory.

This architecture is called graph neural operator (GNO) (Li et al., 2020a) and
is inspired by graph neural network (GNN) models (Scarselli et al., 2008; Wu
et al., 2020; Zhou et al., 2020). It focuses on capturing the Green kernel’s short-
range interactions to reduce the integral operation’s computational complexity
in Eq. (3). The main idea behind GNO is to perform the integral operation in
Eq. (5) locally on a small ball of radius r , B(x, r), around x for each x ∈ � as
follows:

A(f)(x) = u(x) ≈
∫

B(x,r)

G(x, y)f (y)dy, x ∈ �. (8)

Here, Li et al. (2020a) propose to discretize the domain � using a graph, whose
nodes represent discretized spatial locations, and use a message passing network
architecture (Gilmer et al., 2017) to perform an average aggregation of the nodes
as in Eq. (8). The approach introduced by Li et al. (2020a) aims to approximate
the restriction Gr to the Green’s function G on a band of radius r along the
diagonal of the domain � × �, defined as

Gr(x, y) =
{

G(x,y), if |x − y| ≤ r,

0, otherwise,

where | · | is the Euclidean distance in R
d .

This neural architecture is justified by the following pointwise bound sat-
isfied by the Green’s function and proven by Grüter and Widman (1982,
Thm. 1.1):

|G(x,y)| ≤ C(d,A)|x − y|2−d , x, y ∈ �, (9)

A mathematical guide to operator learning Chapter | 3 103

where � is a compact domain in R
d for d ≥ 3, and C is a constant depending

only on d and the coefficient matrix A(x). Similar bounds have been derived
in spatial dimension d = 2 by Cho et al. (2012); Dong and Kim (2009) and for
Green’s functions associated with time-dependent, parabolic, PDEs (Hofmann
and Kim, 2004; Cho et al., 2008). Then, integrating Eq. (9) over the domain

r := {(x, y) ∈ � × � : |x − y| > r} yields a bound on the approximation error
between G and Gr that decays algebraically fast as r increases:

‖G − Gr‖L2(�×�) =
(∫

r

|G(x,y)|2 dx dy

)1/2

≤ C(d,A)

(∫

r

r4−2d dx dy

)1/2

≤ |�|C(d,A)r2−d .

This implies that the Green’s function can be well approximated by a ban-
dlimited kernel Gr and that the approximation error bound improves in high
dimensions. To illustrate this, we plot in Fig. 7 the Green’s function associated
with the one-dimensional Poisson equation on � = [0,1] with homogeneous
Dirichlet boundary conditions, along with the error between the Green’s func-
tion G and its truncation Gr along a bandwidth of radius r along the diagonal
of the domain.

FIGURE 7 (a) Green’s function associated with the one-dimensional Poisson equation on � =
[0,1] with homogeneous Dirichlet boundary conditions. The dashed lines highlight a band of radius
r = √

2/10 around the diagonal. (b) L2-norm of the error between the Green’s function G and its
truncation Gr along a bandwidth of radius r along the diagonal of the domain.

3.5 Multipole graph neural operators

Multipole graph neural operator (MGNO) has been introduced by Li et al.
(2020b) and is a class of multiscale networks that extends the graph neural oper-
ator architecture described in Section 3.4 to capture the long-range interactions
of the Green kernel. The main idea behind MGNO is to decompose the Green

104 Numerical Analysis Meets Machine Learning

kernel G into a sum of low-rank kernels as G = K1 + · · · + KL, which approx-
imates the short and wide-range interactions in the PDEs. This architecture is
motivated by the same reasons that led to the development of hierarchical low-
rank matrices (see Section 2.4), such as the fast multipole method (Greengard
and Rokhlin, 1997; Ying et al., 2004). It allows for the evaluation of the integral
operation in Eq. (3) in linear complexity.

MGNO is based on low-rank approximations of kernels, similar to Deep-
ONets or low-rank neural operators (see Section 3.1 and Li et al., 2020a), but
is more flexible than vanilla DeepONets since it does not require the underlying
kernels to be low-rank. Hence, if we consider a Green’s function G associated
with a uniformly elliptic PDE in the form of Eq. (7), then Weyl’s law (Weyl,
1911; Canzani, 2013; Minakshisundaram and Pleijel, 1949) states that the eigen-
values of the solution operator associated with Eq. (7) decay at an algebraic rate
of λn ∼ cn−2/d for a constant c > 0. This implies that the approximation error
between the solution operator and its best rank-k approximant decays only al-
gebraically with k. Moreover, the decay rate deteriorates in high dimensions. In
particular, the length p of the feature vector in DeepONets must be significantly
large to approximate the solution operator to a prescribed accuracy.

However, Bebendorf and Hackbusch (2003, Thm. 2.8) showed that the
Green’s function G associated with Eq. (7) can be well approximated by a
low-rank kernel when restricted to separated subdomains DX × DY of � × �,
satisfying the strong admissibility condition: dist(DX,DY) < diam(DY). Here,
the distance and diameter in R

d are defined as

dist(DX,DY) = inf
x∈DX,y∈DY

|x − y|, diam(DY) = sup
y1,y2∈DY

|y1 − y2|.

Then, for any ε ∈ (0,1), there exists a separable approximation of the form
Gk(x, y) = ∑k

i=1 ui(x)vi(y), with k = O(log(1/ε)d+1), such that

‖G − Gk‖L2(DX×DY) ≤ ε‖G‖
L2(DX×D̂Y)

,

where D̂Y is a domain slightly larger than DY (Bebendorf and Hackbusch,
2003, Thm. 2.8). This property has been exploited by Boullé and Townsend
(2023); Boullé et al. (2023, 2022b) to derive sample complexity bounds for
learning Green’s functions associated with elliptic and parabolic PDEs. It mo-
tivates the decomposition of the Green kernel into a sum of low-rank kernels
G = K1 + . . . + KL in MGNO architectures. Indeed, one can exploit the low-
rank structure of Green’s functions on well-separated domains to perform a
hierarchical decomposition of the domain � × � into a tree of subdomains sat-
isfying the admissibility condition. In Fig. 8, we illustrate the decomposition of
the Green’s function associated with the 1D Poisson equation on � = [0,1] with
homogeneous Dirichlet boundary conditions into a hierarchy of L = 3 levels of
different range of interactions. The first level captures the long-range interac-
tions, while the last level captures the short-range interactions. Then, the integral

A mathematical guide to operator learning Chapter | 3 105

FIGURE 8 Decomposition of the Green’s function associated with the 1D Poisson equation, dis-
played in Fig. 7(a), into a hierarchy of kernels capturing different ranges of interactions: from
long-range (a) to short-range (c) interactions.

operation in Eq. (3) can be performed by aggregating the contributions of the
subdomains in the tree, starting from the leaves and moving up to the root. This
allows for the evaluation of the integral operation in Eq. (3) in linear complexity
in the number of subdomains. The key advantage is that the approximation error
on each subdomain decays exponentially fast as the rank of the approximating
kernel increases.

One alternative approach to MGNO is to encode the different scales of the
solution operators using a wavelet basis. This class of operator learning tech-
niques (Feliu-Faba et al., 2020; Gupta et al., 2021; Tripura and Chakraborty,
2022) is based on the wavelet transform and aims to learn the solution operator
kernel at multiple scale resolutions. One advantage over MGNO is that it does
not require building a hierarchy of meshes, which could be computationally
challenging in high dimensions or for complex domain geometries.

Finally, motivated by the success of the self-attention mechanism in trans-
formers architectures for natural language processing (Vaswani et al., 2017) and
image recognition (Dosovitskiy et al., 2020), several architectures have been
proposed to learn global correlations in solution operators of PDEs. In particu-
lar, Cao (2021) introduced an architecture based on the self-attention mechanism
for operator learning and observed higher performance on benchmark problems
when compared against the Fourier Neural Operator. More recently, Kissas et
al. (2022) propose a Kernel-Coupled Attention mechanism to learn correlations
between the entries of a vector feature representation of the output functions.
In contrast, Hao et al. (2023a) designed a general neural operator transformer
(GNOT) that allows for multiple input functions and complex meshes.

4 Learning neural operators

In this section, we discuss various technical aspects involved in training neural
operators, such as the data acquisition of forcing terms and solutions, the amount
of training data required in practice, and the optimization algorithms and loss
functions used to train neural operators.

106 Numerical Analysis Meets Machine Learning

4.1 Data acquisition

This section focuses on the data acquisition process for learning neural opera-
tors. In real-world applications, one may not have control over the distribution of
source terms and solutions or locations of the sensors to measure the solutions at
specific points in the domain. Therefore, we consider an idealized setting where
one is interested in generating synthetic data using numerical PDE solvers to de-
velop neural operator architectures. In this case, one has complete control over
the distribution of source terms and solutions, as well as the locations of the
sensors.

4.1.1 Distribution of source terms
The source terms {fj }Nj=1 used to generate pairs of training data to train neural
operators are usually chosen to be random functions, sampled from a Gaussian
random field (Lu et al., 2021a). Let � ⊂ R

d be a domain, then a stochastic
process {Xx, x ∈ �} indexed by �, is Gaussian if, for every finite set of in-
dices x1, . . . , xn ∈ �, the vector of random variables (Xx1 , . . . ,Xxn) follows a
multivariate Gaussian distribution. The Gaussian process (GP) distribution is
completely determined by the following mean and covariance functions (Adler,
2010, Sec. 1.6):

μ(x) = E{Xx}, K(x, y) = E{[Xx − μ(x)]�[Xy − μ(y)]}, x ∈ �.

In the rest of the paper, we will denote a Gaussian process with mean μ and
covariance kernel K by GP(μ,K). The mean function μ is usually chosen to
be zero, while K is symmetric and positive-definite.

When K is continuous Mercer’s theorem (Mercer, 1909) states that there ex-
ists an orthonormal basis of eigenfunctions {ψj }∞j=1 of L2(�), and nonnegative
eigenvalues λ1 ≥ λ2 ≥ · · · > 0 such that

K(x,y) =
∞∑

j=1

λjψj (x)ψj (y), x, y ∈ �,

where the sum is absolutely and uniformly convergent (Hsing and Eubank,
2015, Thm. 4.6.5). Here, the eigenvalues and eigenfunctions of the kernel are
defined as solutions to the associated Fredholm integral equation:∫

�

K(x, y)ψj (y)dy = λjψj (x), x ∈ �.

Then, the Karhunen–Loève theorem (Karhunen, 1946; Loève, 1946) ensures
that a zero mean square-integrable Gaussian process Xx with continuous co-
variance function K admits the following representation:

Xx =
∞∑

j=1

√
λj cjψj (x), cj ∼ N (0,1), x ∈ �, (10)

A mathematical guide to operator learning Chapter | 3 107

where cj are independent and identically distributed (i.i.d.) random variables,
and the convergence is uniform in x ∈ �. Suppose the eigenvalue decomposition
of the covariance function is known. In that case, one can sample a random
function from the associated GP, GP(0,K), by sampling the coefficients cj in
Eq. (10) from a standard Gaussian distribution and truncated the series up to
the desired resolution. Under suitable conditions, one can relate the covariance
function K’s smoothness to the random functions sampled from the associated
GP (Adler, 2010, Sec. 3). Moreover, the decay rate of the eigenvalues provides
information about the smoothness of the underlying kernel (Ritter et al., 1995;
Zhu et al., 1998). In practice, the number of eigenvalues greater than machine
precision dictates the dimension of the finite-dimensional vector space spanned
by the random functions sampled from GP(0,K).

One of the most common choices of covariance functions for neural operator
learning include the squared-exponential kernel (Lu et al., 2021a; Boullé et al.,
2022a), which is defined as

K(x,y) = exp(−|x − y|2/(2�2)), x, y ∈ �,

where � > 0 is the length-scale parameter, which roughly characterizes the
distance at which two point values of a sampled random function become un-
correlated (Rasmussen and Williams, 2006, Chapt. 5). Moreover, eigenvalues of
the squared-exponential kernel decay exponentially fast at a rate that depends
on the choice of � (Zhu et al., 1998; Boullé and Townsend, 2022). After a ran-
dom function f has been sampled from the GP, one typically discretizes it by
performing a piecewise linear interpolation at sensor points x1, . . . , xm ∈ � by
evaluating f as these points. The interpolant can then solve the underlying PDE
or train a neural operator. The number of sensors is chosen to resolve the under-
lying random functions and depends on their smoothness. Following the analysis
by Lu et al. (2021a, Suppl. Inf. S4), in one dimension, the error between f and
its piecewise linear interpolant is of order O(1/(m2�2)), and one should choose
m ≥ 1/�. A typical value of � lies in the range � ∈ [0.01,0.1] with m = 100
sensors (Lu et al., 2021a; Boullé et al., 2022a). We illustrate the eigenvalues
of the squared-exponential kernel on � = [0,1] with length-scale parameters
� ∈ {0.1,0.05,0.01}, along with the corresponding random functions sampled
from the associated GP in Fig. 9. As the length-scale parameter � decreases, the
eigenvalues decay faster, and the sampled random functions become smoother.

Another possible choice of covariance functions for neural operator learn-
ing (Benitez et al., 2023; Zhu et al., 2023) comes from the Matérn class of
covariance functions (Rasmussen and Williams, 2006; Stein, 1999):

K(x,y) = 21−ν

(ν)

(√
2ν|x − y|

�

)ν

Kν

(√
2ν|x − y|

�

)
, x, y ∈ �,

where
 is the Gamma function, Kν is a modified Bessel function, and ν, �

are positive parameters that enable the control of the smoothness of the sampled

108 Numerical Analysis Meets Machine Learning

FIGURE 9 (a) Eigenvalues of the squared-exponential kernel on � = [0,1] with length-scale
parameters � ∈ {0.1,0.05,0.01}. (b) Random functions sampled from the associated Gaussian
process GP(0,K), where K is the squared-exponential kernel with length-scale parameters � ∈
{0.1,0.05,0.01}.

random functions. Hence, the resulting Gaussian process is �ν�−1 times mean-
squared differentiable (Rasmussen and Williams, 2006, Sec. 4.2). Moreover,
the Matérn kernel converges to the squared-exponential covariance function as
ν → ∞. We refer to the book by Rasmussen and Williams (2006) for a detailed
analysis of other standard covariance functions in Gaussian processes.

Finally, Li et al. (2021a); Kovachki et al. (2023) propose to use a Green
kernel associated with a differential operator, which is a power of the Helmholtz
equation, as a covariance function:

K = A(−∇2 + cI)−ν .

Here, A, ν > 0, and c ≥ 0 are parameters that respectively govern the scal-
ing of the Gaussian process, the algebraic decay rate of the spectrum, and the
frequency of the first eigenfunctions of the covariance function. One motiva-
tion for this choice of distribution is that it allows the enforcement of prior
information about the underlying model, such as the order of the differential
operator, directly into the source terms. A similar behavior has been observed
in a randomized linear algebra context when selecting the distribution of ran-
dom vectors for approximating matrices from matrix-vector products using the
randomized SVD (Boullé and Townsend, 2022). For example, the eigenvalues
associated with this covariance kernel decay at an algebraic rate, implying that
random functions sampled from this GP would be more oscillatory. This could
lead to higher performance of the neural operator on high-frequency source
terms. However, one downside of this approach is that a poor choice of the pa-
rameters can affect the training and approximation error of the neural operator.
Hence, the studies (Li et al., 2021a; Kovachki et al., 2023) employ different pa-
rameter choices in each of the reported numerical experiments, suggesting that
the covariance hyperparameters have been heavily optimized.

A mathematical guide to operator learning Chapter | 3 109

4.1.2 Numerical PDE solvers
After choosing the covariance function and generating the random source terms
from the Gaussian process, one must solve the underlying PDE to generate the
corresponding solutions. In general, the PDE is unknown, and one only has ac-
cess to an oracle (such as physical experiments or black-box numerical solver)
that outputs solutions u to the PDE from input source terms f as Lu = f . How-
ever, generating synthetic data from known mathematical models to design or
evaluate neural operator architectures is often convenient. One can use numeri-
cal PDE solvers to generate the corresponding solutions in this case. This section
briefly describes the different numerical methods that can be used to solve the
underlying PDEs, along with their key attributes summarized in Table 3. We
want to emphasize that these methods have many variations, and we refer to the
most standard ones.

TABLE 3 Summary of the different properties of standard finite difference,
finite element, and spectral methods for solving PDEs.

Property Finite differences Finite elements Spectral methods
Domain geometry Simple Complex Simple

Approximation Local Local Global

Linear system Large sparse Large sparse Small dense

Convergence rate Algebraic Algebraic Spectral

When the PDE does not depend on time, the most common techniques for
discretizing and solving it are finite difference methods (FDM), finite element
methods (FEM), and spectral methods. The finite difference method consists of
discretizing the computational domain � into a grid and approximating spatial
derivatives of the solution u from linear combinations of the values of u at the
grid points using finite difference operators (Iserles, 2009, Chap. 8). This ap-
proach is based on a local Taylor expansion of the solution and is very easy to
implement on rectangular geometries. However, it usually requires a uniform
grid approximation of the domain, which might not be appropriate for complex
geometries and boundary conditions. The finite element method (Süli and May-
ers, 2003, Chap. 14) employs a different approach than FDM and considers the
approximation of the solution u on a finite-dimensional vector space spanned by
basis functions with local support on �. The spatial discretization of the domain
� is performed via a mesh representation. The basis functions are often chosen
as piecewise polynomials supported on a set of elements, which are adjacent
cells in the mesh. This approach is more flexible than FDM and can be used
to solve PDEs on complex geometries and boundary conditions. However, it is
more challenging to implement and requires the construction of a mesh of the
domain �, which can be computationally expensive. We highlight that the finite
difference and finite element methods lead to large, sparse, and highly structured
linear algebra systems, which can be solved efficiently using iterative methods.

110 Numerical Analysis Meets Machine Learning

Two commonly used finite element software for generating training data for neu-
ral operators are FEniCS (Alnæs et al., 2015) and Firedrake (Rathgeber et al.,
2016; Ham et al., 2023). These open-source software exploit the Unified Form
Language (UFL) developed by Alnæs et al. (2014) to define the weak form of
the PDE in a similar manner as in mathematics and automatically generate the
corresponding finite element assembly code before exploiting fast linear and
nonlinear solvers through a Python interface with the high-performance PETSc
library (Balay et al., 2023).

Finally, spectral methods (Iserles, 2009; Gottlieb and Orszag, 1977; Tre-
fethen, 2000) are based on the approximation of the solution u on a finite-
dimensional vector space spanned by basis functions with global support on �,
usually Chebyshev polynomials or trigonometric functions. Spectral methods
are motivated by the fact that the solution u of a PDE defined on a 1D interval is
often smooth if the source term is smooth and so can be well-approximated by a
Fourier series if it is periodic or a Chebyshev series if it is not periodic. Hence,
spectral methods lead to exponential convergence, also called spectral accuracy,
to analytic solutions with respect to the number of basis functions, unlike FDM
and FEM, which only converge at an algebraic rate. The fast convergence rate
of spectral methods implies that a small number of basis functions is usually re-
quired to achieve a given accuracy. Therefore, the matrices associated with the
resulting linear algebra systems are much smaller than for FEM but are dense. In
summary, spectral methods have a competitive advantage over FDM and FEM
on simple geometries, such as tensor-product domains, and when the solution
is smooth. At the same time, FEM might be difficult to implement but is more
flexible. A convenient software for solving simple PDEs using spectral methods
is the Chebfun software system (Driscoll et al., 2014), an open-source package
written in MATLAB®.

For time-dependent PDEs, one typically starts by performing a time-
discretization using a time-stepping scheme, such as backward differentiation
schemes (e.g. backward Euler) and Runge–Kutta methods (Iserles, 2009; Süli
and Mayers, 2003), and then employ a spatial discretization method, such as
the techniques described before in this section, to solve the resulting stationary
PDE at each time-step.

4.1.3 Amount of training data
Current neural operator approaches typically require a relatively small amount
of training data, in the order of a thousand input-output pairs, to approximate
solution operators associated with PDEs (Lu et al., 2021a; Goswami et al., 2023;
Kovachki et al., 2023; Boullé et al., 2023). This contrasts with the vast amount of
data used to train neural networks for standard supervised learning tasks, such
as image classification, which could require hundreds of millions of labeled
samples (LeCun et al., 2015). This difference can be explained by the fact that
solution operators are often highly structured, which can be exploited to design
data-efficient neural operator architectures (see Section 3).

A mathematical guide to operator learning Chapter | 3 111

Recent numerical experiments have shown that the rate of convergence of
neural operators with respect to the number of training samples evolves in two
regimes (Lu et al., 2021a, Fig. S10). In the first regime, we observe a fast decay
of the testing error at an exponential rate (Boullé et al., 2023). Then, the testing
error decays at a slower algebraic rate in the second regime for a larger amount
of samples and saturates due to discretization error and optimization issues, such
as convergence to a suboptimal local minimum.

On the theoretical side, several works derived sample complexity bounds
that characterize the amount of training data required to learn solution operators
associated with certain classes of linear PDEs to within a prescribed accuracy
0 < ε < 1. In particular, Boullé et al. (2023); Schäfer and Owhadi (2021) focus
on approximating Green’s functions associated with uniformly elliptic PDEs in
divergence form:

− div(A(x)∇u) = f, x ∈ � ⊂ R
d, (11)

where A(x) is a symmetric bounded coefficient matrix (see Eq. (7)). These
studies construct data-efficient algorithms that converge exponentially fast with
respect to the number of training pairs. Hence, they can recover the Green’s
function associated with Eq. (11) to within ε using only O(polylog(1/ε)) sam-
ple pairs. The method employed by Boullé et al. (2023) consists of recover-
ing the hierarchical low-rank structure satisfied by Green’s function on well-
separated subdomains (Bebendorf and Hackbusch, 2003; Lin et al., 2011; Levitt
and Martinsson, 2022b) using a generalization of the rSVD to Hilbert–Schmidt
operators (Boullé and Townsend, 2022, 2023; Halko et al., 2011; Martinsson
and Tropp, 2020). Interestingly, the approach by Schäfer and Owhadi (2021) is
not based on low-rank techniques but relies on the sparse Cholesky factorization
of elliptic solution operators (Schäfer et al., 2021).

Some of the low-rank recovery techniques employed by Boullé et al. (2023)
extend naturally to time-dependent parabolic PDEs (Boullé et al., 2022b) in
spatial dimension d ≥ 1 of the form:

∂u

∂t
− div(A(x, t)∇u) = f, x ∈ � ⊂ R

d, t ∈ (0, T], (12)

where the coefficient matrix A(x, t) ∈ R
d×d is symmetric positive definite with

bounded coefficient functions in L∞(� × [0, T]), for some 0 < T < ∞, and
satisfies the uniform parabolicity condition (Evans, 2010, Sec. 7.1.1). Parabolic
systems in the form of Eq. (12) model various time-dependent phenomena, in-
cluding heat conduction and particle diffusion. Boullé et al. (2022b, Thm. 9)
showed that the Green’s function associated with Eq. (12) admits a hierarchi-
cal low-rank structure on well-separated subdomains, similarly to the elliptic
case (Bebendorf and Hackbusch, 2003). Combining this with the pointwise
bounds satisfied by the Green’s function (Cho et al., 2012), one can construct
an algorithm that recovers the Green’s function to within ε using O(poly(1/ε))

sample pairs (Boullé et al., 2022b, Thm. 10).

112 Numerical Analysis Meets Machine Learning

Finally, other approaches (de Hoop et al., 2023; Jin et al., 2023; Stepani-
ants, 2023) derived convergence rates for a broader class of operators between
infinite-dimensional Hilbert spaces, which are not necessarily associated with
solution operators of PDEs. In particular, de Hoop et al. (2023) consider the
problem of estimating the eigenvalues of an unknown, and possibly unbounded,
self-adjoint operator assuming that the operator is diagonalizable in a known
basis of eigenfunctions, and highlight the impact of varying the smoothness of
training and test data on the convergence rates. Then, Stepaniants (2023); Jin et
al. (2023) derive upper and lower bounds on the sample complexity of Hilbert–
Schmidt operators between two reproducing kernel Hilbert spaces (RKHS) that
depend on the smoothness of the input and output functions.

4.2 Optimization

Once the neural operator architecture has been selected and the training dataset
is constituted, the next task is to train the neural operator by solving an optimiza-
tion problem in the form of Eq. (1). The aim is to identify the best parameters
of the underlying neural network so that the output Â(f ; θ) of the neural oper-
ator evaluated at a forcing term f in the training dataset fits the corresponding
ground truth solution u. This section describes the most common choices of
loss functions and optimization algorithms employed in current operator learn-
ing approaches. Later in Section 4.2.3, we briefly discuss how to measure the
convergence and performance of a trained neural operator.

4.2.1 Loss functions
The choice of loss function in operator learning is a critical step, as it directs the
optimization process and ultimately affects the model’s performance. Different
types of loss functions can be utilized depending on the task’s nature, the oper-
ator’s structure, and the function space’s properties. A common choice of loss
function in ML is the mean squared error (MSE), which is defined as

LMSE = 1

N

N∑
i=1

1

m

m∑
j=1

|Â(fi)(xj) − ui(xj)|2 ≈ 1

N

N∑
i=1

‖Â(fi) − ui‖2
L2(�)

,

(13)
and is employed in the original DeepONet study (Lu et al., 2021a). Here, N

is the number of training samples, m is the number of sensors, fi is the i-th
forcing term, ui is the corresponding ground truth solution, Â(fi) is the output
of the neural operator evaluated at fi , and xj is the j -th sensor location. This
loss function discretizes the squared L2 error between the output of the neural
operator and the ground truth solution at the sensor locations. When the sensor
grid is regular, one can employ a higher-order quadrature rule to discretize the
L2 norm. Moreover, in most cases, it may be beneficial to use a relative error,
especially when the magnitudes of the output function can vary widely. Then,

A mathematical guide to operator learning Chapter | 3 113

Boullé et al. (2022a) use the following relative squared L2 loss function

L = 1

N

N∑
i=1

‖Â(fi) − ui‖2
L2(�)

‖ui‖2
L2(�)

, (14)

which is discretized using a trapezoidal rule. The most common loss function
in operator learning is the relative L2 error employed in Fourier neural operator
techniques (Li et al., 2021a):

L2 = 1

N

N∑
i=1

‖Â(fi) − ui‖L2(�)

‖ui‖L2(�)

. (15)

Kovachki et al. (2023) observed a better normalization of the model when using
a relative loss function, and that the choice of Eq. (15) decreases the testing error
by a factor of two compared to Eq. (14).

For tasks that require robustness to outliers or when it is important to mea-
sure the absolute deviation, the L1 loss can be employed. It is defined as

L1 = 1

N

N∑
i=1

‖Â(fi) − ui‖L1(�)

‖ui‖L1(�)

. (16)

This loss function tends to be less sensitive to large deviations than the L2

loss (Alpak et al., 2023; Lyu et al., 2023; Zhao et al., 2024). Furthermore,
Sobolev norms can also be used as a loss function when the unknown opera-
tor A involves functions in Sobolev spaces (Evans, 2010, Chapt. 5), particularly
when the derivatives of the input and output functions play a role (Son et al.,
2021; Yu et al., 2023; O’Leary-Roseberry et al., 2024). For example, one could
perform training with a relative H 1 loss to enforce the smoothness of the neural
operator output. Finally, when the underlying PDE is known, one can enforce it
as a weak constraint when training the neural operator by adding a PDE resid-
ual term to the loss function (Li et al., 2021b; Wang et al., 2021b), similarly to
physics-informed neural networks (Raissi et al., 2019).

4.2.2 Optimization algorithms and implementation
The training procedure of neural operators is typically performed using Adam
optimization algorithm (Kingma and Ba, 2015; Kovachki et al., 2023; Lu et al.,
2021a; Li et al., 2021a; Goswami et al., 2023) or one of its variants such as
AdamW (Loshchilov and Hutter, 2019; Hao et al., 2023a). Hence, the work in-
troducing DeepONets by Lu et al. (2021a) employed Adam algorithm to train
the neural network architecture with a default learning rate of 0.001. In con-
trast, Kovachki et al. (2023) incorporate learning rate decay throughout the
optimization of Fourier neural operators. One can also employ a two-step train-
ing approach by minimizing the loss function using Adam algorithm for a fixed

114 Numerical Analysis Meets Machine Learning

number of iterations and then fine-tuning the neural operator using the L-BFGS
algorithm (Byrd et al., 1995; Cuomo et al., 2022; He et al., 2020; Mao et al.,
2020; Boullé et al., 2022a). This approach has been shown to improve the
convergence rate of the optimization when little data is available in PINNs appli-
cations (He et al., 2020). Popular libraries for implementing and training neural
operators include PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al.,
2016).

Thus far, there has been limited focus on the theoretical understanding of
convergence and optimization of neural operators. Since neural operators are
a generalization of neural networks in infinite dimensions, existing conver-
gence results of physics-informed neural networks (Wang et al., 2021a, 2022b)
based on the neural tangent kernel (NTK) framework (Jacot et al., 2018; Du
et al., 2019; Allen-Zhu et al., 2019) should naturally extend to neural opera-
tors. One notable exception is the study by Wang et al. (2022a), which analyzes
the training of physics-informed DeepONets (Wang et al., 2021b) and derives
a weighting scheme guided by NTK theory to balance the data and the PDE
residual terms in the loss function.

4.2.3 Measuring convergence and superresolution
After training a neural operator, one typically measures its performance by eval-
uating the testing error, such as the relative L2-error, on a set of unseen data
generated using the procedure described in Section 4. In general, state-of-the-
art neural operator architectures report a relative testing error of 1% − 10%
depending on the problems considered (Kovachki et al., 2023; Lu et al., 2021a;
Li et al., 2021a).

However, it is essential to note that the testing error may not be a good mea-
sure of the performance of a neural operator, as it does not provide any informa-
tion about the generalization properties of the model. Hence, the testing forcing
terms are usually sampled from the same distribution as the training forcing
terms, so they lie on the same finite-dimensional function space, determined by
the spectral decay of the GP covariance kernel eigenvalues (see Section 4.1).
Moreover, in real applications, the testing source terms could have different dis-
tributions than the ones used for training ones, and extrapolation of the neural
operator may be required. Zhu et al. (2023) investigate the extrapolation prop-
erties of DeepONet with respect to the length-scale parameter of the underlying
source term GP. They observe that the testing error increases when the length-
scale parameter corresponding to the test data decreases. At the same time, the
neural operator can extrapolate to unseen data with a larger length scale than the
training dataset, i.e., smoother functions.

One attractive property of neural operators is their resolution invariance to
perform predictions at finer spatial resolutions than the training dataset on which
they have been trained. This is usually called zero-shot superresolution (Ko-
vachki et al., 2023, Sec. 7.2.3). To investigate this property, we reproduce the
numerical examples of Kovachki et al. (2023, Sec. 7.2) and train a Fourier neu-

A mathematical guide to operator learning Chapter | 3 115

FIGURE 10 (a) Relative test error at different spatial resolutions of the Fourier neural operator
trained to approximate the solution operator of the 1D Burgers’ equation (17) with trained resolution
of s = 256. (b) FNO trained on 2D Darcy flow a resolution of s = 47 (blue) and s = 85 (red) and
evaluated at higher spatial resolutions.

ral operator to approximate the solution operator of Burgers’ equation and Darcy
flow at a low-resolution data and evaluate the operator at higher resolutions. We
consider the one-dimensional Burgers’ equation:

∂

∂t
u(x, t) + 1

2

∂

∂x

(u(x, t)2) = ν
∂2

∂x2
u(x, t), x ∈ (0,2π), t ∈ [0,1], (17)

with periodic boundary conditions and viscosity ν = 0.1. We are interested
in learning the solution operator A : L2

per((0,2π)) → H 1
per((0,2π)), which

maps initial conditions u0 ∈ L2
per((0,2π)) to corresponding solutions u(·,1) ∈

H 1
per((0,2π)) to Eq. (17) at time t = 1. We then discretize the source and solu-

tion training data on a uniform grid with spatial resolution s = 256 and evaluate
the trained neural operator at finer spatial resolutions s ∈ {512,1024,2048}. We
observe in Fig. 10(a) that the relative testing error of the neural operator is inde-
pendent of the spatial resolutions, as reported by Kovachki et al. (2023, Sec. 7.2).

Next, we consider the two-dimensional Darcy flow equation (18) with con-
stant source term f = 1 and homogeneous Dirichlet boundary conditions on a
unit square domain � = [0,1]2:

− div(a(x)∇u) = 1, x ∈ [0,1]2. (18)

We train a Fourier neural operator to approximate the solution operator, mapping
the coefficient function a to the associated solution u to Eq. (18). We reproduce
the numerical experiment in Kovachki et al. (2023, Sec. 6.2), where the ran-
dom coefficient functions a are piecewise constant. The random functions a are
generated as a ∼ T ◦ f , where f ∼ GP(0,C), with C = (−� + 9I)−2 and

116 Numerical Analysis Meets Machine Learning

FIGURE 11 (a) Ground truth solution u to the 2D Darcy flow equation (18) corresponding to
the coefficients function plotted in (b). (c)-(d) Predicted solution and approximation error at s = 47
and s = 421 by a Fourier neural operator trained on a Darcy flow dataset with spatial resolution of
s = 47.

T :R →R
+ is defined as

T (x) =
{

12, if x ≥ 0,

3, if x < 0.

We discretize the coefficient and solution training data on a s × s uniform grid
with spatial resolution s = 47 and evaluate the trained neural operator at higher
spatial resolutions in Fig. 10. The relative testing error does not increase as the
spatial resolution increases. Moreover, training the neural operator on a higher
spatial resolution dataset can decrease the testing error. We also plot the ground
truth solution u to Eq. (18) in Fig. 11(a) corresponding to the coefficient function
plotted in panel (b), along with the predicted solutions and approximation errors
at s = 47 and s = 421 by the Fourier neural operator in panels (c) and (d).
We want to point the reader interested in the discretization properties of neural
operators to the recent perspective on representation equivalent neural operators
(ReNO) by Bartolucci et al. (2023).

5 Conclusions and future challenges

In this paper, we provided a comprehensive overview of the recent developments
in neural operator learning, a new paradigm at the intersection of scientific com-
puting and ML for learning solution operators of PDEs. Given the recent surge
of interest in this field, a key question concerns the choice of neural architectures
for different PDEs. Most theoretical studies in the field analyze and compare
neural operators through the prism of approximation theory. We proposed a

A mathematical guide to operator learning Chapter | 3 117

framework based on numerical linear algebra and matrix recovery problems for
interpreting the type of neural operator architectures that can be used to learn so-
lution operators of PDEs. Hence, solution operators associated with linear PDEs
can often be written as integral operators with a Green’s function and recover by
a one-layer neural operator, which after discretization is equivalent to a matrix
recovery problem.

Moreover, the choice of architectures, such as FNO or DeepONet, enforces
or preserves different properties of the PDE solution operator, such as being
translation invariant, low-rank, or off-diagonal low-rank (see Table 2). We then
focused on the data acquisition process. We highlighted the importance of the
distribution of source terms, usually sampled from a Gaussian process with a
tailored covariance kernel, on the resulting performance of the neural operator.
Following recent works on elliptic and parabolic PDEs and numerical experi-
ments, we also discussed the relatively small amount of training data needed
for operator learning. Finally, we studied the different choices of optimization
algorithms and loss functions and highlighted the superresolution properties of
neural operators, i.e., their ability to be evaluated at higher resolution than the
training dataset with a minor impact on the performance. There are, however,
several remaining challenges in the field.

Distribution of probes

Most applications of neural operators employ source terms that are globally sup-
ported on the domain, sampled from a Gaussian process, and whose distribution
is fixed before training. However, this might now always apply to real-world en-
gineering or biological systems, where source terms could be localized in space
and time. A significant problem is to study the impact of the distribution of lo-
cally supported source terms on the performance of neural operators, both from
a practical and theoretical viewpoint. Hence, recent sample complexity works
on elliptic and parabolic PDEs exploit structured source terms (Boullé et al.,
2023, 2022b; Schäfer and Owhadi, 2021). Another area of future research is
to employ adaptive source terms to fine-tune neural operators for specific ap-
plications. This could lead to higher performance by selecting source terms that
maximize the training error or allow efficient transfer learning between different
applications without retraining a large neural operator.

Software and datasets

An essential step towards democratizing operator learning involves the devel-
opment of open-source software and datasets for training and comparing neural
operators, similar to the role played by the MNIST (LeCun et al., 1998) and
ImageNet (Deng et al., 2009) databases in the improvement of computer vision
techniques. However, due to the fast emerging methods in operator learning,
there have been limited attempts beyond (Lu et al., 2022) to standardize the
datasets and software used in the field. Establishing a list of standard PDE prob-
lems across different scientific fields, such as fluid dynamics, quantum mechan-

118 Numerical Analysis Meets Machine Learning

ics, and epidemiology, with other properties (e.g. linear/nonlinear, steady/time-
dependent, low/high dimensional, smooth/rough solutions, simple/complex ge-
ometry) would allow researchers to compare and identify the neural operator
architectures that are the most appropriate for a particular task. A recent bench-
mark has been proposed to evaluate the performance of physics-informed neural
networks for solving PDEs (Hao et al., 2023b).

Real-world applications

Neural operators have been successfully applied to perform weather forecasting
and achieve spectacular performance in terms of accuracy and computational
time to solutions compared to traditional numerical weather prediction tech-
niques while being trained on historical weather data (Kurth et al., 2023; Lam
et al., 2023). An exciting development in the field of operator learning would be
to expand the scope of applications to other scientific fields and train the models
on real datasets, where the underlying PDE governing the data is unknown to
discover new physics.

Theoretical understanding

Following the recent works on the approximation theory of neural operators
and sample complexity bounds for different classes of PDEs, there is a growing
need for a theoretical understanding of convergence and optimization. In par-
ticular, an exciting area of research would be to extend the convergence results
of physics-informed neural networks and the neural tangent kernel framework
to neural operators. This would enable the derivation of rigorous convergence
rates for different types of neural operator architectures and loss functions and
new schemes for initializing the weight distributions in the underlying neural
networks.

Physical properties

Most neural operator architectures are motivated by obtaining a good approxi-
mation of the solution operator of a PDE. However, the resulting neural operator
is often highly nonlinear, difficult to interpret mathematically, and might not
satisfy the physical properties of the underlying PDE, such as conservation
laws or symmetries (Olver, 1993b). There are several promising research di-
rections in operator learning related to symmetries and conservation laws (Otto
et al., 2023). One approach would be to enforce known physical properties
when training neural operators, either strongly through structure preserving ar-
chitectures (Richter-Powell et al., 2022), or weakly by adding a residual term
in the loss function (Li et al., 2021b; Wang et al., 2021b). Another direction
is to discover new physical properties of the underlying PDEs from the trained
neural operator. While (Boullé et al., 2022a) showed that symmetries of linear
PDEs can be recovered from the learned Green’s function, this approach has
not been extended to nonlinear PDEs. Finally, one could also consider using

A mathematical guide to operator learning Chapter | 3 119

reinforcement learning techniques for enforcing physical constraints after the
optimization procedure, similar to recent applications in large language mod-
els (Ouyang et al., 2022).

Acknowledgments
The work of both authors was supported by the Office of Naval Research (ONR), under grant
N00014-23-1-2729. N.B. was supported by an INI-Simons Postdoctoral Research Fellowship.
A.T. was supported by National Science Foundation grants DMS-2045646 and a Weiss Junior
Fellowship Award.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., et al., 2016. Tensorflow: a system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation, pp. 265–283.

Adler, R.J., 2010. The Geometry of Random Fields. SIAM.
Allen-Zhu, Z., Li, Y., Song, Z., 2019. A convergence theory for deep learning via over-

parameterization. In: International Conference on Machine Learning, pp. 242–252.
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J.,

Rognes, M.E., Wells, G.N., 2015. The FEniCS project version 1.5. Arch. Numer. Softw. 3 (100).
Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N., 2014. Unified form language: a

domain-specific language for weak formulations of partial differential equations. ACM Trans.
Math. Softw. 40 (2), 1–37.

Alpak, F.O., Vamaraju, J., Jennings, J.W., Pawar, S., Devarakota, P., Hohl, D., 2023. Augmenting
deep residual surrogates with Fourier neural operators for rapid two-phase flow and transport
simulations. SPE J., 1–22.

Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B., 2019. Solving inverse problems using data-
driven models. Acta Numer. 28, 1–174.

Balay, S., Abhyankar, S., Adams, M.F., et al., 2023. PETSc Users Manual. Argonne National Lab-
oratory.

Bartolucci, F., de Bézenac, E., Raonić, B., Molinaro, R., Mishra, S., Alaifari, R., 2023. Are neural
operators really neural operators? Frame theory meets operator learning. arXiv preprint. arXiv:
2305.19913.

Bebendorf, M., Hackbusch, W., 2003. Existence of H-matrix approximants to the inverse FE-matrix
of elliptic operators with L∞-coefficients. Numer. Math. 95 (1), 1–28.

Benitez, J.A.L., Furuya, T., Faucher, F., Kratsios, A., Tricoche, X., de Hoop, M.V., 2023. Out-of-
distributional risk bounds for neural operators with applications to the Helmholtz equation.
arXiv preprint. arXiv:2301.11509.

Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M., 2021. Model reduction and neural
networks for parametric PDEs. SMAI J. Comput. Math. 7, 121–157.

Boullé, N., Townsend, A., 2022. A generalization of the randomized singular value decomposition.
In: International Conference on Learning Representations.

Boullé, N., Townsend, A., 2023. Learning elliptic partial differential equations with randomized
linear algebra. Found. Comput. Math. 23 (2), 709–739.

Boullé, N., Nakatsukasa, Y., Townsend, A., 2020. Rational neural networks. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 14243–14253.

Boullé, N., Earls, C.J., Townsend, A., 2022a. Data-driven discovery of Green’s functions with
human-understandable deep learning. Sci. Rep. 12 (1), 4824.

Boullé, N., Kim, S., Shi, T., Townsend, A., 2022b. Learning Green’s functions associated with time-
dependent partial differential equations. J. Mach. Learn. Res. 23 (218), 1–34.

120 Numerical Analysis Meets Machine Learning

Boullé, N., Halikias, D., Townsend, A., 2023. Elliptic PDE learning is provably data-efficient. Proc.
Natl. Acad. Sci. USA 120 (39), e2303904120.

Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P., 2021. Geometric deep learning: grids, groups,
graphs, geodesics, and gauges. arXiv preprint. arXiv:2104.13478.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot learners. In: Advances in
Neural Information Processing Systems, vol. 33, pp. 1877–1901.

Bruno, O.P., Han, Y., Pohlman, M.M., 2007. Accurate, high-order representation of complex three-
dimensional surfaces via Fourier continuation analysis. J. Comput. Phys. 227 (2), 1094–1125.

Brunton, S.L., Proctor, J.L., Kutz, J.N., 2016. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113 (15), 3932–3937.

Byrd, R.H., Lu, P., Nocedal, J., Zhu, C., 1995. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16 (5), 1190–1208.

Canzani, Y., 2013. Analysis on Manifolds via the Laplacian. Harvard University.
Cao, S., 2021. Choose a transformer: Fourier or Galerkin. In: Advances in Neural Information Pro-

cessing Systems, vol. 34, pp. 24924–24940.
Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L., 2019. Data-driven discovery of coordinates and

governing equations. Proc. Natl. Acad. Sci. USA 116 (45), 22445–22451.
Chen, T., Chen, H., 1995. Universal approximation to nonlinear operators by neural networks with

arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural
Netw. 6 (4), 911–917.

Cho, S., Dong, H., Kim, S., 2008. On the Green’s matrices of strongly parabolic systems of second
order. Indiana Univ. Math. J. 57 (4), 1633–1677.

Cho, S., Dong, H., Kim, S., 2012. Global estimates for Green’s matrix of second order parabolic
systems with application to elliptic systems in two dimensional domains. Potential Anal. 36
(2), 339–372.

Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier series.
Math. Comput. 19 (90), 297–301.

Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F., 2022. Scientific ma-
chine learning through physics–informed neural networks: where we are and what’s next. J. Sci.
Comput. 92 (3), 88.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Math. Control Sig-
nals Syst. 2 (4), 303–314.

de Hoop, M.V., Huang, D.Z., Qian, E., Stuart, A.M., 2022. The cost-accuracy trade-off in operator
learning with neural networks. arXiv preprint. arXiv:2203.13181.

de Hoop, M.V., Kovachki, N.B., Nelsen, N.H., Stuart, A.M., 2023. Convergence rates for learning
linear operators from noisy data. SIAM/ASA J. Uncertain. Quantificat. 11 (2), 480–513.

De Ryck, T., Mishra, S., 2022. Generic bounds on the approximation error for physics-informed
(and) operator learning. In: Advances in Neural Information Processing Systems, vol. 35,
pp. 10945–10958.

Deng, B., Shin, Y., Lu, L., Zhang, Z., Karniadakis, G.E., 2022. Approximation rates of DeepONets
for learning operators arising from advection–diffusion equations. Neural Netw. 153, 411–426.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: a large-scale hier-
archical image database. In: Conference on Computer Vision and Pattern Recognition. IEEE,
pp. 248–255.

DeVore, R.A., 1998. Nonlinear approximation. Acta Numer. 7, 51–150.
Di Leoni, P.C., Lu, L., Meneveau, C., Karniadakis, G.E., Zaki, T.A., 2023. Neural operator predic-

tion of linear instability waves in high-speed boundary layers. J. Comput. Phys. 474, 111793.
Dong, H., Kim, S., 2009. Green’s matrices of second order elliptic systems with measurable coeffi-

cients in two dimensional domains. Trans. Am. Math. Soc. 361 (6), 3303–3323.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., et al., 2020. An image is worth 16x16 words: transformers
for image recognition at scale. arXiv preprint. arXiv:2010.11929.

A mathematical guide to operator learning Chapter | 3 121

Driscoll, T.A., Hale, N., Trefethen, L.N., 2014. Chebfun Guide. Pafnuty Publications. http://www.
chebfun.org/docs/guide/.

Du, S., Lee, J., Li, H., Wang, L., Zhai, X., 2019. Gradient descent finds global minima of deep neural
networks. In: International Conference on Machine Learning, pp. 1675–1685.

E, W., Yu, B., 2018. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat. 6 (1), 1–12.

Evans, L.C., 2010. Partial Differential Equations, 2nd edition. American Mathematical Society.
Fanaskov, V., Oseledets, I., 2022. Spectral neural operators. arXiv preprint. arXiv:2205.10573.
Feliu-Faba, J., Fan, Y., Ying, L., 2020. Meta-learning pseudo-differential operators with deep neural

networks. J. Comput. Phys. 408, 109309.
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., 2017. Neural message passing for

quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272.
Gin, C.R., Shea, D.E., Brunton, S.L., Kutz, J.N., 2021. DeepGreen: deep learning of Green’s func-

tions for nonlinear boundary value problems. Sci. Rep. 11 (1), 1–14.
Goswami, S., Yin, M., Yu, Y., Karniadakis, G.E., 2022. A physics-informed variational deeponet

for predicting crack path in quasi-brittle materials. Comput. Methods Appl. Mech. Eng. 391,
114587.

Goswami, S., Bora, A., Yu, Y., Karniadakis, G.E., 2023. Physics-informed deep neural operator net-
works. In: Machine Learning in Modeling and Simulation: Methods and Applications. Springer,
pp. 219–254.

Gottlieb, D., Orszag, S.A., 1977. Numerical Analysis of Spectral Methods: Theory and Applica-
tions. SIAM.

Greengard, L., Rokhlin, V., 1997. A new version of the fast multipole method for the Laplace equa-
tion in three dimensions. Acta Numer. 6, 229–269.

Grüter, M., Widman, K.-O., 1982. The Green function for uniformly elliptic equations. Manuscr.
Math. 37 (3), 303–342.

Gupta, G., Xiao, X., Bogdan, P., 2021. Multiwavelet-based operator learning for differential equa-
tions. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24048–24062.

Hackbusch, W., Khoromskij, B.N., Kriemann, R., 2004. Hierarchical matrices based on a weak
admissibility criterion. Computing 73 (3), 207–243.

Halikias, D., Townsend, A., 2023. Structured matrix recovery from matrix-vector products. Numer.
Linear Algebra Appl., e2531.

Halko, N., Martinsson, P.-G., Tropp, J.A., 2011. Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev. 53 (2), 217–288.

Ham, D.A., Kelly, P.H.J., Mitchell, L., Cotter, C.J., Kirby, R.C., Sagiyama, K., Bouziani, N., Vorder-
wuelbecke, S., Gregory, T.J., Betteridge, J., Shapero, D.R., Nixon-Hill, R.W., Ward, C.J., Far-
rell, P.E., Brubeck, P.D., Marsden, I., Gibson, T.H., Homolya, M., Sun, T., McRae, A.T.T.,
Luporini, F., Gregory, A., Lange, M., Funke, S.W., Rathgeber, F., Bercea, G.-T., Markall, G.R.,
2023. Firedrake User Manual, 1st edition. Imperial College London and University of Oxford
and Baylor University and University of Washington.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S., Cheng, Z., Song, J., Zhu, J., 2023a. GNOT:
a general neural operator transformer for operator learning. In: International Conference on
Machine Learning, pp. 12556–12569.

Hao, Z., Yao, J., Su, C., Su, H., Wang, Z., Lu, F., Xia, Z., Zhang, Y., Liu, S., Lu, L., et al., 2023b.
PINNacle: a comprehensive benchmark of physics-informed neural networks for solving PDEs.
arXiv preprint. arXiv:2306.08827.

He, Q., Barajas-Solano, D., Tartakovsky, G., Tartakovsky, A.M., 2020. Physics-informed neural
networks for multiphysics data assimilation with application to subsurface transport. Adv. Water
Resour. 141, 103610.

Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. In: Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851.

Hofmann, S., Kim, S., 2004. Gaussian estimates for fundamental solutions to certain parabolic sys-
tems. Publ. Mat., 481–496.

http://www.chebfun.org/docs/guide/

122 Numerical Analysis Meets Machine Learning

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural Netw. 4
(2), 251–257.

Hsing, T., Eubank, R., 2015. Theoretical Foundations of Functional Data Analysis, with an Intro-
duction to Linear Operators. John Wiley & Sons.

Iserles, A., 2009. A First Course in the Numerical Analysis of Differential Equations. Cambridge
University Press.

Jacot, A., Gabriel, F., Hongler, C., 2018. Neural tangent kernel: convergence and generalization in
neural networks. In: Advances in Neural Information Processing Systems, vol. 31.

Jin, J., Lu, Y., Blanchet, J., Ying, L., 2023. Minimax optimal kernel operator learning via multilevel
training. In: International Conference on Learning Representations.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Žídek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction
with AlphaFold. Nature 596 (7873), 583–589.

Karhunen, K., 1946. Über lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci.
Fenn., Ser. A I 37, 3–79.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L., 2021. Physics-
informed machine learning. Nat. Rev. Phys. 3 (6), 422–440.

Kingma, D.P., Ba, J., 2015. Adam: a method for stochastic optimization. In: Proc. 3rd International
Conference on Learning Representation.

Kissas, G., Seidman, J.H., Guilhoto, L.F., Preciado, V.M., Pappas, G.J., Perdikaris, P., 2022. Learn-
ing operators with coupled attention. J. Mach. Learn. Res. 23 (1), 9636–9698.

Kovachki, N., Lanthaler, S., Mishra, S., 2021. On universal approximation and error bounds for
Fourier neural operators. J. Mach. Learn. Res. 22, 1–76.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2023. Neural operator: learning maps between function spaces with applications to PDEs. J.
Mach. Learn. Res. 24 (89), 1–97.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, vol. 25.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., Miele, A., Kashinath,
K., Anandkumar, A., 2023. Fourcastnet: accelerating global high-resolution weather forecasting
using adaptive Fourier neural operators. In: Proceedings of the Platform for Advanced Scientific
Computing Conference, pp. 1–11.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri,
S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al., 2023. Learning skillful medium-range global
weather forecasting. Science, eadi2336.

Lanthaler, S., Mishra, S., Karniadakis, G.E., 2022. Error estimates for DeepONets: a deep learning
framework in infinite dimensions. Trans. Math. Appl. 6 (1).

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document
recognition. Proc. IEEE 86 (11), 2278–2324.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Levitt, J., Martinsson, P.-G., 2022a. Linear-complexity black-box randomized compression of hier-

archically block separable matrices. arXiv preprint. arXiv:2205.02990.
Levitt, J., Martinsson, P.-G., 2022b. Randomized compression of rank-structured matrices acceler-

ated with graph coloring. arXiv preprint. arXiv:2205.03406.
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.,

2020a. Neural operator: graph kernel network for partial differential equations. arXiv preprint.
arXiv:2003.03485.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart, A., Bhattacharya, K., Anandkumar, A.,
2020b. Multipole graph neural operator for parametric partial differential equations. In: Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 6755–6766.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.,
2021a. Fourier neural operator for parametric partial differential equations. In: International
Conference on Learning Representations.

A mathematical guide to operator learning Chapter | 3 123

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K., Anandkumar,
A., 2021b. Physics-informed neural operator for learning partial differential equations. arXiv
preprint. arXiv:2111.03794.

Li, Z., Huang, D.Z., Liu, B., Anandkumar, A., 2022. Fourier neural operator with learned deforma-
tions for PDEs on general geometries. arXiv preprint. arXiv:2207.05209.

Li, Z., Kovachki, N.B., Choy, C., Li, B., Kossaifi, J., Otta, S.P., Nabian, M.A., Stadler, M., Hundt,
C., Azizzadenesheli, K., et al., 2023a. Geometry-informed neural operator for large-scale 3D
PDEs. arXiv preprint. arXiv:2309.00583.

Li, Z., Peng, W., Yuan, Z., Wang, J., 2023b. Long-term predictions of turbulence by implicit U-Net
enhanced Fourier neural operator. Phys. Fluids 35 (7).

Lin, G., Chen, F., Hu, P., Chen, X., Chen, J., Wang, J., Shi, Z., 2023. BI-GreenNet: learning Green’s
functions by boundary integral network. Commun. Math. Stat. 11 (1), 103–129.

Lin, L., Lu, J., Ying, L., 2011. Fast construction of hierarchical matrix representation from matrix–
vector multiplication. J. Comput. Phys. 230 (10), 4071–4087.

Loève, M., 1946. Fonctions aleatoire de second ordre. Rev. Sci. 84, 195–206.
Loshchilov, I., Hutter, F., 2019. Decoupled weight decay regularization. In: International Conference

on Learning Representations.
Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E., 2021a. Learning nonlinear operators via

DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3 (3),
218–229.

Lu, L., Meng, X., Mao, Z., Karniadakis, G.E., 2021b. DeepXDE: a deep learning library for solving
differential equations. SIAM Rev. 63 (1), 208–228.

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., Karniadakis, G.E., 2022. A comprehen-
sive and fair comparison of two neural operators (with practical extensions) based on fair data.
Comput. Methods Appl. Mech. Eng. 393, 114778.

Lyu, Y., Zhao, X., Gong, Z., Kang, X., Yao, W., 2023. Multi-fidelity prediction of fluid flow based
on transfer learning using Fourier neural operator. Phys. Fluids 35 (7).

Mao, S., Dong, R., Lu, L., Yi, K.M., Wang, S., Perdikaris, P., 2023. PPDONet: deep operator net-
works for fast prediction of steady-state solutions in disk–planet systems. Astrophys. J. Lett. 950
(2), L12.

Mao, Z., Jagtap, A.D., Karniadakis, G.E., 2020. Physics-informed neural networks for high-speed
flows. Comput. Methods Appl. Mech. Eng. 360, 112789.

Martinsson, P.-G., 2011. A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix. SIAM J. Matrix Anal. Appl. 32 (4), 1251–1274.

Martinsson, P.-G., Tropp, J.A., 2020. Randomized numerical linear algebra: foundations and algo-
rithms. Acta Numer. 29, 403–572.

Mathieu, M., Henaff, M., LeCun, Y., 2014. Fast training of convolutional networks through FFTs.
In: International Conference on Learning Representations.

Mercer, J., 1909. Functions of positive and negative type, and their connection with the theory of
integral equations. Philos. Trans. R. Soc. A 209, 415–446.

Minakshisundaram, S., Pleijel, Å., 1949. Some properties of the eigenfunctions of the Laplace-
operator on Riemannian manifolds. Can. J. Math. 1 (3), 242–256.

Moya, C., Zhang, S., Lin, G., Yue, M., 2023. Deeponet-grid-uq: a trustworthy deep operator frame-
work for predicting the power grid’s post-fault trajectories. Neurocomputing 535, 166–182.

O’Leary-Roseberry, T., Chen, P., Villa, U., Ghattas, O., 2024. Derivative-informed neural oper-
ator: an efficient framework for high-dimensional parametric derivative learning. J. Comput.
Phys. 496, 112555.

Olver, P.J., 1993a. Applications of Lie Groups to Differential Equations. Springer Science & Busi-
ness Media.

Olver, P.J., 1993b. Applications of Lie Groups to Differential Equations, 2nd edition. Springer-
Verlag.

Otto, S.E., Zolman, N., Kutz, J.N., Brunton, S.L., 2023. A unified framework to enforce, discover,
and promote symmetry in machine learning. arXiv preprint. arXiv:2311.00212.

124 Numerical Analysis Meets Machine Learning

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al., 2022. Training language models to follow instructions with human
feedback. In: Advances in Neural Information Processing Systems, vol. 35, pp. 27730–27744.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al., 2019. Pytorch: an imperative style, high-performance deep learning library.
In: Advances in Neural Information Processing Systems, vol. 32.

Peng, R., Dong, J., Malof, J., Padilla, W.J., Tarokh, V., 2023. Deep generalized Green’s functions.
arXiv preprint. arXiv:2306.02925.

Peng, W., Yuan, Z., Wang, J., 2022. Attention-enhanced neural network models for turbulence sim-
ulation. Phys. Fluids 34 (2).

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys. 378, 686–707.

Raonic, B., Molinaro, R., Rohner, T., Mishra, S., de Bezenac, E., 2023. Convolutional neural oper-
ators. In: ICLR 2023 Workshop on Physics for Machine Learning.

Rasmussen, C.E., Williams, C., 2006. Gaussian Processes for Machine Learning. MIT Press.
Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., McRae, A.T., Bercea, G.-T.,

Markall, G.R., Kelly, P.H., 2016. Firedrake: automating the finite element method by composing
abstractions. ACM Trans. Math. Softw. 43 (3), 1–27.

Richter-Powell, J., Lipman, Y., Chen, R.T., 2022. Neural conservation laws: a divergence-free per-
spective. In: Advances in Neural Information Processing Systems, vol. 35, pp. 38075–38088.

Ritter, K., Wasilkowski, G.W., Woźniakowski, H., 1995. Multivariate integration and approximation
for random fields satisfying Sacks-Ylvisaker conditions. Ann. Appl. Probab., 518–540.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G., 2008. The graph neural net-
work model. IEEE Trans. Neural Netw. 20 (1), 61–80.

Schäfer, F., Owhadi, H., 2021. Sparse recovery of elliptic solvers from matrix-vector products. arXiv
preprint. arXiv:2110.05351.

Schäfer, F., Sullivan, T.J., Owhadi, H., 2021. Compression, inversion, and approximate PCA of
dense kernel matrices at near-linear computational complexity. Multiscale Model. Simul. 19
(2), 688–730.

Schmidt, M., Lipson, H., 2009. Distilling free-form natural laws from experimental data. Sci-
ence 324 (5923), 81–85.

Searson, D.P., Leahy, D.E., Willis, M.J., 2010. GPTIPS: an open source genetic programming tool-
box for multigene symbolic regression. In: Proceedings of the International Multiconference of
Engineers and Computer Scientists, vol. 1. Citeseer, pp. 77–80.

Sirignano, J., Spiliopoulos, K., 2018. DGM: a deep learning algorithm for solving partial differential
equations. J. Comput. Phys. 375, 1339–1364.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S., 2015. Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In: International Conference on Machine Learning,
pp. 2256–2265.

Son, H., Jang, J.W., Han, W.J., Hwang, H.J., 2021. Sobolev training for physics informed neural
networks. arXiv preprint. arXiv:2101.08932.

Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B., 2021. Score-based
generative modeling through stochastic differential equations. In: International Conference on
Learning Representations.

Stein, M.L., 1999. Interpolation of Spatial Data: Some Theory for Kriging. Springer Science &
Business Media.

Stepaniants, G., 2023. Learning partial differential equations in reproducing kernel Hilbert spaces.
J. Mach. Learn. Res. 24 (86), 1–72.

Stuart, A.M., 2010. Inverse problems: a Bayesian perspective. Acta Numer. 19, 451–559.
Süli, E., Mayers, D.F., 2003. An Introduction to Numerical Analysis. Cambridge University Press.
Sun, J., Liu, Y., Wang, Y., Yao, Z., Zheng, X., 2023. BINN: a deep learning approach for compu-

tational mechanics problems based on boundary integral equations. Comput. Methods Appl.
Mech. Eng. 410, 116012.

A mathematical guide to operator learning Chapter | 3 125

Trefethen, L.N., 2000. Spectral Methods in MATLAB. SIAM.
Tripura, T., Chakraborty, S., 2022. Wavelet neural operator: a neural operator for parametric partial

differential equations. arXiv preprint. arXiv:2205.02191.
Udrescu, S.-M., Tegmark, M., 2020. AI Feynman: a physics-inspired method for symbolic regres-

sion. Sci. Adv. 6 (16), eaay2631.
Udrescu, S.-M., Tan, A., Feng, J., Neto, O., Wu, T., Tegmark, M., 2020. AI Feynman 2.0: Pareto-

optimal symbolic regression exploiting graph modularity. In: Advances in Neural Information
Processing Systems, vol. 33, pp. 4860–4871.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin,
I., 2017. Attention is all you need. In: Advances in Neural Information Processing Systems,
vol. 30.

Venturi, S., Casey, T., 2023. Svd perspectives for augmenting deeponet flexibility and interpretabil-
ity. Comput. Methods Appl. Mech. Eng. 403, 115718.

Wang, S., Wang, H., Perdikaris, P., 2021a. On the eigenvector bias of Fourier feature networks:
from regression to solving multi-scale PDEs with physics-informed neural networks. Comput.
Methods Appl. Mech. Eng. 384, 113938.

Wang, S., Wang, H., Perdikaris, P., 2021b. Learning the solution operator of parametric partial dif-
ferential equations with physics-informed DeepONets. Sci. Adv. 7 (40), eabi8605.

Wang, S., Wang, H., Perdikaris, P., 2022a. Improved architectures and training algorithms for deep
operator networks. J. Sci. Comput. 92 (2), 35.

Wang, S., Yu, X., Perdikaris, P., 2022b. When and why PINNs fail to train: a neural tangent kernel
perspective. J. Comput. Phys. 449, 110768.

Wang, S., Sankaran, S., Wang, H., Perdikaris, P., 2023. An expert’s guide to training physics-
informed neural networks. arXiv preprint. arXiv:2308.08468.

Weyl, H., 1911. Über die asymptotische verteilung der eigenwerte. Nachr. Ges. Wiss. Gött., Math.-
Phys. Kl. 1911, 110–117.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive survey on graph
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32 (1), 4–24.

Yarotsky, D., 2017. Error bounds for approximations with deep ReLU networks. Neural Netw. 94,
103–114.

Ying, L., Biros, G., Zorin, D., 2004. A kernel-independent adaptive fast multipole algorithm in two
and three dimensions. J. Comput. Phys. 196 (2), 591–626.

You, H., Zhang, Q., Ross, C.J., Lee, C.-H., Yu, Y., 2022. Learning deep implicit Fourier neural
operators (IFNOs) with applications to heterogeneous material modeling. Comput. Methods
Appl. Mech. Eng. 398, 115296.

Yu, A., Yang, Y., Townsend, A., 2023. Tuning frequency bias in neural network training with nonuni-
form data. In: International Conference on Learning Representations.

Zhao, X., Chen, X., Gong, Z., Zhou, W., Yao, W., Zhang, Y., 2024. RecFNO: a resolution-invariant
flow and heat field reconstruction method from sparse observations via Fourier neural operator.
Int. J. Therm. Sci. 195, 108619.

Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K., Anandkumar, A., 2023. Fast sampling of
diffusion models via operator learning. In: International Conference on Machine Learning,
pp. 42390–42402.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2020. Graph neural
networks: a review of methods and applications. AI Open 1, 57–81.

Zhu, H., Williams, C.K., Rohwer, R., Morciniec, M., 1998. Gaussian regression and optimal finite
dimensional linear models. In: Neural Networks and Machine Learning. Springer-Verlag.

Zhu, M., Zhang, H., Jiao, A., Karniadakis, G.E., Lu, L., 2023. Reliable extrapolation of deep neural
operators informed by physics or sparse observations. Comput. Methods Appl. Mech. Eng. 412,
116064.

	3 A mathematical guide to operator learning
	1 Introduction
	1.1 What is a neural operator?
	1.2 Where is operator learning relevant?
	1.3 Organization of the paper

	2 From numerical linear algebra to operator learning
	2.1 Low rank matrix recovery
	2.2 Circulant matrix recovery
	2.3 Banded matrix recovery
	2.4 Hierarchical low rank matrix recovery

	3 Neural operator architectures
	3.1 Deep operator networks
	3.2 Fourier neural operators
	3.3 Deep Green networks
	3.4 Graph neural operators
	3.5 Multipole graph neural operators

	4 Learning neural operators
	4.1 Data acquisition
	4.1.1 Distribution of source terms
	4.1.2 Numerical PDE solvers
	4.1.3 Amount of training data

	4.2 Optimization
	4.2.1 Loss functions
	4.2.2 Optimization algorithms and implementation
	4.2.3 Measuring convergence and superresolution

	5 Conclusions and future challenges
	Acknowledgments
	References

