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Abstract
Recent developments in the field of data-driven modeling have led to the advancement
of weak form-based methodologies in scientific machine learning. This class of methods
offers several compelling advantages, including high computational efficiency and high
noise robustness. In this chapter, we present an overview of the weak form approach as
well as discuss several categories of applications including equation discovery, consti-
tutive parameter inference, and reduced order modeling. In particular, we illustrate the
performance on several benchmark examples for ordinary, partial, and stochastic differ-
ential equations.
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1 Introduction

The weak form of a differential equation is created by multiplying both sides
by a smooth function φ and integrating over a domain of interest. Historically,
this idea originated from the fact that frequently physical conservation laws can
intuitively be cast as integral equations. Moreover, simple integral (i.e., φ ≡ 1)
and variational formulations consistently allow for easier analysis and simula-
tion of a broad class of models (including those with shocks and other solution
discontinuities). In the twentieth century, Sobolev was the first to suggest that φ

be (what Friedrichs later named a mollifier) a compactly supported C∞ function
which integrates to one, while Schwartz rigorously recasts the classical notion
of a function acting on a point to one acting on a measurement structure or
test function (φ) (Schwartz, 1950). Modern computational approaches based on
the weak form (such as the finite element method (FEM) for solving an equa-
tion) originated with the work of many researchers including Argyris, Courant,
Friedrichs, Galerkin, Hrennikoff, Oganesya, and others (see Liu et al., 2022, for
an overview of the history). Lax and Milgram then built on these efforts to es-
tablish a theoretical foundation by proving the existence of weak solutions (in a
Hilbert Space) to certain classes of PDEs (Lax and Milgram, 1955).

While it is clear that the weak form is used widely in the analysis and simula-
tion of differential equations, recent advances suggest that there is an incredible
potential for novel methods applied to statistical and machine learning prob-
lems. In particular, weak form versions of sparse regression-based equation
learning, direct parameters estimation, and reduced order modeling can offer
advantages in terms of noise robustness and computational speedups over both
conventional methods and black-box neural network approaches.

The overall goal of this handbook chapter is to both introduce the basics of
weak form system identification as well as communicate the breadth of possible
applications. Accordingly, in §2, we provide an overview of the Weak form
Sparse Identification of Nonlinear Dynamics (WSINDy) method (§2.2) in the
context of equation discovery for ODEs (§2.3) and PDEs (§2.4), summarizing
the contributions from Messenger and Bortz (2021a,b). Motivated by the fact
that weak form-based learning is demonstrably more robust to noise than strong
form-based approaches, in §3 we present a novel theoretical explanation for the
improved performance (under certain assumptions).

In §4 we explore how a direct parameter estimation method substantially
benefits from casting the equation in the weak form. We build on our Weak
form Estimation of Nonlinear Dynamics (WENDy) applied to ODEs (Bortz
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et al., 2023) and we extend the method to PDEs and SDEs. Lastly, in §5 we
demonstrate how WENDy can complement existing SVD- and autoencoder-
based reduced order modeling (ROM) techniques by substantially enhancing
the discovery of the latent space dynamics from noisy data.

2 Weak form-based equation discovery

In this section, we discuss a class of methods that use sparse regression to learn
governing equations directly from data. The idea is to consider a large library of
potential functional forms for terms on the right side of an evolution equation.
As described below, the library and the measured data are combined to create a
sparse regression problem, the answer to which reveals the subset of terms on
the right side which best relate the data to its time derivative.

We will begin by describing the first widely successful equation discovery
method and then discuss how to cast this problem as one in which the equation
is learned in the weak form. We will then present examples using conventional
ODEs and PDEs. However, we also note that the examples presented here are
only a subset of models and applications to which we have applied the weak
form. We have considered integro-differential equation models (Messenger et
al., 2022b), online learning (Messenger et al., 2022a), and coarse-graining of
stochastic differential equations (Messenger and Bortz, 2022b; Messenger et
al., 2023).

2.1 The sparse identification of nonlinear dynamics (SINDy)
method for learning governing equations

To begin, let us consider an evolution equation system

d

dt
u(t) = F(u(t)), u(0) = u0 ∈ R

d, 0 ≤ t ≤ T , (1)

with data U ∈R
M×d observed at M timepoints t = (t1, . . . , tM)T by

Umd = ui (tm) + εmi, m ∈ [M], i ∈ [d].
Note that we use the bracket notation [M] := {1, . . . ,M} and that the variable
ε ∈ R

M×d is a matrix of i.i.d. measurement noise. The goal of the equation
learning problem is to discover the dynamics (1) from the measurements U.

In 2016, Brunton, Proctor, and Kutz published an article in the Proceedings
of the National Academy (Brunton et al., 2016) introducing the Sparse Iden-
tification of Nonlinear Dynamics (SINDy) algorithm. This algorithm has been
successful used in learning parsimonius nonlinear dynamics when (among other
considerations) noise is small. This framework assumes that the ith element of
the function F : Rd →Rd in (1) is

Fi (u(t)) =
J∑

j=1

w�
ji fj (u(t)) (2)
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for some known family of functions (fj )j∈[J ] and a coefficient weight matrix
w� ∈R

J×d which is mostly zeros, i.e., sparse.
To learn the model, first a data matrix is built �(U) ∈R

M×J by substituting
the data directly into the equation

[�(U)](m,j) = fj (Um), Um := (Um1, . . . ,Umd),

so that the candidate functions are directly evaluated at the measured data.
Model discovery is thus recast as solving for a sparse w� by minimizing (subject
to a sparsity penalty) the L2 norm of the residual∥∥U̇ − �(U) ŵ

∥∥
2 , (3)

where U̇ is the numerical time derivative of the data U. In SINDy, sequential-
thresholding least squares on the parameters w are then used to arrive at a sparse
solution.

2.2 Weak form SINDy (WSINDy)

While SINDy has been used successfully in a wide range of areas, it is well
known that using a simple finite difference approximation for the derivatives
will lead to poor performance in the presence of even modest amounts of noise.
There have been several efforts to address the problem using methods such as
total-variation regularized derivatives (Brunton et al., 2016), linear multistep
derivative approximations (Chen, 2023), and ensembling (Fasel et al., 2022)
(among others), each with varying degrees of success.

Weak-form extensions to SINDy have been independently discovered by
several groups (Gurevich et al., 2019; Messenger and Bortz, 2021a,b; Pantazis
and Tsamardinos, 2019; Wang et al., 2019) over the past few years. Although
our group was not the first to propose a weak-form methodology, we have in-
vestigated its use for equation learning in a wide range of model structures and
applications including: ODEs (Messenger and Bortz, 2021b), PDEs (Messen-
ger and Bortz, 2021a), interacting particle systems of the first (Messenger and
Bortz, 2022b) and second (Messenger et al., 2022b) order, and online stream-
ing (Messenger and Bortz, 2022b). As mentioned below, we have also studied
the theoretical convergence properties for WSINDy in the continuum data limit
(Messenger and Bortz, 2022a). This work led to specification of a broad class
of models for which the asymptotic limit of continuum data can overcome any
noise level to produce both an accurately learned equation and a correct param-
eter estimate (see Messenger and Bortz, 2022a, for more information).

To describe WSINDy, we begin by recalling that for any smooth test function
φ :R → R and interval (a, b) ⊂ [0, T ], Eq. (1) admits the weak formulation

φ(b)u(b) − φ(a)u(a) −
∫ b

a

φ̇(t)u(t) dt =
∫ b

a

φ(t)F(u(t)) dt,

0 ≤ a < b ≤ T .

(4)
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With φ = 1, we arrive at the integral equation of the dynamics explored in Scha-
effer and McCalla (2017). If we instead take φ to be nonconstant and compactly
supported in (a, b), we arrive at

−
∫ b

a

φ̇(t)u(t) dt =
∫ b

a

φ(t)F(u(t)) dt. (5)

Assuming a representation is of the form (2), we then define the general-
ized residual R(w;φ) for a given test function φ and a set of candidate terms
(fj )j∈[J ] and with data U as follows:

R(w;φ) :=
∫ b

a

⎛⎝φ̇(t)U(t) + φ(t)

⎛⎝ J∑
j=1

wj fj (U(t))

⎞⎠⎞⎠ dt. (6)

Clearly, with w = w� and U = u(t) we have R(w;φ) = 0 for all φ compactly-
supported in (a, b); however, U is a finite dimensional vector of data, hence
the integral in (6) must be approximated numerically. Measurement noise then
presents a further barrier to accurate identification of w�.

In Algorithm 1, we now state the Weak SINDy method in full generality.
We propose a generalized least squares approach with approximate covariance
matrix �. Below we derive a particular choice of � which utilizes the action of
the test functions (φk)k∈[K] on the data y. Sequential-thresholding on the weight
coefficients w with thresholding parameter λ is used to enforce sparsity, where
λ ≤ minw� 	=0 |w�| is necessary for recovery. Lastly, an �2-regularization term
with coefficient γ is included for problems involving rank deficiency.

WSINDy has proven to be successful in discovering governing equations
for a wide class of differential equations. In this section, we will illustrate the
application to ODEs, PDEs, and the mean field limit equation of a specific class
of SDEs. We note that the ODE example in Section 2.3 is a straightforward
application of the formulae in Algorithm 1. However, the later examples for
PDEs (Section 2.4) need more exposition and notation to be fully described.

2.3 WSINDy for ordinary differential equations

Recall the canonical Lorenz system with a set of parameters known to induce
solutions with chaotic dynamics

ẋ = 10(y − x)

ẏ = x(28 − z) − y

ż = xy − 8
3z.

We solve this ODE using a variable order, variable stepsize solver based on
numerical differentiation formulas of orders 1 to 5, as implemented in Matlab®’s
ode15s with absolute and relative tolerances of 10−12.
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Algorithm 1: Weak form Sparse Identification of Nonlinear Dynamics
(WSINDy)

input : Data {t,U}, Candidate functions (fj )j∈[J ], Test Functions
(φk)k∈[K], Variance �, Regularization (λ, γ )

output: Parameter Estimate ŵ

// Construct matrix of trial gridfunctions

�(U) ← [
f1(U) | . . . |fJ (U)

]
// Construct integration matrices
[�](k,m) ← 
tφk(tm)

[�̇](k,m) ← 
tφ̇k(tm)

// Compute Gram matrix and right side vector
[G](k,j) = 〈φk,fj (U)〉
[b](k,i) = −〈φ′

k,Ui〉
// Solve the following generalized least squares problem

with �2-regularization using
// sequential thresholding with parameter λ to enforce

sparsity.

ŵ = argminw
{
(Gw − b)T �−1(Gw − b) + γ 2 ‖w‖2

2

}

To apply WSINDy to the ODE equation recovery problem, a test function
must be specified. In our initial efforts to learn ODEs (Messenger and Bortz,
2021b), we empirically discovered that a smooth piecewise polynomial provides
excellent results

φ(t, r,p) :=
(

1 −
(

t

r

)2
)p

.

In Messenger and Bortz (2021b), we proposed a strategy for choosing the com-
pact support radius r and the power p. While we have discovered more accurate
and sophisticated strategies for tuning these parameters (see Section 2.4), there
are several general principles. First, in general, the power p will need to be much
larger than the value needed to perform integration by parts. Second, the radius
depends upon the dynamics and typically larger radii work better. Notably, in
the absence of noise and using a large radius and a highly smooth test function,
WSINDy recovers the parameters to machine precision-level accuracy.

Depicted in Fig. 1 are the result of using WSINDy to discover the governing
Lorenz equations from data with 10% additive Gaussian noise. In the upper left
subfigure, the (high numerical accuracy) solution is in black and the sampled
data are in red. In the upper right subfigure, the black is the same as in the upper
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FIGURE 1 Lorenz system with (x0, y0, z0) = (−8, 7, 27)T . All correct terms were identified
with an error in the weights of E2(ŵt) = 0.0084 and trajectory error E(ŵ) = 0.56. The large tra-
jectory error is expected due to the chaotic nature of the solution. Using data up until t = 1.5 (first
1500 timepoints) the trajectory error is 0.027. Figure from Messenger and Bortz (2021b).

left and the blue dotted curve is a simulation using the discovered parameters.
As is clear in the bottom subfigure, the simulated solution is close to the highly
accurate one, but given that the system is chaotic, it is notable that the discovered
solution provides a nearly perfect match until about 4 time units.

For more ODE examples including Lotka-Volterra, Van der Pol, Duffing,
etc., we direct the interested reader to Messenger and Bortz (2021b).

2.4 WSINDy for partial differential equations

We are now ready to discuss the formulation of WSINDy for PDEs. We as-
sume that the set of multiindices (αs)s∈[S] together with α0 enumerates the set
of possible true differential operators that govern the evolution of u and that
(gs)s∈[S] ⊂ span(fj )j∈[J ] where the family of functions (fj )j∈[J ] (referred to
as the trial functions) is known beforehand. This enables us to write down a
general class of PDEs as
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Dα0
u =

S∑
s=1

J∑
j=1

w�
(s−1)J+jD

αs

fj (u), (7)

so that discovery of the correct PDE is reduced to a finite-dimensional prob-
lem of recovering the true vector of coefficients w� ∈ R

SJ , which is assumed to
be sparse. We emphasize that a wide variety of PDEs can be written in the form
(7) including inviscid Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky, non-
linear Schrödinger’s, Sine-Gordon, a class of reaction-diffusion systems, and
Navier-Stokes.

To convert the PDE into its weak form, we multiply Eq. (7) by a smooth
test function ψ(x, t), compactly-supported in 
 × (0, T ), and integrate over the
spacetime domain,

〈
ψ, Dα0

u
〉
=

S∑
s=1

J∑
j=1

w�
(s−1)J+j

〈
ψ, Dαs

fj (u)
〉
,

where the L2-inner product is defined 〈ψ,f 〉 := ∫ T

0

∫



ψ(x, t)f (x, t) dxdt . Us-
ing the compact support of ψ and Fubini’s theorem, we then integrate by parts as
many times as necessary to arrive at the following weak form of the dynamics:

〈
(−1)|α0|Dα0

ψ, u
〉
=

S∑
s=1

J∑
j=1

w�
(s−1)J+j

〈
(−1)|αs |Dαs

ψ, fj (u)
〉
, (8)

where |αs | := ∑D+1
d=1 αs

d is the order of the multiindex.1 Using an ensemble
of test functions (ψk)k∈[K], we then discretize the integrals in (8) with fj (u)

replaced by fj (U) (i.e. evaluated at the observed data U) to arrive at the linear
least squares problem

min
w

‖b − Gw‖2
2

defined by ⎧⎪⎨⎪⎩
bk =

〈
(−1)|α0|Dα0

ψk, U
〉
,

Gk,(s−1)J+j =
〈
(−1)|αs |Dαs

ψk, fj (U)
〉
,

(9)

where b ∈ RK , G ∈RK×SJ and w ∈RSJ are using the inner product both in the
sense of a continuous and exact integral in (8) and a numerical approximation
in (9) which depends on a chosen quadrature rule.2

1 For example, with Dαs = ∂2+1

∂x2∂y
, integration by parts occurs twice with respect to the x-

coordinate and once with respect to y, so that |αs | = 3 and (−1)|αs | = −1.
2 In all cases in this chapter, we use the trapezoidal rule, see Messenger and Bortz (2021b) for a
discussion.
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For the WSINDy algorithm, the key pieces of the algorithm are (i) the choice
of reference test function ψ , (ii) the method of a sparsification, (iii) the method
of regularization, (iv) selection of convolution query points {(xk, tk)}k∈K , and
(v) the model library. Full guidance for choices for each of these hyperparame-
ters (in the case of PDEs) is provided in Messenger and Bortz (2021a).

Here we will simply note that the choice of test function is central to the per-
formance and it is still an open question as to the optimal functions for different
scenarios. For the illustrating examples below, we use a piecewise polynomial

φ(v) =
{

C(v − a)p(b − v)q a < v < b,

0 otherwise,
(10)

where p,q ≥ 1 and v is a (time or space) variable. The normalization

C = 1

ppqq

(
p + q

b − a

)p+q

ensures that ‖φ‖∞ = 1. For ease of computation, multiplicative test functions
are used, e.g.,

ψ(t,x) = φ0(t)

D∏
i=1

φi(xi)

for a D-dimensional space. Examples of these test functions in one time and one
space dimension are depicted in Fig. 2. Lastly, we note that the test functions
defined here are functions of both time and space (instead of just of time as in
Section 2.3).

Table 1 lists the PDEs used to demonstrate the performance of WSINDy. We
numerically solved3 these equations and then created artificial data by adding
i.i.d. Gaussian noise with variance σ 2 to each data point. The value of σ is
constructed to depend on the root mean squares (RMS) of the data, i.e., σ :=
σNR‖U�‖RMS and we refer to σNR as the noise ratio.

There are standard metrics for measuring the accuracy of parameter esti-
mates, such as the relative �2 error

E2(ŵ) := ‖ŵ − w�‖RMS

‖w�‖RMS

, (11)

which we will employ. For the equation discovery problem, we will use the true
positivity ratio introduced in Lagergren et al. (2020) and defined by

TPR(ŵ) = TP

TP + FN + FP
, (12)

3 Details on the numerical methods and boundary conditions used to simulate each PDE can be
found in Messenger and Bortz (2021a).
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FIGURE 2 Plots of reference test function ψ and partial derivatives Dαs
ψ used for identification

of the Kuramoto-Sivashinsky equation. The upper left plot shows ∂tψ , the bottom right shows ∂6
xψ .

See Tables 1–2 for more details. Reproduced from Messenger and Bortz (2021a).

TABLE 1 PDEs used in numerical experiments, written in the form identi-
fied by WSINDy. Domain specification and boundary conditions are given
in Messenger and Bortz (2021a).

Inviscid Burgers (IB) ∂t u = − 1
2 ∂x(u2)

Korteweg-de Vries (KdV) ∂t u = − 1
2 ∂x(u2) − ∂xxxu

Kuramoto-Sivashinsky (KS) ∂t u = − 1
2 ∂x(u2) − ∂xxu − ∂xxxxu

Nonlinear Schrödinger (NLS)

⎧⎨⎩∂t u = 1
2 ∂xxv + u2v + v3

∂t v = − 1
2 ∂xxu − uv2 − u3

Anisotropic Porous Medium (PM) ∂t u = (0.3)∂xx(u2) − (0.8)∂xy(u2) + ∂yy(u2)

Sine-Gordon (SG) ∂tt u = ∂xxu + ∂yyu − sin(u)

Reaction-Diffusion (RD)

⎧⎨⎩∂t u = 1
10 ∂xxu + 1

10 ∂yyu − uv2 − u3 + v3 + u2v + u

∂t v = 1
10 ∂xxv + 1

10 ∂yyv + v − uv2 − u3 − v3 − u2v

2D Navier-Stokes (NS) ∂tω = −∂x(ωu) − ∂y(ωv) + 1
100 ∂xxω + 1

100 ∂yyω

where TP is the number of correctly identified nonzero coefficients, FN is the
number of coefficients falsely identified as zero, and FP is the number of coeffi-
cients falsely identified as nonzero. Identification of the true model results in a
TPR of 1, while identification of half of the correct nonzero terms and no falsely
identified nonzero terms results in TPR of 0.5.
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TABLE 2 Computational efficiency of WSINDy
for learning the listed PDEs. The ˜G column re-
ports the size of the matrix used with in the
sparse regression where the tilde denotes that
the data has been scaled to improve the com-
putation stability. The next column indicates the
condition number after the rescaling. The last
column shows the start-to-finish walltime with
all computations in serial measured on a lap-
top with an 8-core Intel i7-2670QM CPU. No-
tably, none of the computations take more than
75 seconds. Moreover, these walltimes are inde-
pendent of the noise since the same algorithm is
being used regardless of the σNR level.

PDE ˜G κ(˜G) Walltime (sec)

IB 784 × 43 1.4 × 106 0.12

KdV 1443 × 43 3.2 × 106 0.39

KS 1806 × 43 3.7 × 103 0.24

NLS 1804 × 190 1.2 × 105 2.5

NS 3872 × 50 8.2 × 102 12

PM 4608 × 65 2.4 × 104 16

SG 13,000 × 73 1.3 × 104 29

RD 11,638 × 181 4.5 × 103 75

For each system in Table 1 and a range of noise levels σNR ∈ [0,1] we ran4

WSINDy with 200 realizations of noise and average the results.
Fig. 3 depicts the TPR for all the PDEs investigated. Notably, for inviscid

Burgers, Korteweg-de Vries, Kuramoto-Sivashinsky and Sine-Gordon, the aver-
age TPR stays above 0.95 even for σNR = 1. The average TPR for the nonlinear
Schrödinger and porous medium equations stays above 0.95 until 50% noise,
after which identification of the correct monomial nonlinearity is not as reliable.
For NLS, this is a drastic improvement over previous studies (Rudy et al., 2017),
especially considering the large library of 190 terms used.

Fig. 4 depicts the E2 error in the recovered coefficients for σNR ∈ [0,1].
Intriguingly, for a noise level of 10%, the relative error is typically 10% or less
in almost all cases. This is surprising as in many cases, conventional methods
(depending on a comparison of data with numerical solutions) yield relative
errors on the order of or higher than the σNR from the data (see §4.1.1 and
Bortz et al., 2023).

4 Computations were run on a 16-core Intel Xeon 5218 CPU node in the Colorado Research Com-
puting condo system.
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FIGURE 3 Average TPR (true positivity ratio, defined in (12)) for each of the PDEs in Table 1
computed from 200 instantiations of noise for each noise level σNR . Figure from Messenger and
Bortz (2021a).

FIGURE 4 Coefficient errors E2 for each of the seven models Table 1. The plot on the left contains
PDEs in one spatial dimension, and the plot on the right contains PDEs in two dimensions. Figure
from Messenger and Bortz (2021a).

3 Theoretical results

In the application of WSINDy to several classes of differential equations, the
general pattern has emerged that the system identification using the weak form
offers substantial advantages over using the strong form. However, there is
no rigorous explanation for this behavior and thus a theoretical analysis of
WSINDy is an ongoing project. Here we report briefly on recent theoretical
results presented in Messenger and Bortz (2022a) concerning the performance
of WSINDy in the limit of continuum data. Theorem 1 below (Messenger and
Bortz, 2022a, Theorem 4.2) demonstrates that within a broad class of models,
the WSINDy estimate converges in probability to the correct model, provided
that the noise level σ is below a critical noise threshold σc (see Assumptions A
for a full list of assumptions). This provides the following:
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(I) An explanation for the empirically observed robustness of weak-form
equation learning methods

(II) Quantification of the effects of nonsmoothness (e.g. weak solutions) on
the rate of convergence

(III) Specification of a class of models for which WSINDy converges for any
noise level (i.e. σc = ∞)

In addition, in Messenger and Bortz (2022a, Theorem 4.3) it is also proved that
suitably denoising the data (e.g. with a simple moving-average filter) results in
unconditional convergence of WSINDy over the class of models with locally-
Lipschitz nonlinearities, extending the class specified in (III) above.

3.1 Assumptions

Theorem 1 concerns the performance of WSINDy in the limit of continuum
data. Using the notation from Section 2.4, this limit is defined by a sequence
of noisy samples {U(n)}∞n=1 of the solution u observed on successively finer
computational grids {(X(n), t(n))}∞n=1 ⊂ 
 × (0, T ), each of which is equally
spaced with resolution 
x(n) in all spatial coordinates and 
t(n) in time. For
each U(n), a weak-form linear system (G(n),b(n)) is constructed according to
(9), and WSINDy is employed to produce an estimate ŵ(n) of the true weight
vector w�. We now describe the core assumptions used in the proof of Theorem 1
are below.

We define the following admissible solution spaces for the underlying so-
lution u. For an open, bounded domain D ⊂ R

d+1, codomain D′ ⊂ R
N , p ∈

[1,∞], and k > 0, define the function spaces

Hk,p(D,D′) :=
{

f ∈ Lp(D,D′) : ∃ disjoint, open (Di)
�
i=1

s.t. D =
�⋃

i=1

Di , f
∣∣
Di

∈ Hk(Di,D
′), ∂Di ∈ C0,1

}
,

(13)

where Hk(D,D′) is the space of functions from D to D′ with weak derivatives
up to order k in L2(D,D′). In what follows, we take D′ = R

N and suppress
explicit reference to the codomain. The spaces Hk,p(D) ⊂ Lp(D) are similar
to the broken Sobolev spaces used in the analysis of discontinuous Galerkin
methods (see e.g. Houston et al., 2002). With u ∈Hk,∞(
 × (0, T )) such that
k > (d + 1)/2, we have that pointwise evaluations of u are well-defined (apart
from a set of measure zero, e.g. when considering solutions with shocks) by the
Sobolev embedding theorem.

In addition, define the discretization level mn by5

mn := #{supp (ψ) ∩ (X(n), t(n))}. (14)

5 #{·} indicates the set cardinality.
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In words, mn is the number of points that the reference test function ψ is
supported on within the grid (X(n), t(n)). In Messenger and Bortz (2022a, The-
orem 3.1), it is proved that (G(n),b(n)) concentrates around its mean at a rate
O(exp(−cm

2/p
n )), where c is a universal constant and pmax is the maximum

polynomial degree in the model library.

Assumptions A. Let p ≥ 1 be fixed.

(A.1) (Regularity of u) u ∈ Hk,∞(
 × (0, T )) for some k > (d + 1)/2 is a
weak solution to (7) with coefficients w = w�.

(A.2) (Noise distribution) Measurement noise ε = U(n) − u(X(n), t(n)) is i.i.d.
according to a symmetric and sub-Gaussian probability distribution ρ.6

We refer to the standard deviation σ = √
V[ρ] as the noise level.

(A.3) (Computational grids) Each grid (X(n), t(n)) has uniform spacing 
x(n)

in all spatial dimensions and 
t(n) in time, and the collection of grids is
dense in 
 × (0, T ), or

⋃∞
n=1(X

(n), t(n)) = 
 × (0, T ).
(A.4) (Model library) The family of functions F = (fj (u))j∈[J ] consists of

P (pmax), the set of monomials of total degree7 at most pmax on RN , as
well as Fωωω = {exp(iωT u)}ω∈ωωω, a finite collection of Fourier modes on
R

N (i.e. ωωω ⊂ R
N is a finite set). Furthermore we assume8 ρ̂(ω) 	= 0 for

ω ∈ωωω.
(A.5) (Reference test function and Query points) We assume that ψ ∈ C|ααα|(
×

(0, T )) with compact support in 
 × (0, T ), and that for all (xk, tk) ∈Q,

supp (ψ(xk − ·, tk − ·)) ⊂ 
 × (0, T ) (15)

(A.6) (Conditioning of (G�,b�)) The noise-free continuum matrix G�9 has full
column rank. Moreover, the true dynamics have a stable representation
in weak-form quantified by

μ� := min
S�S�

∥∥P⊥
G�

S�\S
b�

∥∥
‖b�‖ − |S| + 1

J
> 0 (16)

where J is number of columns in G�, S� is the support of the true weight
vector w�, and P⊥

G�
S�\S

denotes the projection onto space orthogonal to the

columns G�
S�\S lying in the set S� \ S. In words, b� cannot be approxi-

mated arbitrarily well from a strict subset of G�
S� .

Under these assumptions, we have the following.

6 That is, ρ satisfies ‖ρ‖SG := inf{λ > 0 : Eε∼ρ

[
exp(ε2/λ2)

]
≤ 2} < ∞. This includes e.g. Gaus-

sian and uniform white noise, see Vershynin (2018) for more details.
7 For a monomial p(x1, . . . , xN ) = ∏N

i=1 x
qi
i

, the total degree is defined by
∑N

i=1 qi .
8 ρ̂(ω) = ∫

RN eiω·yρ(y)dy is the Fourier transform of ρ.
9 Entries G�

k,(s−1)J+j
and b�

k
are given by the right and left sides of (9).
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Theorem 1. Provided Assumptions A hold, there exists a critical noise level
σc > 0 and a stability tolerance θ∗ such that for all σ < σc, θ < θ∗, and suffi-
ciently large n, it holds that

supp
(

ŵ(n)
)

= supp
(
w�

)
and

∥∥ŵ(n) − w�
∥∥∞ < C′(θ + σ 2) (17)

with probability exceeding 1 − 4K(J+ 1) exp
(− c

2 (mnθ)2/pmax
)
, where ŵ(n) =

MSTLS(1)(G(n),b(n)) and c,C′ > 0 are independent of n.

The proof of Theorem 1 is contained in Messenger and Bortz (2022a, Theo-
rem 4.2).10

4 Weak form-based parameter estimation

The previous sections describe how WSINDy can be used to discover govern-
ing equations. However, in the case where there is high confidence in the model
equation itself, one can also perform parameter estimation using the weak form
of the model. Versions of this idea have existed since the mid 1950’s (Shinbrot,
1954), but the proposed test functions either did not have enough smoothness
or were spectrally mismatched with the data and did not yield highly accurate
estimates. Accordingly, a natural research direction is to build on the success
of WSINDy and combine it with the theoretical results in §3 as well as modern
statistical regression to create a novel parameter estimation method. In Bortz et
al. (2023), we introduced an improved weak-form parameter estimation algo-
rithm WENDy (Weak-form Estimation of Nonlinear Dynamics) which works
for the class of differential equations with right sides that are linearly separable.
In §4.1, we will summarize the results for ODEs and then discuss how to apply
WENDy to PDEs §4.2 and SDEs §4.3.

In this section we assume that the model is known and will attempt to solve
this parameter estimation problem

ŵ := arg min
w∈RJ

‖u(t;w) − U‖2
2, (18)

where the data U ∈ R
(M+1)×d is sampled at M + 1 timepoints t := {ti}Mi=0, and

the function u : R →R
d is a solution to a differential equation model

u̇ =
J∑

j=1

wjfj (u),

u(t0) = u0 ∈R
d .

(19)

10 Also note that MSTLS(1) refers to the Modified Sequential Thresholding Least Squares algo-
rithm with a single thresholding step per λ ∈ λλλ, or � = 0 (see Messenger and Bortz, 2021a).
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4.1 Ordinary differential equations

We begin by considering a d-dimensional matrix form of (19), i.e., an ordinary
differential equation system model

u̇ = �(u)W (20)

with row vector of the d solution states

u(t;W) := [ u1(t;W) u2(t;W) · · · ud(t;W)] ,

row vector of J features (i.e., right side terms where fj : Rd → R is C2
c )

such that �(u) := [ f1(u) f2(u) · · · fJ (u)] , and the matrix of unknown
parameters W ∈ R

J×d . The matrix version of these terms evaluated at the time-
points is thus

t :=
⎡⎢⎣ t0

...

tM

⎤⎥⎦ , u :=

⎡⎢⎢⎣
u1(t0) · · · ud(t0)

...
. . .

...

u1(tM) · · · ud(tM)

⎤⎥⎥⎦ ,

�(u) :=

⎡⎢⎢⎣
f1(u(t0)) · · · fJ (u(t0))

...
. . .

...

f1(u(tM)) · · · fJ (u(tM))

⎤⎥⎥⎦ .

Multiplication by a set of compactly supported test functions {φmk
} (centered at

timepoints {tmk
}, a subset of the entries of t) using trapezoidal quadrature yields

− �̇ku ≈ �k�(u)W, (21)

where

�k :=
[

φk(t0) · · · φk(tM)

]
, �̇k :=

[
φ̇k(t0) · · · φ̇k(tM)

]
.

The core idea of the weak-form-based direct parameter estimation is to iden-
tify W as a least squares solution to

min
W

‖vec(GW − B)‖2
2 (22)

where “vec” vectorizes a matrix,

G := ��(U) ∈R
K×J ,

B := −�̇U ∈ R
K×d,
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where U ∈R(M+1)×d represents the data, and the integration matrices are

� =

⎡⎢⎢⎣
�1

...

�K

⎤⎥⎥⎦ ∈R
K×(M+1) and �̇ =

⎡⎢⎢⎣
�̇1

...

�̇K

⎤⎥⎥⎦ ∈R
K×(M+1).

4.1.1 WENDy using iterative reweighting
We note that the posed regression problem does not fit within the framework of
ordinary least squares, and is actually an Errors-In-Variables problem. We will
also derive a linearization that reveals a covariance structure which depends on
the jacobian of the right side as well as the true parameters. First, we denote the
vector of true (but unknown) parameter values used in all state variable equa-
tions as w� and let u� := u(t;w�) and �� := �(u�). The system measurements
are assumed to be noisy so that at each timepoint t all states are observed with
additive noise

U(t) = u�(t) + ε(t) (23)

where each element of ε(t) is i.i.d. N(0, σ 2). Lastly, we note that there are d

variables, J feature terms, and M + 1 timepoints. In what follows, we present
the expansion using Kronecker products (denoted as ⊗).

We begin by considering the sampled data U := u� +εεε ∈R
(M+1)×d and vec-

tor of parameters to be identified w ∈ R
Jd . We use bolded variables to represent

evaluation at the timegrid t, and use superscript � notation to denote quantities
based on true (noise-free) parameter or states. We now consider the residual

r(U,w) := Gw − b, (24)

where we redefine

G := [Id ⊗ (��(U))],
b := −vec(�̇U).

We decompose and linearize r such that

r(U,w) ≈ G�W − b� + Lwvec(εεε), (25)

where

G� := [Id ⊗ (��(u�))],
b� := −vec(�̇u�),

Lw := [mat(w)T ⊗ �]∇�K + [Id ⊗ �̇],
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where “mat” is the matricization operation and K is the commutation matrix
such that Kvec(ε) = vec(εT ). The matrix ∇� contains derivatives of the fea-
tures

∇� :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇f1(U0)

. . .

∇f1(UM)

...

∇fJ (U0)

. . .

∇fJ (UM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

where

∇fj (Um) =
[

∂
∂u1

fj (Um) · · · ∂
∂ud

fj (Um)

]
,

and Um ∈ R
1×d is the row vector of data at tm.

If all elements of ε are i.i.d. Gaussian, i.e., N(0, σ 2) then to first order

r(U,w) − (r0 + eint) ∼N(0, σ 2Lw(Lw)T ). (27)

We note that in (27), the covariance is dependent upon the parameter vec-
tor w. In the statistical inference literature, the Iteratively Reweighted Least
Squares (IRLS) (Jorgensen, 2012) method provide a good strategy to account for
a parameter-dependent covariance by iterating between solving for w and updat-
ing the covariance matrix C. In Algorithm 2 we present the WENDy method,
updating C(n) (at the n-th iteration step) in lines 7-8 and then the new parameters
w(n+1) are computed in line 9 by weighted least squares.

Depicted in Fig. 5 are the results of comparing WENDy and FSNLS for
the FitzHugh-Nagumo equation on a scatterplot of walltime (in seconds) vs. the
relative accuracy in the estimated parameters.

u̇1 =3u1 − 3u3
1 + 3u2

u̇2 = − 1/3u1 + 17/150 + 1/15u2

It is clear in this figure that WENDy is on average both more accurate and
faster. In Bortz et al. (2023), WENDy is applied to several other bench-
mark ODE parameter estimation problems including Logistic growth, Lotka-
Volterra, Hindmarsh-Rose, and a Protein Transduction system. In almost all
cases, WENDy offered more accurate parameter estimates. And, in all cases,
WENDy was faster, sometimes by several orders of magnitude.
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FIGURE 5 Comparison between Forward Solver-based Nonlinear Least Squares (FSNLS), Weak
form Estimation of Nonlinear Dynamics (WENDy), and using the results of WENDy as an initial es-
timate for FSNLS (WENDy-FSNLS) for the FitzHugh-Nagumo model. Both variables are observed
at 256 timepoints and with 10% additive Gaussian noise level. Figure from Bortz et al. (2023).

4.2 Partial differential equations

Extending WENDy to PDEs is straightforward. Consider the weak form (9)
written as a convolution between the test function and the equation terms, and
assume that the ith solution component obeys

(
Dα0

ψ
)

∗ ui(Q) −
J∑

j=1

Wji

(
Dαj

ψ
)

∗ fj (u)(Q) = 0.

We can write this in discrete form as

�α0 U�
i −

J∑
j=1

�αj fj (U�)Wi = bi − GWi ≈ 0

where �αj
are associated discrete matrices that enact the convolution with

Dαj
ψ over spacetime, evaluated at the query points Q, and Wi is the ith col-

umn of W. Performing similar analysis to Section 4.1.1, we arrive at the linear
transformation

Lw :=
[
WT

1 ⊗ �α1 WT
2 ⊗ �α2 · · · WT

J ⊗ �αJ

]
∇�K +

[
Id ⊗ �α0

]
.

Here WT
j is the j th column of W and ∇� is as in (26) suitably reindexed to

account for the vectorization of multidimensional arrays. Appealing to sparse
matrix constructions, the results can similarly accelerate and improve on es-
timates obtained using forward simulation-based nonlinear least squares, as
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Algorithm 2: WENDy

input : Data {U}, Feature Map {�,∇�}, Test Function Matrices
{�,�̇}, Stopping Criteria {SC}, Covariance Relaxation
Parameter {α}, Variance Filter {f}

output: Parameter Estimate {ŵ, Ĉ, σ̂ ,S,stdx}
// Compute weak-form linear system
G ← [Id ⊗ (��(U))]
b ← −vec(�̇U)

// Solve Ordinary Least Squares Problem

w(0) ← (GT G)−1GT b

// Solve Iteratively Reweighted Least Squares Problem
n ← 0
check ← true
while check is true do

L(n) ← [mat(w(n))T ⊗ �]∇�(U)K + [Id ⊗ �̇]
C(n) = (1 − α)L(n)(L(n))T + αI
w(n+1) ← (GT (C(n))−1G)−1GT (C(n))−1b
check ← SC(w(n+1),w(n))

n ← n + 1
end

// Return estimate and standard statistical quantities

ŵ ← w(n)

Ĉ ← C(n)

σ̂ ← (Md)−1/2‖f ∗ U‖F
S ← σ̂ 2((GT G)−1GT ) Ĉ (G(GT G)−1))

stdx ← √
diag(S)

evidenced in Fig. 6 for the Kuramoto-Sivashinsky PDE. All circles and squares
in the figure represent different realizations of the noisy data. While there is cer-
tainly some variability, on average WENDy is two orders of magnitude faster
and an order of magnitude more accurate than the conventional FSNLS method.

4.3 Stochastic differential equations

Weak-form estimation can also be easily extended to stochastic differential
equations. The focus is to identify the drift f and diffusivity σ of an Itô SDE

dXt = f (Xt , t)dt + σ(Xt , t)dBt (28)
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FIGURE 6 Coefficient error vs. walltime for WENDy applied to the Kuramoto-Sivashinsky equa-
tion, as described in Section 4.2, vs. forward solver-based nonlinear least-squares (FSNLS). The
underlying data has 128 × 64 points in space and time and 20% added Gaussian white noise.

given discrete-time observations of its solution Xt ∈R
d . In this setting the input

data is a collection of L discrete-time realizations Y = {Y(�)}L�=1, where each

realization Y(�) = (Y
(�)
t0

, . . . , Y
(�)
tM+1

) occurs over the time grid t = (t0, . . . , tM+1),

and at each time ti ∈ t the observations are given by Y
(�)
ti

= X
(�)
ti

+ ε. Here ε

represents possible measurement noise and X
(�)
t , � = 1, . . . ,L are solutions to

(28) with initial conditions x
(�)
0 each drawn independently from the distribution

ρ0.

Weak formulation in time
Itô calculus can be employed to formulate the weak-form discovery problem.

Let ψ(x, t) : Rd × R+ → R be a C2 function compactly-supported in the time
interval (0, T ) for all x ∈ R

d . Itô’s formula applied (28) then gives

d (ψ(Xt , t)) =
(

∂tψ(Xt , t) + ∇ψ(Xt , t) · f (Xt , t) + 1

2
Hψ(Xt , t) : (σσT )

)
dt

+ ∇ψ(Xt , t) · σ(Xt , t)dBt ,

where H denotes the Hessian and A : B = vec(A) · vec(B). Integrating in time
and using compact support, we get

−
∫ T

0
∂tψ(Xt , t) dt =

∫ T

0

(
∇ψ(Xt , t) · f (Xt , t) + 1

2
Hψ(Xt , t) : (σσT )

)
dt

+
∫ T

0
∇ψ(Xt , t) · σ(Xt , t)dBt . (29)
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Estimation algorithm: test and trial functions
As in the PDE case, the set of test functions � = {ψ1, . . . ,ψK} can be cho-

sen in a flexible and efficient manner by letting each ψk be separable, of the
form

ψk(x, t) = θk(t)φk(x).

This leads to a very general scheme, with the only requirements being that θk ∈
C1, compactly support in [0, T ], and φk ∈ C2.

We search for linear representations of the drift f and squared diffusivity
σσT . That is, we define a drift basis F = (f1, . . . , fJf

) and a basis of upper-
triangular matrices S = (�1, . . . ,�Jσ ), and search for linear representations

f̂ =
Jf∑

j=1

wF
j fj , �̂ =

Jσ∑
j=1

wS
j �j .

Our diffusivity estimator is then

σ̂ σ T = �̂ + �̂T − diag(�̂).

Note that for two symmetric matrices A, B, letting U(A) and U(B) denote their
upper-triangular parts, we have

A : B =
n∑

i=1

n∑
j=1

AijBij = 2
n∑

i=1

n∑
j=i

AijBij − diag(A) : diag(B)

=: (U(A) : U(B))

which defines an inner product (· : ·) on upper triangular matrices, so the repre-
sentation of the squared diffusivity σ̂ σ T above in terms of S is valid.

Quadrature
Integrals in (28) are discretized using the trapezoidal rule, which achieves

an optimal minimax rate for integrands with the same regularity as Brownian
motion (Diaconis, 1988), which is shared by solutions to Itô SDEs.11 For each
observed realization Y(�), we define the matrices (GF(Y(�)),GS(Y(�))) by

GF
kj (Y

(�)) =
M∑
i=1

∇ψk(Y
(�)
ti

, ti ) · fj (Y
(�)
ti

, ti )

(

ti + 
ti−1

2

)

GS
kj (Y

(�)) =
M∑
i=1

(
Hψk(Y

(�)
ti

, ti ) : �j(Y
(�)
ti

, ti )
)(
ti + 
ti−1

2

)
,

11 Strictly speaking, if the diffusivity is nonconstant, then regularity can be slightly worse than this,
in which case there may be a better quadrature. It may even be the case that Riemann sums have
lower variance, this needs to be fully explored.
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FIGURE 7 WENDy applied to the stochastic double-well potential dynamics (30). Left: data real-
izations and temporal testfunctions φk . Middle: comparison between learned (f̂ ) and true (f �) drift
functions. Right: comparison between learned (ρ̂∞) and true (ρ�∞) stationary measure.

where timesteps are given by 
ti = ti+1 − ti . We then form the concatenated
matrix

G(Y(�)) =
[
GF(Y(�)) GS(Y(�))

]
.

The response vector b(Y(�)) is defined by

bk(Y(�)) = −
M∑
i=1

∂tψk(Y
(�)
ti

, ti )

(

ti + 
ti−1

2

)
.

It then holds that

b(Y(�)) ≈ G(Y(�))w

where w = ((wF)T , (wS)T )T . To combine the L observed realizations Y(�), we
average the L linear systems together, arriving at a small linear system (G,b),
which reduces variance at the Monte-Carlo rate in L.

Optimization
The residuals

r(�)(w) = b(Y(�)) − G(Y(�))w

are amenable to the same analysis employed in WENDy in the context of ODEs
and PDEs, leading to an iteratively reweighted least-squares approach for the
weights ŵ. Specifically, the right-most term in (29) is an Itô integral and con-
stitutes the residual for each test function. Its covariance against other residuals
can be computed using Itô calculus and properties of local martingales. How-
ever, as a first pass ordinary least squares can be used, which can be seen to
perform well applied to the double-well potential dynamics (30) (see Fig. 7).

Test problem: double-well potential
Consider Xt ∈ R satisfying (28)

f (x, t) = x − x3, σ (x, t) = 1. (30)

The dynamics, drift and stationary measure are pictured in Fig. 7.
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TABLE 3 Comparison between state-of-the-art deep learning-based esti-
mation and WENDy.

Parameter λ0 λ1 λ2 λ3 μ runtime
True value 0 1 0 −1 1 —

PINN (Chen et al., 2021) 0.0051 0.8422 −0.0071 −0.8994 1.0347 minutes-hours

WENDy 0.0064 1.0145 0.00045 −1.0071 0.958 2.5 sec

An existing PINN-based approach by Chen et al. (2021) for learning f and
σ in (30) used Y containing 40,000 datapoints Y

(�)
ti

. Runtime information is not
available in Chen et al. (2021), however can reasonably be estimated from the
method. The authors used an architecture of 4 hidden layers each with 20 neu-
rons and performed optimization via Adam with learning rate 10−4 and 200,000
iterations. The high iteration count and slow learning rate, combined with op-
timization over an 80-dimensional space, is guaranteed to far exceed the O(1)

seconds required for WENDy, and so is simply listed as “minutes-hours” in
Table 3.

To compare with WENDy, we use the same amount of data spread over L =
200 realizations Y(�) each containing M + 2 = 200 timepoints t0 = 0, . . . ,1 =
tM+1. We use the same cubic trial drift basis, F = (1, x, x2, x3), as in Chen et
al. (2021). For test functions we use θk(t) = θ(t − tk) and φk(x) = φ(x − xk),
for query points Q = {(xk, tk)}Kk=1, with base functions θ(t) = (1 − (t/rt )

2)3

and ψ = exp(−x2/(2r2
x )). We use ∼ 1000 equally-spaced query points.12 We

set (rt , rx) = (5
t,μ/3) so that φ and ψ are reasonably localized with respect
to Y, however, the radii (rt , rx) can easily be informed from the dynamics.

The results are in Table 3. Estimated parameters are significantly more ac-
curate than those in Chen et al. (2021) (taken from Table4: Appendix B). More-
over, WENDy takes approximately 2.5 seconds to run.

As well as parameter estimates, it is instructive to measure the point-wise
drift error between the learned drift f̂ and f , as well as the resulting stationary
measure ρ̂∞ to the true stationary measure ρ∞, which can be computed using f̂

and μ̂:

ρ̂∞(x) = Z−1 exp

(
−μ̂−1

∫ x

f̂ (v)dv

)
where Z is computed such that ‖ρ̂∞‖1 = 1 using suitable quadrature, and f̂ can
be integrated exactly, being polynomial. For the results in Fig. 7, we have

‖f̂ − f ‖2

‖f ‖2
= 0.00552, ‖ρ̂∞ − ρ∞‖2/‖ρ∞‖ = 0.0274,

12 Note that local, smooth, decaying functions are advantageous, even though not required for ψ .
It can be shown that ψk(x) = x2 will amplify the stochastic noise in Xt , decreasing quadrature
accuracy.
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FIGURE 8 Diagram illustrating the WLaSDI algorithm’s application to 1D Burgers’ simulations,
featuring four key steps: data gathering, compression, weak form dynamics identification, and pre-
diction. Diagram from Tran et al. (2024).

providing a highly accurate read on the short-time as well as long-time underly-
ing dynamics.

5 Weak form-based reduced order modeling

Reduced Order Models (ROMs) can be used to accelerate simulations while
maintaining high accuracy. The Weak Form Latent Space Dynamics Identifi-
cation (WLaSDI) employs projection-based reduced order modeling (pROM)
in conjunction with weak form parameter estimation. As depicted in Fig. 8,
WLaSDI first compresses data, then projects onto the test functions and learns
the local latent space models. The variance reduction of the weak form offers
robust and precise latent space recovery, hence allowing for a fast and accurate
simulation.

To illustrate WLaSDI, consider an Ns-dimensional full-order model, char-
acterized by:

du
dt

= h(u, t), u(0;μ) = u0(μ) (31)

where t ∈ [0, T ]. The solution, denoted as u(t;μ), maps from [0, T ] × P to
R1×Ns . The initial condition is given by u0, where μ ∈P represents a parameter
affecting only the initial conditions. We assume a uniform time step, 
t ∈ R.
Throughout this chapter, we use un := u(tn;μ).

5.1 WLaSDI algorithm

To begin, WLaSDI draws samples from the parameter space P and collects to-
gether snapshots of artificial data. The sampling points within a training set
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S ⊂ P are denoted as μk , where k ∈ N(nμ) and nμ represents the number of
sampling points in the training set. The solution at the n-th time step of Eq. (31)
with μ = μk is represented by uk

n ∈R
1×Ns and organized into a snapshot matrix:

Uk =
[

(uk
0)

T (uk
1)

T · · · (uk
Nt

)T
]T ∈R

(Nt+1)×Ns

To compile the whole snapshot matrix U ∈ R
(Nt+1)nμ×Ns , all individual snap-

shot matrices are concatenated as[
UT

0 UT
1 · · · UT

Nt

]T

The second step of WLaSDI involves compressing the matrix UT using
either linear (Proper Orthogonal Decomposition - POD) or nonlinear (Autoen-
coder) techniques. The linear compression method is referred to as WLaSDI-LS
(Linear Subspace), and the nonlinear method is denoted as WLaSDI-NM (Non-
linear Manifold).

• Proper Orthogonal Decomposition
POD generates a spatial basis �̂ that compactly represents UT , minimizing
the projection error:

�̂ := argmin�∈RNs×ns ,�T �=I

∥∥∥UT − ��T UT
∥∥∥2

F

We set �̂ = [
v1 v2 · · · vns

]
for ns < nμ(Nt + 1). We choose ns

to be the dimension of the latent space. The vector vk is the k-th col-
umn of the left singular matrix V from the Singular Value Decomposition
(SVD), UT = V�W. Projecting the snapshot matrix UT onto the subspace

spanned by the column vectors of �̂
T

results in a reduced snapshot matrix
ÛT ∈ R

ns×(Nt+1)nμ , i.e.,

ÛT := �̂
T UT

• Autoencoder
Auto-encoders function as a nonlinear counterpart to POD. Two neural net-
works undergo training: one for the encoder Gen : RNs −→ Rns and another
for the decoder: Gde : Rns −→ R

Ns . The objective is to minimize the mean
square error:

MSE(UT −Gde(Gen(UT))

Analogous to POD, we obtain reduced space data through ÛT :=Gen(UT ) ∈
R

ns×(Nt+1)nμ

With the data projected onto the latent space, we can then use WENDy to con-
struct a surrogate ODE model which is substantially faster to simulate than a
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FIGURE 9 Solution to the reaction-diffusion system with 10% noise.

5.2 WLaSDI example

We illustrate WLaSDI using the following reaction-diffusion system:{
∂tu = 1

10∂xxu + 1
10∂yyu − uv2 − u3 + v3 + u2v + u

∂tv = 1
10∂xxv + 1

10∂yyv + v − uv2 − u3 − v3 − u2v
(32)

The simulation of system (32) takes place across a periodic domain (x, y) within
the range of [−10,10] × [−10,10], and the temporal domain spans [0,10]. The
simulation employs Fourier spectral differentiation in spatial dimensions and
Python’s scipy integration. The computational domain is characterized by di-
mensions nx = ny = 128 and nt = 201. The initial condition for the system
takes the form of a spiral, expressed parametrically as follows:⎧⎨⎩u(x, y,0;a, b) = tanh(a

√
x2 + y2) cos(θ − b

√
x2 + y2)

v(x, y,0;a, b) = tanh(a
√

x2 + y2) sin(θ − b
√

x2 + y2)

This results in unstable spirals that break apart over time. An example of the
solution is provided with parameters a = b = 1 and 10% added white noise as
shown in Fig. 9.

The parameter space is defined by a = [0.9,1.0.1.1] and b = 0.9,1.0,1.1
The testing parameter μ∗ = (0.95,1.05). In the compression step, we employ
Proper Orthogonal Decomposition (POD) on the noisy data, selecting a latent
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FIGURE 10 Latent space trajectories of the reaction-diffusion system with 10% noise using POD.

FIGURE 11 Relative reconstruction error in simulations.

dimension of 15. This process yields the latent space trajectories for both u and
v, as illustrated in Fig. 10.

We calculate the relative error of the simulation results for both u and v.
Notably, with a 10% noise level, we attain a remarkable relative error below
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3%. Furthermore, when subject to 100% noise, the relative error remains be-
low 13% as illustrated in Fig. 11. Particularly, with WLaSDI, the simulation is
completed about 250 times faster compared to numerically solving the equation.
Additional details regarding WLaSDI, along with a comprehensive comparison
between the weak and strong form when applying to projection-based reduced
order modeling, can be found in Tran et al. (2024).

6 Conclusions

Weak form methods are a novel class of scientific machine learning algorithms.
They have found success in a wide range of areas including sparse regression-
based automated discovery of governing equations, direct parameter estimation,
and reduced order models. In all cases the use of the weak form allows improves
robustness of the method to noisy state measurements.
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