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Abstract 

This chapter presents a regulatory science perspective on the assessment of machine learning algorithms in 
diagnostic imaging applications. Most of the topics are generally applicable to many medical imaging 
applications, while brain disease-specific examples are provided when possible. The chapter begins with 
an overview of US FDA’s regulatory framework followed by assessment methodologies related to ML 
devices in medical imaging. Rationale, methods, and issues are discussed for the study design and data 
collection, the algorithm documentation, and the reference standard. Finally, study design and statistical 
analysis methods are overviewed for the assessment of standalone performance of ML algorithms as well as 
their impact on clinicians (i.e., reader studies). We believe that assessment methodologies and regulatory 
science play a critical role in fully realizing the great potential of ML in medical imaging, in facilitating ML 
device innovation, and in accelerating the translation of these technologies from bench to bedside to the 
benefit of patients. 
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1 Introduction 

Machine learning (ML) technologies are being developed at an 
ever-increasing pace in a variety of medical imaging applications 
[1]. Particularly in brain imaging, the past decade has witnessed a 
spectacular growth of ML development for the diagnosis, progno-
sis, and treatment of brain disorders [2]. One of the ultimate goals 
of these developments is to translate safe and effective technologies 
to the clinic to benefit patients. Regulatory oversight plays a key 
role in this translation. The mission of the Center for Devices and 
Radiological Health (CDRH) at the US Food and Drug Adminis-
tration (US FDA) is to “assure that patients and providers have 
timely and continued access to safe, effective, and high-quality
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medical devices.”1 This chapter discusses performance assessment 
of machine learning algorithms in imaging applications from a 
regulatory science perspective. Regulatory science is the science of 
developing new tools, standards, and approaches to assess the 
safety, efficacy, quality, and performance of all FDA-regulated 
products.2
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We begin with clarifications of the scope of this chapter. First, 
following an overview of the US FDA’s regulatory framework for 
medical imaging and related ML devices, the primary topics we 
discuss are about concepts, basic principles, and methods for per-
formance assessment of ML algorithms in the arena of regulatory 
science but not regulatory policy. As such, these topics are not 
necessarily relevant to every regulatory submission. The question 
of which components should be included in a specific regulatory 
submission is a regulatory decision depending on factors such as the 
risk of the device, impact on clinical practice, complexity of the 
technology, precedents, and so on and is beyond the scope of this 
chapter. Second, the topics are selected based on our experience and 
expertise but are not intended to be comprehensive. For example, 
software engineering and cybersecurity are important aspects of 
ML devices but are beyond the scope of this chapter. Third, as 
discussed in earlier chapters of this book, ML algorithms are devel-
oped for both imaging and non-imaging modalities for treating 
brain disorders. We focus on imaging applications. Moreover, while 
this book is on brain disorders, most of the discussions in this 
chapter are applicable to ML algorithms in general imaging appli-
cations unless noted otherwise. Lastly, while the assessment meth-
ods are well established to the best of our knowledge at the time of 
writing, we acknowledge that ML techniques and assessment meth-
odologies are active areas of research and better methods may 
become available and adopted by researchers, developers, and reg-
ulatory agencies alike in the future. To give the readers a more 
specific sense of the scope of applications that are relevant to our 
discussions, we reviewed, via the American College of Radiology 
(ACR) and FDA public databases, some ML devices for brain 
disorders that were authorized by the FDA in recent years and 
summarized major scope characteristics including the imaging 
modalities, functionalities, and types of ML algorithms (see 
Table 1). 

The rest of the chapter begins with an overview of US FDA’s 
regulatory framework followed by topics on assessment methodol-
ogies related to ML devices in medical imaging. Rationale, meth-
ods, and issues are discussed for study design and data collection

1 https://www.fda.gov/about-fda/center-devices-and-radiological-health/cdrh-mission-vision-and-shared-
values 
2 https://www.fda.gov/science-research/science-and-research-special-topics/advancing-regulatory-science
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(Subheading 3), algorithm documentation (Subheading 4), and 
reference standard (Subheading 5). Finally, performance assess-
ment methodologies are overviewed including the standalone per-
formance assessment of ML algorithms (Subheading 6), assessment 
of ML algorithms in the hands of clinicians (i.e., reader studies; 
Subheading 7), and general considerations for the statistical analy-
sis (Subheading 8). The relationships among these topics are illu-
strated in Fig. 1. Performance assessment of ML devices is 
necessary in both premarket and postmarket environments. Pre-
market studies are for the assessment of safety and effectiveness 
before the device is authorized for marketing by a regulatory body. 
Some premarket studies are used in the context of device develop-
ment to refine and iterate on device design. Other premarket 
studies are intended for review by regulatory bodies to help assess 
the safety and effectiveness prior to marketing authorization. Post-
market studies are for clinical use and epidemiology, maintenance, 
and modifications. The selected topics to be discussed in this chap-
ter belong to premarket performance assessment.
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Table 1 
Summary characteristics of exemplar FDA-cleared ML devices for brain disorders 

Modality CT (contrast or non-contrast), CTA, MRI, PET, SPECT 

Functionality Triage and notification (e.g., for intracranial hemorrhage); segmentation, quantification, 
and feature measurements; analysis and visualization; computer-aided diagnosis; 
denoising, enhancement; auto-contouring/segmentation of organs at risk or tumors 
for radiation therapy of head and neck tumors 

ML 
algorithms 

Hand-crafted feature extraction and computerized classifiers; deep learning neural 
networks 

CT computed tomography, CTA computed tomography angiography, MRI magnetic resonance imaging, PET positron 
emission tomography, SPECT single photon emission computed tomography. Summary based on a sampled review of 

public databases at ACR (https://models.acrdsi.org/) and FDA (https://www.fda.gov/medical-devices/software-

medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices) websites. The table 
aims to give a general overview of the scope of devices available. For specific devices that work for a certain imaging 

modality with certain functionalities, please refer to the cited databases 

2 Regulatory Framework 

CDRH Learn3 provides readers an excellent resource to better 
understand overall medical device regulation. 

2.1 Overview The US FDA classifies medical devices into three classes, Classes I, 
II, and III. The classification determines the extent of regulatory 
controls necessary to provide reasonable assurance of the safety and

3 https://www.fda.gov/training-and-continuing-education/cdrh-learn

https://models.acrdsi.org/
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/training-and-continuing-education/cdrh-learn


effectiveness of the device. The device classification tends to 
increase with increasing degree of risk, and the appropriate types 
of controls applicable to the device depend on the device classifica-
tion. There are three types of regulatory controls: general controls, 
special controls, and premarket authorization requirements. Gen-
eral controls include the basic provisions applicable to medical 
devices of the Food, Drug, and Cosmetic Act and apply to all 
medical devices. They include provisions that relate to adulteration; 
misbranding; device registration and listing; premarket notification; 
banned devices; notification, including repair, replacement, or 
refund; records and reports; restricted devices; and good 
manufacturing practices.4 Special controls apply to Class II devices 
and are published in the Code of Federal Regulations under the 
specific device type. Some examples of special controls include 
labeling, testing, design specifications, software life cycle documen-
tation activities, and usability assessments.
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Fig. 1 ML performance assessment methods in the context of US FDA’s regulatory framework 

The US FDA requirements for premarket submissions differ 
between the device classes. To receive FDA approval, sponsors of 
Class III devices, generally considered the highest risk devices, must 
demonstrate a reasonable assurance of safety and effectiveness. 
Sponsors of Class I and II device must demonstrate substantial 
equivalence between their new device and a legally marketed device 
through the premarket notification process (i.e., the 510 
[k] Program), unless the product class is exempt from premarket

4 https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices

https://www.fda.gov/medical-devices/regulatory-controls/general-controls-medical-devices


notification. Substantial equivalence is a comparative analysis that 
includes a comparison of the intended use, technological character-
istics, and performance testing. For device classifications that 
include defined special controls (generally published in the Code 
of Federal Regulations or in an order granting a request for reclas-
sification), the sponsor must also demonstrate that they have ful-
filled all the necessary special controls as part of the premarket 
notification process and to avoid marketing an adulterated or mis-
branded device.
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The De Novo classification process is a pathway to Class I or 
Class II classification for medical devices for which general controls 
or general and special controls provide a reasonable assurance of 
safety and effectiveness, but for which there is no legally marketed 
predicate device [3]. Devices of a new type that FDA has not 
previously classified are “automatically” or “statutorily” classified 
into Class III by the FD&C Act, regardless of the level of risk they 
pose or the ability of general and special controls to assure safety 
and effectiveness. Section 513(f)(2) of the FD&C Act allows man-
ufacturers to submit a De Novo request to FDA for devices “auto-
matically” classified into Class III by operation of Section 513(f) 
(1). In essence, a De Novo is a request for classification for a novel 
device that would otherwise be classified as a Class III device. 
During review of a De Novo request, the FDA evaluates whether 
general controls or general and special controls are adequate to 
provide a reasonable assurance of safety and effectiveness for the 
identified classification of the device. 

FDA regulates products based upon the device characteristics 
(e.g., what is it? what does it do?) and the intended use of the 
device. The submission type and performance data necessary to 
obtain marketing authorization depends on the device classifica-
tion, technological characteristics, and intended use. Understand-
ing the technological characteristics is often a more straightforward 
exercise compared to the determination of the intended use of the 
product when attempting to determine the appropriate regulatory 
pathway and necessary supporting data. Intended use means the 
general purpose of the device or its function and encompasses the 
indications for use [4]. The indications for use, as defined in 
21 CFR 814.20(b)(3)(i), describes the disease or condition the 
device will diagnose, treat, prevent, cure, or mitigate, including a 
description of the patient population for which the device is 
intended. The intended use of a device is one criterion that deter-
mines whether a device can be cleared for marketing through the 
510(k) process or must be evaluated as a Class III device (premarket 
approval) or, if appropriate, a De Novo request. Section 513(i)(1) 
(E)(i) of the FD&C Act provides that the FDA’s determination of 
intended use of a device “shall be based upon the proposed label-
ing.” A device may have a variety of different indications for use and



intended uses (e.g., output a measurement for users, identify 
patients eligible for a particular treatment, estimate prognostic 
cancer risk, or predict a patient’s response to therapy). The data 
needed to support these different intended uses and indications are 
different. 
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2.2 Imaging Device 

Regulation 

A majority of medical image processing devices have been classified 
as Class II devices. Most of the software-only devices or software as 
a medical device that are intended for image processing have been 
classified under 21 CFR 892.2050 as picture archiving and com-
munications systems. On April 19, 2021, FDA updated the name of 
the regulation 21 CFR 892.2050 to “medical image management 
and processing system.” There are no published, mandatory spe-
cific special controls related to software-only devices classified 
under 21 CFR 892.2050, and therefore, the primary resource to 
understand the legal requirements for performance data associated 
with these devices is the comparative standard of substantial equiv-
alence as described in detail in the guidance document on the 510 
(k) Program [4]. In contrast, several devices more recently classified 
under the De Novo pathway have specific special controls that 
manufacturers marketing such devices must adhere to. 

Devices originally classified via the De Novo pathway often 
include special controls defined in the CFR describing require-
ments for manufacturers of these devices. Devices that may imple-
ment machine learning that include software or software-only 
devices must adhere to the special controls defined in the specific 
regulations associated with the appropriate device class. The classi-
fication with the associated special controls is published with a 
Federal Register notice and appears in the Electronic Code of 
Federal Regulations (eCFR).5 A De Novo classification, including 
any special control, is effective on the date the order letter is issued 
granting the De Novo request [3]. For the specific examples cited 
below, the De Novo submission (DEN number) is cited for classi-
fications that have not been published in CFR at the time of 
writing, and the associated order with special controls may be 
found by searching FDA’s De Novo database.6 Examples include:

• 21 CFR 870.2785 (DEN200019): Software for optical camera-
based measurement of pulse rate, heart rate, breathing rate, 
and/or respiratory rate

• 21 CFR 870.2790 (DEN200038): Hardware and software for 
optical camera-based measurement of pulse rate, heart rate, 
breathing rate, and/or respiratory rate 

5 https://www.ecfr.gov/cgi-bin/ECFR?page=browse 
6 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm

https://www.ecfr.gov/cgi-bin/ECFR?page=browse
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm
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• 21 CFR 876.1520 (DEN200055): Gastrointestinal lesion soft-
ware detection system

• 21 CFR 892.2060 (DEN170022): Radiological computer-
assisted diagnostic software for lesions suspicious of cancer

• 21 CFR 892.2070: Medical image analyzer

• 21 CFR 892.2080 (DEN170073): Radiological computer-
aided triage and notification software

• 21 CFR 892.2090 (DEN180005): Radiological computer-
assisted detection and diagnosis software

• 21 CFR 892.2100 (DEN190040): Radiological acquisition 
and/or optimization guidance system 

The special controls associated with these regulations are 
intended to mitigate the risks to health associated with these types 
of devices. As such, many of the special controls included in these 
classifications relate directly to elements associated with machine 
learning-based software devices intended for use in diagnostics. For 
example, several of the regulations include special controls related 
to the description of the image analysis algorithm (e.g., 21 CFR 
892.2060(b)(1)(i), 21 CFR 870.2785(1), 21 CFR 876.1520(5)). 
Many others specify elements of the performance testing and char-
acterization. Often included in these regulations (e.g., 21 CFR 
892.2060, 21 CFR 892.2070) are special controls that indicate 
performance must demonstrate that the device provides improved 
performance on a particular diagnostic task (e.g., detection, diag-
nosis). For new devices, these requirements generally mean FDA 
will require both standalone testing characterizing device perfor-
mance and clinical testing demonstrating diagnostic improvement 
in the intended use population. For devices implementing machine 
learning algorithms to estimate other physiologic characteristics, 
standalone and clinical testing may also be required (e.g., 21 CFR 
870.2785). In addition, these regulations may include special con-
trols related to describing the expected performance of the device. 
Requirements associated with communicating expected device per-
formance in labeling help to (a) mitigate the risks associated with 
the device and (b) communicate expectations for performance for 
similar devices to future device developers. 

CDRH is statutorily mandated to consider the least burden-
some approach to regulatory requirements or decisions. Alternative 
methods, data sources, real-world evidence, nonclinical data, and 
other means to meet regulatory requirements may be considered 
and accepted, when appropriate. FDA encourages innovative 
approaches to device design as well as mechanisms to address 
regulatory requirements, when appropriate. FDA takes a benefit–



risk approach to novel devices [5] and to devices with different 
technological characteristics [6]. 

712 Weijie Chen et al.

CDRH provides opportunities for developers to request feed-
back and meet with FDA staff to obtain FDA feedback prior to an 
intended premarket submission [7]. These interactions tend to 
focus on a particular device and questions relevant to a planned 
future regulatory submission and may include questions about 
testing protocols, proposed labeling, regulatory pathways, and 
design and performance of clinical studies and acceptance criteria. 

Device developers need to be aware of all regulatory require-
ments throughout a product’s life cycle including investigational 
device requirements (e.g., 21 CFR 812), premarket requirements, 
postmarket requirements (e.g., 21 CFR 820), and surveillance 
requirements. While this chapter focuses on the premarket and 
performance assessment of devices, we remind the reader that 
regulatory requirements throughout the device life cycle should 
be considered. 

3 Study Design and Data Collection 

This section aims at summarizing general considerations for study 
design and data collection for the assessment of ML algorithms in 
imaging. The specific topics we focus on in this section include 
study objectives, pilot and pivotal studies, and issues related to data 
collection, including dataset mismatch and bias. Other study design 
considerations, such as selection of a reference standard, selection 
of a performance metric, and data analysis plans, are discussed in 
later sections. 

3.1 Study Objectives The first consideration in study design is the objective of the study. 
A general principle is that the study design should aim at generating 
data to support what the ML algorithm claims to accomplish. The 
required data are closely related to the intended use of the device, 
including the target patient population. Important considerations 
include the significance of information provided by an ML algo-
rithm to a healthcare decision, the state of the healthcare situation 
or condition that the algorithm addresses, and how the ML algo-
rithm is intended to be integrated into the current standard of care. 
Examples of study objectives for ML algorithms include standalone 
performance characterization, standalone performance comparison 
with another algorithm or device, performance characterization of 
human users when equipped with the algorithm, and performance 
comparison of human users with and without the algorithm.
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3.2 Pilot and Pivotal 

Studies 

For the purpose of this chapter, a pivotal study is defined as a 
definitive study in which evidence is gathered to support the safety 
and effectiveness evaluation of a medical device for its intended use. 
A pivotal study is the key formal performance assessment of ML 
devices in medical imaging, and the design of a pivotal study is often 
the culmination of a significant amount of previous work. An often 
overlooked, important step toward the design of a pivotal study is a 
pilot (or exploratory) study. Pilot studies may include different 
phases, including those that demonstrate the engineering proof of 
concept, those that lead to a better understanding of the mechan-
isms involved, those that may lead to iterative improvements in 
performance, and those that yield essential information for design-
ing a pivotal study. When a pilot study involves patients, sample size 
is typically small, and data are often conveniently acquired rather 
than representative of an intended population [8]. Such pilot stud-
ies provide information about the estimates of the effect size and 
variance components that are critical for estimating the sample size 
for a pivotal study. In addition, a pilot study can uncover basic issues 
in data collection, including issues about missing or incomplete 
data and poor imaging protocols. For pivotal studies that include 
clinicians (typically radiologists or pathologists who interpret 
images when equipped with the ML algorithm), a pilot study can 
reveal poor reading protocols and poor reader training [8]. Run-
ning one or more pilot studies is therefore highly advisable prior to 
the design of a pivotal study. 

3.3 Data Collection An important prerequisite for a study that supports the claims of an 
ML algorithm is that the data collection process should allow the 
replication of the conclusions drawn from this particular study by 
independent studies in the future. In this regard, the composition 
and independence of training and test datasets and dataset repre-
sentativeness are central issues. 

3.3.1 Training and Test 

Datasets 

Training data are defined as the set of patient-related attributes (raw 
data, images, and other associated information) used for inferring a 
function between these attributes and the desired output for the 
ML algorithm. During training, investigators may explore different 
algorithm architectures for this function and fine-tune the para-
meters of a selected architecture. The algorithm designer can also 
partition this data into different sets for preliminary 
(or exploratory) performance analysis, utilizing, for example, 
cross-validation techniques [9]. Typically, these cross-validation 
results are used for further model development, model selection, 
and hyperparameter tuning. In other words, cross-validation is 
typically used as an informative step before the ML algorithm is 
finalized. In many machine learning texts, a subset of data left out



for certain parts of algorithm design (e.g., tuning hyperparameters) 
is referred to as a validation set. In this chapter, we avoid calling this 
dataset as a validation set and call it a tuning dataset because it 
contradicts with the commonly used meaning of validation as 
“checking the accuracy of” and the definition of validation in 
21 CFR 820.37 as “confirmation by examination and provision of 
objective evidence that the particular requirements for a specific 
intended use can be consistently fulfilled.” Since cross-validation 
estimates described above are typically used to modify the trained 
algorithm, they do not pertain to the finalized production version 
of the ML algorithm. 
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Test data are defined as the set of patient-related attributes that 
are used for characterizing the performance of an ML algorithm 
and performing appropriate statistical tests. For imaging ML soft-
ware, the performance is estimated by comparing either the output 
of the finalized software or the interpretation of a human observer 
who utilizes the software to a reference standard for each case and 
summarizing the results for the entire dataset using appropriate 
metrics. 

Collecting a well-characterized and representative dataset is 
resource-intensive, and therefore, most datasets in medical imaging 
are much more limited in size, compared to, for example, datasets 
in natural imaging or electronic health records. A general principle 
for dataset size is that the training dataset should be large enough 
to minimize overfitting and the test dataset should be large enough 
to provide adequate precision in testing, including adequate study 
power when hypothesis testing is involved. Multiple studies have 
shown that as the training set is gradually increased starting from a 
small size, overfitting is initially decreased dramatically, with dimin-
ishing returns as the dataset size gets larger [10, 11]. The size for 
which adding more data provides only diminishing returns depends 
on the complexity of the ML system and the complexity of the data 
space. Estimation of the test dataset size for adequate precision and 
study power is a classical problem in statistics, and pilot data is 
extremely important for this task. 

3.3.2 Independence A central principle in performance assessment is that the test dataset 
is required to be independent of the training dataset, meaning that 
the data for the cases in the test set do not depend on the data for 
the cases in the training set. It is well-known that the violation of 
this principle results in optimistically biased performance estimates 
[12]. To avoid this bias, developers typically set aside a dedicated 
test data for performance estimation aimed to be independent of 
the training dataset. There are subtle ways in which the indepen-
dence principle can be violated if the test dataset is not carefully

7 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=820.3

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=820.3


selected. We discuss two such mechanisms below. The first is related 
to including data from a particular patient in both the training and 
test datasets. The second is related to performing internal valida-
tion instead of using an external validation [13] method.
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A basic mechanism that can cause a dependence between the 
training and test sets is the inclusion of data from one patient in 
both datasets. This could happen if different regions of interest, 
different image slices, or different objects from the same patients 
span both the training and test datasets. Since portions of the data 
from the same patient are expected to be correlated, this practice 
will result in a statistical dependence between the training and test 
datasets. A straightforward principle to be followed is to include 
each patient’s data exclusively in the training set or exclusively in 
the test set. 

A more subtle mechanism that can cause a dependence between 
the training and test datasets is the way the data are sampled or the 
way that one dataset is partitioned into training and test datasets. 
Internal validation, which involves partitioning a previously col-
lected sample into training and test datasets randomly or in a 
stratified way across a given attribute, may result in a dependence 
between the training and test datasets. Any sampled data, even if it 
was designed to be collected in a random manner, may not perfectly 
follow the true distribution of the target population due to finite 
sample size effects. In addition, there may be a systematic deviation 
in the feature distribution of a particular sample from the true 
distribution due to the fact that, for example, the sample may be 
collected only at a particular site or using only a particular or 
predominant image acquisition system that does not represent the 
true distribution. When such a dataset is shuffled and randomly 
partitioned into training and test datasets, knowledge about the 
distribution of the training data may provide unfair information 
about the distribution of the test dataset that would have been 
impossible to know had the training and test datasets been sampled 
independently from the true population. A practical approach to 
reduce this type of dependence is to sample the training and test 
datasets from multiple different, independent sites, a practice 
known as external validation [13]. 

ML algorithms are data-driven, and the distributions of the training 
and test data have direct implications for algorithm performance 
and its measurement. Ideally, training and test sets should be large 
and representative enough so that the collected data provides a 
good approximation to the true distribution in the target popula-
tion. As discussed above, well-characterized and annotated medical 
imaging datasets are typically limited in size. When the dataset size 
is a constraint, informativeness of a case to be selected for training

3.3.3 Represen-

tativeness



the ML algorithm for the task at hand is an additional consideration 
besides representativeness [14]. Active machine learning techni-
ques aim to proactively select training cases that can best improve 
model performance, based on informativeness, representativeness, 
or a combination of the two [15]. Active learning techniques have 
been applied to train ML algorithms applied to brain imaging 
[16, 17].
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Representativeness of the test dataset is typically desirable when 
an unbiased estimate of the ML algorithm performance assessment 
is sought for the target population. For most classification pro-
blems, representativeness within each class may be sufficient, 
which allows designers to enrich the test datasets with classes that 
have smaller prevalence in the target population. For studies that 
aim to compare two competing arms (e.g., clinicians’ image inter-
pretation with and without ML), enrichment methods that are 
based on a measurement (e.g., patient or lesion characteristics, 
risk factors), which trade the unbiased absolute performance results 
for the practical ability to compare the two competing arms with 
possible moderate biases, are often acceptable [8]. For example, if 
cases that are known to be trivial to classify (or diagnose) in both 
arms of a comparative study are excluded from the test dataset, this 
will result in a bias in the absolute performance estimates for both 
arms but may not result in a bias in the difference or change the 
ranking order of the two arms under comparison, thus allowing the 
use of a smaller test dataset and a less resource-intensive study 
design. Likewise, as discussed in Subheading 6.5, when the main 
goal is to compare the standalone performance of two algorithms to 
determine which algorithm or modification performs best, it is 
possible to perform the comparison on a smaller enriched dataset 
with a careful sampling strategy that does not result in a bias in the 
difference of the two performance estimates. 

3.3.4 Dataset Mismatch Dataset mismatch is defined as a condition where training and test 
data follow different distributions, which is popularly known as 
“dataset shift” in the ML literature [18]. We prefer using “mis-
match” because “shift” specifically refers to adding a constant value 
to each member of a dataset in probability distribution theory, 
which does not convey all types of mismatches that the term is 
intended for. Dataset mismatch can also be between test data and 
real-world deployment data (rather than test and training) or cur-
rent real-world data vs. future real-world data (e.g., due to changes 
in clinical practice). There may be many potential reasons for data-
set mismatch, with sample selection bias and non-stationary envir-
onments cited as the most important ones [19]. Storkey [20] 
grouped these mismatches into six main categories, including sam-
ple selection bias, imbalanced data, simple covariate shift, prior 
probability shift, domain shift, and source component shift. Dataset



mismatch may result in poor performance of the trained ML algo-
rithm. In addition, especially if caused by a non-stationary environ-
ment, dataset mismatch may mean that the performance assessment 
results obtained at premarket testing may no longer be valid in the 
clinical environment. A first step in mitigating the effects of dataset 
mismatch is to detect it. Several methods, including those based on 
distance measures [21] and dimensionality reduction followed by 
statistical hypothesis testing [22], have been proposed for this 
purpose. Techniques for mitigating the effect of dataset mismatch 
include importance weighting [23] and utilizing stratification, cost 
curves, or mixture models [24], among others. 
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3.4 Bias Bias is a critical factor to consider in study design and analysis for 
ML assessment, and here we intend to give an overview of sources 
of bias in ML development and assessment. Note that the general 
artificial intelligence and machine learning literature currently lacks 
a consensus on the terminology regarding bias. We consider that 
performance assessment of an ML system from a finite sample can 
be cast as a statistical estimation problem. In statistics, a biased 
estimator is one that provides estimates which are systematically 
too high or too low [25]. Paralleling this definition, we define 
statistical bias as a systematic difference between the average per-
formance estimate of an ML system tested in a specified manner and 
its true performance on the intended population. This systematic 
difference may result from flaws in any of the components of the 
assessment framework shown in Fig. 1: collection of patient data 
and the definition of a reference standard (for both algorithm 
design and testing stages), algorithm training, analysis methods, 
and algorithm deployment in the clinic. 

Note that the definition of statistical bias above includes sys-
tematically different results for different subgroups. ISO/IEC 
Draft International Standard 22,989 (artificial intelligence con-
cepts and terminology) defines bias as systematic difference in 
treatment of certain objects, people, or groups in comparison to 
others, where treatment is any kind of action, including perception, 
observation, representation, prediction, or decision. As such, sta-
tistical bias may result in the type of bias defined in the ISO/IEC 
Draft International Standard. 

We start our discussion of bias with the effect of the dataset 
representativeness, which has direct implications for ML algorithm 
performance and its measurement, as described above. When the 
dataset is not representative of the target population, this can lead 
to selection bias. For example, if all the images in the training or test 
datasets are acquired with a particular type of scanner while the 
target patient population may be scanned by many types of scan-
ners, this may lead to an ML algorithm performance estimate that is 
systematically different from that on the intended population or 
lead to different results for different subgroups. Spectrum bias,



which can be viewed as a consequence of selection bias, describes a 
systematic error in performance assessment that occurs when the 
sample of cases studied does not include a complete spectrum of 
patient and disease characteristics [26]. Imperfect reference stan-
dard bias and verification bias are two types of biases that are related 
to the reference standard (Subheading 5); the former applies to 
conditions in which the reference standard procedure is not 100% 
accurate, and the latter applies to conditions in which only subjects 
verified for presence or absence of the condition of interest by the 
reference standard are included in the training set or test set. 
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Aggregation bias and model design bias are two types of biases 
that can occur in the algorithm training stage. Aggregation bias is 
related to the information loss which occurs in the substitution of 
aggregate, or macro-level, data for micro-level data. Aggregation 
bias can lead to a model that is not optimal for any group or a model 
that is fit to the dominant population [27]. In ML architecture 
selection and algorithm training, the designer often has options for 
model design that may affect the objectives of accuracy, robustness, 
and fairness, and these objectives may have intrinsic trade-offs. 
Model design bias refers to the design choices that may amplify 
performance disparities among minority and majority data 
subgroups [28]. 

In addition to biases stemming from test dataset composition 
and the reference standard discussed above, inappropriate selection 
of the performance metric in the data analysis stage may result in a 
bias. Many metrics used for evaluation of image analysis algorithms, 
such as the mean squared error (MSE) for image noise reduction, 
do not represent the task that the ML algorithm was designed for, 
e.g., the detection of low-contrast objects in a noisy image. The use 
of an inappropriate metric may thus result in a difference between 
the test and true performance, e.g., a conclusion that the algorithm 
is helpful for its intended use when in clinical reality it is not. 

Several factors may contribute to bias after a medical ML 
system is introduced into the clinic. One of these is the bias due to 
a temporal dataset shift [29] that may cause a mismatch between the 
data distribution on which the system was developed/tested and 
the distribution to which the system is applied. Another type of 
bias, sometimes termed deployment bias [27], may be caused by the 
use of a device in a manner that was not tested as part of the 
performance assessment and hence does not conform with the 
intended use of the device, e.g., off-label use. Other types of biases 
during deployment are also possible because of the differences in 
the test and clinical environments and unanticipated issues in the 
integration of the ML system into clinical practice.
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4 Algorithm Documentation 

4.1 Why Algorithm 

Documentation Is 

Important 

Machine learning (ML) algorithms have been evolving from tradi-
tional techniques with hand-crafted features and interpretable sta-
tistical learning models to the more recent deep learning-based 
neural network models with drastically increased complexity. 
Appropriate documentation of ML algorithms is critically impor-
tant for reproducibility and transparency from a scientific point of 
view. Algorithm description with sufficient details is particularly 
important in a regulatory setting reviewed by regulators for the 
assessment of technical quality, for comparing with a legally mar-
keted device, and for the assessment of changes of the algorithm in 
future versions. 

Reproducibility is a well-known cornerstone of science; for 
scientific findings to be valid and reliable, it is fundamentally impor-
tant that the experimental procedure is reproducible, whether the 
experiments are conducted physically or in silico. ML studies for 
detection, diagnosis, or other means of characterization of brain 
disorders or other diseases are in silico experiments involving com-
plex algorithms and big data. As such, we adopt the definition of 
reproducibility from a National Academies of Sciences, Engineer-
ing, and Medicine report [30] as “obtaining consistent results 
using the same input data; computational steps, methods, and 
code; and conditions of analysis.” It has been widely recognized 
that poor documentation such as incomplete data annotation or 
specification of data processing and analysis is a primary culprit for 
poor reproducibility in many biomedical studies [31]. Lack of 
reproducibility may result in not only inconvenience or inferior 
quality but sometimes a flawed model that can bring real danger 
to patients when such models are used to tailor treatments in drug 
clinical trials, as reported by Baggerly and Coombes [32] in their 
forensic bioinformatics study on a model of gene expression signa-
tures to predict patient response to multidrug regimens. 

Appropriate documentation of algorithm design and develop-
ment is essential for the assessment of technical quality. Identifica-
tion of the various sources of bias discussed in Subheading 3.4 may 
not be possible without appropriate algorithm documentation. 
Furthermore, while there is currently no principled guidance on 
the design of deep neural network architectures, consensus on 
good practices and empirical evidence do provide basis for the 
assessment of technical soundness of an ML algorithm. For exam-
ple, the choice of loss function is closely related to the clinical task: 
mean squared error is appropriate for quantification tasks, cross-
entropy is often used for classification tasks, and so on. Moreover, 
the design and optimization of algorithms involve trial-and-error 
and ad hoc procedures to tune parameters; as such, a developer may 
introduce bias even unconsciously if the use of patient data and 
truth labels is not properly documented.
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Documentation of ML algorithms is often necessary in a regu-
latory setting and generally required by FDA under 21 CFR 820.30 
design controls. As mentioned in Subheading 2.1, comparison of 
technological characteristics of a premarket device with a legally 
marketed predicate device is one of the essential components in 
determining substantial equivalence for a 510(k) submission. 
Moreover, the ML algorithm in an FDA-authorized device is 
often updated, and appropriate algorithm documentation is crucial 
to decide if a new version has undergone major updates that would 
require a re-submission to the FDA. 

4.2 Essential 

Elements in Algorithm 

Description 

Many efforts in academia have been devoted to developing check-
lists for ML algorithm development and reporting to enhance 
transparency, improve quality, and facilitate reproducibility. A 
report from the NeurIPS 2019 Reproducibility Program [33] 
provided a checklist for general machine learning research. Norgeot 
et al. [34] presented the minimum information about clinical arti-
ficial intelligence modeling (MI-CLAIM) checklist as a tool to 
improve transparency reporting of AI algorithms in medicine. 
The journal Radiology published an editorial with a checklist for 
artificial intelligence in medical imaging (CLAIM) [35] as a guide 
for authors and reviewers. Similarly, an editorial of the journal 
Medical Physics introduced a required checklist to ensure rigorous 
and reproducible research of AI/ML in the field of medical physics 
[36]. Consensus groups also published the SPIRIT-AI (Standard 
Protocol Items: Recommendations for Interventional Trials–Artifi-
cial Intelligence) as guidelines for clinical trial protocols for inter-
ventions involving artificial intelligence [37]. Also, there are 
undergoing efforts on guidelines for diagnostic and predictive AI 
models such as the TRIPOD-ML (Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or 
Diagnosis–Machine Learning) [38] and STARD-AI (Standards 
for Reporting of Diagnostic Accuracy Studies–Artificial 
Intelligence). 

Besides the abovementioned references, the FDA has published 
a guidance document for premarket notification [510(k)] submis-
sions on computer-assisted detection devices applied to radiology 
images and radiology device data [39]. Here we provide a list of key 
elements in describing ML algorithms for medical imaging applica-
tions, which we believe are essential (but not necessarily complete) 
for understanding and technical assessment of an ML algorithm.
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• Input. 
The types of data the algorithm takes as input may include 
images and possibly non-imaging data. For input data, essential 
information includes modality (e.g., CT, MRI, clinical data), 
compatible acquisition systems (e.g., image scanner manufac-
turer and model), acquisition parameter ranges (e.g., kVp range, 
slice thickness in CT imaging), and clinical data collection pro-
tocols (e.g., use of contrast agent, MRI sequence).

• Preprocessing. 
Input images are often preprocessed such that they are in a 
suitable form or orientation for further processing. Preproces-
sing often includes data normalization, which refers to calibra-
tion or transformation of image data to that of a reference image 
(e.g., warping to the reference frame) or to certain numerical 
range, e.g., slice thickness normalization. Other examples of 
preprocessing include elimination of irrelevant structures such 
as a head holder, image size normalization, image orientation 
normalization, and so on. Sometimes an image quality checker is 
applied to exclude data with severe artifacts or insufficient qual-
ity from further processing and analyses. It is important to 
describe the specific techniques for normalization and image 
quality checking. Furthermore, it is critical to make clear how 
cases failing the quality check are handled clinically (e.g., 
re-imaging or reviewed by a physician) and account for the 
excluded cases in the performance assessment.

• Algorithm architecture. 
Algorithm architecture is the core module of a machine learning 
algorithm. In traditional ML techniques, hand-crafted features 
that are often motivated by physician’s experiences are first 
derived from medical images. A feature selection procedure can 
be applied to the initially extracted features to select the most 
useful features for the clinical task of interest. The selected 
features are then merged by a classifier into a decision variable. 
There are many choices of the classifier depending on the nature 
of the data and the purpose of the classifier: linear or quadratic 
discriminant analysis, k nearest neighbor (kNN) classifiers, arti-
ficial neural networks (ANNs), support vector machines, ran-
dom forests, etc. As such, the algorithm description typically 
includes the definition of features, the feature selection meth-
ods, and the specific classification model. Moreover, it is impor-
tant to document hyperparameters and the method with which 
these hyperparameters are determined, for example, the number 
of neighbors in the kNN method, the number of layers in 
ANNs, etc.
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Recently, deep learning neural network algorithms have 
been widely used in medical imaging applications. The NN 
architecture in this type of ML algorithms is composed of a 
large number of layers that learn to represent data at multiple 
levels of abstraction and automatically learns features from raw 
medical image data. As such, instead of sequential hand-crafted 
feature extraction, selection, and classification, automatic feature 
engineering and classification (or other types of decision-making 
such as quantification) are seamlessly integrated in one deep NN 
architecture. If a published architecture such as AlexNet, 
VGGNet, Inception V3, etc. is followed exactly, a succinct 
description is to refer to the reference. Otherwise, the architec-
ture is typically described using a diagram with details such as the 
number and type of layers, the number of nodes in each layer, 
the activation functions, the loss function, and so on. 

Sometimes hand-crafted features are combined with 
CNN-based automatic features by a traditional classifier (e.g., 
random forest) to take advantage of both the power of deep 
learning in information extraction and domain-specific exper-
tise. In this situation, architecture description includes the entire 
pipeline, both types of information as described in the above two 
paragraphs.

• Algorithm Training. 
ML algorithm training is the process of designing ML algorithm 
architecture, optimizing the parameters, and selecting the 
hyperparameters. Taking the popular deep neural networks as 
an example, the first step in training is to design an architecture 
or adopt one that has been proven successful in similar applica-
tions (see previous bullet). Parameters mainly refer to network 
weight and bias parameters for combining node outputs in one 
layer as inputs to nodes of the next layer. Hyperparameters 
include both those related to network architecture and those 
related to parameter optimization strategies. Network architec-
ture hyperparameters such as number of hidden layers and units 
can be pre-selected and fixed if an established architecture is 
adopted and/or further tuned during training. Another archi-
tecture hyperparameter that has been popularly used to avoid 
overtraining is dropout rate, which refers to the probability of a 
neuron being “dropped out” in a training step (i.e., the weights 
are not updated) but may be active in the next step. Hyperpara-
meters related to parameter optimization include learning rate, 
momentum, number of epochs, batch size, etc. 

Given a set of hyperparameters, the network parameters are 
optimized using training images and associated truth labels. The 
hyperparameters are typically tuned using a separate tuning 
dataset. See Subheading 3 for discussion of training data. 
Again, it is important to fully describe the training process and 
training data as part of the algorithm description.
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• Post-processing and Output. 
Given the output of the main ML algorithm, some post-
processing steps may be followed, for example, to transform 
the output to a more interpretable form. The final outputs of 
an ML algorithm are those that are presented to the end user 
such as a radiologist or other clinicians. They can be marks on 
the images indicating the algorithm-determined suspicious 
areas, a quantitative score indicating the algorithm-estimated 
likelihood of disease severity, and/or a binary classification indi-
cating if the lesion is benign or malignant, etc. The algorithm 
description must make clear the final algorithm outputs and how 
they are intended to be used clinically so that appropriate valida-
tion and testing studies can be conducted. 

Finally, it should be emphasized that a great description of ML 
algorithms not only provides these essential elements but also, 
more usefully, provides rationale on the algorithmic choices. Such 
rationale may include established good machine learning practices, 
evidence from similar applications, or methodological research that 
helps avoid overfitting, reduce bias, and improve generalizability. 

5 Reference Standard 

Rigorously developed, well-accepted reference standards (also 
called the “gold standard” or “ground truth”) for training and 
evaluating machine learning algorithms are essential to validating 
and characterizing the performance of machine learning algo-
rithms. The reference standard provides a definitive or quasi-
definitive characterization of the case based on information that 
may not be part of the machine learning input, such as biopsy or 
1-year follow-up for radiological imaging oncology applications 
(for an example in the regulatory setting, see8 ). The “truthing” 
procedures for the cases included in validation (especially external 
validation) should utilize the best reference standard as recognized 
by the scientific community to help ensure that the performance of 
the device is well-characterized. The truthing process is distinct 
from other aspects of evaluating ML performance as the goal is to 
determine the “correct” characterization of each case, not to evalu-
ate the device and reader performance in assessing a particular case. 

Brain disorders often represent unique challenges to establish-
ing appropriate reference standards. Generally, reference standard 
can be based on established clinical determination (including an 
independent modality recognized as a gold standard), follow-up 
clinical examination, or follow-up medical examination other than 
imaging. For brain disorders, the pathophysiology may be poorly

8 https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170022.pdf

https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170022.pdf


understood, the progression of some disease may be slow making it 
difficult to reliably observe changes over time, the clinical definition 
of the condition may rely heavily on subjective assessments, or 
definitive assessments may be delayed by years (e.g., Alzheimer’s 
disease) with different syndromes mistaken for the condition of 
interest (e.g., Parkinsonian-like disorders). In other words, for 
some brain conditions, the current best available reference standard 
is based on clinical determination, and confirmation from an alter-
native method (for instance, histopathological confirmation) may 
be desirable. Furthermore, ethical and pragmatic challenges of 
obtaining neurological tissue samples that would allow for inde-
pendent pathological assessment may limit the utility of biopsy or 
tissue resection in many brain disorders.
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In limited instances, alternatives to independent confirmation 
of the case “truth,” such as interpretation by a reviewing clinician 
(s), may be considered. Especially in brain disorders where the 
diagnostic criteria may already be challenging, the importance of 
multiple reviewing clinicians using the best possible information, 
even if that requires long-term follow-up, cannot be understated. 
For some brain disorders such as chronic traumatic encephalopathy 
or Alzheimer’s disease, outstanding challenges remain as the refer-
ence standard may be best assessed by biopsy or following death 
(i.e., autopsy). Greater biological and physiological understanding 
may be needed to inform the correct diagnosis early in disorder 
development. Using machine learning techniques to assist in this 
process is tempting, but the performance will generally be limited 
by the correctness of the reference standard. In other words, how 
would we assess if the ML device is outperforming the reference 
standard as any disagreement may be considered incorrect based on 
the reference truth? 

Uncertainty in the reference standard needs to be accounted 
for in the analysis. For some machine learning devices, reference 
standard by expert assessment can be considered, depending on the 
indications for use, intended use, benefit–risk profile, and device 
outputs. This is often the case of ML algorithms used in segmenta-
tion tasks. In these limited instances, the reference standard from a 
single clinical truther remains undesirable due to potential concerns 
about bias or the overall performance of the truther (that is, they 
are not likely to be 100% accurate, especially for challenging cases). 
Therefore, multiple clinical truthers are desired. Truthing processes 
using top experts or truthing processes that weight the clinical 
truthers’ “accuracy” in the construction of the reference standards 
may also be considered (e.g., see Warfield et al. [40]). 

When the truthing process involves interpretation by a review-
ing clinician, the number of truthers; their qualifications, experi-
ence, and expertise; the instructions for the truthing process; and 
any other information should be described and documented. In 
instances where multiple truthers are involved, developer must



consider in advance how the interpretations of these various readers 
will be incorporated into the final study design and analysis. While 
combining the interpretation of all truthers into a single reference 
truth for a particular case may be appropriate in some instances, in 
other cases such as when the variability between truthers is high, 
study designs and data analysis methods that take into consider-
ation variability in the reference standard may be appropriate. For 
instance, reference standard by panel discussions may face unique 
challenges, especially when loud voices, biases, and group dynamics 
may influence the outcome. On the other hand, majority vote may 
lead to other biases such as in segmentation where only including 
voxels from the majority could lead to small areas or volumes even 
when compared to all of the participating truthers. 

Regulatory Science Perspective on Performance Assessment 725

Certain practices in development of the reference standard 
should be avoided. Often developers look for reference standards 
of convenience such as a single truther observing the same input 
data, such as a CT image, as the machine learning algorithm inputs 
and providing their best judgment as the underlying “truth” of the 
case. Truthers should not be used as readers who read those images 
as part of the evaluation of device performance because that can 
introduce considerable bias to the study results. Public data with 
unclear processes for establishing the reference standard or incom-
plete case-level data (such as data without follow-up information, 
without other typically assessed test results, or incomplete demo-
graphic information) frequently raises concerns about the appro-
priateness of the reference standard in these instances. 

The reference standard should generally be based on the best 
available evidence for the case as recognized by the scientific com-
munity. The goal of the reference standard is to establish the 
“truth” for the outcome of the case. This may present challenges 
to cohorts where the amount of evidence may differ between cases. 
Requirements for the minimal amount of information available for 
a particular case to establish a reasonable “truth” should be defined 
in advance in the premarket and postmarket setting. As with overall 
device classification, expectations for rigor and certainty in the 
reference standard may increase with the device risk associated 
with misclassification or misdiagnosis. In a regulatory context, 
often more flexibility is generally permitted in the reference stan-
dard for the training data as compared to expectations of rigor in 
the reference standard for the validation data. Finally, the use of 
synthetic data is attractive as these techniques provide some oppor-
tunities for more well-characterized reference standards in some 
applications. While synthetic data presents an intriguing approach 
to addressing some challenges related to reference standards in 
brain disorders, this is a fairly new topic without significant experi-
ence within the current regulatory framework.



726 Weijie Chen et al.

6 Standalone Performance Assessment 

ML standalone performance is a measure of algorithm performance 
independent of any human interaction with the ML tool [41]. Stan-
dalone performance is the primary assessment for autonomous ML 
tools that make decisions without clinicians’ interactions but may 
be only one element of assessment for an ML algorithm used as an 
aid, in which case a clinical assessment of reader performance 
utilizing the ML may also be required, as discussed in Subheading 
7. Standalone testing is also used heavily during algorithm devel-
opment to benchmark performance and compare potential algo-
rithm modifications before a “final” version is determined. This is 
because it is often straightforward to integrate iterative testing 
within the development framework. Standalone testing spans a 
wide range of possible implementations from initial validation of 
modifications using a small dataset through large-scale evaluations 
across multiple independent sites [42] which provides a higher level 
of confidence in algorithm performance. 

Sometimes researchers assume that standalone testing is not 
important, or at least not as important, as a clinical evaluation, 
especially for ML-assist devices. However, standalone testing is 
critical even when a clinical reader study is performed because it is 
often conducted on larger and more diverse datasets allowing for 
more refined subgroup analyses and understanding of performance 
characteristics. It is also critical for assessing the robustness of an 
ML algorithm and for comparing performance across different 
algorithms. 

In the following, we describe study design, study endpoints, 
and approaches for assessing standalone performance for specific 
types of ML tools. 

6.1 Segmentation 

Assessment 

Accurate segmentation of brain structures is routinely used in many 
neurological diseases and conditions when imaging with modalities 
such as CT, MRI, and PET. As an example, quantitative analysis of 
brain MRI has been used in assessing brain disorders such as 
Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis 
(MS), cancer, and infectious and degenerative diseases 
[43]. Often brain assessment quantifying change over time requires 
the segmentation of brain tissue or anatomy. We define segmenta-
tion as the process of partitioning a brain image or image volume 
into multiple objects defined by a set of voxels unique to each 
structure or object of interest. 

There have been various methods proposed for assessing how 
well an ML algorithm characterizes objects and how one segmen-
tation algorithm compares to another. Zhang discusses three basic 
approaches to assessing segmentation algorithms in general 
[44]. This includes analytical methods, goodness methods, and



discrepancy methods [45]. Analytical methods consider the princi-
ples, requirements, utilities, and complexity of segmentation algo-
rithms but can be quite difficult to apply, especially to DL-based 
segmentation because not all algorithm properties are easily 
obtained. Goodness methods evaluate segmentation performance 
by judging the segmented images based on certain quality measures 
established according to human intuition and include measures 
such as inter-region uniformity, inter-region contrast, and region 
shape [45]. Discrepancy methods quantify the difference between 
segmented objects and a reference standard segmentation. They are 
the most common type for assessing segmentation algorithms with 
the caveat that often a ground-truth segmentation is not available. 
In this case, algorithm segmentations are then compared to human 
segmentations where the human segmentation is considered the 
reference standard. Since human segmentations of brain anatomy 
and structure can be quite variable, segmentations by multiple 
truthing readers are often collected, and an aggregated reference 
[40, 46] is used, or the agreement or interchangeability of the 
algorithm with a truthing reader is assessed. 
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The remainder of this subsection describes a few common 
segmentation metrics where we assume a hard segmentation and a 
single reference standard. A hard segmentation means a voxel is 
either part of the segmentation or not (this is in contrast to a soft or 
fuzzy segmentation which means that each voxel is assigned a 
probability of being part of the segmentation). 

An example of a 2D segmentation S and reference segmenta-
tion R is shown in Fig. 2 for image X. The false-positive (FP), true-
positive (TP), false-negative (FN), and true-negative (TN) regions 
are also shown. Taha and Hanbury provide a nice overview of 
20 segmentation metrics used for discrepancy assessment 
[47]. Please refer to this paper for more details on many segmenta-
tion assessment approaches including methods for assessing fuzzy 
segmentation algorithms [47]. We next discuss some of the dis-
crepancy assessment approaches frequently used in the literature. 

Overlap indexes assess a segmentation by how well it overlaps 
with the reference. We define some basic overlap metrics below 
using TP, TN, FP, and FN as voxel counts in the definitions.

• Voxel true-positive rate (TPR), sensitivity, recall: proportion of 
correctly segmented reference voxels. 

TPR = 
TP 

TPþ FN
• Voxel true-negative rate (TNR), specificity: proportion of cor-

rectly segmented background voxels. 

TNR = 
TN 

TNþ FP
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Fig. 2 Diagram of a segmented object (blue solid line) overlaid by the reference segmentation (red dashed 
line). The false-positive (FP) voxels (green hashed region), true-positive (TP) voxels (yellow hashed region), 
false-negative (FN) voxels (purple wave region), and true-negative (TN) voxels (gray region) are shown in the 
figure as well

• Voxel accuracy [45]: proportion of correctly segmented voxels 
(including both reference and background voxels). 

Accuracy= 
TPþ TN 

TPþ TNþ FPþ FN
• Dice similarity coefficient (DSC), F1 metric [48] 

DSC= 
2TP 

2TPþ FPþ FN 
= 

2JI 
1þ JI

• Jaccard index (JI), intersection over union (IoU) metric [49] 

JI= 
TP 

TPþ FPþ FN 
= 

DSC 
2-DSC 

The Dice coefficient (DSC) is the most widely used perfor-
mance metric for characterizing medical image volume segmenta-
tions including brain segmentations and can also be used to assess 
the reproducibility of multiple annotations [47]. The Jaccard index 
is another common assessment metric. JI and DSC are monotoni-
cally related with DSC always having a larger value than JI except at 
0 and 1 when the two are equal. However, they have different



Þ
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properties when averaging performance across multiple segmenta-
tions where Jaccard penalizes large segmentation errors more than 
Dice (somewhat similar to how an L2 norm penalizes larger error 
more than an L1 norm) [50]. 
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Accuracy is another commonly reported metric, but accuracy is 
often dominated by a large disparity in the number of reference and 
background voxels within an image. Accuracy can be high even for 
poor overlap in the segmentation and reference when the vast 
majority of voxels in the image are background. This can make it 
difficult to differentiate between algorithms based only on accuracy 
differences. A similar observation can be made for specificity or, 
more generally, for any segmentation metrics involving 
TN. Indeed, since most voxels are background, TN can be very 
large. Finally, the definition of the background is not always 
straightforward and can sometimes be arbitrary (for instance, if 
the background depends on the field of view of the image). 

Distance-based metrics are useful when the boundary of the 
segmentation is critical [51]. They assess the distance between the 
segmentation boundary and the reference boundary taking into 
account the spatial position of the boundary voxels [47]. Some 
common distance metrics include:

• Hausdorff distance (HD) between two voxel sets BS and BR (sets 
of boundary voxels) [47] 

HD = max (h(BS,BR), h(BR,BS)), where h BR,BSð = 
max r∈BR min s∈BS r- s

• Mahalanobis distance (MHD) between two voxel sets BS and BR. 

MHD = μBS
- μBR 

S -1 μBS
- μBR 

, where μBS 
and μBR 

are the means of the point sets and S is the common covariance 

matrix of the two sets [47] 

There are additional segmentation assessment metrics includ-
ing volume metrics, information theoretic metrics (e.g., mutual 
information), probabilistic metrics (e.g., intraclass correlation coef-
ficient [ICC]), and pair counting metrics that can also be used to 
assess the quality of a segmentation algorithm or for comparing 
multiple segmentations [47]. 

6.2 Classification 

Assessment 

Classification ML are algorithms designed to parse brain images 
and data into unique categories. Often the task is differentiating 
two groups (e.g., cancer versus non-cancer patients), but classifica-
tion can also be multiclass (e.g., differentiating astrocytoma, glio-
blastoma, and meningioma brain tumors). The outputs of an ML 
algorithm can be discrete classes (e.g., via decision tree) or a con-
tinuous or a quasi-continuous score (e.g., output of a linear classi-
fier and many DL methods) for an image. As with all ML, the 
classifier output needs to be assessed and properly interpreted, so



ML performance is understood in the correct context. Tharwat 
[52] and Hossin and Sulaiman [53] have nice summaries of classifi-
cation analysis methods. They discuss various performance metrics 
along with information on how and when each metric might be 
most effectively used in classifier assessment. 
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In the remainder of this subsection, we concentrate on binary 
classifier assessment that includes a wide range of statistical metrics 
for assessing classifier performance starting with operating point 
metrics defined directly from discrete ML outputs and moving to 
more complex metrics based on thresholding a continuous ML 
output score. 

Some basic prevalence-independent metrics (i.e., metrics that 
do not depend on the prevalence of diseased cases in the standalone 
database) are described below where TP, TN, FP, and FN are case 
counts here.

• True-positive rate (TPR), sensitivity, recall 

TPR = Se = 
TP 

TPþ FN
• True-negative rate (TNR), specificity 

TNR = Sp= 
TN 

TNþ FP 

Likelihood ratios are aggregate measures combining sensitivity 
and specificity. The positive/negative likelihood ratio is the ratio of 
the probability of a person who has the disease testing positive/ 
negative over the probability of a person who does not have the 
disease testing positive/negative. They are defined as:

• Positive likelihood ratio (LR+ ) 

LRþ = 
TPR 

1-TNR

• Negative likelihood ratio (LR-) 

LR - = 
1-TPR 
TNR 

Other operating point metrics depend on the prevalence of 
disease in the test dataset. They include:

• Positive prediction value (PPV), precision 

PPV =Precision= 
TP 

FPþ TP
• Negative prediction value (NPV) 

NPV = 
TN 

FNþ TN
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• Accuracy 

Accuracy= 
TPþ TN 

TPþ TNþ FPþ FN
• F1 score 

F 1 =2∙ 
PPV ×TPR 
PPV þ TPR 

These metrics are most appropriate when assessing ML perfor-
mance in a dataset representing the true clinical population because 
of their prevalence dependence. They must be interpreted with 
caution when applied to enriched datasets especially when extra-
polating the estimated classification performance to the clinical 
environment. 

For continuous ML scores where a final classification is based 
on applying a threshold to the output scores, there are aggregation 
measures that more completely characterize overall classifier perfor-
mance for a binary task. A common choice is receiver operating 
characteristic (ROC) analysis which characterizes performance for 
all possible operating points of the classifier. An ROC curve plots 
TPR as a function of the false-positive rate (FPR = 1-TNR) when 
the threshold on the classifier output is varied over the complete 
range of possible output scores [54–56]. An example of an ROC 
curve is shown in Fig. 3. The advantage of the ROC curve is it 
shows the benefit (i.e., TPR) as a function of all possible risk values 
(i.e., FPR) such that a much more complete understanding of the 
benefit–risk trade-off at all operating points is provided [52]. 

To facilitate statistical comparisons and to benchmark perfor-
mance, summary performance can be estimated from ROC curves 
with the most popular being the area under the ROC curve (AUC) 
and the partial AUC (PAUC area under just a portion of the ROC 
curve) [41]. However, the ROC curve should always be plotted to 
allow for a visual assessment of an individual algorithm’s perfor-
mance or to facilitate a comparison across algorithms. This allows 
the trade-off across the full range of the ROC curve to be 
visualized. 

Parametric and nonparametric statistical methods are available 
to both estimate AUC/PAUC and their uncertainties. These 
approaches allow for statistical comparisons in performance 
among multiple ML algorithms. There is substantial literature on 
statistical method for assessing and comparing ROC performance. 
A great summary of approaches can be found in a report on ROC 
by the International Commission on Radiation Units and Measure-
ments (ICRU) [57].
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Fig. 3 Plot of an ROC curve for an ML algorithm in a binary classification task. The ROC curve (blue line) shows 
the trade-off between sensitivity (TPR) and specificity (FPR) for all possible operating points. Both the AUC 
(includes both shaded regions) and the PAUC for sensitivity ≥0.8 are shown in the figure 

6.3 Abnormality 

Detection Assessment 

ML detection algorithms mark locations or regions of an image that 
may reveal abnormalities [41]. Examples of basic ML detection 
include ML-based bounding boxes or segmentations of potential 
brain lesions or markers indicating potential brain lesions in an MR 
or CT scan. Often ML detection outputs include not only localiza-
tion information but also a confidence score or class determination 
for the identified regions such that the ML includes both detection 
and classification functionalities. In the remainder of this subsec-
tion, we concentrate on assessing only detection performance with-
out addressing any other potential components of an ML 
algorithm’s output. However, we will still use the ML detection 
confidence scores, when available, to expand the range of possible 
performance metrics available for standalone assessment. 

Similar to classification metrics, there are a wide range of 
metrics available for assessing detection performance. Basic detec-
tion operating point metrics, usually based on thresholding a con-
tinuous ML score for each region, include counts of object-based 
true-positive (TP), false-positive (FP), and false-negative 
(FN) detections using the basic definitions in Subheading 6.2 
above. Note that object-based true-negative (TN) detections are



generally not estimable in ML detection because there is an infinite 
(or at least an extremely larger number) of possible TN locations 
within an image [41]. In addition, ML detection assessment is 
complicated by the need for a predefined rule (method and thresh-
old) for determining a “correct” detection based on the overlap of a 
bounding box/segmentation with a reference standard region or 
the distance from an ML marker to a reference standard object 
(e.g., distance to the centroid of a reference standard). The overlap 
metric is often based on the intersection over union (IoU) for 
bounding boxes/segmentations with a reference standard object 
and Euclidean distance for markers. However, other potential over-
lap metrics and criteria may be justifiable for various detection tasks. 
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Based on the number of TP, FP, and FN detection counts, 
some basic summary operating point metrics include the true-
positive rate (TPR) (i.e., recall) and positive predictive value 
(PPV) (i.e., precision) that are defined similarly as those in Sub-
heading 6.2 but with the unit of regions/cases instead of voxels and 
the number of FPs per case (or another appropriate unit of interest) 
since individual cases often include multiple images and abnormal-
ities of interest [41]. For example, an MR exam of the head may 
include multiple MRI sequences (e.g., T1, T2) such that it is 
possible to report ML detection performance on a per-patient, 
per-view (sequence), or per-abnormality (object) basis. The unit 
of performance should be clearly defined and justified with 
per-abnormality (or object) performance typically being reported 
for most image-based ML detection devices especially when only a 
single exam is available per patient. 

Analogous to classification tasks, aggregation metrics that more 
completely characterize overall ML detection performance are used 
when a confidence score is available for each detection. ROC 
analysis is not generally used for ML detection assessment because, 
as mentioned previously, TNs are not estimable. Therefore, alter-
nate methods have been developed including the free-response 
receiver operating characteristic (FROC) analysis. FROC accounts 
for localization and detection of an arbitrary number of abnormal-
ities within an image set [58]. FROC curves plot the fraction of 
correctly localized lesions as a function of the average number of 
FPs across the full range of confidence scores for an ML detection 
algorithm [59]. An example of FROC curve is shown in Fig. 4. 

The plot in Fig. 4 shows a nonparametric FROC curve. Para-
metric FROC methods have been developed using maximum like-
lihood methods [60–62]. Similar to ROC analysis, FROC area-
based metrics can serve as summary performance metrics, but, since 
the number of FPs in FROC are not bounded, the area under the 
curve is not limited. This complicates the use of the full area under 
the FROC curve as a summary figure of merit. Therefore, alternate 
area-based figures of merit have been developed to summarize and 
compare FROC performance curves.
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Fig. 4 Plot of an FROC curve for an ML detection algorithm. The FROC curve (blue line) shows the trade-off 
between object detection sensitivity (TPR) and the number of FPs per patient for all possible operating points. 
The full area under the FROC curve is not well defined, but a partial area may facilitate comparisons across 
algorithms. The figure shows a PAUC (shaded region) for ≤3.0 FPs/patient. However, AFROC-based summary 
metrics are more commonly used for characterizing/comparing FROC performance 

The area under the alternate FROC (AFROC) curve with a 
jackknife method (JAFROC) was developed to provide confidence 
interval estimates and facilitate statistical performance comparisons 
across algorithms [56, 61]. AFROC provides an alternative way to 
summarize FROC data where the fraction of negative images falsely 
called positive are computed based on the highest FP score for each 
image in the dataset [58]. In this way, the unlimited x-axis of FROC 
curves is now bounded at 1 as shown in Fig. 5, and the area under 
the curve is well defined. Chakraborty’s jackknife FROC 
(JAFROC) metric is the area under this AFROC calculated using 
a jackknife approach [56, 61]. 

Another common aggregate assessment for ML detection per-
formance is the precision–recall (P–R) curve (see Fig. 6) which plots 
the trade-off between precision and recall across the full range of 
ML detection algorithm confidence scores [63]. 

As a reminder, precision (PPV) is a measure of how well the ML 
detection algorithm identifies only relevant abnormalities, while 
recall (TPR) is a measure of how well the algorithm finds all 
abnormalities. A better ML detection algorithm will have a higher 
precision at a fixed recall. Therefore, a larger area under the P–R
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Fig. 5 Plot of an AFROC curve for the same ML detection algorithm given in Fig. 4. The AFROC curve (blue line) 
shows the trade-off between sensitivity (TPR) and the false patient fraction (fraction of patients with at least 
one FP) for all possible operating points. The area under the AFROC curve (shaded region) is often used to 
facilitate comparisons across object detection algorithms 

Fig. 6 Plot of a P–R curve for the same ML object detection algorithm as in Figs. 4 and 5. The P–R curve shows 
the trade-off in precision (PPV) as a function of recall (TPF). The area under the P–R curve (AUCPR) is an 
aggregate summary metric, for characterizing and comparing P–R curves across object detection algorithms



curve indicates improved performance compared to a competing 
algorithm, at least when the two P–R curves do not cross. The area 
under the P–R curve (AUCPR) is again an aggregate summary 
metric with the average precision (AP) as one estimation method 
developed in the information retrieval literature and has been used 
as a performance metric in ML Grand Challenges assessing ML 
localization algorithms [64, 65]. Nonparametric P–R curve and AP 
are commonly reported with one definition of AP given below.
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• Average precision 

AP = 
N 

n=1 

Rnþ1 -Rnð ÞP interp Rnþ1ð Þ, where P interp Rnþ1ð Þ  

= max 
R:R≥Rnþ1 

P R 

Another approach is to use an 11-point interpolation by aver-
aging the maximum precision for a set of 11 equally spaced recall 
levels [0, 0.1, 0.2, ..., 1] [63]. Parametric [66] and semi-parametric 
[67] methods for fitting the P–R curve and methods for estimating 
the AUCPR (e.g., trapezoidal estimators, interpolation estimators) 
have also been reported in the literature. 

One of the complications in assessing an ML algorithm for 
abnormality detection is the need for determining a “correct” 
detection based on either an overlap measure for a bounding 
box/segmentation output or a distance metric for a marker output. 
Since ML algorithm performance depends on the “correct” detec-
tion criterion defined by an empirically chosen overlapping or 
distance parameter, a sensitivity analysis of the standalone perfor-
mance across a range of overlap parameters is helpful to confirm 
that the performance estimate is reasonably stable or to at least 
understand how the choice of the criterion impacts performance. 
Moreover, while we have concentrated on detecting a single abnor-
mality here, the abnormality detection metric discussed above can 
be generalized to multiple-object detection problems by reporting 
overall performance or assessing performance individually for each 
type of abnormality and averaging across abnormality types. 

6.4 Triage 

Assessment 

A triage ML algorithm analyzes images for findings suggestive of a 
target clinical condition, but instead of making a diagnosis or 
detection on the image, the algorithm is limited to generating a 
notification in the reading worklist or communicating directly to a 
specialist that a patient has a potential time-sensitive condition. 
Triage ML devices are often called computer-assisted triage and 
notification (CADt) devices. CADt is designed to allow a full 
clinical review earlier in the workflow than without the ML notifi-
cation, given a true-positive (TP) finding by the algorithm. This can



benefit patients for conditions that are time critical by providing 
more timely care. For example, in cases involving suspected large 
vessel occlusion (LVO) stroke, a notification from an effective 
CADt device could allow a neuro-interventionalist to expeditiously 
treat the clot, potentially reducing some associated morbidity and 
mortality. 
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Another situation that CADt devices are useful is in a busy 
clinical environment where a large number of cases are queued 
waiting for clinician review. Instead of reading the cases in a first-
in-first-out (FIFO) fashion, the clinician can review CADt flagged 
cases before non-flagged cases, thereby reducing the waiting time 
of the diseased patients. 

In both situations described above, the sensitivity of the CADt 
for the target condition is critical so that the truly diseased patients 
benefit from earlier diagnosis and treatment. However, specificity is 
also important for the following reasons. An ML algorithm is 
unlikely to have 100% sensitivity, i.e., there are inevitably false-
negative patients in the queue. These patients may be significantly 
delayed compared with FIFO reading if the triage algorithm has a 
large false-positive rate (i.e., low specificity). Moreover, too many 
false alarms may lower the vigilance of a specialist which in turn may 
affect their performance on the true-positive patients. Therefore, 
the metric sensitivity and specificity should be used as a pair to 
assess CADt performance. In the same spirit, the overall capability 
of the ML algorithm in distinguishing between patients with the 
condition and those without can be assessed via ROC analysis and 
the area under the ROC curve. 

Despite its usefulness in evaluating a CADt device, the (sensi-
tivity, specificity) pair and ROC performance are metrics of diagno-
sis and, at best, indirect measures of the true clinical effectiveness of 
an ML triage, i.e., reduction of the waiting time for patients with 
the target time-sensitive condition. Quantitative assessment of the 
clinical effectiveness of CADt devices in accelerating the review of 
patient images with the condition of concern is an open question. 
Among the efforts we are aware of, Thompson et al. [68] are 
developing an analytical approach based on the queueing theory 
to quantify the wait-time-saving of CADt. Under a clinical work-
flow model parameterized by disease prevalence, patient arrival rate, 
radiologist service rate, and number of radiologists on-site, their 
method allows computation of the average waiting time saved for a 
truly diseased patient due to the use of the CADt device where 
CADt performance is characterized by its sensitivity and specificity 
in diagnosing the condition of interest. This approach can poten-
tially be useful in assessing the clinical effectiveness of CADt algo-
rithms but requires further development and validation. Likewise, 
alternate approaches for assessing true CADt effectiveness in a 
clinical setting should be an area of continued research.
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6.5 Utility of 

Standalone 

Performance 

Assessment 

As mentioned previously, ML standalone assessment is primarily 
used to benchmark algorithm performance and compare with other 
ML algorithms or prior versions of the same algorithm to deter-
mine a performance change. Once a standalone dataset has been 
established and referenced, and the various performance metrics 
and criteria set, standalone testing can generally be applied in an 
efficient manner. Therefore, standalone testing is an important tool 
for assessing the potential bias in an ML algorithm. When a large 
diverse standalone dataset containing a range of patients with vari-
ous demographic characteristics, a wide range of disease conditions, 
and the full range of acquisition technologies and protocols is 
available, ML performance can be estimated and compared both 
overall on the full dataset and in separate subgroups within this 
larger population to help identify where the ML may perform 
better and worse. 

The standalone testing is also a critical tool for confirming a 
potential bias or disparity when this disparity is hypothesized, 
through specifically targeting the assessment to that subgroup of 
interest. Through standalone testing, ML performance can quickly 
be evaluated on the specific subgroup to determine if concern is 
warranted. The data requirements for this type of focused sub-
group assessments may not need to be unusually large if the goal 
is to identify large disparities in performance when the ML algo-
rithm is suspected to be performing poorly. Obviously, identifying 
more nuanced differences in performance across subgroups 
requires larger datasets. 

Finally, standalone testing is a great tool for comparing ML 
algorithms. Again, it is ideal to obtain a large diverse real-world 
dataset to fully assess and benchmark an ML algorithm, but com-
parison can often be performed on much smaller enriched datasets 
where the main goal is to determine which algorithm or modifica-
tion performs best, especially in the developmental phases of an 
algorithm’s life cycle. 

6.6 Modifications 

and Continuous 

Learning 

One of the potential advantages of ML is its ability to quickly learn 
from new data such that it can remain current to changing patient 
demographics, clinical practice, and image acquisition technolo-
gies. This ability may result in large numbers of updates to an ML 
algorithm after it becomes available for clinical use. However, each 
update requires a systematic assessment. Modifications can range 
from infrequent algorithm updates all the way to continuously 
learning ML that adapts or learns from real-world experience/ 
data on a continuous basis. This presents a challenge to both ML 
developers and regulatory bodies such as the FDA. 

FDA’s traditional paradigm of regulating ML devices is not 
designed for adaptive technologies, which adapt and optimize per-
formance on a rapid timescale. With this in mind, the FDA is 
exploring a new, total product life cycle (TPLC) regulatory



approach that may potentially accommodate the rapid modification 
cycle of ML algorithms allowing for their efficient improvement 
and adaptation to the changing clinical environment while still 
providing effective safeguards that meet FDA’s statutory require-
ments to ensure safety and effectiveness. To this end, the FDA 
released a proposed regulatory framework for modifications to 
AI/ML software as a medical device (SaMD) in 2019 as a discus-
sion paper [69] requesting feedback from the public on the pro-
posed framework. The proposed TPLC approach is based on [69]:
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• The assurance of quality systems and good machine learning 
practices (GMLP).

• An initial premarket assurance of safety and effectiveness.

• A limited set of SaMD pre-specifications.

• A well-defined algorithm change protocol. 

The algorithm change protocol is defined as the specific meth-
ods that will be used to achieve and appropriately control the risks 
of the SaMD pre-specifications [69]. 

This proposed framework is still under development, but the 
FDA did provide more details on their potential approach with the 
release of the AI/ML SaMD Action Plan in January 2021. The 
Action Plan was developed in response to the stakeholder feedback 
received on the proposed framework and to support innovative 
work in the regulation of medical device software and other digital 
health technologies.9 

In response to the FDA’s proposed framework, Feng et al. have 
been working to frame an AI/ML algorithm change protocol as an 
online statistical hypothesis testing problem [70]. The goal of their 
work was to investigate how “biocreep” resulting from repeated 
testing and adoption of modifications might lead to a gradual 
deterioration in ML performance. Feng et al. were able to show 
that biocreep would regularly occur when using policies with no 
error-rate guarantees but policies that included error-rate control 
were able to control biocreep without substantially impacting the 
ability to approve beneficial modifications [70]. This was an 
in-depth study of a very limited scope of potential ML modification 
problems as indicated by Feng et al. [70], and there remains a great 
deal of work to address the challenges around other types of mod-
ifications and conditions. The scientific community, especially inter-
disciplinary teams of clinicians, statisticians, and domain experts, 
are encouraged to take on this interesting and complex ML 
problem [71]. 

9 https://www.fda.gov/media/106331/download

https://www.fda.gov/media/106331/download
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7 Clinical Performance Assessment with a Reader Study 

Simply put, a reader study for the assessment of ML algorithms is to 
put the algorithm in the hands of clinicians and study the effective-
ness of the algorithm in aiding the clinician’s decision-making. In 
this chapter, a reader study generally refers to a study in which 
readers (e.g., radiologists) review and interpret medical images for 
a specified clinical task (e.g., diagnosis) and provide objective quan-
titative interpretation such as a rating of the likelihood that a 
condition is present. This is fundamentally different from a survey 
or questionnaire for the radiologist to indicate if they “like” the 
functionalities of the ML algorithm, which is not task-specific or 
particularly subjective (i.e., “beauty test”). Moreover, reader stud-
ies for ML in medical imaging typically consist of two arms: reading 
images without the ML algorithm and with the algorithm output 
for medical decision-making, thereby enabling a comparison of the 
reader’s performance between with and without the ML aid. 

It is fundamentally important to distinguish between fixed-
reader study and random-reader study. When readers are treated 
as fixed and patient cases are treated as random samples from the 
patient population, the variability/uncertainty of the performance 
estimate (without ML or with ML) arises only from the random 
sample of patient cases. What does this mean? Let us assume we 
have a radiologist whose name is Barbara in a fixed-reader study and 
her true diagnostic performance over the entire patient population 
is AB. In one experiment, the estimate of Barbara’s diagnostic 
performance is AB with a 95% confidence interval 

(CI) LAB 
,UAB 

. This means that if the experiment were repeated 

infinite number of times, each time with Barbara reading images of 
a random sample of patients, then the average of estimates AB in 
these repeated experiments would be AB, and the true value AB 

would be within the estimated confidence intervals 95% of the time. 

In this sense, we say the performance estimate “AB LAB 
,UAB 

” of 

radiologist Barbara is generalizable to the patient population. 
Notice that this conclusion is only about Barbara but nobody else. 

On the other hand, in a random-reader study where both 
readers and cases are treated as random effects, the population 
parameter of interest A is the (average) performance of the reader 
population over the population of patients. The variability/uncer-

tainty of the performance estimate A in one experiment LA,UA 

should account for both the randomness of readers and that of 
cases—which is not a trivial task (see next paragraph for relevant 
literature). The interpretation of such estimates is that, if the 
experiments were repeated infinite number of times, each time 
with a random sample of readers reading a random sample of cases’



images, then the average of the performance estimates A in these 
repeated experiments would be A, and the population performance 
A would be within the estimated CIs 95% of the time. In this sense, 

we say the performance estimate “A LA,UA ” generalizes to both 

the reader population and the patient population, i.e., the perfor-
mance estimate represents the expected performance of a random 
reader reading a random case using a medical device (e.g., an ML 
algorithm). To distinguish from a fixed-reader study, a random-
reader study is often referred to as a multi-reader multi-case 
(MRMC) study. As a passing note, this discussion also indicates 
that it is critical to specify the intended patient population and user 
population of a device so that a study can be designed to collect data 
from those populations. 
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The statistical methodology for generalizing the performance 
of an imaging device to both the population of readers and the 
population of cases was first developed by Dorfman, Berbaum, and 
Metz (DBM) [72]. Since then, many methodologies have been 
developed for the analysis of MRMC data such as the Obuchowski 
and Rockette (OR) [73] model based on a correlated ANOVA 
model; the bootstrap method by Beiden, Wagner, and Campbell 
[74]; and the U statistic method by Gallas [75]. Relationships 
among these methods have also been investigated [76, 77]. These 
early developments of MRMC analysis methods have focused on 
the area under the ROC curve (AUC) as a performance metric; 
some of these methods (e.g., OR and U statistic methods) have 
been extended to binary performance metrics [78], and all these 
methods have been validated with simulation studies [79] 
[80]. Some of these methods also have publicly available software 
tools, such as the integrated and updated OR–DBM method10 and 
the U statistic method.11 

The most widely used MRMC study design for comparing two 
modalities (e.g., without ML versus with ML) is the fully crossed 
(FC) design, in which every reader reads every case in both mod-
alities. The advantage of pairing both readers and cases across two 
modalities is that it builds a positive correlation between the per-
formance estimates of the two modalities, thereby reducing the 
variability of the performance difference and enhancing the power 
of detecting the performance difference. This reduction of varia-
bility can be easily appreciated by a simple formula 

10 Software | Medical Image Perception Laboratory Department of Radiology (uiowa.edu): https://perception. 
lab.uiowa.edu/software-0 
11 iMRMC: Software to do multi-reader multi-case analysis of reader studies: https://github.com/DIDSR/ 
iMRMC

https://perception.lab.uiowa.edu/software-0
https://perception.lab.uiowa.edu/software-0
https://perception.lab.uiowa.edu/software-0
https://github.com/DIDSR/iMRMC
https://github.com/DIDSR/iMRMC
https://github.com/DIDSR/iMRMC
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Var A1 -A2 =Var A1 þ Var A2 -2ρ Var A1 Var A2 , 

where “Var” denotes variance; A1 and A2 are performance esti-
mates for, e.g., without ML and with ML, respectively; and ρ is the 
correlation between A1 and A2 and is positive under normal 
circumstances. Pairing cases from two modalities sometimes is not 
advised due to safety concerns, for example, if both imaging mod-
alities involve ionizing radiation to patients, imaging the patient 
twice may raise dose concerns. Fortunately, this is not generally an 
issue for the assessment of ML algorithms, and pairing cases in a 
“without ML versus with ML” comparison is feasible in many 
diagnostic situations. 

The FC design has been regarded as the most powerful design 
in the sense that it makes full use of available readers and cases in 
collection of information. However, practically the workload of a 
radiologist may be limited, and oftentimes an investigator may have 
more cases than what readers can afford to read. Moreover, as 
multi-site evaluation becomes popular for better generalizability, 
the transfer of cases among different clinical sites can be logistically 
demanding. To overcome these limitations, Obuchowski [81] 
investigated the split-plot design, where different groups of readers 
read different groups of cases. The combined reader/case group 
can still be paired across modalities to reduce the variability of 
performance difference. Figure 7 provides a visual illustration of 
the FC design and the paired split-plot (PSP) design. What might 
be surprising is that the PSP design can be more powerful than the 
FC design, as shown by Hillis et al. with empirical data [82] and 
Chen et al. with both theoretical analysis and real-world data 
[83]. This may sound like a paradox since the FC design is regarded 
as “the most powerful design,” but it is not. Referring to Fig. 7, 
suppose we have a certain number of readers and each of them can 
read the same number of cases. In the FC design, all the readers 
read the same cases (see Fig. 7, top), whereas, in the PSP design, 
readers are partitioned into two groups with each group reading the 
same number of cases from two different case sets (see Fig. 7, 
bottom). As such, the two designs involve the same amount of 
workload (i.e., number of image interpretations). However, the 
PSP design has reduced variability in performance estimates and 
performance difference estimates and hence increased statistical 
power, as proved by Chen et al. [83] because of the inclusion of 
additional cases. One way to understand this is that, with the same 
workload, reading difference cases (by half of the readers) gains 
more information than reading the same cases. This is also consis-
tent with a common statistical sense: when we have more cases, the 
variability of the “mean” measured on the cases is reduced. In 
summary, the FC design is the most powerful given the same



number of readers and cases, but the PSP design can be more 
powerful given the same number of image interpretations with a 
price of collecting extra cases [83]. 
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Fig. 7 Illustration of the fully crossed design and the paired split-plot design. The squares with grid can be 
understood as the data matrix collected in the reader study with each row representing a case, each column 
representing a reader, and each data element representing the rating of the case by the reader 

The design of an MRMC reader study involves a great deal of 
considerations including patient data collection (see Subheading 3), 
establishment of a reference standard (see Subheading 5), and many 
other aspects such as the recruitment and training of readers and



reading session design, e.g., sequential reading, where the readers 
read images with ML turned on immediately after reading without 
ML, or concurrent reading, where readers read images with ML 
turned on from the very beginning and this is typically compared 
against readers’ performance reading images without ML in a 
separate session. It is worth noting that the discussion of the 
performance testing here is generally based on ML systems that 
are intended to “aid” or interface with an expert radiologist. The 
intended use of a model may warrant additional testing considera-
tions related to human factors and human interpretability depend-
ing on how the model is integrated into the clinical workflow. 
Moreover, MRMC studies for the assessment of ML in imaging 
are often retrospective and controlled “laboratory” studies, in 
which typically only information related to the device of interest is 
presented to the readers (e.g., “image only” versus “image plus ML 
output”), whereas in real-world clinical practice, more information 
is often available to the physician, e.g., patient history, clinical tests, 
and/or other types of imaging exams. The diseased cases are often 
enriched when the natural prevalence is low in controlled labora-
tory studies. The purpose of such designs is to remove certain 
confounders and increase the statistical power to study the impact 
of the ML algorithm itself rather than the “absolute” performance 
of clinicians in the real world (as discussed in Subheading 3). 
However, consideration should still be given to ensure the study 
execution is as close to the clinical environment as possible and 
identify/mitigate potential biases, for example, the readers should 
be trained to use the ML algorithm as if they were instructed in the 
clinic. It is also important to randomize cases, readers, and reading 
sessions to minimize bias. For more details on the design of MRMC 
studies, interested readers can refer to an FDA guidance document 
[84], a consensus paper by Gallas et al. [8], as well as a tutorial 
paper by Wagner et al. [55]. 
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8 Statistical Analysis 

The statistical analysis plays a critical role in the assessment of ML 
performance but may be under-appreciated by many ML develo-
pers. For example, there are still publications that present point 
estimates of ML performance without quantification of uncertain-
ties (standard deviations, confidence intervals). Even if uncertainty 
estimates are provided, the methods of uncertainty estimation are 
sometimes unclear or even inappropriate. Another example is the 
re-use of test data. One may follow the good practice of using 
independent datasets for ML training and testing. However, if the 
test data is repeatedly used, the seemingly innocent good practice 
may introduce optimistic bias to the performance estimate or even 
lead to a spurious discovery because the repeatedly measured



performance on the test dataset may inform training of the algo-
rithm to adaptively fit the test data [85, 86]. As the quote goes, “if 
you torture the data long enough, it will confess.” The lesson is, 
without following appropriate statistical principles, ML developers 
may be led to a blind alley due to statistical pitfalls: comparisons are 
made without statistical rigor, conclusions are drawn without 
appropriate data to substantiate, and spurious findings out of over-
fitting are celebrated. Statistical practices have a major impact on 
the ability to conduct reproducible research. 
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A good practice to avoid such pitfalls is, for any performance 
assessment study—either standalone performance assessment or an 
MRMC study—to pre-specify a statistical analysis plan (SAP) with 
valid statistical methods. The word “pre-specify” is emphasized 
because post hoc analyses can inflate the experiment-wise type I 
error rate and endanger the scientific validity of an otherwise well-
designed and well-conducted study. Below we list exemplar ele-
ments in an SAP for ML development and assessment. We note that 
not all of them are necessarily applicable to a specific study. A 
specific SAP should be consistent with the study objectives, designs, 
nature of data, and statistical analysis methods. 

1. Primary hypotheses and secondary hypotheses that are consis-
tent with the primary and secondary goals of a study. This also 
necessarily involves choosing appropriate performance metrics 
(see Subheading 6 for different metrics corresponding to differ-
ent clinical tasks). For example, the primary goal of an MRMC 
study might be to show the radiologists using an ML algorithm 
perform significantly better than without using the algorithm 
in the task of distinguishing between benign and malignant 
brain tumors, and a secondary goal might be to show the 
radiologist using an ML algorithm has significantly better spec-
ificity (Sp) at a given sensitivity. Then the null (H0) and alterna-
tive (H1) primary hypotheses can be stated as 

H 0 : AUCwith ML =AUCwithout ML;H 1 

: AUCwith ML >AUCwithout ML: 

And the secondary hypotheses may be stated as 

H 0 : Spwith ML 
= Spwithout ML 

;H 1 : Spwith ML 
> Spwithout ML 

: 

2. A plan for use of patient data in various stages of ML algorithm 
development and performance assessment. As discussed in 
Subheading 3, patient data are used in both the development 
and assessment of ML algorithms. A pre-specified plan for 
appropriate use of patient data is crucial for achieving the 
goals of algorithm development and performance validation 
and controlling various sources of bias in the process.
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3. Methods for analyzing the study data to estimate the 
pre-specified performance metric, the uncertainty of the metric 
(e.g., standard deviations and confidence intervals) accounting 
for all sources of variability including reference standard as 
needed, and the test statistic for hypothesis testing. It is criti-
cally important to examine if the assumptions behind the sta-
tistical methods are appropriate for the data and, when 
necessary, use an alternative method to verify the results. 

4. Sample size determination. In a standalone performance assess-
ment study, this is to determine the number of patients to be 
included in the study such that the study data are representative 
of the intended patient population (see Subheading 3.3.3) and, 
when applicable, the study has sufficient statistical power (typi-
cally set to be >80%) to detect a significant effect (e.g., superior 
performance compared with a control). With a single source of 
variability, standard statistical methods and software tools are 
often useful for sizing a standalone performance assessment 
study. 

In an MRMC study, both the number of readers and the 
number of cases need to be determined. Sample size determi-
nation is again mainly for assuring a reasonable chance of 
success in the study planning stage. From a technical point of 
view (i.e., not taking into consideration practical issues such as 
budget), sample size is typically determined by considering 
(1) that the sample sizes are large enough to include samples 
that represent the intended patient and reader populations and 
(2) the sample sizes are sufficient to achieve a target statistical 
power in a hypothesis testing study. Due to the complexity, 
specialized software tools can be used for sizing an MRMC 
study [87], and the MRMC software tools cited in Subheading 
7 provide the sizing functionality. 

The information needed for sizing a pivotal study is often 
obtained in a pilot study, as discussed in Subheading 3. How-
ever, sometimes the pilot study is too limited to provide reliable 
information, and one may find attempting to re-size a pivotal 
study after an interim analysis of the data. Naively re-sizing the 
study based on information obtained in the same study may 
inflate the type I error rate. Huang et al. [88] developed an 
approach that allows adaptive re-sizing of an MRMC study 
with information obtained in an interim analysis such that the 
statistical power is adjusted to a target value and the type I error 
rate is retained by paying a statistical penalty in the final hypoth-
esis testing. 

5. A plan for adjusting p-values and/or confidence intervals for 
multiple comparisons or hypothesis tests. 

6. A plan for handling missing data and assessing the impact of 
missing data (e.g., missing reader data, missing follow-up data
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to confirm negative results) on the study conclusions. 
Although statistical techniques may be used to address issues 
of loss-to-follow-up and missing data, these techniques often 
employ major assumptions that cannot be fully validated for a 
particular study. Therefore, the best way to address issues of 
missing data due to loss-to-follow-up is to plan to minimize its 
occurrence during the planning and management of the clinical 
study. Nevertheless, the study protocol should pre-specify 
appropriate statistical data analysis methods, in addition to 
sensitivity analyses, for handling missing data. 

9 Summary Remarks 

In this chapter, we provided an overview of a performance assess-
ment framework for imaging-based ML algorithms. We discussed 
general considerations in study design and data collection, estab-
lishment of a reference standard, algorithm documentation, algo-
rithm standalone performance as well as clinical reader studies, and 
statistical data analysis in performance testing. We believe that these 
topics are relevant not only in the regulatory setting but also to 
reproducible science and technology development. Because patient 
data and clinical experts’ annotations are used in both the develop-
ment and assessment of ML algorithms, performance assessment 
should be considered from the very beginning of development to 
make efficient use of available data. In addition, performance assess-
ment and algorithm development (e.g., tuning, internal validation) 
are often iterative; meaningful assessment methodologies and tools 
are not only meant to make the assessment rigorous but also cost-
effective. Furthermore, performance assessment methodologies are 
also tremendously helpful to assure quality and reproducibility, 
control bias, and avoid pitfalls and blind alleys. 

Machine learning technologies are still rapidly evolving, and 
their applications in medicine and brain imaging in particular are 
expanding. It is widely recognized that ML is playing a pivotal role 
in revolutionizing medicine and promoting public health to a new 
level. Accompanying these potential developments are new research 
questions on assessment methodologies. We have touched upon 
topics in this chapter such as novel types of clinical applications 
enabled by ML and continuous learning ML. Other exciting topics 
may include improvement and assessment of robustness and gen-
eralizability of ML algorithms, synthetic data augmentation, char-
acterization of bias/fairness, and uncertainty-aware ML algorithms 
that output not only clinical conditions of interest but also “I don’t 
know,” among many others. We believe that assessment methodol-
ogies and regulatory science play a critical role in fully realizing the 
great potential of ML in medicine, in facilitating ML device innova-
tion, and in accelerating the translation of these technologies from 
bench to bedside to the benefit of patients.
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