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Abstract
Learning approximations to smooth target functions of many variables from finite col-
lections of pointwise samples is an important task in scientific computing and its many
applications in computational science and engineering. Despite well over half a century
of research on high-dimensional approximation, this remains a challenging problem. Yet,
significant advances have been made in the last decade towards efficient methods for
doing this, commencing with so-called sparse polynomial approximation methods and
continuing most recently with methods based on Deep Neural Networks (DNNs) and
Deep Learning (DL). In tandem, there have been substantial advances in the relevant ap-
proximation theory and analysis of these techniques. In this work, we survey this recent
progress. We describe the contemporary motivations for this problem, which stem from
parametric models and computational uncertainty quantification; the relevant function
classes, namely, classes of infinite-dimensional, Banach-valued, holomorphic functions;
fundamental limits of learnability from finite data for these classes; and finally, sparse
polynomial and DNN methods for efficiently learning such functions from finite data. In
the case of the latter, there is currently a significant gap between the approximation theory
of DNNs and the practical performance of DL. Aiming to narrow this gap, we develop the
topic of practical existence theory, which asserts the existence of dimension-independent
DNN architectures and DL training strategies that achieve provably near-optimal gener-
alization errors in terms of the amount of training data.

Keywords
High-dimensional approximation, Holomorphy, Scarce data, Polynomial approximation,
Deep neural networks, Deep learning, Practical existence theory

MSC Codes
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1 Introduction

This article reviews the problem of learning infinite-dimensional functions from
finite data. In this section, with begin by describing motivations for this problem
and its challenges (§1.1). We then present an overview of the remainder of the
article (§1.2). Finally, we discuss relevant literature (§1.3).
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1.1 Motivations and challenges

Approximating functions of many variables is a classical topic in approximation
theory and numerical analysis, which has been studied intensively for more than
seventy years. The contemporary resurgence in this problem stems from appli-
cations to parametric models, parametric Differential Equations (DEs) and com-
putational Uncertainty Quantification (UQ). In such models, the target function
represents some quantity-of-interest of a given physical system and its variables
the parameters of the system. Complex physical models involve many parame-
ters, which naturally leads to functions of many variables. It is also increasingly
common to consider countably infinite parameterizations, a standard example
being the use of a Karhunen–Loève expansion to represent a random field in,
for example, parametric models of porous media (see, e.g., Le Maître and Knio,
2010, §2.1, or Sullivan, 2015, §11.1). In this case, the target function depends
on countably many variables.

Therefore, the first challenge in approximating such functions is that the di-
mension is high or countably infinite. The second is that the function is usually
expensive to evaluate. Typically, each evaluation involves either an expensive
numerical simulation of the DE model or a costly physical experiment. Hence,
one strives to learn an accurate approximation from a limited set of samples.
This approximation – or surrogate model as it is often termed (see Smith, 2013,
Chpt. 13, or Sullivan, 2015, Chpt. 13) – can then be used in place of the true
function for various downstream tasks, such as parameter optimization, inverse
parametric problems or uncertainty quantification. Nonetheless, since the target
function is expensive to evaluate, the amount of data available to learn this ap-
proximation is usually highly limited. Put another way, the learning problem is
highly data-starved.

A final challenge is that the target function is often not scalar-valued. In
the case of parametric DEs, the output of the target function is the solution of
the DE with the given input parameters. Hence this function takes values in
an infinite-dimensional Banach or Hilbert space. This adds complications, both
theoretically and practically, stemming from the need to discretize this output
space in order to perform computations.

1.2 Overview

We now give a detailed overview of this article.

Problem statement and notation (§2)
We consider an unknown target function f depending on countably many vari-
ables that range between finite maximum and minimum values and take values
in a Banach space (V,‖ · ‖V). After normalizing, we may assume that

f :U→V, whereU = [−1,1]N.
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We equipU with the uniform probability measure � and consider training data

{(yi , f (yi ) + ei)}mi=1 ⊆U ×V, (1.1)

where y1, . . . ,ym ∼i.i.d. � and ei ∈V represents measurement error. The objec-
tive is to learn an approximation f̂ to f from the data (2.2).

Holomorphic functions of infinitely many variables (§3)
An important property of many parametric model problems is that the para-
metric map f is a smooth function of its variables. There is a large body of
literature, which we review further in §3, that establishes that solution maps for
various parametric DEs are holomorphic functions – in other words, they admit
holomorphic extensions to certain complex regionsU ⊂O⊆ C

N.
In one dimension, it is common to consider complex regions [−1,1] ⊂ O⊂

C defined by Bernstein ellipses (see, e.g., Trefethen, 2013). The convergence of
the s-term polynomial expansion is then exponential in s, with the rate being
characterized by the largest Bernstein ellipse to which the function can be ex-
tended (see, e.g., Trefethen, 2013, Chpt. 8). For functions of d ≥ 1 variables, it is
natural to look at regions [−1,1]d ⊂O⊂ C

d defined by Bernstein polyellipses,
i.e., tensor-products of one-dimensional Bernstein ellipses. One can then show
exponential convergence in s1/d of a suitable s-term polynomial expansion, with
rate depending once more on the largest polyellipse to which f admits an ex-
tension (see, e.g., Adcock et al., 2022, §3.5-3.6).

(b, ε)-holomorphic functions. The situation changes in infinite dimensions.
Holomorphy in an arbitrary Bernstein polyellipse is no longer sufficient to guar-
antee convergence of a (in fact, any) s-term polynomial expansion. At the very
least, one needs anisotropy, namely, increasing regularity with the variables yi

as i → ∞. Moreover, for parametric DE applications, one needs to consider
not just a single Bernstein ellipse, but complex regions R(b, ε) ⊂ C

N defined
by certain unions of Bernstein polyellipses. Here b = (bj )j∈N ∈ [0,∞)N with
b ∈ �1(N) is a sequence and ε > 0 is a scalar that parametrize the correspond-
ing region. In Definition 3.3 we formalize the corresponding class of so-called
(b, ε)-holomorphic functions (see, e.g., Chkifa et al., 2015b; Schwab and Zech,
2019). This class was first introduced in the context of parametric DEs (Cohen
and DeVore, 2015), and has since become a standard setting in which to consider
the approximation of holomorphic functions in infinite dimensions (Adcock et
al., 2022, Chpt. 3). Throughout the majority of this work, we set ε = 1; a prop-
erty which can always be guaranteed by rescaling b. For convenience, we also
define the set

H(b) = {
f :U→V (b,1)-holomorphic : sup

z∈R(b,1)

‖f (z)‖V ≤ 1
}
. (1.2)

This is the main class of functions considered in the remainder of this work. In
§3 we explain the relevance of this class to parametric DEs in more detail.
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Unknown anisotropy. Having done so, we then explain how the sequence b con-
trols the anisotropy of f ∈H(b). Larger bi implies that f is less smooth with
respect to its ith variable yi , while smaller bi implies more smoothness. In some
specific situations, one may have knowledge of a suitable b – information which
could then be used when designing a learning algorithm. However, in practice,
it is more often the case that b is unknown. The focus of this work is the more
realistic unknown anisotropy setting. In short, the learning method must be in-
dependent of b, with the assumption f ∈H(b) being used only to derive bounds
for the resulting generalization error.

Orthogonal polynomials and best s-term polynomial
approximation (§4)
As previously observed, holomorphy is intimately related to polynomial approx-
imation. In §4 we introduce multivariate orthogonal polynomials, orthogonal
polynomial expansions of infinite-dimensional, Banach-valued functions and
the concept of best s-term polynomial approximation. As we argue, best s-term
polynomial approximation is an important theoretical benchmark against which
to compare methods for learning holomorphic functions from data.

A signature result we recap in this section is the following.

Informal Result 1 (Algebraic convergence of the best s-term approximation,
Theorem 4.1). The best s-term polynomial approximation of f ∈ H(b) con-
verges algebraically fast in s. Specifically, if b ∈ �p(N) for some 0 < p < 1,
then the L2

�-norm error decreases like O(s1/2−1/p) as s → ∞.

This result implies that best s-term polynomial approximation in H(b) is
free from the curse of dimensionality, whereas the aforementioned exponential
rates witnessed in d < ∞ dimensions (which are exponential in s1/d ) quickly
succumb to this curse. Although the focus in this work is infinite-dimensional
functions, in §4 we demonstrate that such algebraic rates also typically describe
the true convergence behavior seen for functions of finitely many variables,
whenever d is large enough (e.g., d ≥ 16).

Limits of learnability from data (§5)
We next turn our attention to learning holomorphic functions from the data (1.1).
In §5, we study lower bounds using concepts from information-based complex-
ity, in particular, adaptive m-widths (Definition 5.1). In order to consider the
unknown anisotropy setting, we introduce the function classes

H(p) =
⋃{
H(b) : b ∈ �p(N), b ∈ [0,∞)N, ‖b‖p ≤ 1

}
, 0 < p < 1,

whereH(b) is as in (1.2), and

H(p,M) =
⋃{
H(b) : b ∈ �

p

M(N), b ∈ [0,∞)N, ‖b‖p,M ≤ 1
}

, 0 < p < 1.
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Here �
p

M(N) is the monotone �p-space (see §2). We then have the following.

Informal Result 2 (Limits of learnability, Theorem 5.2). It is impossible to
learn functions fromH(p). Specifically, there does not exist a method for learn-
ing functions from m (adaptive) linear samples for which the L2

�-norm error
decreases as m → ∞ uniformly for functions inH(p). Moreover, when restrict-
ing to the space H(p,M), or even H(b), the error cannot decrease faster that
c · m1/2−1/p for some universal constant c > 0, even if the method is allowed to
depend on the anisotropy parameter b ∈ �

p

M(N).

This theorem illustrates a fundamental gap between approximation theory
and learning from data. The best s-term approximation converges like s1/2−1/p

for any f ∈H(p), yet no method can learn such functions from data. Note that
this result holds not just for i.i.d. pointwise samples, as in (1.1), but any linear
measurements, which may also be adaptive.

This gap is narrowed by restricting to the class H(p,M), wherein a func-
tion’s variables are “on average” ordered in terms of importance. Notably, this
lower bound also implies that there is no benefit to knowing b, at least in terms
of sample complexity. The same lower bound c · m1/2−1/p holds, even if the
method is allowed to depend on b.

With this in mind, the remainder of this work is devoted to describing learn-
ing methods that achieve (close to) the rate m1/2−1/p uniformly for functions in
H(p,M) for any 0 < p < 1. Specifically, we focus on sparse polynomial and
Deep Neural Network (DNN) methods.

Learning sparse polynomial approximations from data (§6)
Inspired by the benchmark results on best s-term approximation, we first con-
sider methods that learn polynomial approximations. This approach is heav-
ily based on techniques from compressed sensing (Foucart and Rauhut, 2013;
Vidyasagar, 2019). Superficially, this seems straightforward. Fast decay of the
best s-term polynomial approximation means that the polynomial coefficients
are approximately sparse. Thus, a natural first idea would be to formulate an
�1-minimization problem for the coefficients and leverage standard compressed
sensing theory to derive recovery guarantees.

Unfortunately, this approach fails to deliver optimal rates. The specific rea-
son is that there are s-term polynomials that require approximately m = O(s2)

i.i.d. samples to be stably recovered. The higher level reason is that the assumed
low-complexity model (functions in H(p) have approximately sparse coeffi-
cients) is simply too crude. To lower the sample complexity requirement, we
refine the model. We do this via weighted sparsity (Rauhut and Ward, 2016),
which encodes the additional information that coefficients are both approxi-
mately sparse and decaying.

Informal Result 3 (Near-optimal learning via polynomials, Theorem 6.8).
There is a method (based on weighted �1-minimization) for learning functions
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from the data (1.1) that achieves an L2
�-norm error that decays like

O((m/ log4(m))1/2−1/p), m → ∞, (1.3)

with high probability, for functions inH(p,M) and any 0 < p < 1.

Comparing with the lower bound of m1/2−1/p, we see that this procedure
is optimal up to the logarithmic term. Note that in the full theorem, we also
account for other errors in learning process: namely, measurement error (i.e.,
the effect of the terms ei in (1.1)), physical discretization error (i.e., the effect
of discretizing the spaceV in order to perform computations) and optimization
error (i.e., inexact solution of the optimization problem).

DNN existence theory (§7)
As we discuss further in §1.3, the last five years have seen a growing inter-
est in the application of Deep Learning (DL) to challenging parametric model
problems. DL has the potential to achieve significant performance gains. Yet, it
is poorly understood from a theoretical perspective, especially in terms of the
sample complexity, i.e., the amount of training data need to learn good DNN
approximations for specific classes of functions.

We commence §7 by briefly reviewing the approximation theory of DNNs,
which has been an area of significant research in the last few years. Broadly,
this area aims to establish existence theorems. Building on the classical uni-
versal approximation theory of shallow Neural Networks (NNs), these results
assert the existence of DNNs of a given complexity – in terms of the width and
depth, number of nonzero weights and biases, or other pertinent metrics – that
approximate functions in a given class to within a prescribed accuracy.

Such results are typically proved through emulation. One first shows that
DNNs can emulate a standard approximation scheme (e.g., polynomials, piece-
wise polynomials, splines, wavelets, and so forth), either exactly or up to some
error that can be made arbitrarily small. Then one leverages known bounds for
the standard scheme to derive the corresponding existence theorem.

Having briefly reviewed this literature, we then describe an exemplar ex-
istence theorem for holomorphic functions, which is obtained by emulating a
certain s-term polynomial approximation.

Informal Result 4 (Existence theorem for DNNs, Theorem 7.2). Let
(V,‖ · ‖V) = (R, | · |). Then for any b ∈ [0,∞)N with b ∈ �p(N) for some
0 < p < 1 and s ∈ N, there is a family N of DNNs of width O(s2) and depth
O(log(s)) with the following property. For any f ∈H(b) there is an element of
N that achieves an L2

�-norm error of O(s1/2−1/p).

Practical existence theory: near-optimal DL (§8)
While important, existence theorems such as this say little about the perfor-
mance of DL, i.e., computing a DNN from training data by minimizing a loss
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function. As noted, analysis of this practical scenario is currently lacking, cer-
tainly in terms of sample complexity. It has also been well documented that
there is a gap between existence theory and the practical performance of DNNs
when trained from finite numbers of samples (Abedeljawad and Grohs, 2023;
Adcock and Dexter, 2021; Grohs and Voigtlaender, 2023).

In this section, we describe a theoretical framework, termed practical exis-
tence theory (Adcock et al., 2021, 2023a; Franco and Brugiapaglia, 2024), that
seeks to narrow this gap. Its aim is to show that there not only exists a family
DNNs, but also a training strategy akin to standard practice – i.e., minimizing a
loss function – that attains the near-optimal rates.

Informal Result 5 (Practical existence theorem for DNNs, Theorem 8.1). There
is a class of DNNs N (of width and depth depending on m), a regularized �2-
loss function and a choice regularization parameter (depending on m only) such
that any DNN obtained by solving the resulting training problem (minimizing
the loss function over N) achieves the error decay rate (1.3).

Like existence theorems, this result is proved by emulating the sparse poly-
nomial method with DNNs. The class N is ‘handcrafted’ in the sense that the
weights and biases in the hidden layers are fixed, and chosen specifically to
emulate certain polynomials. Only the weights in the final layer are trained.

Epilogue: the benefits of practical existence theory and the gap
between theory and practice (§9)
Practical existence theory does not explain the performance of standard DL
strategies based on fully trained models (i.e., those where all layers of a DNN are
trained). Nonetheless, it provides a number of key insights and benefits, which
we now list (see §9 for details).

1. It narrows the gap between theory and practice, by showing the existence
of good training procedures, which are near-optimal for certain function
classes.

2. It thereby emphasizes the potential to achieve even better performance in
practice with suitably chosen architectures and training strategies.

3. It also stresses the sample complexity aspect of DL for high-dimensional
approximation. As argued, this is vital to parametric modelling applications,
where data scarcity is of primary concern.

4. The architectures in Theorem 8.1 are much wider than they are deep.
Smoother activation functions also lead to narrower and shallow DNNs. Both
insights agree with the empirical performance of fully trained models.

5. Once trained, the DNN in Theorem 8.1 can be sparsified via pruning. This
lends credence to the idea that sparse DNNs can perform well in practice.

6. The methodology of practical existence theory is flexible, and can be applied
to other problems, such as reduced order models based on deep autoencoders
(Franco and Brugiapaglia, 2024) and Physics-Informed Neural Networks
(PINNs) for PDEs (Brugiapaglia et al., 2024).
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While narrowed, the gap between theory and practice still persists. With an
eye towards future research, we end §9 with some further discussion. We discuss
how current techniques for analyzing fully trained models may at best achieve a
rate of O(m−1/2), regardless of p, which is strictly slower than those asserted by
practical existence theorems. However, the far greater expressivity of DNNs – in
particular, their ability to approximate continuous and discontinuous functions
alike – sets them apart from more standard scientific computing tools such as
polynomials. While the latter are near-optimal for holomorphic functions, the
flexibility of former is a significant potential advantage.

1.3 Further literature

See Ghanem et al. (2017); Le Maître and Knio (2010); Smith (2013); Sulli-
van (2015) for general introductions to computational UQ and Adcock et al.
(2022); Cohen and DeVore (2015) for more on parametric models and para-
metric DEs. Note that in the context of UQ, orthogonal polynomial expansions
are often termed polynomial chaos expansions (see, e.g., Ghanem and Spanos,
2003). Best s-term polynomial approximation is a type of nonlinear approxi-
mation (DeVore, 1998). It was developed in a series of works in the context of
parametric DEs (Beck et al., 2014, 2012; Bieri et al., 2010; Bonito et al., 2021;
Chkifa et al., 2015b; Cohen et al., 2010, 2011; Hansen and Schwab, 2013a;
Todor and Schwab, 2007; Tran et al., 2017), focusing on Taylor, Legendre or
Chebyshev polynomial expansions in infinite dimensions. See, e.g., Cohen and
DeVore (2015) and Adcock et al. (2022, Chpt. 3) for in-depth reviews. See
§3.2 for a discussion holomorphic regularity of solutions of various paramet-
ric DEs, including the (b, ε)-holomorphic class and relevant references. Our
results on limits of learnability are from Adcock et al. (2024b) and, as noted,
use ideas from information-based complexity. For overviews of this topic, see
Novak (1988); Novak and Woźniakowski (2008, 2010); Traub et al. (1988).

In tandem with best s-term polynomial approximation theory, there has
been a focus on learning polynomial approximations from data. Some early
approaches in the context of parametric DEs included (adaptive) interpolation
using sparse grids (Bäck et al., 2011; Babuška et al., 2007; Chkifa et al., 2014;
Ganapathysubramanian and Zabaras, 2007; Gunzburger et al., 2014b; Ma and
Zabaras, 2009; Mathelin et al., 2005; Nobile et al., 2008a,b; Xiu and Hesthaven,
2005). Another significant line of investigation has been on least-squares meth-
ods (Chkifa et al., 2015a; Cohen et al., 2013; Migliorati, 2013; Migliorati et
al., 2014; Berveiller et al., 2006; Migliorati et al., 2013). See Guo et al. (2020);
Hadigol and Doostan (2018) and Adcock et al. (2022, Chpt. 5) for reviews.
While simpler than compressed sensing methods, these methods require a pri-
ori knowledge of a good multiindex set in which to construct the polynomial
approximation, and are therefore best suited to the simpler known anisotropy
setting. Adaptive least-squares methods (Migliorati, 2015, 2019) can address
unknown anisotropy, but they currently lack theoretical guarantees. Compressed
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sensing for learning polynomial approximations began with the works of Blat-
man and Sudret (2011); Doostan and Owhadi (2011); Mathelin and Gallivan
(2012); Rauhut and Ward (2012); Yan et al. (2012); Yang and Karniadakis
(2013), and has seen much subsequent development. See Hampton and Doostan
(2017) and Adcock et al. (2022, Chpt. 7) and references therein. The focus in
this work on weighted sparsity originated in Rauhut and Ward (2016). See also
Adcock (2017); Adcock et al. (2019); Peng et al. (2014) and references therein.
The results described in this work are based on Adcock et al. (2024a).

Early works on the application of DL to parametric DEs include Adcock et
al. (2021); Cyr et al. (2020); Dal Santo et al. (2020); Geist et al. (2021); Khoo
et al. (2021); Laakmann and Petersen (2021). See also Becker et al. (2023); Ci-
cci et al. (2022); Heiß et al. (2021, 2023); Khara et al. (2021); Lei et al. (2022);
Scarabosio (2022) and references therein for more recent developments. Closely
related to this topic is that of operator learning with DNNs – an area of signif-
icant current interest (Bhattacharya et al., 2021; Boullé and Townsend, 2023;
Kovachki et al., 2023, 2024; Li et al., 2021; L. Lu et al., 2021). One can view
holomorphic, Banach-valued functions as an example of holomorphic opera-
tors with specific parameterizations of the input space (Herrmann et al., 2022;
Schwab et al., 2023). These operators constitute an important example in the
field of operator learning for which there are strong guarantees on both para-
metric complexity (i.e., the number of DNN parameters required) and sample
complexity. The relevant theory for these examples is based on the theory of
holomorphic, Banach-valued functions described in this work. See Kovachki et
al. (2024, §5.2) or Lanthaler (2023, §3.4) for further discussion.

See Cybenko (1989); Hornik et al. (1989) and Pinkus (1999) for the clas-
sical universal approximation theory of (shallow) NNs. The modern study of
existence theory was initiated in Yarotsky (2017), and has since seen a wealth
of developments. We review this literature in §7. The polynomial emulation re-
sults used in this work are based on Daws and C. Webster (2019); De Ryck et
al. (2021); Opschoor et al. (2022).

The theory-to-practice gap in DL was studied empirically (Adcock and Dex-
ter, 2021) and theoretically in Abedeljawad and Grohs (2023); Grohs and Voigt-
laender (2023). Practical existence theorems were first established in Adcock
et al. (2021); Adcock and Dexter (2021). Our results are based on Adcock et
al. (2023a). This approach is not unique to high-dimensional regression prob-
lems. Similar ideas have been used to assert that it is possible to compute stable,
accurate and efficient DNNs for inverse problems in imaging (Colbrook et al.,
2022; Neyra-Nesterenko and Adcock, 2023). Here, one starts with a standard
regularization problem, such as TV minimization, then exploits the fact that n

steps of a first-order optimization method for solving this problem can be rein-
terpreted as a DNN with O(n) layers – a process known as unrolling (Monga
et al., 2021) (see also Adcock and Hansen, 2021, Chpts. 19-21). Interestingly,
this also leads to principled ways to design DNN architectures for DL in inverse
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problems (Monga et al., 2021), although the trained networks may not be robust
(Antun et al., 2023, 2020).

2 Problem statement and notation

In this section, we formalize the problem studied in this work and establish
important notation.

Throughout this work,U = [−1,1]N and (V,‖ · ‖V) is a Banach space over
R. We write y = (yi)i∈N for the independent variable in U. We equip U with
the uniform probability measure � and, for 1 ≤ p ≤ ∞, write L

p
�(U;V) for

the Lebesgue–Bochner space of (equivalence classes of) strongly �-measurable
functions f :U→V for which ‖f ‖L

p
� (U;V) < ∞, where

‖f ‖L
p
� (U;V) :=

{(∫
U ‖f (y)‖p

V d�(y)
)1/p

1 ≤ p < ∞,

ess supy∈U ‖f (y)‖V p = ∞.
(2.1)

WhenV= (R, | · |), we just write L
p
�(U) for the corresponding Lebesgue space

of real-valued functions.
Let f ∈ L2

�(U;V) be the unknown target function and consider sample
points y1, . . . ,ym ∼i.i.d. �. Then we consider training data

{(yi , f (yi ) + ei)}mi=1 ⊆U ×V, (2.2)

where ei ∈V represents measurement error. In this work, we assume the noise
is adversarial and of small norm, i.e.,

∑m
i=1 ‖ei‖2

V � 1. Statistical models can
also be considered – see, e.g., Migliorati et al. (2015). The problem is then to
learn an approximation to f based on the data (2.2).

We require some notation for sequences indexed via possibly multiindices.
Let d = N ∪ {∞}. We write ν = (νk)

d
k=1 for an arbitrary multiindex in N

d
0 .

Let � ⊆ N
d
0 be a finite or countable set of multiindices. For 0 < p ≤ ∞, we

write �p(�;V) for the space of allV-valued sequences c = (cν)ν∈� for which
‖c‖p;V < ∞, where

‖c‖p;V =
⎧⎨⎩(∑ν∈� ‖cν‖p

V
) 1

p 0 < p < ∞,

supν∈� ‖cν‖V p = ∞.

When (V,‖ · ‖V) = (R, | · |), we just write �p(�) and ‖ · ‖p. Given a sequence
c = (cν)ν∈�, we define its support

supp(c) = {ν ∈ � : cν �= 0} ⊆ �.
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Now let � = N and 0 < p ≤ ∞. Given a real-valued sequence z = (zi)i∈N ∈
�∞(N), we define its minimal monotone majorant as

z̃ = (z̃i )i∈N, where z̃i = sup
j≥i

|zj |, ∀i ∈ N (2.3)

and the monotone �p-space �
p

M(N) as

�
p

M(N) = {z ∈ �∞(N) : ‖z‖p,M := ‖z̃‖p < ∞}. (2.4)

Let d ∈ N ∪ {∞}. We write ej , j = 1, . . . , d , for the canonical basis vectors in
R

d . Given multiindices ν = (νk)
d
k=1 and μ = (μk)

d
k=1, the inequality ν ≥ μ is

interpreted componentwise, i.e., νk ≥ μk , ∀k. We define ν > μ analogously. We
write 0 for the multiindex of zeros and 1 for the multiindex of ones.

Remark 2.1 (Other measures and domains). We work with the uniform prob-
ability measure on U = [−1,1]N for convenience. This means that we con-
struct polynomial approximations using the corresponding multivariate Legen-
dre polynomials. It is possible to work more generally, for instance by consid-
ering ultraspherical measures and the resulting Jacobi polynomials. See Adcock
et al. (2024b). The cases where U = R

N with the Gaussian measure (corre-
sponding to Hermite polynomials) or U = [0,∞)N with the gamma measure
(corresponding to Laguerre) have also been studied, although the theory is less
complete. Results on best s-term polynomial approximation are known in this
case, as are DNN existence theorems (Dũng et al., 2023; Schwab and Zech,
2023). However, results akin to those we present in this work on learning sparse
polynomial or DNN approximations from data are lacking.

Remark 2.2 (Error metric). Throughout this work, we measure the error of the
various approximations in the L2

�(U;V)-norm. The majority of the results we
present extend to the stronger L∞

� (U;V)-norm. In particular, the various upper
bounds that establish algebraic rates with index 1/2 − 1/p can be modified to
show algebraic rates with index 1 − 1/p (see, e.g., Adcock et al., 2024a). For
succinctness, we do not present this modification.

3 Holomorphic functions of infinitely many variables

In this section, we first formally define the classes of holomorphic functions
considered in this work and then discuss their relevance to parametric DEs.

3.1 (b, ε)-holomorphic functions

We commence with the definition of holomorphy.

Definition 3.1 (Holomorphy). Let O⊆ C
N be an open set and V be a Banach

space. A function f : O→ V is holomorphic in O if it is holomorphic with
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respect to each variable in O. That is to say, for any z ∈ O and any j ∈ N, the
following limit exists inV:

lim
h∈C
h→0

f (z + hej ) − f (z)

h
∈V.

Definition 3.2 (Holomorphic extension). Let U ⊂ O ⊆ C
N be an open set. A

function f :U→V has a holomorphic extension to O (or simply, is holomor-
phic in O) if there is a f̃ :O→V that is holomorphic in O for which f̃ |U = f .
In this case, we also define ‖f ‖L∞(O;V) := ‖f̃ ‖L∞(O;V) = supz∈O ‖f̃ (z)‖V or,
whenV= C, simply ‖f ‖L∞(O). If O is a closed set, then we say that f is holo-
morphic in O if it has a holomorphic extension to some open neighborhood of
O.

In this work, we consider functions that possess holomorphic extensions to
(unions of) tensor-products of Bernstein ellipses. The Bernstein ellipse with pa-
rameter ρ > 1 is the set

E(ρ) =
{
(z + z−1)/2 : z ∈ C, 1 ≤ |z| ≤ ρ

}
⊂ C.

See, e.g., Trefethen (2013, Chpt. 8). This is an axis-aligned ellipse with foci
at ±1 and with major and minor semiaxis lengths given by (ρ + 1/ρ)/2 and
(ρ − 1/ρ)/2, respectively. By convention, we let E(ρ) = [−1,1] when ρ = 1.
Next, we define the Bernstein polyellipse with parameter ρ = (ρi)i∈N > 1 by

E(ρ) = E(ρ1) × E(ρ2) × · · · ⊂C
N.

Definition 3.3 ((b, ε)-holomorphic functions). Let b = (bj )j∈N ∈ [0,∞)N with
b ∈ �1(N) and ε > 0. A function f :U→V is (b, ε)-holomorphic if it has a
holomorphic extension to the region

R(b, ε) =
⋃⎧⎨⎩E(ρ) : ρ ≥ 1,

∞∑
j=1

(
ρj + ρ−1

j

2
− 1

)
bj ≤ ε

⎫⎬⎭⊂ C
N. (3.1)

See, e.g., Chkifa et al. (2015b); Schwab and Zech (2019). We discuss the
motivations for this definition next. Beforehand, it is worth noting that the
parameter ε is technically redundant, since we can always rescale b. In the re-
mainder of this work, we assume that ε = 1. For later use, we now introduce the
class of (b,1)-holomorphic functions with norm at most one, i.e.,

H(b) = {
f :U→V (b,1)-holomorphic : ‖f ‖L∞(R(b,1);V) ≤ 1

}
.

Remark 3.4 (Functions of finitely many variables). In finite dimensions (in
particular, d = 1), one normally considers functions that are holomorphic in
a single Bernstein polyellipse. For such functions, it is well known that one
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can find polynomial approximations that converge exponentially fast. As we see
later, in infinite dimensions we use the assumption of holomorphy in the region
(3.1) in order to obtain algebraic rates of convergence.

It is, however, worth noting that finite-dimensional holomorphy in a Bern-
stein polyellipse implies (b, ε)-holomorphy. Let f : [−1,1]d →R be a function
of finitely many variables that is holomorphic in E(ρ̄1) × · · · ×E(ρ̄d) ⊂ C

d . We
can extend f to a function f̄ :U→ C in the standard way as f̄ (y1, y2, . . .) =
f (y1, . . . , yd), ∀y = (yi)i∈N ∈U. Now define

bi = ε((ρ̄i + ρ̄−1
i )/2 − 1)−1, i ∈ [d], bi = 0, i ∈ N\[d].

Then f̄ is (b, ε)-holomorphic. Therefore, all the results that follow on approxi-
mation of (b, ε)-holomorphic functions also apply mutatis mutandis to functions
of d variables that are holomorphic in a single Bernstein ellipse.

3.2 Holomorphy and parametric DEs

As mentioned, (b, ε)-holomorphic functions were first developed in the context
of parametric DEs. There is now a wealth of literature that establishes that solu-
tion maps of many parametric DEs posses this regularity.

The classical example of a parametric PDEs is the parametric stationary dif-
fusion equation with parametrized diffusion coefficient

− ∇x · (a(x,y)∇xu(x,y)) = F(x), x ∈ �, u(x,y) = 0, x ∈ ∂�. (3.2)

Here x ∈ � is the spatial variable, � ⊂ R
k is the domain, which is assumed to

have Lipschitz boundary, and ∇x is the gradient with respect to x. The function
F is the forcing term, and is assumed to be nonparametric. We assume that (3.2)
satisfies a uniform ellipticity condition

ess inf
x∈�

a(x,y) ≥ r, ∀y ∈U, (3.3)

for some r > 0. Let V = H 1
0 (�) be the standard Sobolev space of functions

with weak first-order derivatives in L2(�) and traces vanishing on ∂�. Then
the problem (3.2) has a well-defined parametric solution map

u :U→V, y �→ u(·,y). (3.4)

Now suppose that the diffusion coefficient has the affine parametrization

a(x,y) = a0(x) +
∞∑

j=1

yjψj (x), (3.5)
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where the functions a0,ψ1,ψ2, . . . ∈ L∞(�). Notice that uniform ellipticity
(3.3) for this problem is equivalent to the condition

∞∑
j=1

|ψj (x)| ≤ a0(x) − r, ∀x ∈ �.

Under this assumption, one can show (see, e.g., Adcock et al., 2022, Prop. 4.9)
that the solution map (3.4) is well defined and (b, ε)-holomorphic for 0 < ε < r

with

b = (bi)
∞
i=1, with bi = ‖ψi‖L∞(�), ∀i ∈N. (3.6)

This example was first considered in Bieri et al. (2010); Cohen et al. (2010,
2011). Subsequently, these results were generalized to many other classes of
parametric DEs and PDEs. One such extension (see, e.g., Chkifa et al., 2015b)
considers the problem (3.2) with various nonaffine parametric diffusion coeffi-
cients, such as

a(x,y) = a0(x) +
⎛⎝ ∞∑

j=1

yjψj (x)

⎞⎠2

or a(x,y) = exp

⎛⎝ ∞∑
j=1

yjψj (x)

⎞⎠ .

This is part of a general framework for showing holomorphy for parametric
weak problems in Hilbert spaces. See Chkifa et al. (2015b, Thm. 4.1), Cohen
and DeVore (2015, Cor. 2.4) or Adcock et al. (2022, §4.3.1). See also Kunoth
and Schwab (2013); Rauhut and Schwab (2017). Another related general frame-
work considers parametric implicit operator equations (see Chkifa et al., 2015b,
Thm. 4.3, Cohen and DeVore, 2015, Thm. 2.5, or Adcock et al., 2022, §4.3.1).

These frameworks can be used to establish holomorphy results for various
problems beyond (3.2). This includes parabolic problems (see Chkifa et al.,
2015b, §5.1, or Cohen and DeVore, 2015, §2.2) and various types of nonlinear,
elliptic PDEs (see Chkifa et al., 2015b, §5.2, or Cohen and DeVore, 2015, §2.3).
Another prominent example includes PDEs such as (3.2) over parametrized do-
mains � = �y . Holomorphy of the solution map is often referred to as shape
holomorphy in this context. See Chkifa et al. (2015b, §5.3), Cohen and DeVore
(2015, §2.2), Castrillón-Candás et al. (2016); Cohen et al. (2018) and references
therein. Other examples include parametric hyperbolic problems (Hoang and
Schwab, 2012) and certain classes of parametric control problems (Kunoth and
Schwab, 2013).

See Cohen and DeVore (2015) or Adcock et al. (2022, Chpt. 4) for further
reviews. Note that the above problems all involve PDEs. Classes of parametric
ODEs also admit holomorphic regularity. See Adcock et al. (2022, §4.1) and
Hansen and Schwab (2013b). Recent work in this direction has also shown such
regularity for parametric ODEs arising from diffusion on graphs (Ajavon, 2024).
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3.3 Known and unknown anisotropy

Functions that are (b, ε)-holomorphic are anisotropic: they depend more
smoothly on some variables rather than others. This behavior is dictated by
the parameter b, with a larger (smaller) value of an entry bi corresponding to
less (more) smoothness with respect to the variable yi . This can be seen by
noting that the condition

∞∑
i=1

(
ρi + ρ−1

i

2
− 1

)
bi ≤ 1,

in (3.1) holds only for smaller (larger) values of ρi when bi is large (small),
meaning that f only admits an extension in the yi variable to a relatively small
(large) Bernstein ellipse.

In practice, a priori analysis of a given problem may establish that the target
function is (b, ε)-holomorphic for some b. However, an optimal value for b may
be unknown. This situation arises in parametric DEs. For problems such as the
stationary diffusion equation (3.2) with affine diffusion, one can find a sufficient
value (3.6) of b for which the parametric solution map is (b, ε)-holomorphic,
although this value may not be sharp. In general, since R(b, ε) ⊆ R(b′, ε) when-
ever b′ ≤ b, it is difficult to know whether a value of b obtained from some
analysis is optimal. Further, for more complicated problems, such as some of
those described above, one can derive theoretical guarantees that assert holo-
morphy, but without an estimate for the region itself (Cohen and DeVore, 2015,
Rem. 2.6).

For this reason, the primary focus of this work is the unknown anisotropy
setting. We may assume the target function f is (b, ε)-holomorphic for some b,
but we do not have access to b itself. In particular, this means that we cannot use
b to design a method for learning f from data: the holomorphy assumption can
only be used to provide bounds for the resulting approximation error.

Remark 3.5. To emphasize this consideration further, consider the function

f (y1, y2) = sin(1000y2)/(1.1 − y1).

This function is entire with respect to the variable y2, but has a pole at y1 = 1.1.
By Remark 3.4, it is (b,1)-holomorphic for b = (b1, b2, . . .) = (10,0,0, . . .).
When building a polynomial approximation to f , knowledge of b may lead one
to include only low-degree terms in y2 and more higher-degree terms in y1. Yet
this is completely the opposite of what one should do in practice. The function
sin(1000y2), while entire, is highly oscillatory, and can only be resolved by
using high-degree polynomials. On the other hand, the function

g(y1, y2) = 1/(1.1 − y1)

is also (b,1)-holomorphic with the same b. Yet, it requires no nonconstant terms
in y2 in order to approximate it accurately with a polynomial.
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3.4 �p-summability and theH(p) andH(p,M) classes

As we will see in §4, it is generally impossible to approximate a (b, ε)-
holomorphic function without a further assumption on the sequence b. In partic-
ular, the terms of b need to decay sufficiently fast. Henceforth, we will assume
that b is not just in �1(N), but that, for some 0 < p < 1, either

b ∈ �p(N) or b ∈ �
p

M(N).

Here we recall that �
p

M(N) is the monotone �p-space (2.4). Since we consider
the unknown anisotropy setting, we also define the function classes

H(p) =
⋃{
H(b) : b ∈ �p(N), b ∈ [0,∞)N, ‖b‖p ≤ 1

}
(3.7)

and

H(p,M) =
⋃{
H(b) : b ∈ �

p

M(N), b ∈ [0,∞)N, ‖b‖p,M ≤ 1
}

. (3.8)

In what follows we will ask for a method to provide a uniform error bound
(depending on m, the amount of data, and p) for any function in these classes.

4 Best s-term polynomial approximation

In this section, we make a first foray into polynomial approximation of holo-
morphic functions. We introduce orthogonal polynomials and orthogonal poly-
nomial expansions in L2

�(U;V). We then introduce best s-term polynomial
approximation and provide a key theorem on algebraic convergence for it. See,
e.g., Adcock et al. (2022, Chpts. 2-3) or Chkifa et al. (2015b); Cohen and De-
Vore (2015), for further information on this material.

4.1 Orthogonal polynomials

Let P0,P1, . . . denote the classical one-dimensional Legendre polynomials with
the normalization

‖Pν‖L∞([−1,1]) = Pν(1) = 1. (4.1)

We consider the orthonormalized version of these polynomials. Since∫ 1

−1
|Pν(y)|2 dy = 2

2ν + 1
, ∀ν ∈ N0,

we define these as

ψν(y) = √
2ν + 1Pν(y), ∀ν ∈N0. (4.2)

The set {ψν}ν∈N0 ⊂ L2
ρ([−1,1]) forms an orthonormal basis, where ρ is the

one-dimensional uniform measure.
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We construct an orthonormal basis of L2
�(U) by tensorization. Let

F =
{
ν = (νk)

∞
k=1 ∈N

N

0 : |{k : νk �= 0}| < ∞
}

be the set of multiindices with finitely many nonzero terms and set

�ν(y) =
∏
i∈N

ψνi
(yi), ∀y ∈U, ν ∈ F .

Note that ψ0 = 1 by construction. Therefore, this is equivalent to a product over
finitely many terms, i.e.,

�ν(y) =
∏

i:νi �=0

ψνi
(yi). (4.3)

Given these functions, it can now be shown that the set

{�ν}ν∈F ⊂ L2
�(U) (4.4)

constitutes an orthonormal basis for L2
�(U) (Cohen and DeVore, 2015, §3).

Using (4.1)–(4.3), we also deduce that

‖�ν‖L∞
� (U;V) = |�ν(1)| =

∏
k∈N

√
2νk + 1 =: uν . (4.5)

The values uν will be of use later. For convenience, we also define

u = (uν)ν∈F . (4.6)

4.2 Orthogonal polynomial expansions

Let f ∈ L2
�(U;V). Then we have the convergent expansion (in L2

�(U;V))

f =
∑
ν∈F

cν�ν, where cν =
∫
U

f (y)�ν(y)d�(y) ∈V. (4.7)

Note that the coefficients cν are elements ofV and defined by Bochner integrals.
For convenience, we denote the infinite sequence of coefficients of f by

c = (cν)ν∈F . (4.8)

Parseval’s identity gives that c ∈ �2(F ;V) with ‖c‖2;V = ‖f ‖L2
�(U;V).
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4.3 Best s-term polynomial approximation

Let s ∈ N. An s-term polynomial approximation to f is an approximation

f ≈ fS =
∑
ν∈S

cν�ν (4.9)

for some multiindex set S ⊂ F , |S| = s. This raises the question: which index
set S should one choose? One answer is to select a set S which provides the
best approximation, an approach known as best s-term approximation and it-
self a type of nonlinear approximation (DeVore, 1998). Formally, a best s-term
approximation fs of f (with respect to the L2

�-norm) is defined as

fs = fS∗ , where S∗ ∈ argmin{‖f − fS‖L2
�(U;V) : S ⊂ F , |S| = s}.

(4.10)
This approximation can also be characterized in terms of the coefficients of f .
Due to Parseval’s identity, the error of the approximation fS is precisely

‖f − fS‖2
L2

�(U;V)
=

∑
ν∈F \S

‖cν‖2
V. (4.11)

Therefore, any set S∗ that yields a best s-term approximation consists of multi-
indices corresponding to the largest s coefficient norms ‖cν‖V. Specifically,

S∗ = {ν1,ν2, . . . ,νs},
where ν1,ν2, . . . is an ordering of the multiindex set F such that ‖cν1‖V ≥
‖cν2‖V ≥ · · · . It follows immediately from this and (4.11) that the error

‖f − fs‖2
L2

�(U;V)
=
∑
i>s

‖cνi
‖2
V (4.12)

is precisely the �2(F ;V)-norm of the sequence of coefficients (4.8), excluding
those coefficients with indices in S∗. Note that S∗ (and therefore fs) is generally
nonunique. However, this fact causes no difficulties in what follows.

4.4 Rates of best s-term polynomial approximation

The best s-term approximation describes the best possible approximation ob-
tainable with an s-term polynomial expansion. It is therefore important to
provide bounds for this benchmark approximation in the case of holomorphic
functions. Besides providing insight into limits of approximation, these bounds
are also useful when we come to learn sparse polynomial approximations from
data.

As we discussed above, Parseval’s identity relates questions of best s-term
approximation to f (in the L2

�(U;V) norm) to approximation of its coefficients
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c (in the �2(F ;V)-norm). This motivates one to study best s-term approxima-
tion of sequences, rather than functions. To this end, we now introduce some
additional notation. Let � ⊆ F , 0 < p ≤ ∞, c ∈ �p(�;V) and s ∈ N0 with
s ≤ |�|. The �p-norm best s-term approximation error of the sequence c is de-
fined as

σs(c)p;V = min
{‖c − z‖p;V : z ∈ �p(�;V), |supp(z)| ≤ s

}
. (4.13)

Note that when p = 2 we have σs(c)2;V = ‖f − fs‖L2
�(U;V), where fs is a best

s-term approximation to f (4.10).
We now state a well known result regarding the best s-term approximation

(of coefficients) of holomorphic functions (see, e.g., Adcock et al., 2022, Thm.
3.28, or Cohen and DeVore, 2015, §3.2).

Theorem 4.1 (Algebraic convergence of the best s-term approximation). Let
b ∈ [0,∞)N be such that b ∈ �p(N) for some 0 < p < 1. Then for any s ∈ N and
p ≤ q ≤ 2, there exists a set S ⊂ F with |S| ≤ s such that

σs(c)p;V ≤ ‖c − cS‖q;V ≤ C(b,p) · s 1
q
− 1

p ,

for all f ∈H(b) with coefficients c as in (4.8).

Remark 4.2 (Sharpness of the algebraic rate). Theorem 4.1 provides an upper
bound for the best s-term approximation error. However, it is also possible to
provide a lower bound. As shown in Adcock and Monte (2023, Thm. 5.6), the
are choices of b ∈ �p(N) and functions f ∈H(b) for which

lim sup
s→∞

{
s

1
r
− 1

2 · ‖f − fs‖L2
�(U;V)

}
= +∞

for any 0 < r < p. Thus, the algebraic exponent 1/2 − 1/p is sharp.

4.5 How high is high dimensional?

As in Remark 3.4, let f : [−1,1]d → R be holomorphic in a single Bernstein
ellipse E(ρ̄) = E(ρ̄1) × · · · × E(ρ̄d) ⊂ C

d . Then its best s-term polynomial ap-
proximation converges with exponential rate in s1/d : specifically

‖f − fs‖L2
�(U;V) ≤ ‖f ‖L∞(R;V)C(ε)

√
s exp

⎛⎝−
(

sd!∏d
j=1 log(ρ̄j )

1 + ε

)1/d
⎞⎠ ,

for any 0 < ε < 1 and all s ≥ s̄, where s̄ is a constant depending on d , ε and
ρ̄ only. See Tran et al. (2017) or Adcock et al. (2022, Thm. 3.21). In low
dimensions, this rate accurately predicts the convergence of the best s-term
approximation. However, for larger d this rate is generally not witnessed for
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FIGURE 1 Best s-term approximation error in the L2
�(U)-norm for (4.14) with δi = i3/2. This fig-

ure also shows the exponential rate “exp. rate”, defined as Cexp · exp

(
−
(
sd!∏d

i=1 log(ρi )
)1/d

)
,

where ρi is such that (ρi +1/ρi )/2 = 1+δi , and the algebraic rate “alg. rate”, defined as Calg · s−1.
The constants Cexp and Calg are chosen empirically to aid visualization.

any finite s, due to the exceedingly slow growth of the term s1/d . For example,
s1/d ≤ 3.2 in d = 8 dimensions for all 1 ≤ s ≤ 10,000 (the range of s that is
quite reasonable in practice).

For larger d , the algebraic rates of Theorem 4.1 better describe the conver-
gence behavior. An example of this effect is shown in Fig. 1 for

f (y) =
d∏

i=1

(2δi + δ2
i )

1/2

yi + 1 + δi

, ∀y = (yi)
d
i=1 ∈ [−1,1]d . (4.14)

This function is holomorphic in E(ρ) for any ρi satisfying (ρi + 1/ρi)/2 < 1 +
δi . Thus, by Remark 3.4, it is also (b, ε)-holomorphic for any bi > ε/δi . In this
figure, we consider δi = i3/2, meaning that b can be chosen so that b ∈ �p(N) for
any 2/3 < p < 1. Thus, Theorem 4.1 predicts dimension-independent algebraic
convergence with order that is arbitrarily close to 1/2 − 1/(2/3) = −1. As we
see, in d = 4 dimensions the error follows the exponential rate. However, once
d = 16 or d = 32, the algebraic rate better predicts the true error.
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This discussion and example motivates the study of algebraic rates. Sim-
ply put, they typically better describe the convergence behavior, even in finite
dimensions as long as d is not too small (e.g., d ≥ 16).

5 Limits of learnability from data

We now consider learning (b, ε)-holomorphic functions from data. In this sec-
tion, we present lower bounds for the amount of data that is necessary to learn
such functions. We do this by appealing to techniques from information-based
complexity (Novak, 1988; Novak and Woźniakowski, 2008, 2010; Traub et al.,
1988) – in particular, (adaptive) m-widths.

Since our present focus is on lower bounds, in this section we do not assume
that the training data takes the form of pointwise evaluations of the target func-
tion, as in (2.2). In fact, we can allow for arbitrary (adaptive) linear sampling
operators. We will, for simplicity, consider only scalar-valued function approx-
imation, i.e., (V,‖ · ‖V) = (R, | · |). See Remark 5.3 for discussion.

5.1 Adaptive m-widths

Let C(U) be the Banach space of continuous functions f :U→ R. We define
an adaptive sampling operator as a map of the form

S : C(U) →R
m, S(f ) =

⎡⎢⎢⎢⎢⎣
S1(f )

S2(f ;S1(f ))

...

Sm(f ;S1(f ), . . . , Sm−1(f ))

⎤⎥⎥⎥⎥⎦ ,

where S1 : C(U) → R is a bounded linear functional and, for i = 2, . . . ,m,
Si : C(U) ×R

i−1 →R is bounded and linear in its first component.
This definition includes standard bounded linear operators as a special case.

However, it also allows for situations where the ith sample is selected adaptively
based on the existing measurements. In machine learning, this is commonly
referred to as active learning (Settles, 2012). In information-based complex-
ity, it is commonly termed adaptive information (Novak and Woźniakowski,
2008, Sec. 4.1.1). As noted, our primary concern in this work is where each Si

is a pointwise evaluation operator (so-called standard information (Novak and
Woźniakowski, 2008, Sec. 4.1.1)). In this case,S(f ) = (f (yi ))

m
i=1 ∈ R

m, where
yi ∈U is the ith sample point, which is potentially chosen adaptively based on
the previous measurements f (y1), . . . , f (yi−1).

Definition 5.1 (Adaptive m-width). The (adaptive) m-width of a subset K ⊆
C(U) is

�m(K) = inf
S,R

sup
f ∈K

‖f −R(S(f ))‖L2
�(U), (5.1)
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where the infimum is taken over all adaptive sampling operators S : C(U) →
R

m and reconstruction maps R :Rm → C(U).

The adaptive m-width is related to the concept of information complexity
(Novak and Woźniakowski, 2008, §4.1.4). It measures how well one can approx-
imate functions fromK using an arbitrary (adaptive) linear sampling operator S
and an arbitrary (potentially nonlinear) reconstruction map R. Due to the inner
supremum, the approximation is measured in a worst-case (or uniform) sense;
in other words, the sampling-recovery pair (S,R) is required to provide a guar-
anteed bound simultaneously for all functions in the class.

5.2 Lower bounds for adaptive m-widths

We now present the main results of this section. Following §3.4, we let

θm(p) = �m(H(p)), θm(p,M) = �m(H(p,M)).

We also consider slightly weaker notions, which are defined as follows.

θm(p) = sup
{
�m(H(b)) : b ∈ �p(N), b ∈ [0,∞)N, ‖b‖p ≤ 1

}
,

θm(p,M) = sup
{
�m(H(b)) : b ∈ �

p

M(N), b ∈ [0,∞)N, ‖b‖p,M ≤ 1
}

.

The widths θm(p) and θm(p,M) pertain to the unknown anisotropy setting.
A sampling-recovery pair (S,R) does not have access to the anisotropy pa-
rameter b, and must work uniformly for all holomorphic functions with �p

or �
p

M-summable b (of norm at most one). Conversely, θm(p) and θm(p,M)

are weaker and pertain to the known anisotropy setting, since they allow the
sampling-recovery pair (S,R) to depend on b. In particular, we have

θm(p) ≥ θm(p) and θm(p,M) ≥ θm(p,M).

Theorem 5.2 (Limits of learnability). Let m ≥ 1 and 0 < p < 1. Then

• the m-widths θm(p) and θm(p,M) satisfy

θm(p) ≥ θm(p,M) ≥ c · 2− 1
p · m 1

2 − 1
p , (5.2)

• the m-width θm(p) satisfies

θm(p) ≥ c · 2
1
2 − 2

p , (5.3)

• and the m-width θm(p,M) satisfies

θm(p,M) ≥ θm(p,M) ≥ c · 2− 1
p · m 1

2 − 1
p . (5.4)

Here c > 0 is a universal constant.
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See Adcock et al. (2023c, Thms. 4.4 & 4.5). This theorem has several con-
sequences. First, (5.3) shows that it is impossible to uniformly learn functions
from the class H(p). In other words, mere �p-summability of the anisotropy
parameter b is insufficient. By contrast, (5.4) shows that it may be possible to
learn functions in H(p,M), where b is now �

p

M-summable, but only at a rate
that is algebraically decaying in m. We will see in the next section that these
rates can in fact be attained (up to log terms) by practical methods. Finally, (5.2)
asserts that knowledge of the anisotropy parameter b does not help. The lower
bound for the nonuniform width θm(p,M) is the same as the lower bound for the
uniform width θm(p,M). Therefore, in terms of sample complexity, knowledge
of b conveys no benefit – we may as well deal exclusively with the unknown
anisotropy setting.

It is worth relating this result back to Theorem 4.1. Theorem 5.2 shows that
we can at best achieve a rate of m1/2−1/p when learning functions inH(b) from
data, whenever b ∈ �

p

M(N). Theorem 4.1 (with p = 2) shows that the best s-
term polynomial approximation can achieve a rate of s1/2−1/p subject to the
weaker assumption b ∈ �p(N). Hence, the discrepancy between �p(N) (where
learning is impossible) and �

p

M(N) (where learning is possible) must stem from
the limited amount of data, not intrinsic properties of the function class itself.

Remark 5.3 (Extensions). For simplicity, we have restricted this discussion to
scalar-valued functions with � being the uniform measure. The latter assumption
can be easily relaxed to an arbitrary tensor-product probability measure. One
may also consider Banach-valued functions, although some care is needed when
defining an adaptive sampling operator in this case. See Adcock et al. (2023c)
for details.

5.3 Towards methods

In summary, we have now seen that functions in H(p,M) can be learned from
training sets of size m with rates that are at best O(m1/2−1/p), regardless of the
training data and learning method. In the remainder of this review, we focus
on describing methods that achieve (close to) these rates when the training data
consists of i.i.d. pointwise samples, as in (2.2). We consider, firstly, polynomial-
based methods (§6) and, secondly, methods based on DNNs (§7-8).

6 Learning sparse polynomial approximations from data

We know from Theorem 4.1 that the best s-term approximation converges at the
desired rate s1/2−1/p. Therefore, our goal is to design methods that can com-
pute best (or quasibest) s-term approximations using roughly s samples (up to
constant and log factors). We shall do this using tools from compressed sens-
ing (Foucart and Rauhut, 2013; Vidyasagar, 2019), which recast the problem of
learning sparse polynomial approximations as recovering approximately sparse
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vectors. Unfortunately, as we describe in this section, this task is easily laid out,
but not so easily completed.

6.1 Setup

Throughout this section, we assume thatV is a Hilbert space (see §6.7 for some
discussion on the Banach case). Moreover, in a practical scenario, we often
cannot work directly with the space V, since it may be infinite dimensional.
Therefore, we now consider a finite-dimensional discretizationVh ⊆V, where
h > 0 denotes a discretization parameter. For parametric PDEs, this is typically
the mesh size when a Finite Element Method (FEM) is used. We also assume
that the training data (2.2) belongs toU ×Vh, rather thanU ×V, i.e.,

{(yi , f (yi ) + ei)}mi=1 ⊆U ×Vh. (6.1)

This encapsulates the notion that f is evaluated using some numerical simu-
lation (e.g., a FEM) that outputs values in Vh. Notice that the error term ei

incorporates any error incurred by this computation. For convenience, we also
define the orthogonal projection

Ph :V→Vh.

Moreover, if f ∈ L2
�(U;V), then we let Phf ∈ L2

�(U;Vh) be the function
defined almost everywhere as (Phf )(y) =Ph(f (y)), y ∈U.

Now consider a function f ∈ L2
�(U;V) with expansion (4.7) and coeffi-

cients (4.8). Standard compressed sensing involves the recovery of finite vectors.
Therefore, we first need to truncate the expansion (4.7). Let � ⊂ F be finite with
|�| = N and an enumeration � = {ν1, . . . ,νN }. Then

f (yi )+ ei = f�(yi )+ (f −f�)(yi )+ ei =
∑
ν∈�

cν�ν(yi )+ (f −f�)(yi )+ ei,

where f� =∑
ν∈� cν�ν . Now let c� = (cνi

)Ni=1 ∈VN . Then we have

Ac� + e + e′ = f , (6.2)

where

f = 1√
m

(
f (yi ) + ei

)m
i=1 A = 1√

m

(
�νj

(yi )/
√

m
)m,N

i,j=1
∈R

m×N, (6.3)

and

e = 1√
m

(ei)
m
i=1, e′ = 1√

m

(
(f − f�)(yi )

)m
i=1 ∈ R

m.

The vector c� is approximately s-sparse. Therefore, we have recast the problem
into a standard compressed sensing form: namely, the recovery of an approxi-
mately sparse vector from noisy linear measurements (6.2).
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Of course, this problem is not quite standard, since the vector c� has entries
taking values in V, rather than R or C. Fortunately, this challenge can be dealt
with by ‘lifting’ the appropriate theoretical tools from R or C to Hilbert spaces
(see Remark 6.1 below). A more delicate challenge is the following.

Challenge 1. How should the truncation set � be chosen.

In general, f has an infinite expansion. Since we recover only those coef-
ficients with indices in � (i.e., the vector c�), the error in recovering f will
always involve the expansion tail f −f�. On the one hand, � should not be too
large, since, as we see later in (6.21), log(N) will enter into the sample com-
plexity bound. Moreover, larger N will also increase the computational cost. On
the other hand, we need f − f� to be sufficiently small so as to obtain optimal
learning rates. To do this, we need to ensure no large coefficients of f lie outside
�. And here is where the problem lies. The result on best s-term approximation,
Theorem 4.1, which has served as our rationale up to now for using compressed
sensing, asserts approximate sparsity of the coefficients, but gives no guarantees
whatsoever on where the largest s coefficients should lie within the set F .

6.2 Sampling discretizations for multivariate polynomials

We will return to Challenge 1 in a moment. But, first, we also need to introduce
a second challenge. Let us imagine some oracle gives us a ‘good’ set S ⊂ F of
size |S| = s. For example, this could even be a set S = S∗ corresponding to the
best s-term approximation (4.10). Then one would naturally learn an approxi-
mation to f via the empirical least-squares fit

f̂ ∈ argmin
p∈PS;V

1

m

m∑
i=1

‖f (yi ) + ei − p(yi )‖2
V, (6.4)

where PS;V is the s-dimensional subspace

PS;V =
{∑

ν∈S

cν�ν : cν ∈V
}

⊂ L2
�(U;V)

of Hilbert-valued polynomials with nonzero coefficients in S.
The behavior of the estimator (6.4) is intimately related to the existence of

a sampling discretization of the L2
ρ(U)-norm for the scalar-valued analogue

of this space, i.e., PS = PS;R = span{�ν : ν ∈ S}. A sampling discretization
(Kashin et al., 2022) (also known as a Marcinkiewicz–Zygmund inequality
(Temlyakov, 2018)) is an inequality of the form

α‖p‖2
L2

�(U)
≤ 1

m

m∑
i=1

|p(yi )|2 ≤ β‖p‖2
L2

�(U)
, ∀p ∈ PS, (6.5)
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for constants 0 < α ≤ β < ∞. It is known that (6.5) ensures both accuracy of
the estimator (6.4) in the scalar-valued case and robustness to measurement error
(see, e.g., Adcock et al., 2022, Thm. 5.3).

Remark 6.1 (Lifting to Hilbert spaces). This is an instance of the aforemen-
tioned ‘lifting’ concept. The sampling discretization (6.5) is formulated for the
space PS = PS;R. It is a short argument (see, e.g., Adcock et al., 2024a, Lem.
7.5) to show that it is, in fact, equivalent to a sampling discretization for the
space PS;V, i.e.,

α‖p‖2
L2

�(U;V)
≤ 1

m

m∑
i=1

‖p(yi )‖2
V ≤ β‖p‖2

L2
�(U;V)

, ∀p ∈ PS;V.

In turn, this implies accuracy and robustness of the estimator (6.4) in the Hilbert-
valued case.

Sufficient conditions for sampling discretizations in linear subspaces with
i.i.d. samples can be derived using standard matrix concentration inequalities.
See, e.g., Cohen et al. (2013) or Adcock et al. (2022, Chpt. 5). These conditions
involve the quantity

κ(PS) = ‖K(PS)‖L∞
ρ (U), (6.6)

where K(PS) is the (reciprocal) Christoffel function of the subspace PS :

K(PS)(y) =
∑
ν∈S

|�ν(y)|2, ∀y ∈U. (6.7)

Specifically, one can show that if

m ≥ c · κ(PS) · log(2s/ε), (6.8)

where s = |S| and c > 0 is a universal constant, then (6.5) holds with constants
β ≤ 2 and α ≥ 1/2 (these values are arbitrary) with probability at least 1 − ε on
the draw of the sample points y1, . . . ,ym ∼i.i.d. � (see, e.g., Adcock et al., 2022,
Thm. 5.12).

Therefore, the sample complexity of the ‘oracle’ estimator (6.4) is governed
by the maximal behavior of the Christoffel function (6.6). Note that κ(PS) ≥ s

for any set S with |S| = s (Adcock et al., 2022, §5.3). To use (6.8) to achieve the
optimal rates described in Theorem 5.2 for this oracle estimator, we require that
κ(PS) � s as well. Unfortunately, this is not the case: κ(PS) can be arbitrarily
large in comparison to s. To see why, we recall (4.1). This implies that

κ(PS) =K(PS)(1) =
∑
ν∈S

u2
ν, (6.9)

where the uν are as in (4.5). Since uν → ∞ as ν → ∞, we deduce the claim.
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Challenge 2. Even if it is known, the index set S of the best s-term approxima-
tion may lead to a sample complexity estimate (6.8) that is arbitrarily large.

Similar to Challenge 1, this difficulty arises because Theorem 4.1 gives no
guarantees about the set S = S∗ which attains the best s-term approximation. In
particular, it says nothing about the term κ(PS∗). The paths to resolving each
challenge are therefore similar. We need to show that near-best s-term approxi-
mations can be obtained using suitably structured index sets.

Remark 6.2 (Necessity of sampling discretizations). The sampling discretiza-
tion (6.5) is sufficient condition for robustness of the estimator f̂ . However, the
lower inequality is also essentially necessary. Indeed, let S : C(U) →R

m,f �→
(f (yi ))

m
i=1/

√
m and R : Rm → C(U) be any reconstruction map that is δ-

accurate over PS , i.e.,

‖p −R(S(p))‖L2
�(U) ≤ δ‖p‖L2

�(U), ∀p ∈ Ps , (6.10)

for some δ > 0. Then it is a short argument to show that the ε-Lipschitz constant

Lε = sup
f ∈C(U)

sup
0<‖e‖2≤ε

‖R(S(f ) + e) −R(S(f ))‖L2
�(U)/‖e‖2

satisfies Lε ≥ (1 − δ)/
√

α. Thus, when α is small, a reconstruction map cannot
be simultaneously accurate (in the sense of (6.10)) and stable.

6.3 Resolving Challenge 1: lower and anchored sets

In order to address Challenge 1, we now introduce the following concept.

Definition 6.3 (Lower and anchored sets). A multiindex set S ⊆ F is lower if
the following holds for every ν,μ ∈ S:

(ν ∈ S and μ ≤ ν) ⇒ μ ∈ �.

A multiindex set S ⊆ F is anchored if it is lower and if the following holds for
every j ∈ N:

ej ∈ S ⇒ {e1, e2, . . . , ej } ⊆ S.

Lower sets are classical objects in multivariate approximation theory. An-
chored sets were introduced in the context of infinite-dimensional approxima-
tions. See, e.g., Adcock et al. (2022, §2.3.3 & 2.5.3) and references therein.

We now state a result that shows that the s1/q−1/p rate asserted in Theo-
rem 4.1 can also be obtained using a lower or (under an additional assumption)
anchored set. See, e.g., Adcock et al. (2022, Thm. 3.33) or Cohen and DeVore
(2015, §3.8).
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Theorem 6.4 (Algebraic convergence in lower or anchored sets). Let b ∈
[0,∞)N be such that b ∈ �p(N) for some 0 < p < 1. Then for any s ∈ N and
p ≤ q ≤ 2, there exists an lower set S ⊂ F with |S| ≤ s such that

‖c − cS‖q;V ≤ C(b,p) · s 1
q
− 1

p

for all f ∈H(b) with coefficients c as in (4.8). If b ∈ �
p

M(N) then S can also be
chosen as an anchored set.

In particular, when q = 2, this theorem and Parseval’s identity imply the
existence of a lower or anchored set S with |S| ≤ s such that

‖f − fS‖L2
�(U;V) ≤ C(b,p) · s 1

2 − 1
p , ∀f ∈H(b). (6.11)

Now recall that our aim is to learn functions in the space H(p,M) defined by
(3.8). Any f ∈H(p,M) satisfies f ∈H(b) for some b ∈ �

p

M(N). Therefore, for
any such function, we know there is an anchored set S, |S| ≤ s, that achieves
(6.11). How does this allow us to overcome Challenge 1? The reason is because
anchored sets of a fixed size lie within a finite subset of F . Indeed, one can show
(see, e.g., Cohen et al., 2017, or Adcock et al., 2022, Prop. 2.18) that S ⊂ �HCI

s

for all S ⊂ F with |S| ≤ s, where �HCI
s is the finite set

�HCI
s =

{
ν = (νk)

∞
k=1 ∈ F :

s−1∏
k=1

(νk + 1) ≤ s, νk = 0, ∀k ≥ s

}
. (6.12)

This set is in fact isomorphic to the (s − 1)-dimensional hyperbolic cross set
of order s − 1, a very well-known object in high-dimensional approximation
(Dũng et al., 2018). With this knowledge, we set � = �HCI

s and then apply
Theorem 6.4:

‖f − f�‖L2
�(U;V) = ‖c − c�‖2;V ≤ ‖c − cS‖2;V ≤ C(b,p) · s 1

2 − 1
p ,

for all f ∈H(b) and b ∈ �
p

M(N). This resolves Challenge 1.

Remark 6.5. Theorem 5.2 states that no method can learn functions in H(p)

from finite data. Theorem 6.4 says that we can always find a lower set that yields
the desired rate (6.11) when b ∈ �p(N). However, the union of all lower sets in
infinite dimensions is not a finite set. This is precisely what prohibits one from
learning functions in H(p) using compressed sensing (which, of course, must
not be possible in view of Theorem 5.2): namely, there is no way to construct a
finite set � that ensures a uniformly small truncation error f − f�.

6.4 Resolving Challenge 2: weighted k-term approximation

We now return to Challenge 2. In the previous subsection, we identified an-
chored sets as structured sets which achieve near-best s-term approximation
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rates. Unfortunately, while anchored sets do ameliorate the sample complex-
ity issue, they do not fully resolve it. On the one hand, it is possible to show that
κ(PS) ≤ s2 whenever S is anchored (see, e.g., Adcock et al., 2022, Prop. 5.17),
where κ(PS) is as in (6.6). Unfortunately, this bound is sharp. For example, the
anchored set

S = {je1 : j = 0, . . . , s − 1}, where e1 = (1,0,0, . . .),

satisfies κ(PS) = s2. This follows from (6.9) and the fact that uje1 = uj =√
2j + 1. Therefore, the sample complexity bound (6.8) for learning with an-

chored sets is generically log-quadratic in s.
To overcome Challenge 2 we need a different concept, weighted k-term ap-

proximation. Motivated by (6.9), we now define the weighted cardinality of set
S ⊂ F with respect to weights u as

|S|u :=
∑
ν∈S

u2
ν .

Thus we may reinterpret (6.8) as follows: the sample complexity is determined
not by the cardinality of S, but by its weighted cardinality.

Fortunately, as we next show, there exist sets of a given weighted cardinality
that achieve near-optimal approximation rates. For this, we need some addi-
tional notation. Given 1 ≤ p ≤ 2, we define the weighted �

p
u(�;V) space as the

space ofV-valued sequences c = (cν)ν∈� for which ‖c‖p,u;V < ∞, where

‖c‖p,u;V =
(∑

ν∈�

u
2−p
ν ‖cν‖p

V

) 1
p

.

Notice that ‖ · ‖2,u;V coincides with the unweighted norm ‖ · ‖2;V.

Theorem 6.6 (Algebraic convergence of the weighted best k-term approxima-
tion). Let b ∈ [0,∞)N be such that b ∈ �p(N) for some 0 < p < 1. Then for any
k > 0 and p ≤ q ≤ 2 there exists a set S ⊂ F with |S|u ≤ k such that

‖c − cS‖q,u;V ≤ C(b,p) · k 1
q
− 1

p

for all f ∈H(b) with coefficients c as in (4.8).

This theorem shows that we can construct near-best approximations using
set of weighted cardinality at most k. In particular, when q = 2, this theorem
and Parseval’s identity give that there exists a set S with |S|u ≤ k such that

‖f − fS‖L2
�(U;V) ≤ C(b,p) · k 1

2 − 1
p , ∀f ∈H(b).

Note that we do not require b ∈ �
p

M(N) for this result. This additional regularity
is only needed to resolve Challenge 1.
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6.5 Weighted �1-minimization

Challenge 2 is now resolved, at least insofar as the ‘oracle’ least-squares es-
timator goes. Of course, in practice we do not have access to such an oracle.
However, Theorem 6.6 implies that the sequence c, and therefore the finite vec-
tor c�, is approximately weighted sparse. In other words, it is well approximated
by cS for some index set S ⊆ � of weighted cardinality |S|u ≤ k.

Weighted sparsity is a well-understood concept in compressed sensing (see
Adcock, 2017; Rauhut and Ward, 2016 and references therein). Much like how
sparsity can be promoted by solving a minimization problem involving the
�1-norm, weighted sparsity can be solving a minimization problem involving
the weighted �1

u-norm. A large weight penalizes the corresponding coefficient,
much like how a large weight increases the weighted sparsity of any vector that
has a nonzero coefficient at the corresponding index. There are a number of ways
to formulate the weighted �1-minimization problem, but, following Adcock et
al. (2019, 2024a), we will consider the Hilbert-valued, weighted square-root
LASSO program

min
z∈VN

h

G(z), where G(z) := λ‖z‖1,u;V + ‖Az − f ‖2;V. (6.13)

Here ‖z‖1,u;V = ∑
ν∈� uν‖zν‖V is the �1

u;V-norm and λ > 0 is a parameter.

Notice that this problem is posed overVN
h , which means it can be numerically

solved. See Remark 6.7 below. In order to account for inexact solution of (6.13),
given γ ≥ 0 we say that ĉ = (ĉν)ν∈� is a γ -minimizer of (6.13) if

G(ĉ) ≤ min
z∈VN

h

G(z) + γ.

For such ĉ, we define the corresponding sparse polynomial approximation

f̂ =
∑
ν∈�

ĉν�ν . (6.14)

Remark 6.7 (Numerical solution of (6.13)). In practice, (6.13) is solved by first
introducing a basis {ϕi}Ki=1 for the spaceVh, where K = dim(Vh) (in particular,
K = 1 in the scalar-valued case V = (R, | · |)). Instead of searching for a Vh-
valued vector of coefficients ĉ ∈VN

h , one now searches for an equivalent matrix
of coefficients Ĉ ∈R

N×K . It is a short exercise to show that (6.13) is equivalent
to the problem

min
Z∈RN×K

λ‖Z‖2,1,u + ‖(AZ − F )G1/2‖F , (6.15)
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where ‖ · ‖F is the Frobenius norm, G = (〈ϕi,ϕj 〉
)K
i,j=1 ∈R

K×K and

‖Z‖2,1,u =
N∑

i=1

uνi

√√√√√ K∑
j=1

|zij |2.

As discussed in Adcock et al. (2024a), the convex optimization problem (6.15)
can be solved efficiently using Chambolle & Pock’s primal-dual iteration
(Chambolle and Pock, 2011, 2016) in combination with a restart scheme (Ad-
cock et al., 2023b; Roulet and d’Aspremont, 2020). Specifically, one can obtain
a γ -minimizer in at most log(1/γ ) iterations, where the cost-per-iteration is
bounded by

c · (m · N · K + (m + N) · (F (G) + K)) . (6.16)

Here F(G) ≤ K2 is the cost of performing the matrix-vector multiplication x �→
Gx. See Adcock et al. (2024a, Thm. 3.9 & Lem. 4.3).

6.6 Theoretical guarantee

We are now ready to present a theoretical guarantee for this estimator. For con-
venience, we define

L = L(m,ε) = log(m) · (log3(m) + log(ε−1)). (6.17)

Theorem 6.8 (Near-optimal learning via polynomials). Let m ≥ 3, 0 < ε < 1
and n = �m/L�, where L = L(m,ε) is as in (6.17). Let 0 < p < 1, b ∈ �

p

M(N),
f ∈H(b), y1, . . . ,ym ∼i.i.d. � and consider the training data (6.1). Then with
probability at least 1 − ε the approximation f̂ defined by (6.14) for any γ -
minimizer ĉ of (6.13), γ ≥ 0, with � = �HCI

n satisfies

‖f − f̂ ‖L2
�(U;V) ≤ c · ζ, (6.18)

where c ≥ 1 is a universal constant and

ζ := C · (m/L)1/2−1/p + ‖e‖2;V/
√

m + ‖f −Ph(f )‖L∞(U;V) + γ. (6.19)

See Adcock et al. (2024a, Thm. 3.7). The above theorem is slightly more
general than Adcock et al. (2024a, Thm. 3.7) since it does not require b to be
monotonically decreasing. This generalization follows from techniques given in
the proof of Theorem 7.2 in Adcock and Monte (2023).

This result demonstrates that functions inH(p,M) can be learned from i.i.d.
samples with a rate O((m/ log4(m))1/2−1/p) which, in view of Theorem 5.2, is
near-optimal. Moreover, the estimator is robust to other sources of error in the
problem. Indeed, the term (6.19) is a linear combination of the following.
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(a) An approximation error C · (m/L)1/2−1p , as discussed.
(b) A measurement error ‖e‖2;V/

√
m, which accounts for any errors in com-

puting the sample values f (yi ).
(c) A physical discretization error ‖f −Ph(f )‖L∞(U;V), which accounts for

the error induced when working over the finite-dimensional space Vh in-
stead ofV and depends on the orthogonal projection Ph(f ).

(d) An optimization error γ , which depends on the optimality gap of the com-
puted solution ĉ. See Remark 6.7 for further discussion on this term.

The proof of this theorem relies heavily on tools from compressed sensing. To
relate it back to the discussion in §6.2, we remark that a key step involves estab-
lishing a sampling discretization of the form

α‖p‖2
L2

�(U)
≤ 1

m

m∑
i=1

|p(yi )|2 ≤ β‖p‖2
L2

�(U)
, ∀p ∈ PS, S ⊆ �, |S|u ≤ k.

(6.20)
This is stronger than (6.5), since it is required to hold simultaneously for all
sets S ⊆ � of weighted cardinality at most k. It is an example of a universal
sampling discretization (Dai and Temlyakov, 2023). The proof first shows that
it is equivalent to a certain weighted Restricted Isometry Property (wRIP), then
uses known results for the wRIP (see Brugiapaglia et al., 2021, as well as Rauhut
and Ward, 2016). As proved therein, a sufficient condition for (6.20) to hold
with probability at least 1 − ε and constants α ≥ 1 − δ and β ≤ 1 + δ for some
0 < δ < 1 is

m ≥ c · δ−2 · k · (log(eN) · log2(k/δ) + log(2/ε)). (6.21)

Crucially, up to the log terms, there is now a linear scaling between m and k.
This is what leads to the near-optimal approximation error term.

Remark 6.9 (Sparse polynomial approximations). Generally, the vector ĉ com-
puted by solving (6.13) will not be sparse. Therefore, f̂ will not be a sparse
polynomial approximation per se. Fortunately, one can always postprocess the
solution to obtain such an approximation. This was shown in Adcock and Monte
(2023, Thm. 7.2) in the scalar-valued case V = (R, | · |), but the technique ex-
tends straightforwardly to the Hilbert-valued case. In the case of Theorem 6.8,
given a γ -minimizer ĉ = (ĉν)ν∈� ∈VN

h one first computes the index set S ⊆ �

of the largest n = �m/L� entries of the vector (‖ĉν‖V)ν∈�, and then replaces
f̂ with the n-sparse polynomial approximation f̌ =∑

ν∈S ĉν�ν . As shown in
Adcock and Monte (2023, Thm. 7.2), f̌ attains the same error bounds up to
possible changes in the constants. The computational cost of this postprocess-
ing step, roughly O(N log(N) + N · F(G)) operations, is generally negligible
in comparison to the cost of computing the initial γ -minimizer ĉ.
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6.7 Discussion and extensions

We conclude this section a short discussion. First, Theorem 6.8 asserts that
i.i.d. pointwise samples constitute near-optimal information. This is an inter-
esting facet of infinite-dimensional holomorphic function approximation, which
contrasts starkly with the finite-, and specifically, low-dimensional case, where
samples drawn i.i.d. from the uniform measure are distinctly suboptimal. See
Adcock and Monte (2023) for a detailed analysis of this phenomenon.

On the other hand, Theorem 6.8 assumes thatV is a Hilbert space, whereas
the lower bounds in Theorem 5.2 allow for Banach spaces. Theorem 6.8 can
be extended to Banach spaces, but with the suboptimal rate (m/L)1/2(1/2−1/p)

(Adcock et al., 2023a, Thm. 4.1). It is currently unknown whether this rate can
be improved.

Moreover, the computational cost of this procedure can be prohibitive. As
discussed in Adcock et al. (2024a), combining (6.16) with a standard estimate
for N = |�HCI

n | leads to a per-iteration costs that scales like m3+log2(m) – i.e.,
subexponential, but superpolynomial in m. The reason for this is the need to
construct the matrix A corresponding to all polynomials in the large index set
�HCI

n . Whether functions inH(p,M) can be learned to algebraic accuracy in m

with polynomial computational cost in m is currently an open problem. Sublin-
ear time algorithms (Choi et al., 2021a,b) may yield a solution to this problem.

7 DNN existence theory

We now turn our attention to DNNs. In this section, we discuss existence the-
ory. Theorems of this ilk describe the expressivity of NNs: namely, their ability
to approximation functions from specific classes to a desired accuracy. We com-
mence with a review, before showing how to establish an existence theorem for
(b, ε)-holomorphic functions via the technique of polynomial emulation.

7.1 Review

Arguably, the first results on existence theory are the various universal approx-
imation theorems for NNs. See Cybenko (1989); Hornik et al. (1989) and, in
particular, Pinkus (1999). These show that shallow NNs with one hidden layer
can approximate any continuous function.

Unfortunately, these classical results only apply to shallow networks, and
do not always give quantitative bounds on the complexity (i.e., the width) of
the corresponding networks (some notable exceptions to this include Mhaskar,
1996, and references therein). These issues have been investigated intensively
over the last five years. Some of the first results were obtained in Yarotsky
(2017). Here, explicit width and depth bounds were derived for DNNs with the
Rectified Linear Unit (ReLU) activation function for approximating Lipschitz
continuous functions in the L∞-norm over compact sets. This inspired many
subsequent works. Other activations have been studied, including hyperbolic
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tangents (tanh), Rectified Quadratic Units (ReQU) and Rectified Polynomial
Units (RePU), and various others. And quantitative bounds have been shown for
various different function classes. A partial list includes: functions in Sobolev
spaces with ReLU (Yarotsky, 2017; Gühring et al., 2020), RePU (Li et al., 2020),
tanh (De Ryck et al., 2021) or rational (Boullé et al., 2020) activations; piece-
wise smooth functions with ReLU (Petersen and Voigtlaender, 2018); Ck and
Hölder smooth functions with ReLU (J. Lu et al., 2021; Schmidt-Hieber, 2020)
or general (Ohn and Kim, 2019) activations; uniformly continuous functions
with ReLU activations (Yarotsky, 2018); functions in Besov spaces with ReLU
(Opschoor et al., 2020; Suzuki, 2019); spaces of mixed smoothness with ReLU
(Blanchard and Bennouna, 2020; Montanelli and Du, 2019; Dũng and Nguyen,
2021; Suzuki, 2019), RePU (Li et al., 2020) or smooth activations (Blanchard
and Bennouna, 2020); Gevrey functions with ReLU (Opschoor et al., 2020),
RePU (Opschoor et al., 2022) or tanh (De Ryck et al., 2021) activations; ban-
dlimited functions with ReLU activations (Montanelli et al., 2021); functions in
Barron spaces (E et al., 2021) with ReLU and non-ReLU activations; composi-
tional functions (Poggio et al., 2017; Liang and Srikant, 2017; Schmidt-Hieber,
2020); smooth functions on manifolds (Chen et al., 2022; Shaham et al., 2018);
finite-dimensional, analytic functions with smooth (Mhaskar, 1996), ReLU (E
and Wang, 2018) or RePU (Opschoor et al., 2022) activation functions; and,
most relevantly to this work, infinite-dimensional holomorphic functions with
ReLU (Schwab and Zech, 2019, 2023; Dũng et al., 2023), tanh (De Ryck et al.,
2021) or RePU (Schwab and Zech, 2023) activations. See also DeVore et al.
(2021); Elbrächter et al. (2021) for reviews.

These existence theorems are based on emulating suitable classical approxi-
mation schemes with DNNs. Emulation results include (localized) Taylor poly-
nomials (De Ryck et al., 2021; Gühring and Raslan, 2021; Liang and Srikant,
2017; Li et al., 2020; J. Lu et al., 2021; Yarotsky, 2017; Schwab and Zech,
2019), orthogonal polynomials (Adcock et al., 2023a; Daws and C. Webster,
2019; Mhaskar, 1996; Opschoor et al., 2022; Tang et al., 2019; Dũng et al.,
2023; Opschoor and Schwab, 2023; Schwab and Zech, 2023), rational functions
(Boullé et al., 2020; Telgarsky, 2017), wavelets (Shaham et al., 2018) and gen-
eral affine systems (Bölcskei et al., 2019), B-splines (Mhaskar, 1993), free-knot
splines (Opschoor et al., 2020), finite elements (Longo et al., 2023; Opschoor et
al., 2020; Opschoor and Schwab, 2023) and sparse grids (Blanchard and Ben-
nouna, 2020; Montanelli and Du, 2019; Dũng and Nguyen, 2021; Suzuki, 2019).

To highlight some of these themes, we next describe an existence theorem
for (b, ε)-holomorphic functions. This is achieved by first emulating Legendre
polynomials with DNNs. For ease of presentation, we consider tanh DNNs. But,
as we discuss, other activation functions can also be used.



36 Numerical Analysis Meets Machine Learning

7.2 Neural network architectures

In this and subsequent sections, we consider standard feedforward DNN archi-
tectures of the form

� :Rn → R
k, z �→ �(z) =AD+1(σ (AD(σ(· · ·σ(A0(z)) · · · )))), (7.1)

where Al : RNl → R
Nl+1 , l = 0, . . . ,D + 1 are affine maps and σ is the ac-

tivation function, which we assume acts componentwise. The values {Nl}D+1
l=1

are the widths of the hidden layers, and for convenience, we write N0 = n and
ND+2 = k. Given such a DNN �, we write

width(�) = max{N1, . . . ,ND+1}, depth(�) = D.

We denote a class of DNNs of the form (7.1) with a fixed architecture (i.e., fixed
activation function, depth and widths) as N , and define

width(N) = max{N1, . . . ,ND+1}, depth(N) = D.

Finally, since the DNNs (7.1) take a finite input, yet the functions considered in
this work take inputs in U ⊆ R

N, we also need to introduce a restriction oper-
ator. Let � ⊂ N with |�| = n. Then we define the variable restriction operator
as

T� : RN → R
n, y = (yi)i∈N → (yi)i∈�. (7.2)

If � = {1, . . . , n} then we simply write T� = Tn.

7.3 Emulating polynomials with DNNs: typical result

We now present a result on emulating a finite set of multivariate Legendre poly-
nomials with a tanh DNN.

Theorem 7.1 (Emulating multivariate Legendre polynomials). Let � ⊂ F be a
finite multiindex set and � ⊂ N, |�| = n, be such that supp(ν) ⊆ �, ∀ν ∈ �.
Then for every 0 < δ < 1 there exists a tanh DNN ��,δ : Rn → R

|�|, such that,
if ��,δ(z) = (�ν,δ(z))ν∈�, z = (zj )j∈� ∈ R

n and T� is as in (7.2), then

‖�ν − �ν,δ ◦T�‖L∞(U) ≤ δ, ∀ν ∈ �,

where �ν is the corresponding multivariate Legendre polynomial. The width
and depth of this network satisfy

width(��,δ) ≤ c1 · |�| · m(�), depth(��,δ) ≤ c2 · log2(m(�)),

for universal constants c1, c2 > 0, where m(�) = maxν∈� ‖ν‖1.
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This result was shown in Adcock et al. (2023a, Thm. 7.4), and is based on
techniques of Daws and C. Webster (2019); De Ryck et al. (2021); Opschoor
et al. (2022). To avoid unnecessary complications, we have stated it for tanh
DNNs. It also applies without changes to DNNs with the sigmoid activation,
since this is obtained from tanh via shifting and scaling. The result (Adcock et
al., 2023a, Thm. 7.4) also considers the ReLU and RePU activations. As dis-
cussed therein, the proof readily extends to more general classes of activation
functions. See also De Ryck et al. (2021, Rem. 3.9) and Opschoor et al. (2022,
§2.4) for related discussion.

7.4 Elements of the proof of Theorem 7.1

The proof of Theorem 7.1 involves three key ingredients:

(i) The map (x, y) �→ xy can be approximated by a shallow tanh NN.
(ii) Using (i), the multiplication of d numbers (x1, . . . , xd) �→ x1 · · ·xd can

be approximated by a tanh DNN of depth c�log2(d)� for some constant
c > 0.

(iii) By the fundamental theorem of algebra, the multivariate Legendre poly-
nomial �ν can be expressed as a product of ‖ν‖1 terms.

The constructions that lead to the proofs of (i) and (ii) have become standard. In
the case of tanh DNNs, they can be found in De Ryck et al. (2021, Lem. 3.8).
For (i), the basic idea is to use the relation xy = ((x + y)2 − (x − y)2)/4 in
combination with a tanh DNN for approximating the map x �→ x2. The latter
is constructed via finite differences (see De Ryck et al., 2021, Lem. 3.1, and
Gühring and Raslan, 2021). Having shown (i), the next ingredient (ii) follows
from arguments given (Schwab and Zech, 2019, Prop. 3.3), which formulates a
DNN for multiplying d numbers as a binary tree of depth �log2(d)�. The final
ingredient (iii) follows Daws and C. Webster (2019) and involves writing

�ν(y) =
∏

i∈supp(ν)

νi∏
j=1

aij (yi − rij ), ∀y ∈U, ν ∈ F , (7.3)

for scalars aij , rij ∈ R. We deduce that �ν(y) can be approximated by the
composition of the affine map y �→ (aij (yi − rij ))ij and the tanh DNN that
approximately computes the product in (7.3).

The precise bounds on the architecture given in Theorem 7.1 are now evi-
dent. First, each polynomial �ν involves a product of ‖ν‖1 ≤ m(�) numbers.
The depth bound now follows immediately. The width bound follows from the
fact that the DNNs emulating each polynomial are stacked vertically to form the
overall network ��,δ which simultaneously emulates all |�| polynomials.

It is also evident that this proof can be adapted to any other activation func-
tion for which the multiplication map in (i) can be approximated with a DNN
of a quantifiable width and depth. ReLU DNNs were also considered in Adcock
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et al. (2023a, Thm. 7.4), with ingredients (i) and (ii) being based on Opschoor
et al. (2022, Prop. 2.6). The resulting depth and width bounds are worse than
the tanh case. Conversely, a RePU network of depth one and constant width can
exactly represent the multiplication of two numbers (see, e.g., Li et al., 2020,
Lem. 2.1). Therefore, a RePU network with the same width and depth bounds
as in Theorem 7.1 can exactly emulate the Legendre polynomials, as opposed
to approximately in the tanh case. The same holds for DNNs based on rational
activation functions (Boullé et al., 2020).

Finally, we note that the proof can be easily adapted to other polynomial sys-
tems, such as Chebyshev or, more generally, Jacobi polynomials. In the RePU
case, as before, this emulation is exact.

7.5 Existence theorem for (b, ε)-holomorphic functions

We now present an existence theorem for (b, ε)-holomorphic functions.

Theorem 7.2 (Existence theorem for DNNs). LetV= (R, | · |) and b ∈ [0,∞)N

be such that b ∈ �p(N) for some 0 < p < 1. Then, for every s ∈ N there exists a
class of tanh DNNs � :Rs →R with

width(N) ≤ c1 · s2, depth(N) ≤ c2 · log(s),

for universal constants c1, c2 > 0 such that the following holds. For every f ∈
H(b), there is a � ∈N such that

‖f − � ◦Ts‖L2
�(U) ≤ C(b,p) · s 1

2 − 1
p .

This result follows immediately from Theorems 6.4 and 7.1. The former as-
serts the existence of a lower set S of size |S| ≤ s and depending on b and p only
which attains the desired rate of s1/2−1/p . Then the latter asserts the existence
of the DNN �S,δ , with δ = s−1/p, of the desired size. Note that m(S) ≤ s for
any lower set. Indeed, if ν ∈ S then so does the set {μ ∈ F : μ ≤ ν}. Therefore

‖ν‖1 ≤
∏
i∈N

(νi + 1) = |{μ ∈ F : μ ≤ ν}| ≤ |S| ≤ s.

Theorem 7.2 only deals with scalar-valued functions. We will tackle Hilbert-
valued functions in the next section when we consider learning via DNNs.

8 Practical existence theory: near-optimal DL

While existence theory provides crucial insight into the expressivity of DNNs, it
says nothing about whether networks with similar approximation guarantees can
be trained in practice and, in particular, how much training data suffices to do
so. To narrow this gap between theory and practice, in this section we develop
the topic of practical existence theory. The goal of this endeavor is to show that
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there exists both an architecture and a training strategy that is similar to what
is used in practice (i.e., minimizing a loss function) from which one provably
learns near-optimal DNN approximations from the training data (6.1).

8.1 Setup

As in §6, we assume that V is a Hilbert space with a finite-dimensional dis-
cretization Vh. Following in Remark 6.7, we let {ϕi}Ki=1 be a basis for Vh. If
f :U→V is the function to recover, then we write

f (y) ≈
K∑

i=1

di(y)ϕi,

where the coefficients di :U→ R are scalar-valued functions. We now seek to
approximate these functions using a DNN with K neurons on the output layer,
with the ith neuron corresponding to the approximation of the function di . Let
N be a class of DNNs of the form � : Rn → R

K for some n ∈ N. Then our
aim is to use the training data (6.1) to compute a suitable � ∈N that yields an
approximation f

�̂
≈ f defined by

f�(y) :=
K∑

i=1

(� ◦Tn(y))iϕi, ∀y ∈U. (8.1)

8.2 Practical existence theorem

The first practical existence theorems were shown in Adcock and Dexter (2021)
(scalar-valued case) and Adcock et al. (2021) (Hilbert-valued case) for holomor-
phic function approximation in finite dimensions with ReLU DNNs. This was
extended in Adcock et al. (2023a) to infinite-dimensional, holomorphic func-
tions with ReLU, RePU or tanh activation functions. The following result is
based on Adcock et al. (2023a, Thm. 4.4).

Theorem 8.1 (Practical existence theorem for DNNs). There are universal con-
stants c1, c2, c3 ≥ 1 such that the following holds. Let m ≥ 3, 0 < ε < 1 and
n = �m/L�, where L = L(m,ε) is as in (6.17). There exists

1. a class N of DNNs � :Rn → R
K with tanh activation function satisfying

width(N) ≤ c1 · m3+log2(m), depth(N) ≤ c2 · log(m);
2. a regularization function J : N → [0,∞) equivalent to a certain norm of

the trainable parameters;
3. and a choice of regularization parameter λ involving only m and ε;

such that following holds for every 0 < p < 1 and b ∈ �
p

M(N). Let f ∈H(b),
y1, . . . ,ym ∼i.i.d. � and consider the training data (2.2). Then, with probability
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at least 1 − ε, every γ -minimizer �̂, γ ≥ 0, of the training problem

min
�∈N G(�), where G(�) =

√√√√ 1

m

m∑
i=1

‖f�(yi ) − di‖2
V + λJ(�), (8.2)

where f� is as in (8.1), satisfies, with ζ as in (6.19),

‖f − f
�̂
‖L2

�(U;V) ≤ c3 · ζ. (8.3)

In this theorem, as before, we term �̂ a γ -minimizer of (8.2) if G(�̂) ≤
min�∈N G(�) + γ . Comparing with Theorem 6.8, we conclude that there is
a DNN architecture and training procedure such that the resulting learned ap-
proximations achieve the same error bounds (up to possible constants) as sparse
polynomial approximation based on weighted �1-minimization. In particular,

this procedure also achieves the near-optimal approximation rate (m/L)
1
2 − 1

p .
We term Theorem 8.1 a practical existence theorem. It not only asserts the

existence of a DNN with a given architecture that achieves some desired rate
of approximation, but demonstrates how to construct it from training data and
gives generalization bounds that are explicit in the amount of training data m.
Moreover, the training procedure is similar to standard DL procedures, in that it
involves minimizing a (regularized) least-squares loss function.

While Theorem 8.1 only considers tanh DNNs, it can be readily adapted to
other activations (Adcock et al., 2023a). As discussed next, all one requires to
do this are variants of Theorem 7.1 for other activations, a topic we discussed
previously in §7.4.

8.3 The mechanism of practical existence theorems

We now give some insight into the proof of Theorem 8.1, since this provides a
general recipe for establishing practical existence theorems.

The overall mechanism involves not just emulating polynomials with DNNs,
but also emulating the weighted �1-minimization problem of §6.1 as a DNN
training problem. More precisely, following §6.1 we proceed as follows.

(i) Approximate the Legendre polynomials {�ν}ν∈� using DNNs.
(ii) Replace the polynomials in the matrix (6.3) by these DNNs, leading to a

matrix A′ ≈ A. Then replace A by A′ in (6.15).
(iii) Re-cast (6.13) with A′ as a training problem of the form (8.2), where

the unknowns Z ∈ R
N×K correspond to the trainable parameters of the

DNNs.
(iv) Emulate the proof steps of Theorem 6.8, showing, as needed, that each

step remains valid for the perturbed matrix A′.
Step (i) is accomplished straightforwardly by using the emulation result,

Theorem 7.1. Since � is taken to be � = �HCI
n , we have supp(ν) ⊆ {1, . . . , n}
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for ν ∈ �. Hence we set � = {1, . . . , n} and consider a suitable parameter
δ that is chosen later in the proof to balance the ensuing error terms. Let
��,δ : Rn →R

|�| be the resulting DNN.
Step (ii) warrants no further discussion. Now consider Step (iii). Let N = |�|

as before, and define the class of DNNs

N =
{
� = Z���,δ : Z ∈R

N×K
}

.

This is a class of DNNs, where only the weight matrix on the output layer is
trainable. The remaining layers are nontrainable, and are handcrafted to emulate
the Legendre polynomials {�ν}ν∈�.

Now let z = (zνj
)Nj=1 ∈ VN

h . Then we can associate z with its matrix of

coefficients Z = (Zij ) ∈R
N×K
i,j=1 via the relation

zνi
=

K∑
j=1

Zijϕj , ∀i = 1, . . . ,N, (8.4)

and consequently with the DNN � = Z���,δ ∈ N . Using this, it is a short
argument to show that

f�(y) =
∑
ν∈�

zν�ν,δ ◦T�(y).

Therefore,

‖A′z − f ‖2
2;V = 1

m

m∑
i=1

∥∥∥∥∥∑
ν∈�

zν�ν,δ(yi ) − di

∥∥∥∥∥
2

V

= 1

m

m∑
i=1

∥∥f�(yi ) − di

∥∥2
V.

Now let J :N→ [0,∞) be the regularization functional defined by

J(�) =
N∑

j=1

uνj

∥∥∥∥∥
K∑

k=1

Zjkϕk

∥∥∥∥∥
V

=
N∑

j=1

uνj
‖zνj

‖V = ‖z‖1,u;V,

for � = Z���,δ ∈ N , where z = (zνi
)Ni=1 is as defined by (8.4). We readily

see that J is a norm over the trainable parameters. Using this and the previous
expression we see that (6.13) with the matrix A′ in place of A can be re-cast as
a training problem of the form (8.2).

Finally, consider step (iv). This step is facilitated by the perturbation bound
‖A − A′‖2 ≤ √

Nδ, which in turn follows from a short argument via the
Cauchy-Schwarz inequality:
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‖(A − A′)z‖2
2 = 1

m

m∑
i=1

∣∣∣∣∣∑
ν∈�

(�ν(yi ) − �ν,δ(yi ))zν

∣∣∣∣∣
2

≤
(∑

ν∈�

δ|zν |
)2

≤ δ2N‖z‖2
2.

The remainder of this step involves a careful modification of the proof of Theo-
rem 6.8 to take into account this perturbation. Theorem 6.8 involves compressed
sensing techniques, and relies on first asserting that the matrix A has a cer-
tain weighted robust Null Space Property (rNSP) (Rauhut and Ward, 2016) (see
also Adcock et al., 2022, Chpt. 6). This is a weighted variant of the classical
(unweighted) rNSP, and like the latter, is a slightly weaker condition than the
better known (weighted) RIP (Foucart and Rauhut, 2013). Crucially, it can be
shown that the (weighted) rNSP is preserved under sufficiently small perturba-
tions (Adcock and Hansen, 2021, Lem. 8.5).

We note in passing that the width and depth bounds in Theorem 8.1 fol-
low quite directly from Theorem 7.1. Recall that � = �HCI

n is as in (6.12). A
standard estimate (see Kühn et al., 2015, Thm. 4.9) gives that

|�| ≤ en2+log2(n), ∀n ∈N. (8.5)

Moreover, by definition, any ν ∈ � satisfies ‖ν‖1 ≤∏n−1
k=1(νk + 1) ≤ n. Hence

m(�) ≤ n. (8.6)

The desired width and depth bounds now follow immediately from Theorem 7.1
and these estimates, along with the (somewhat loose) bound n ≤ m.

9 Epilogue

This work has been about the approximation of smooth, infinite-dimensional
functions from limited data. We close with a discussion on the benefits and
consequences of practical existence theory and the gap between the handcrafted
models on which it is based and the fully trained models used in practice.

9.1 Scientific computing and data scarcity

As discussed in §1.1, parametric DE problems are often data scarce. This is
the case for many problems in scientific computing in which machine learning
and, specifically, DL, is currently being applied. It also stands in stark contrast
to more classical DL applications such as image classification, where datasets
usually contain tens of millions of images or more. Therefore, understanding
the sample complexity is crucial. Practical existence theorems show that DNNs
can be learned from data in a sample-efficient manner.
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9.2 Potential benefits to DNNs over sparse polynomials

Having said this, we emphasize that practical existence theorems are, at least in
this work, intended primarily as theoretical contributions. Since the strategy in
Theorem 8.1 involves emulating the sparse polynomial approximation scheme
constructed in §6, there is no benefit to implementing it over the latter.

However, in related work in inverse problems in imaging (recall the discus-
sion in §1.3), unrolling is both used to establish practical existence theorems
and as a principled way to design DNN architectures which can then be trained
as part of a DL strategy (Monga et al., 2021), potentially using the theoretical
weights and biases as initialization. It remains to see whether similar ideas could
be effective in the parametric DE setting. Some initial work in this direction can
be found in Daws and C.G. Webster (2019).

In addition, existence theory establishes that DNNs have the capacity to
approximate broad classes of functions efficiently. This is not the case for poly-
nomials, which fail dramatically on, for instance, discontinuous functions. This
work has focused on classes of holomorphic functions, where polynomials are
well suited (in fact, near optimal). DNN-based schemes have the potential to
succeed on quite different function classes, something that distinguishes them
from traditional methods of scientific computing. We remark in passing that dis-
continuous or sharp transitions arise frequently in parametric model problems,
and are difficult to treat with standard methods (Elman and Miller, 2012; Gun-
zburger et al., 2014a,b; Jakeman et al., 2011; Ma and Zabaras, 2009; Zhang et
al., 2016).

9.3 Theorem 8.1 does not eliminate the theory-practice gap

DNNs in Theorem 8.1 are handcrafted to emulate Legendre polynomials, with
only the final layer being trained. Standard DL methods use fully trained mod-
els, where all layers are trained. Theorem 8.1 says nothing directly about this
practice. However, it does lead to some insights, as we now discuss.

9.4 Practical insights

Width and depth bounds
The aim of practical existence theory is to express the error in terms of the sam-
ple complexity m. This differs from standard existence theory in which express
the error is expressed in terms of the complexity of the network, e.g., its width
and depth, or its size (number of nonzero weights and biases). Nonetheless, it is
worth discussing the network complexity in Theorem 8.1.

This theorem describes architectures that are much wider than they are deep.
In fact, the depth grows very slowly with the number of samples m, like log(m).
This broadly agrees with empirical insights from the application of DL in sci-
entific computing, where it is often observed that relatively shallow networks
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perform well. See De Ryck et al. (2021) and references therein, as well as Ad-
cock et al. (2021); Adcock and Dexter (2021).

However, while the depth bound in Theorem 8.1 is somewhat reasonable, the
width bound of O(m3+log2(m)) grows extremely rapidly with m (albeit subex-
ponentially). As discussed in §8.3, the large estimate for the width arises, in
great part, from having to emulate all polynomials in the hyperbolic cross �HCI

n ,
whose size, as shown in (8.5), behaves like O(n2+log2(n)). This has nothing to
do with DNN approximation itself. It stems from the sparse polynomial ap-
proximation scheme and, as discussed in §6.3, the need to build a finite search
set � outside of which the error is ensured to be small. It is unclear whether the
near-optimal approximation rates of Theorem 6.8 can be obtained with a smaller
search space without further assumptions on the functions being approximated.
This is an interesting prospect for future work.

Post-training pruning and sparsification

On the other hand, it is always possible to sparsify the DNN �̂ learned in The-
orem 8.1 after training – a process known as pruning (see Frankle and Carbin,
2019, and references therein). This exploits the fact that the networks in N ,
while very wide, are sparsely connected. This is done in much the same way
as the in polynomial case (Remark 6.9). If Ĉ ∈ R

N×K are the weights of �̂,
then one first forms ĉ = (ĉν)ν∈� ∈ VN

h using (8.4), then computes the index
set S ⊆ � of the largest n entries of (‖ĉν‖V)ν∈�, and finally replaces �̂ with
�̌ = Z�

S �S,δ , where ZS ∈ Rn×K is formed from the rows of Z with indices
in S. By Theorem 7.1 and the bound m(S) ≤ m(�) ≤ n (recall (8.6)), we have
width(�̌) ≤ c1m

2 and depth(�̌) ≤ c2 log(m). In particular, �̌ is significantly
narrower than �̂.

This suggests that methods to promote sparsity in training (see Hoefler et
al., 2021, and references therein) may be beneficial in practice when training
fully-connected models for scientific computing problems. This requires further
investigation.

9.5 Eliminating the gap: beating the Monte Carlo rate is key

Despite these insights, the gap between theory and practice persists. It is worth
noting that standard approaches to estimating the generalization error for fully-
trained models based on statistical learning theory and the bias-variance de-
composition (see, e.g., Beck et al., 2022; Chen et al., 2022; Ohn and Kim, 2019;
Schmidt-Hieber, 2020; Suzuki, 2019 and references therein) are not immedi-
ately applicable to this setting. These approaches use estimates for the covering
number or Rademacher complexity of the relevant DNN classes. Unfortunately,
they typically lead to rates that decay at best like m−1/2. These rates are strictly
slower than near-optimal rates m1/2−1/p, up to log factors, asserted in Theo-
rem 8.1. A major theme in parametric DEs and computational UQ is building
methods that beat the Monte Carlo rate m−1/2 (Adcock et al., 2022, Chpt. 1).
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Whether these approaches could be meaningfully combined with practical exis-
tence theorems is an interesting question for future work.

9.6 Conclusion

To summarize, practical existence theory is a promising way to study DNN
approximation which has the potential to give new insights into the promises
and challenges of data scarce applications in computational science and engi-
neering. In addition to those outlined above, several interesting future avenues
include the design of improved training methodologies and novel architectures
and activation functions. Studying these areas is key for pushing the boundaries
of what DNNs can achieve in scientific computing, particularly in the face of
scarce data and complex computational tasks. These efforts may not only nar-
row the theory-to-practice gap but also unlock new DL approaches, making it
more efficient, accurate, and applicable across a broader spectrum of scientific
challenges and guiding the way towards more sophisticated and capable DNN
models.
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