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Abstract 

Deep learning methods have become very popular for the processing of natural images and were then 
successfully adapted to the neuroimaging field. As these methods are non-transparent, interpretability 
methods are needed to validate them and ensure their reliability. Indeed, it has been shown that deep 
learning models may obtain high performance even when using irrelevant features, by exploiting biases in 
the training set. Such undesirable situations can potentially be detected by using interpretability methods. 
Recently, many methods have been proposed to interpret neural networks. However, this domain is not 
mature yet. Machine learning users face two major issues when aiming to interpret their models: which 
method to choose and how to assess its reliability. Here, we aim at providing answers to these questions by 
presenting the most common interpretability methods and metrics developed to assess their reliability, as 
well as their applications and benchmarks in the neuroimaging context. Note that this is not an exhaustive 
survey: we aimed to focus on the studies which we found to be the most representative and relevant. 

Key words Interpretability, Saliency, Machine learning, Deep learning, Neuroimaging, Brain 
disorders 

1 Introduction 

1.1 Need for 

Interpretability 

Many metrics have been developed to evaluate the performance of 
machine learning (ML) systems. In the case of supervised systems, 
these metrics compare the output of the algorithm to a ground 
truth, in order to evaluate its ability to reproduce a label given by a 
physician. However, the users (patients and clinicians) may want 
more information before relying on such systems. On which fea-
tures is the model relying to compute the results? Are these features 
close to the way a clinician thinks? If not, why? This questioning 
coming from the actors of the medical field is justified, as errors in 
real life may lead to dramatic consequences. Trust into ML systems 
cannot be built only based on a set of metrics evaluating the 
performance of the system. Indeed, various examples of machine 
learning systems taking correct decisions for the wrong reasons
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exist, e.g., [1–3]. Thus, even though their performance is high, 
they may be unreliable and, for instance, not generalize well to 
slightly different data sets. One can try to prevent this issue by 
interpreting the model with an appropriate method whose output 
will highlight the reasons why a model took its decision.

656 Elina Thibeau-Sutre et al.

Fig. 1 Example of an interpretability method highlighting why a network took the wrong decision. The 
explained classifier was trained on the binary task “Husky” vs “Wolf.” The pixels used by the model are 
actually in the background and highlight the snow. (Adapted from [1]. Permission to reuse was kindly granted 
by the authors) 

In [1], the authors show a now classical case of a system that 
correctly classifies images for wrong reasons. They purposely 
designed a biased data set in which wolves always are in a snowy 
environment whereas huskies are not. Then, they trained a classifier 
to differentiate wolves from huskies: this classifier had good accu-
racy but classified wolves as huskies when the background was 
snowy and huskies as wolves when there was no snow. Using an 
interpretability method, they further highlighted that the classifier 
was looking at the background and not at the animal (see Fig. 1). 

Another study [2] detected a bias in ImageNet (a widely used 
data set of natural images) as the interpretation of images with the 
label “chocolate sauce” highlighted the importance of the spoon. 
Indeed, ImageNet “chocolate sauce” images often contained 
spoons, leading to a spurious correlation. There are also examples 
of similar problems in medical applications. For instance, a recent 
paper [3] showed with interpretability methods that some deep 
learning systems detecting COVID-19 from chest radiographs 
actually relied on confounding factors rather than on the actual 
pathological features. Indeed, their model focused on other regions 
than the lungs to evaluate the COVID-19 status (edges, dia-
phragm, and cardiac silhouette). Of note, their model was trained 
on public data sets which were used by many studies.
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1.2 How to Interpret 

Models 

According to [4], model interpretability can be broken down into 
two categories: transparency and post hoc explanations. 

A model can be considered as transparent when it (or all parts 
of it) can be fully understood as such, or when the learning process 
is understandable. A natural and common candidate that fits, at first 
sight, these criteria is the linear regression algorithm, where coeffi-
cients are usually seen as the individual contributions of the input 
features. Another candidate is the decision tree approach where 
model predictions can be broken down into a series of understand-
able operations. One can reasonably consider these models as 
transparent: one can easily identify the features that were used to 
take the decision. However, one may need to be cautious not to 
push too far the medical interpretation. Indeed, the fact that a 
feature has not been used by the model does not mean that it is 
not associated with the target. It just means that the model did not 
need it to increase its performance. For instance, a classifier aiming 
at diagnosing Alzheimer’s disease may need only a set of regions 
(for instance, from the medial temporal lobe of the brain) to achieve 
an optimal performance. This does not mean that other brain 
regions are not affected by the disease, just that they were not 
used by the model to take its decision. This is the case, for example, 
for sparse models like LASSO, but also standard multiple linear 
regressions. Moreover, features given as input to transparent mod-
els are often highly engineered, and choices made before the train-
ing step (preprocessing, feature selection) may also hurt the 
transparency of the whole framework. Nevertheless, in spite of 
these caveats, such models can reasonably be considered transpar-
ent, in particular when compared to deep neural networks which 
are intrinsically black boxes. 

The second category of interpretability methods, post hoc 
interpretations, allows dealing with non-transparent models. Xie 
et al. [5] proposed a taxonomy in three categories: visualization 
methods consist in extracting an attribution map of the same size as 
the input whose intensities allow knowing where the algorithm 
focused its attention, distillation approaches consist in reproducing 
the behavior of a black box model with a transparent one, and 
intrinsic strategies include interpretability components within the 
framework, which are trained along with the main task (e.g., a 
classification). In the present work, we focus on this second cate-
gory of methods (post hoc) and proposed a new taxonomy includ-
ing other methods of interpretation (see Fig. 2). Post hoc 
interpretability is the most used category nowadays, as it allows 
interpreting deep learning methods that became the state of the art 
for many tasks in neuroimaging, as in other application fields.
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1.3 Chapter Content 

and Outline 

This chapter focuses on methods developed to interpret 
non-transparent machine learning systems, mainly deep learning 
systems, computing classification, or regression tasks from high-
dimensional inputs. The interpretability of other frameworks 
(in particular generative models such as variational autoencoders 
or generative adversarial networks) is not covered as there are not 
enough studies addressing them. It may be because high-
dimensional outputs (such as images) are easier to interpret “as 
such,” whereas small dimensional outputs (such as scalars) are less 
transparent. 

Most interpretability methods presented in this chapter pro-
duce an attribution map: an array with the same dimensions as that 
of the input (up to a resizing) that can be overlaid on top of the 
input in order to exhibit an explanation of the model prediction. In 
the literature, many different terms may coexist to name this output 
such as saliency map, interpretation map, or heatmap. To avoid 
misunderstandings, in the following, we will only use the term 
“attribution map.” 

The chapter is organized as follows. Subheading 2 presents the 
most commonly used interpretability methods proposed for com-
puter vision, independently of medical applications. It also 
describes metrics developed to evaluate the reliability of interpret-
ability methods. Then, Subheading 3 details their application to 
neuroimaging. Finally, Subheading 4 discusses current limitations 
of interpretability methods, presents benchmarks conducted in the 
neuroimaging field, and gives some advice to the readers who 
would like to interpret their own models. 

Mathematical notations and abbreviations used during this 
chapter are summarized in Tables 1 and 2. A short reminder on 
neural network training procedure and a brief description of the 
diseases mentioned in the present chapter are provided in 
Appendices A and B. 

2 Interpretability Methods 

This section presents the main interpretability methods proposed in 
the domain of computer vision. We restrict ourselves to the meth-
ods that have been applied to the neuroimaging domain (the 
applications themselves being presented in Subheading 3). The 
outline of this section is largely inspired from the one proposed 
by Xie et al. [5]: 

1. Weight visualization consists in directly visualizing weights 
learned by the model, which is natural for linear models but 
quite less informative for deep learning networks.
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2. Feature map visualization consists in displaying intermediate 
results produced by a deep learning network to better under-
stand its operation principle. 

3. Back-propagation methods back-propagate a signal through 
the machine learning system from the output node of interest oc 
to the level of the input to produce an attribution map. 

Table 1 
Mathematical notations 

X0 is the input tensor given to the network, and X refers to any input, sampled from the set X . 

y is a vector of target classes corresponding to the input. 

f is a network of L layers. The first layer is the closest to the input; the last layer is the closest to the output. 
A layer is a function. 

g is a transparent function which aims at reproducing the behavior of f. 

w and b are the weights and the bias associated to a linear function (e.g., in a fully connected layer). 

u and v are locations (set of coordinates) corresponding to a node in a feature map. They belong 
respectively to the set U and V . 

A
ðlÞðuÞ is the value of the feature map computed by layer l, of  K channels at channel k, at position u. 

R
ðlÞ 
k ðuÞ is the value of a property back-propagated through the l+ 1,  of  K channels at channel k, at  

position u. R(l ) and A(l ) have the same number of channels. 

oc is the output node of interest (in a classification framework, it corresponds to the node of the class c). 

Sc is an attribution map corresponding to the output node oc. 

m is a mask of perturbations. It can be applied to X to compute its perturbed version Xm . 

Φ is a function producing a perturbed version of an input X. 

Γc is the function computing the attribution map Sc from the black-box function f and an input X0. 

Table 2 
Abbreviations 

CAM Class activation maps 

CNN Convolutional neural network 

CT Computed tomography 

Grad-CAM Gradient-weighted class activation mapping 

LIME Local interpretable model-agnostic explanations 

LRP Layer-wise relevance 

MRI Magnetic resonance imaging 

SHAP SHapley Additive exPlanations 

T1w T1-weighted [Magnetic Resonance Imaging]
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4. Perturbation methods locally perturb the input and evaluate 
the difference in performance between using the original input 
and the perturbed version to infer which parts of the input are 
relevant for the machine learning system. 

5. Distillation approximates the behavior of a black box model 
with a more transparent one and then draw conclusions from 
this new model. 

6. Intrinsic includes the only methods of this chapter that are not 
post hoc explanations: in this case, interpretability is obtained 
thanks to components of the framework that are trained at the 
same time as the model. 

Finally, for the methods producing an attribution map, a sec-
tion is dedicated to the metrics used to evaluate different properties 
(e.g., reliability or human intelligibility) of the maps. 

We caution readers that this taxonomy is not perfect: some 
methods may belong to several categories (e.g., LIME and SHAP 
could belong either to perturbation or distillation methods). More-
over, interpretability is still an active research field, and then some 
categories may (dis)appear or be fused in the future. 

The interpretability methods were (most of the time) originally 
proposed in the context of a classification task. In this case, the 
network outputs an array of size C, corresponding to the number of 
different labels existing in the data set, and the goal is to know how 
the output node corresponding to a particular class c interacts with 
the input or with other parts of the network. However, these 
techniques can be extended to other tasks: for example, for a 
regression task, we will just have to consider the output node 
containing the continuous variable learned by the network. More-
over, some methods do not depend on the nature of the algorithm 
(e.g., standard perturbation or LIME) and can be applied to any 
machine learning algorithm. 

2.1 Weight 

Visualization 

At first sight, one of can be tempted to directly visualize the weights 
learned by the algorithm. This method is really simple, as it does 
not require further processing. However, even though it can make 
sense for linear models, it is not very informative for most networks 
unless they are specially designed for this interpretation. 

This is the case for AlexNet [7], a convolutional neural network 
(CNN) trained on natural images (ImageNet). In this network the 
size of the kernels in the first layer is large enough (11× 11) to 
distinguish patterns of interest. Moreover, as the three channels in 
the first layer correspond to the three color channels of the images 
(red, green, and blue), the values of the kernels can also be repre-
sented in terms of colors (this is not the case for hidden layers, in 
which the meaning of the channels is lost). The 96 kernels of the 
first layer were illustrated in the original article as in Fig. 3.



However, for hidden layers, this kind of interpretation may be 
misleading as nonlinearity activation layers are added between the 
convolutions and fully connected layers; this is why they only 
visualized the weights of the first layer. 
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Fig. 3 96 convolutional kernels of size 3@11 × 11 learned by the first convolutional layer on the 3@224 × 224 
input images by AlexNet. (Adapted from [7]. Permission to reuse was kindly granted by the authors) 

Fig. 4 The weights of small kernels in hidden layers (here 5× 5) can be really difficult to interpret alone. Here 
some context allows better understanding how it modulates the interaction between concepts conveyed by the 
input and the output. (Adapted from [8] (CC BY 4.0)) 

To understand the weight visualization in hidden layers of a 
network, Voss et al. [8] proposed to add some context to the input 
and the output channels. This way they enriched the weight visuali-
zation with feature visualization methods able to generate an image 
corresponding to the input node and the output node (see Fig. 4). 
However, the feature visualization methods used to bring some 
context can also be difficult to interpret themselves, and then it 
only moves the interpretability problem from weights to features. 

2.2 Feature Map 

Visualization 

Feature maps are the results of intermediate computations done 
from the input and resulting in the output value. Then, it seems 
natural to visualize them or link them to concepts to understand 
how the input is successively transformed into the output. 

Methods described in this section aim at highlighting which 
concepts a feature map (or part of it) A conveys.
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2.2.1 Direct 

Interpretation 

The output of a convolution has the same shape as its input: a 2D 
image processed by a convolution will become another 2D image 
(the size may vary). Then, it is possible to directly visualize these 
feature maps and compare them to the input to understand the 
operations performed by the network. However, the number of 
filters of convolutional layers (often a hundred) makes the interpre-
tation difficult as a high number of images must be interpreted for a 
single input. 

Instead of directly visualizing the feature map A, it is possible to 
study the latent space including all the values of the samples of a 
data set at the level of the feature map A. Then, it is possible to 
study the deformations of the input by drawing trajectories 
between samples in this latent space, or more simply to look at 
the distribution of some label in a manifold learned from the latent 
space. In such a way, it is possible to better understand which 
patterns were detected, or at which layer in the network classes 
begin to be separated (in the classification case). There is often no 
theoretical framework to illustrate these techniques, and then we 
referred to studies in the context of the medical application (see 
Subheading 3.2 for references). 

2.2.2 Input Optimization Olah et al. [9] proposed to compute an input that maximizes the 
value of a feature map A (see Fig. 5). However, this technique leads 
to unrealistic images that may be themselves difficult to interpret, 
particularly for neuroimaging data. To have a better insight of the 
behavior of layers or filters, another simple technique illustrated by 
the same authors consists in isolating the inputs that led to the 
highest activation of A. The combination of both methods, dis-
played in Fig. 6, allows a better understanding of the concepts 
conveyed by A of a GoogLeNet trained on natural images. 

2.3 Back-

Propagation Methods 

The goal of these interpretability methods is to link the value of an 
output node of interest oc to the image X0 given as input to a 
network. They do so by back-propagating a signal from oc to X0:

Fig. 5 Optimization of the input for different levels of feature maps. (Adapted from [9] (CC BY 4.0))



2.3.1 Gradient Back-

Propagation

this process (backward pass) can be seen as the opposite operation 
than the one done when computing the output value from the 
input (forward pass).
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Fig. 6 Interpretation of a neuron of a feature map by optimizing the input associated with a bunch of training 
examples maximizing this neuron. (Adapted from [9] (CC BY 4.0)) 

Fig. 7 Attribution map of an image found with gradients back-propagation. (Adapted from [10]. Permission to 
reuse was kindly granted by the authors) 

Any property can be back-propagated as soon as its value at the 
level of a feature map l-1 can be computed from its value in the 
feature map l. In this section, the back-propagated properties are 
gradients or the relevance of a node oc. 

During network training, gradients corresponding to each layer are 
computed according to the loss to update the weights. Then, we 
can see these gradients as the difference needed at the layer level to 
improve the final result: by adding this difference to the weights, 
the probability of the true class y increases. 

In the same way, the gradients can be computed at the image 
level to find how the input should vary to change the value of oc (see 
example on Fig. 7. This gradient computation was proposed by 
[10], in which the attribution map Sc corresponding to the input



image X0 and the output node oc is computed according to the 
following equation: 
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Sc = 
∂oc 
∂X

j
X =X 0 

ð1Þ 

Due to its simplicity, this method is the most commonly used 
to interpret deep learning networks. Its attribution map is often 
called a “saliency map”; however, this term is also used in some 
articles to talk about any attribution map, and this is why we chose 
to avoid this term in this chapter. 

This method was modified to derive many similar methods 
based on gradient computation described in the following 
paragraphs. 

Gradient Input This method is the point-wise product of the 
gradient map described at the beginning of the section and the 
input. Evaluated in [11], it was presented as an improvement of the 
gradients method, though the original paper does not give strong 
arguments on the nature of this improvement. 

DeconvNet & Guided Back-Propagation The key difference 
between this procedure and the standard back-propagation method 
is the way the gradients are back-propagated through the ReLU 
layer. 

The ReLU layer is a commonly used activation function that 
sets to 0 the negative input values and does not affect positive input 
values. The derivative of this function in layer l is the indicator 
function 1AðlÞ >0 : it outputs 1 (resp. 0) where the feature maps 
computed during the forward pass were positive (resp. negative). 

Springenberg et al. [12] proposed to back-propagate the signal 
differently. Instead of applying the indicator function of the feature 
map A(l ) computed during the forward pass, they directly applied 
ReLU to the back-propagated values Rðlþ1Þ = ∂oc 

∂Aðlþ1Þ, which corre-
sponds to multiplying it by the indicator function 1Rðlþ1Þ >0. This 
“backward deconvnet” method allows back-propagating only the 
positive gradients, and, according to the authors, it results in a 
reconstructed image showing the part of the input image that is 
most strongly activating this neuron. 

The guided back-propagation method (Eq. 4) combines the 
standard back-propagation (Eq. 2) with the backward deconvnet 
(Eq. 3): when back-propagating gradients through ReLU layers, a 
value is set to 0 if the corresponding top gradients or bottom data is 
negative. This adds an additional guidance to the standard back-
propagation by preventing backward flow of negative gradients.
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RðlÞ = 1AðlÞ >0 �Rðlþ1Þ ð2Þ 

RðlÞ = 1Rðlþ1Þ >0 �Rðlþ1Þ ð3Þ 

RðlÞ = 1AðlÞ >0 � 1Rðlþ1Þ >0 �Rðlþ1Þ ð4Þ 
Any back-propagation procedure can be “guided,” as it only 

concerns the way ReLU functions are managed during back-
propagation (this is the case, e.g., for guided Grad-CAM). 

While it was initially adopted by the community, this method 
showed severe defects as discussed later in Subheading 4. 

CAM & Grad-CAM In this setting, attribution maps are com-
puted at the level of a feature map produced by a convolutional 
layer and then upsampled to be overlaid and compared with the 
input. The first method, class activation maps (CAM), was pro-
posed by Zhou et al. [13] and can be only applied to CNNs with 
the following specific architecture: 

1. A series of convolutions associated with activation functions 
and possibly pooling layers. These convolutions output a fea-
ture map A with N channels. 

2. A global average pooling that extracts the mean value of each 
channel of the feature map produced by the convolutions. 

3. A single fully connected layer 

The CAM corresponding to oc will be the mean of the channels 
of the feature map produced by the convolutions, weighted by the 
weights wkc learned in the fully connected layer 

Sc = 
N 

k=1 

wkc �Ak: ð5Þ 

This map has the same size as Ak, which might be smaller than 
the input if the convolutional part performs downsampling opera-
tions (which is very often the case). Then, the map is upsampled to 
the size of the input to be overlaid on the input. 

Selvaraju et al. [14] proposed an extension of CAM that can be 
applied to any architecture: Grad-CAM (illustrated on Fig. 8). As in 
CAM, the attribution map is a linear combination of the channels of 
a feature map computed by a convolutional layer. But, in this case, 
the weights of each channel are computed using gradient back-
propagation 

αkc = 
1 
jUj

u∈U 

∂oc 
∂AkðuÞ : ð6Þ



2.3.2 Relevance Back-

Propagation

Interpretability 667

Fig. 8 Grad-CAM explanations highlighting two different objects in an image. (a) the original image, (b) the 
explanation based on the “dog” node, (c) the explanation based on the “cat” node. ©2017 IEEE. (Reprinted, 
with permission, from [14]) 

The final map is then the linear combination of the feature 
maps weighted by the coefficients. A ReLU activation is then 
applied to the result to only keep the features that have a positive 
influence on class c 

Sc =ReLU 
N 

k=1 

αkc �Ak : ð7Þ 

Similarly to CAM, this map is then upsampled to the input size. 
Grad-CAM can be applied to any feature map produced by a 

convolution, but in practice the last convolutional layer is very often 
chosen. The authors argue that this layer is “the best compromise 
between high-level semantics and detailed spatial information” (the 
latter is lost in fully connected layers, as the feature maps are 
flattened). 

Because of the upsampling step, CAM and Grad-CAM produce 
maps that are more human-friendly because they contain more 
connected zones, contrary to other attribution maps obtained 
with gradient back-propagation that can look very scattered. How-
ever, the smallest the feature maps Ak, the blurrier they are, leading 
to a possible loss of interpretability. 

Instead of back-propagating gradients to the level of the input or of 
the last convolutional layer, Bach et al. [15] proposed to back-
propagate the score obtained by a class c, which is called the 
relevance. This score corresponds to oc after some post-processing 
(e.g., softmax), as its value must be positive if class c was identified 
in the input. At the end of the back-propagation process, the goal is 
to find the relevance Ru of each feature u of the input (e.g., of each 
pixel of an image) such that oc = u∈URu. 

In their paper, Bach et al. [15] take the example of a fully 
connected function defined by a matrix of weights w and a bias



b at layer l+ 1. The value of a node v in feature map A(l+1) is 
computed during the forward pass by the given formula: 
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Fig. 9 LRP attribution maps explaining the decision of a neural network trained on MNIST. ©2017 IEEE. 
(Reprinted, with permission, from [16]) 

Aðlþ1ÞðvÞ= b þ 
u∈U 

wuvA
ðlÞðuÞ ð8Þ 

During the back-propagation of the relevance, R(l ) (u), the 
value of the relevance at the level of the layer l +1 is computed 
according to the values of the relevance R(l+1) (v) which are 
distributed according to the weights w learned during the forward 
pass and the values of A(l ) (v): 

RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ AðlÞðuÞwuv 

u0∈U 

AðlÞðu0Þwu0v 
: ð9Þ 

The main issue of the method comes from the fact that the 
denominator may become (close to) zero, leading to the explosion 
of the relevance back-propagated. Moreover, it was shown by [11] 
that when all activations are piece-wise linear (such as ReLU or 
leaky ReLU), the layer-wise relevance (LRP) method reproduces 
the output of gradient input, questioning the usefulness of the 
method. 

This is why Samek et al. [16] proposed two variants of the 
standard LRP method [15]. Moreover they describe the behavior 
of the back-propagation in other layers than the linear ones (the 
convolutional one following the same formula as the linear). They 
illustrated their method with a neural network trained on MNIST 
(see Fig. 9). To simplify the equations in the following paragraphs, 
we now denote the weighted activations as zuv=A(l ) (u)wuv. 

e-rule The E-rule integrates a parameter E>0, used to avoid 
numerical instability. Though it avoids the case of a null denomina-
tor, this variant breaks the rule of relevance conservation across 
layers
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RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ zuv 

u0∈U 

zu0v þ ε× sign 
u0∈U 

zu0v 

: ð10Þ 

β-rule The β-rule keeps the conservation of the relevance by treat-
ing separately the positive weighted activations zþ 

uv from the nega-
tive ones z-

uv 

RðlÞðuÞ= 
v∈V 

Rðlþ1ÞðvÞ ð1þ βÞ zþ 
uv 

u0∈U 

zþ 
u0v

- β 
z-
uv 

u0∈U 

z-
u0v 

: ð11Þ 

Though these two LRP variants improve the numerical stability 
of the procedure, they imply to choose the values of parameters that 
may change the patterns in the obtained attribution map. 

Deep Taylor Decomposition Deep Taylor decomposition [17] 
was proposed by the same team as the one that proposed the 
original LRP method and its variants. It is based on similar princi-
ples as LRP: the value of the score obtained by a class c is back-
propagated, but the back-propagation rule is based on first-order 
Taylor expansions. 

The back-propagation from node v in at the level of R(l+1) to 
u at the level of R(l ) can be written 

RðlÞðuÞ= 
v∈V 

∂Rðlþ1ÞðvÞ 
∂AðlÞðuÞ ~A

ðlÞ 
v ðuÞ 

AðlÞðuÞ- ~A
ðlÞ 
v ðuÞ : ð12Þ 

This rule implies a root point ~A
ðlÞ 
v ðuÞ which is close to A(l ) (u) 

and meets a set of constraints depending on v. 

2.4 Perturbation 

Methods 

Instead of relying on a backward pass (from the output to the 
input) as in the previous section, perturbation methods rely on 
the difference between the value of oc computed with the original 
inputs and a locally perturbed input. This process is less abstract for 
humans than back-propagation methods as we can reproduce it 
ourselves: if the part of the image that is needed to find the good 
output is hidden, we are also not able to predict correctly. More-
over, it is model-agnostic and can be applied to any algorithm or 
deep learning architecture. 

The main drawback of these techniques is that the nature of the 
perturbation is crucial, leading to different attribution maps 
depending on the perturbation function used. Moreover, 
Montavon et al. [18] suggest that the perturbation rule should



keep the perturbed input in the training data distribution. Indeed, 
if it is not the case, one cannot know if the network performance 
dropped because of the location or the nature of the perturbation. 
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Fig. 10 Attribution maps obtained with standard perturbation. Here the perturbation is a gray patch covering a 
specific zone of the input as shown in the left column. The attribution maps (second row) display the 
probability of the true label: the lower the value, the most important it is for the network to correctly identify 
the label. This kind of perturbation takes the perturbed input out of the training distribution. (Reprinted by 
permission from Springer Nature Customer Service Centre GmbH: Springer Nature, ECCV 2014: Visualizing 
and Understanding Convolutional Networks, [19], 2014) 

2.4.1 Standard 

Perturbation 

Zeiler and Fergus [19] proposed the most intuitive method relying 
on perturbations. This standard perturbation procedure consists in 
removing information locally in a specific zone of an input X0 and 
evaluating if it modifies the output node oc. The more the pertur-
bation degrades the task performance, the more crucial this zone is 
for the network to correctly perform the task. To obtain the final 
attribution map, the input is perturbed according to all possible 
locations. Examples of attribution maps obtained with this method 
are displayed in Fig. 10. 

As evaluating the impact of the perturbation at each pixel 
location is computationally expensive, one can choose not to per-
turb the image at each pixel location but to skip some of them (i.e., 
scan the image with a stride > 1). This will lead to a smaller 
attribution map, which needs to be upsampled to be compared to 
the original input (in the same way as CAM & Grad-CAM).
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However, in addition to the problem of the nature of the 
perturbation previously mentioned, this method presents two 
drawbacks:

• The attribution maps depend on the size of the perturbation: if 
the perturbation becomes too large, the perturbation is not local 
anymore; if it is too small, it is not meaningful anymore (a pixel 
perturbation cannot cover a pattern).

• Input pixels are considered independently from each other: if the 
result of a network relies on a combination of pixels that cannot 
all be covered at the same time by the perturbation, their influ-
ence may not be detected. 

2.4.2 Optimized 

Perturbation 

To deal with these two issues, Fong and Vedaldi [2] proposed to 
optimize a perturbation mask covering the whole input. This per-
turbation mask m has the same size as the input X0. Its application 
is associated with a perturbation function Φ and leads to the com-
putation of the perturbed input Xm 

0 . Its value at a coordinate 
u reflects the quantity of information remaining in the perturbed 
image:

• If m(u)=1, the pixel at location u is not perturbed and has the 
same value in the perturbed input as in the original input 
(Xm 

0 ðuÞ=X 0ðuÞ).
• If m(u)=0, the pixel at location u is fully perturbed and the 

value in the perturbed image is the one given by the perturba-
tion function only (Xm 

0 ðuÞ=ΦðX 0ÞðuÞ). 
This principle can be extended to any value between 0 and 

1 with the a linear interpolation 

Xm 
0 ðuÞ=mðuÞX 0ðuÞþð1-mðuÞÞΦðX 0ÞðuÞ: ð13Þ 

Then, the goal is to optimize this mask m according to three 
criteria: 

1. The perturbed input Xm 
0 should lead to the lowest performance 

possible. 

2. The mask m should perturb the minimum number of pixels 
possible. 

3. The mask m should produce connected zones (i.e., avoid the 
scattered aspect of gradient maps). 

These three criteria are optimized using the following loss: 

f ðXm 
0 Þ þ  λ1k1-mkβ1 β1 

þ λ2k∇mkβ2 β2 
ð14Þ 

with f a function that decreases as the performance of the 
network decreases. 

However, the method also presents two drawbacks:



2.5.1 Local

Approximation
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Fig. 11 In this example, the network learned to classify objects in natural images. Instead of masking the 
maypole at the center of the image, it creates artifacts in the sky to degrade the performance of the network. 
©2017 IEEE. (Reprinted, with permission, from [2])

• The values of hyperparameters must be chosen (λ1, λ2, β1, β2) to  
find a balance between the three optimization criteria of 
the mask.

• The mask may not highlight the most important pixels of the 
input but instead create artifacts in the perturbed image to 
artificially degrade the performance of the network (see Fig. 11). 

2.5 Distillation Approaches described in this section aim at developing a transpar-
ent method to reproduce the behavior of a black box one. Then it is 
possible to consider simple interpretability methods (such as weight 
visualization) on the transparent method instead of considering the 
black box. 

LIME Ribeiro et al. [1] proposed local interpretable model-
agnostic explanations (LIME). This approach is:

• Local, as the explanation is valid in the vicinity of a specific input 
X0

• Interpretable, as an interpretable model g (linear model, deci-
sion tree. . .) is computed to reproduce the behavior of f on X0

• Model-agnostic, as it does not depend on the algorithm trained 

This last property comes from the fact that the vicinity of X0 is 
explored by sampling variations of X0 that are perturbed versions of 
X0. Then LIME shares the advantage (model-agnostic) and draw-
back (perturbation function dependent) of perturbation methods 
presented in Subheading 2.4. Moreover, the authors specify that, in 
the case of images, they group pixels of the input in d super-pixels 
(contiguous patches of similar pixels). 

The loss to be minimized to find g specific to the input X0 is the 
following: 

ℒðf , g , πX 0
Þ þ ΩðgÞ, ð15Þ
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where πX 0 
is a function that defines the locality of X0 (i.e., 

πX 0
ðX Þ decreases as X becomes closer to X0), ℒ measures how 

unfaithful g is in approximating f according πX 0 
, and Ω is a measure 

of the complexity of g. 
Ribeiro et al. [1] limited their search to sparse linear models; 

however, other assumptions could be made on g. 
g is not applied to the input directly but to a binary mask 

m∈{0, 1}d that transforms the input X in Xm and is applied 
according to a set of d super-pixels. For each super-pixel u: 

1. If m(u)=1, the super-pixel u is not perturbed. 

2. If m(u)=0, the super-pixel u is perturbed (i.e., it is grayed). 

They used 

πX 0
ðX Þ= exp 

ðX -X 0Þ2 
σ2 

and 

ℒðf , g , πX 0
Þ= 

m 
πX 0

ðXm 
0 Þ � ðf ðXm 

0 Þ- gðmÞÞ2 : 
Finally Ω(g) is the number of non-zero weights of g, and its value is 
limited to K. This way they select the K super-pixels in X0 that best 
explain the algorithm result f(X0). 

SHAP Lundberg and Lee [20] proposed SHAP (SHapley Addi-
tive exPlanations), a theoretical framework that encompasses sev-
eral existing interpretability methods, including LIME. In this 
framework each of the N features (again, super-pixels for images) 
is associated with a coefficient ϕ that denotes its contribution to the 
result. The contribution of each feature is evaluated by perturbing 
the input X0 with a binary mask m (see paragraph on LIME). Then 
the goal is to find an interpretable model g specific to X0, such that 

gðmÞ=ϕ0 þ 
N 

1 

ϕimi ð16Þ 

with ϕ0 being the output when the input is fully perturbed. 

The authors look for an expression of ϕ that respects three 
properties:

• Local accuracy g and f should match in the vicinity of X0: 
gðmÞ= f ðXm 

0 Þ.
• Missingness Perturbed features should not contribute to the 

result: mi =0→ϕi =0.

• Consistency Let’s denote as m ∖ i the mask m in which mi=0. 
For any two models f 1 and f 2 ,  if
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Fig. 12 Visualization of a soft decision tree trained on MNIST. (Adapted from [21]. Permission to reuse was 
kindly granted by the authors) 

f 1ðXm 
0 Þ- f 1ðXm∖i 

0 Þ≥ f 2ðXm 
0 Þ- f 2ðXm∖i 

0 Þ 
then for all m∈{0, 1}N ϕ1 

i ≥ϕ2 
i (ϕ

k are the coefficients associated 
with model f k ). 

Lundberg and Lee [20] show that only one expression is possi-
ble for the coefficients ϕ, which can be approximated with different 
algorithms: 

ϕi = 
m∈f0, 1gN 

jmj!ðN - jmj-1Þ! 
N ! 

f ðXm 
0 Þ- f ðXm∖i 

0 Þ : ð17Þ 

2.5.2 Model Translation Contrary to local approximation, which provides an explanation 
according to a specific input X0, model translation consists in 
finding a transparent model that reproduces the behavior of the 
black box model on the whole data set. 

As it was rarely employed in neuroimaging frameworks, this 
section only discusses the distillation to decision trees proposed in 
[21] (preprint). For a more extensive review of model translation 
methods, we refer the reader to [5]. 

After training a machine learning system f, a binary decision 
tree g is trained to reproduce its behavior. This tree is trained on a 
set of inputs X, and each inner node i learns a matrix of weights wi 

and biases bi. The forward pass of X in the node i of the tree is as 
follows: if sigmoid(wiX+ bi)>0.5, then the right leaf node is cho-
sen, else the left leaf node is chosen. After the end of the decision 
tree’s training, it is possible to visualize at which level which classes 
were separated to better understand which classes are similar for the



network. It is also possible to visualize the matrices of weights 
learned by each inner node to identify patterns learned at each 
class separation. An illustration of this distillation process, on the 
MNIST data set (hand-written digits), can be found in Fig. 12. 
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2.6 Intrinsic Contrary to the previous sections in which interpretability methods 
could be applied to (almost) any network after the end of the 
training procedure, the following methods require to design the 
framework before the training phase, as the interpretability compo-
nents and the network are trained simultaneously. In the papers 
presented in this Subheading [22–24], the advantages of these 
methods are dual: they improve both the interpretability and per-
formance of the network. However, the drawback is that they have 
to be implemented before training the network, and then they 
cannot be applied in all cases. 

2.6.1 Attention Modules Attention is a concept in machine learning that consists in produc-
ing an attribution map from a feature map and using it to improve 
learning of another task (such as classification, regression, 
reconstruction. . .) by making the algorithm focus on the part of 
the feature map highlighted by the attribution map. 

In the deep learning domain, we take as reference [22], in 
which a network is trained to produce a descriptive caption of 
natural images. This network is composed of three parts: 

1. A convolutional encoder that reduces the dimension of the 
input image to the size of the feature maps A 

Fig. 13 Examples of images correctly captioned by the network. The focus of the attribution map is highlighted 
in white and the associated word in the caption is underlined. (Adapted from [22]. Permission to reuse was 
kindly granted by the authors)
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2. An attention module that generates an attribution map St from 
A and the previous hidden state of the long short-term mem-
ory (LSTM) network 

3. An LSTM decoder that computes the caption from its previous 
hidden state, the previous word generated, A and St 

As St is of the same size as A (smaller than the input), the result 
is then upsampled to be overlaid on the input image. As one 
attribution map is generated per word generated by the LSTM, it 
is possible to know where the network focused when generating 
each word of the caption (see Fig. 13). In this example, the attribu-
tion map is given to a LSTM, which uses it to generate a context 
vector zt by applying a function ϕ to A and St. 

More generally in CNNs, the point-wise product of the attri-
bution map S and the feature map A is used to generate the refined 
feature map A′ which is given to the next layers of the network. 
Adding an attention module implies to make new choices for the 
architecture of the model: its location (on lower or higher feature 
maps) may impact the performance of the network. Moreover, it is 
possible to stack several attention modules along the network, as it 
was done in [23]. 

2.6.2 Modular 

Transparency 

Contrary to the studies of the previous sections, the frameworks of 
these categories are composed of several networks (modules) that 
interact with each other. Each module is a black box, but the 
transparency of the function, or the nature of the interaction

Fig. 14 Framework with modular transparency browsing an image to compute the output at the global scale. 
(Adapted from [24]. Permission to reuse was kindly granted by the authors)



between them, allows understanding how the system works glob-
ally and extracting interpretability metrics from it.

Interpretability 677

A large variety of setups can be designed following this princi-
ple, and it is not possible to draw a more detailed general rule for 
this section. We will take the example described in [24], which was 
adapted to neuroimaging data (see Subheading 3.6), to illustrate 
this section, though it may not be representative of all the aspects of 
modular transparency. 

Ba et al. [24] proposed a framework (illustrated in Fig. 14) to  
perform the analysis of an image in the same way as a human, by 
looking at successive relevant locations in the image. To perform 
this task, they assemble a set of networks that interact together:

• Glimpse network This network takes as input a patch of the 
input image and the location of its center to output a context 
vector that will be processed by the recurrent network. Then this 
vector conveys information on the main features in a patch and 
its location.

• Recurrent network This network takes as input the successive 
context vectors and update its hidden state that will be used to 
find the next location to look at and to perform the learned task 
at the global scale (in the original paper a classification of the 
whole input image).

• Emission network This network takes as input the current 
state of the recurrent network and outputs the next location to 
look at. This will allow computing the patch that will feed the 
glimpse network.

• Context network This network takes as input the whole input 
at the beginning of the task and outputs the first context vector 
to initialize the recurrent network.

• Classification network This network takes as input the cur-
rent state of the recurrent network and outputs a prediction for 
the class label. 

The global framework can be seen as interpretable as it is 
possible to review the successive processed locations. 

2.7 Interpretability 

Metrics 

To evaluate the reliability of the methods presented in the previous 
sections, one cannot only rely on qualitative evaluation. This is why 
interpretability metrics that evaluate attribution maps were pro-
posed. These metrics may evaluate different properties of attribu-
tion maps.

• Fidelity evaluates if the zones highlighted by the map influence 
the decision of the network.

• Sensitivity evaluates how the attribution map changes accord-
ing to small changes in the input X0.
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• Continuity evaluates if two close data points lead to similar 
attribution maps. 

In the following, Γ is an interpretability method computing an 
attribution map S of the black box network f and an input X0. 

2.7.1 (In)fidelity Yeh et al. [25] proposed a measure of infidelity of Γ based on 
perturbations applied according to a vector m of the same shape 
as the attribution map S. The explanation is infidel if perturbations 
applied in zones highlighted by S on X0 lead to negligible changes 
in f ðXm 

0 Þ or, on the contrary, if perturbations applied in zones not 
highlighted by S on X0 lead to significant changes in f ðXm 

0 Þ. The 
associated formula is 

ðΓ, f ,X 0Þ=m 
i j 

mijΓðf ,X 0Þij - ðf ðX 0Þ- f ðXm 
0 ÞÞ2 : ð18Þ 

2.7.2 Sensitivity Yeh et al. [25] also gave a measure of sensitivity. As suggested by the 
definition, it relies on the construction of attribution maps accord-
ing to inputs similar to X0: ~X 0. As changes are small, sensitivity 
depends on a scalar E set by the user, which corresponds to the 
maximum difference allowed between X0 and ~X 0. Then sensitivity 
corresponds to the following formula: 

NSmaxðΓ, f , X 0, εÞ= max 
X 0

�
-X 0 ≤ ε 

kΓðf ,X 0

�
Þ-Γðf , X 0Þk: ð19Þ 

2.7.3 Continuity Continuity is very similar to sensitivity, except that it compares 
different data points belonging to the input domain X , whereas 
sensitivity may generate similar inputs with a perturbation method. 
This measure was introduced in [18] and can be computed using 
the following formula: 

CONTðΓ, f , XÞ= max 
X 1,X 2∈X & X 1 ≠X 2 

kΓðf ,X 1Þ-Γðf ,X 2Þk1 
kX 1 -X 2k2 

: ð20Þ 

As these metrics rely on perturbation, they are also influenced 
by the nature of the perturbation and may lead to different results, 
which is a major issue (see Subheading 4). Other metrics were also 
proposed and depend on the task learned by the network: for 
example, in the case of a classification, statistical tests can be con-
ducted between attribution maps of different classes to assess 
whether they differ according to the class they explain.
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3 Application of Interpretability Methods to Neuroimaging Data 

In this section, we provide a non-exhaustive review of applications 
of interpretability methods to neuroimaging data. In most cases, 
the focus of articles is prediction/classification rather than the 
interpretability method, which is just seen as a tool to analyze the 
results. Thus, authors do not usually motivate their choice of an 
interpretability method. Another key consideration here is the 
spatial registration of brain images, which enables having brain 
regions roughly at the same position between subjects. This tech-
nique is of paramount importance as attribution maps computed 
for registered images can then be averaged or used to automatically 
determine the most important brain areas, which would not be 
possible with unaligned images. All the studies presented in this 
section are summarized in Table 3. 

Table 3 
Summary of the studies applying interpretability methods to neuroimaging data which are presented 
in Subheading 3 

Interpretability 
method 

Abrol et al. [28] ADNI T1w AD classification FM visualization, 

Perturbation 

3.2, 3.4 

Bae et al. [32] ADNI sMRI AD classification Perturbation 3.4 

Ball et al. [33] PING T1w Age prediction Weight visualization, 

SHAP 

3.1, 3.5 

Biffi et al. [29] ADNI T1w AD classification FM visualization 3.2 

Böhle et al. [34] ADNI T1w AD classification LRP, Guided back-

propagation 

3.3 

Burduja et al. [35] RSNA CT scan Intracranial 

Hemorrhage 

detection 

Grad-CAM 3.3 

Cecotti and 

Gr€aser [26] 

in-house EEG P300 signals detection Weight visualization 3.1 

Dyrba et al. [36] ADNI T1w AD classification DeconvNet, Deep 
Taylor 

decomposition, 

Gradient 

Input, LRP, Grad-
CAM 

3.3 

Eitel and Ritter [37] ADNI T1w AD classification Gradient 

Input, Guided 

back-propagation, 

LRP, Perturbation 

3.3, 3.4
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(continued)

Interpretability 
method 

Eitel et al. [38] ADNI, 

in-house 

T1w Multiple Sclerosis 

detection 

Gradient Input, 

LRP 

3.3 

Fu et al. [39] CQ500, RSNA CT scan Detection of Critical 
Findings in Head CT 

scan 

Attention 
mechanism 

3.6 

Gutiérrez-Becker 

and 

Wachinger [40] 

ADNI T1w AD classification Perturbation 3.4 

Hu et al. [41] ADNI, NIFD T1w AD/CN/FTD 

classification 

Guided back-

propagation 

3.3 

Jin et al. [42] ADNI, 
in-house 

T1w AD classification Attention 
mechanism 

3.6 

Lee et al. [43] ADNI T1w AD classification Modular 

transparency 

3.6 

Leming et al. [31] OpenFMRI, 

ADNI, 

ABIDE, 
ABIDE II, 

ABCD, 

NDAR 

ICBM, UK 
Biobank, 

1000FC 

fMRI Autism classification Sex 

classification Task vs 

rest classification 

FM visualization, 

Grad-CAM 

3.2, 3.3 

Magesh et al. [44] PPMI SPECT Parkinson’s disease 

detection 

LIME 3.5 

Martinez-Murcia 

et al. [30] 

ADNI T1w AD classification 

Prediction of 

neuropsychological 
tests & other clinical 

variables 

FM visualization 3.2 

Nigri et al. [45] ADNI, 

AIBL 

T1w AD classification Perturbation, Swap 

test 

3.4 

Oh et al. [27] ADNI T1w AD classification FM visualization, 

Standard back-
propagation, 

Perturbation 

3.2, 3.3, 3.4 

Qiu et al. [46] ADNI, AIBL, 

FHS, NACC 

T1w AD classification Modular 

transparency 

3.6 

Ravi et al. [47] ADNI T1w CN/MCI/AD 

reconstruction 

Modular 

transparency 

3.6
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(continued)

Interpretability 
method 

Rieke et al. [48] ADNI T1w AD classification Standard back-

propagation, 
Guided back-

propagation, 

Perturbation, 
Brain area 

occlusion 

3.3, 3.4 

Tang et al. [49] UCD-ADC, 

Brain Bank 

Histology Detection of amyloid-β 
pathology 

Guided back-

propagation, 

Perturbation 

3.3, 3.4 

Wood et al. [50] ADNI T1w AD classification Modular 

transparency 

3.6 

Data sets: 1000FC, 1000 Functional Connectomes; ABCD, Adolescent Brain Cognitive Development; ABIDE, Autism 

Brain Imaging Data Exchange; ADNI, Alzheimer‘s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Bio-
markers and Lifestyle; FHS, Framingham Heart Study; ICBM, International Consortium for Brain Mapping; NACC, 

National Alzheimer’s Coordinating Center; NDAR, National Database for Autism Research; NIFD, frontotemporal 

lobar degeneration neuroimaging initiative; PING, Pediatric Imaging, Neurocognition and Genetics; PPMI, Parkinson‘s 

Progres- sion Markers Initiative; RSNA, Radiological Society of North America 2019 Brain CT Hemorrhage data set; 
UCD-ADC Brain Bank, University of California Davis Alzhei-mer‘s Disease Center Brain Bank 

Modalities: CT, computed tomography; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; 

sMRI, structural magnetic resonance imaging; SPECT, single-photon emission computed tomography; T1w, T1-

weighted [magnetic resonance imaging] 
Tasks: AD, Alzheimer’s disease; CN, cognitively normal; FTD, frontotemporal dementia; MCI, mild cognitive 

impairment 

Interpretability methods: FM, feature maps; Grad-CAM, gradient-weighted class activation mapping; LIME, local 
interpretable model-agnostic explanations; LRP, layer-wise relevance; SHAP, SHapley Additive exPlanations 

This section ends with the presentation of benchmarks con-
ducted in the literature to compare different interpretability meth-
ods in the context of brain disorders. 

3.1 Weight 

Visualization Applied 

to Neuroimaging 

As the focus of this chapter is on non-transparent models, such as 
deep learning ones, weight visualization was only rarely found. 
However, this was the method chosen by Cecotti and Gr€aser 
[26], who developed a CNN architecture adapted to weight visual-
ization to detect P300 signals in electroencephalograms (EEG). 
The input of this network is a matrix with rows corresponding to 
the 64 electrodes and columns to 78 time points. The two first 
layers of the networks are convolutions with rectangular filters: the 
first filters (size 1×64) combine the electrodes, whereas the second 
ones (13×1) find time patterns. Then, it is possible to retrieve a 
coefficient per electrode by summing the weights associated with 
this electrode across the different filters and to visualize the results 
in the electroencephalogram space as shown in Fig. 15.
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Fig. 15 Relative importance of the electrodes for signal detection in EEG using 
two different architectures (CNN-1 and CNN-3) and two subjects (A and B) using 
CNN weight visualization. Dark values correspond to weights with a high 
absolute value while white values correspond to weights close to 0. ©2011 
IEEE. (Reprinted, with permission, from [26]) 

3.2 Feature Map 

Visualization Applied 

to Neuroimaging 

Contrary to the limited application of weight visualization, there is 
an extensive literature about leveraging individual feature maps and 
latent spaces to better understand how models work. This goes 
from the visualization of these maps or their projections [27–29], 
to the analysis of neuron behavior [30, 31], through sampling in 
latent spaces [29]. 

Oh et al. [27] displayed the feature maps associated with the 
convolutional layers of CNNs trained for various Alzheimer’s dis-
ease status classification tasks (Fig. 16). In the first two layers, the 
extracted features were similar to white matter, cerebrospinal fluid, 
and skull segmentations, while the last layer showcased sparse, 
global, and nearly binary patterns. They used this example to 
emphasize the advantage of using CNNs to extract very abstract 
and complex features rather than using custom algorithms for 
feature extraction [27]. 

Another way to visualize a feature map is to project it in a two-
or three-dimensional space to understand how it is positioned with 
respect to other feature maps. Abrol et al. [28] projected the 
features obtained after the first dense layer of a ResNet architecture 
onto a two-dimensional space using the classical t-distributed sto-
chastic neighbor embedding (t-SNE) dimensionality reduction 
technique. For the classification task of Alzheimer’s disease



statuses, they observed that the projections were correctly ordered 
according to the disease severity, supporting the correctness of the 
model [28]. They partitioned these projections into three groups: 
Far-AD (more extreme Alzheimer’s Disease patients), Far-CN 
(more extreme Cognitively Normal participants), and Fused (a set 
of images at the intersection of AD and CN groups). Using a t-test, 
they were able to detect and highlight voxels presenting significant 
differences between groups (Fig. 17). 
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Fig. 16 Representation of a selection of feature maps (outputs of 4 filters on 10 for each layer) obtained for a 
single individual. (Adapted from [27] (CC BY 4.0)) 

Biffi et al. [29] not only used feature map visualization but also 
sampled the feature space. Indeed, they trained a ladder variational 
autoencoder framework to learn hierarchical latent representations 
of 3D hippocampal segmentations of control subjects and Alzhei-
mer’s disease patients. A multilayer perceptron was jointly trained 
on top of the highest two-dimensional latent space to classify 
anatomical shapes. While lower spaces needed a dimensionality 
reduction technique (i.e., t-SNE), the highest latent space could 
directly be visualized, as well as the anatomical variability it cap-
tured in the initial input space, by leveraging the generative process 
of the model. This sampling enabled an easy visualization and 
quantification of the anatomical differences between each class.
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Fig. 17 Difference in neuroimaging space between groups defined thanks to t-SNE projection. Voxels showing 
significant differences post false discovery rate (FDR) correction ( p< 0.05) are highlighted. (Reprinted from 
Journal of Neuroscience Methods, 339, [28], 2020, with permission from Elsevier) 

Finally, it may be very informative to better understand the 
behavior of neurons and what they are encoding. After training 
deep convolutional autoencoders to reconstruct MR images, seg-
mented gray matter maps, and white matter maps, Martinez-
Murcia et al. [30] computed correlations between each individual 
hidden neuron value and clinical information (e.g., age, mini-
mental state examination) which allowed them to determine to 
which extent this information was encoded in the latent space. 
This way they determined which clinical data was the most strongly 
associated. Using a collection of nine different MRI data sets, 
Leming et al. [31] trained CNNs for various classification tasks 
(autism vs typically developing, male vs female, and task vs rest). 
They computed a diversity coefficient for each filter of the second 
layer based on its output feature map. They counted how many 
different data sets maximally activated each value of this 
feature map: if they were mainly activated by one source of data, 
the coefficient would be close to 0, whereas if they were activated by 
all data sets, it would be close to 1. This allows assessing the layer 
stratification, i.e., to understand if a given filter was mostly maxi-
mally activated by one phenotype or by a diverse population. They 
found out that a few filters were only maximally activated by images 
from a single MRI data set and that the diversity coefficient was not 
normally distributed across filters, having generally two peaks at the



beginning and at the end of the spectrum, respectively, exhibiting 
the stratification and strongly diverse distribution of the filters. 

Interpretability 685

3.3 Back-

Propagation Methods 

Applied to 

Neuroimaging 

Back-propagation methods are the most popular methods to inter-
pret models, and a wide range of these algorithms have been used 
to study brain disorders: standard and guided back-propagation 
[27, 34, 37, 41, 48], gradient input [36–38], Grad-CAM 
[35, 36], guided Grad-CAM [49], LRP [34, 36–38], DeconvNet 
[36], and deep Taylor Decomposition [36]. 

3.3.1 Single 

Interpretation 

Some studies implemented a single back-propagation method and 
exploited it to find which brain regions are exploited by their 
algorithm [27, 31, 41], to validate interpretability methods [38], 
or to provide attribution maps to physicians to improve clinical 
guidance [35]. 

Oh et al. [27] used the standard back-propagation method to 
interpret CNNs for classification of Alzheimer’s disease statuses. 
They showed that the attribution maps associated with the predic-
tion of the conversion of prodromal patients to dementia included 
more complex representations, less focused on the hippocampi, 
than the ones associated with classification between demented 
patients from cognitively normal participants (see Fig. 18). In the 
context of autism, Leming et al. [31] used the Grad-CAM

Fig. 18 Distribution of discriminant regions obtained with gradient back-propagation in the classification of 
demented patients and cognitively normal participants (top part, AD vs CN) and the classification of stable and 
progressive mild cognitive impairment (bottom part, sMCI vs pMCI). (Adapted from [27] (CC BY 4.0))



algorithm to determine the most important brain connections from 
functional connectivity matrices. However, the authors pointed out 
that without further work, this visualization method did not allow 
understanding the underlying reason of the attribution of a given 
feature: for instance, one cannot know if a set of edges is important 
because it is under-connected or over-connected. Finally, Hu et al. 
[41] used attribution maps produced by guided back-propagation 
to quantify the difference in the regions used by their network to 
characterize Alzheimer’s disease or frontotemporal dementia.
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The goal of Eitel et al. [38] was different. Instead of identifying 
brain regions related to the classification task, they exhibited with 
LRP that transfer learning between networks trained on different 
diseases (Alzheimer’s disease to multiple sclerosis) and different 
MRI sequences enabled obtaining attribution maps focused on a 
smaller number of lesion areas. However, the authors pointed out 
that it would be necessary to confirm their results on larger 
data sets. 

Finally, Burduja et al. [35] trained a CNN-LSTM model to 
detect various hemorrhages from brain computed tomography 
(CT) scans. For each positive slice coming from controversial or 
difficult scans, they generated Grad-CAM-based attribution maps 
and asked a group of radiologists to classify them as correct, par-
tially correct, or incorrect. This classification allowed them to 
determine patterns for each class of maps and better understand 
which characteristics radiologists expected from these maps to be 
considered as correct and thus useful in practice. In particular, 
radiologists described maps including any type of hemorrhage as 
incorrect as soon as some of the hemorrhages were not highlighted, 
while the model only needed to detect one hemorrhage to correctly 
classify the slice as pathological. 

3.3.2 Comparison of 

Several Interpretability 

Methods 

Papers described in this section used several interpretability meth-
ods and compared them in their particular context. However, as the 
benchmark of interpretability methods is the focus of Subheading 
4.3, which also include other types of interpretability than back-
propagation, we will only focus here on what conclusions were 
drawn from the attribution maps. 

Dyrba et al. [36] compared DeconvNet, guided back-
propagation, deep Taylor decomposition, gradient input, LRP 
(with various rules), and Grad-CAM methods for classification of 
Alzheimer’s disease, mild cognitive impairment, and normal cogni-
tion statuses. In accordance with the literature, they obtained a 
highest attention given to the hippocampus for both prodromal 
and demented patients. 

Böhle et al. [34] compared two methods, LRP with β-rule and 
guided back-propagation for Alzheimer’s disease status classifica-
tion. They found that LRP attribution maps highlight the individ-
ual differences between patients and then that they could be used as 
a tool for clinical guidance.
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3.4 Perturbation 

Methods Applied to 

Neuroimaging 

The standard perturbation method has been widely used in the 
study of Alzheimer’s disease [32, 37, 45, 48] and related symptoms 
(amyloid-β pathology) [49]. However, most of the time, authors 
do not train their model with perturbed images. Hence, to generate 
explanation maps, the perturbation method uses images outside the 
distribution of the training set, which may call into question the 
relevance of the predictions and thus the reliability of 
attention maps. 

3.4.1 Variants of the 

Perturbation Method 

Tailored to Neuroimaging 

Several variations of the perturbation method have been developed 
to adapt to neuroimaging data. The most common variation in 
brain imaging is the brain area perturbation method, which consists 
in perturbing entire brain regions according to a given brain atlas, 
as done in [27, 28, 48]. In their study of Alzheimer’s disease, Abrol 
et al. [28] obtained high values in their attribution maps for the 
usually discriminant brain regions, such as the hippocampus, the 
amygdala, the inferior and superior temporal gyruses, and the 
fusiform gyrus. Rieke et al. [48] also obtained results in accordance 
with the medical literature and noted that the brain area perturba-
tion method led to a less scattered attribution map than the stan-
dard method (Fig. 19). Oh et al. [27] used the method to compare 
the attribution maps of two different tasks: (1) demented patients 
vs cognitively normal participants and (2) stable vs progressive mild 
cognitively impaired patients and noted that the regions targeted

Fig. 19 Mean attribution maps obtained on demented patients. The first row corresponds to the standard and 
the second one to the brain area perturbation method. (Reprinted by permission from Springer Nature 
Customer Service Centre GmbH: Springer Nature, MLCN 2018, DLF 2018, IMIMIC 2018: Understanding and 
Interpreting Machine Learning in Medical Image Computing Applications, [48], 2018)



for the first task were shared with the second one (medial temporal 
lobe) but that some regions were specific to the second task (parts 
of the parietal lobe).
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Gutiérrez-Becker and Wachinger [40] adapted the standard 
perturbation method to a network that classified clouds of points 
extracted from neuroanatomical shapes of brain regions (e.g., left 
hippocampus) between different states of Alzheimer’s disease. For 
the perturbation step, the authors set to 0 the coordinates of a 
given point x and the ones of its neighbors to then assess the 
relevance of the point x. This method allows easily generating and 
visualizing a 3D attribution map of the shapes under study. 

3.4.2 Advanced 

Perturbation Methods 

More advanced perturbation-based methods have also been used in 
the literature. Nigri et al. [45] compared a classical perturbation 
method to a swap test. The swap test replaces the classical pertur-
bation step by a swapping step where patches are exchanged 
between the input brain image and a reference image chosen 
according to the model prediction. This exchange is possible as 
brain images were registered and thus brain regions are positioned 
in roughly the same location in each image. 

Finally, Thibeau-Sutre et al. [51] used the optimized version of 
the perturbation method to assess the robustness of CNNs in 
identifying regions of interest for Alzheimer’s disease detection. 
They applied optimized perturbations on gray matter maps 
extracted from T1w MR images, and the perturbation method 
consisted in increasing the value of the voxels to transform patients 
into controls. This process aimed at stimulating gray matter recon-
struction to identify the most important regions that needed to be 
“de-atrophied” to be considered again as normal. However, they 
unveiled a lack of robustness of the CNN: different retrainings led 
to different attribution maps (shown in Fig. 20) even though the 
performance did not change. 

3.5 Distillation 

Methods Applied to 

Neuroimaging 

Distillation methods are less commonly used, but some very inter-
esting use cases can be found in the literature on brain disorders, 
with methods such as LIME [44] or SHAP [33]. 

Fig. 20 Coronal view of the mean attribution masks on demented patients obtained for five reruns of the same 
network with the optimized perturbation method. (Adapted with permission from Medical Imaging 2020: 
Image Processing, [51].)
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Fig. 21 Mean absolute feature importance (SHAP values) averaged across all subjects for XGBoost on regional 
thicknesses (red) and areas (green). (Adapted from [33] (CC BY 4.0)) 

Magesh et al. [44] used LIME to interpret a CNN for Parkin-
son’s disease detection from single-photon emission computed 
tomography (SPECT) scans. Most of the time, the most relevant 
regions are the putamen and the caudate (which is clinically rele-
vant), and some patients also showed an anomalous increase in 
dopamine activity in nearby areas, which is a characteristic feature 
of late-stage Parkinson’s disease. The authors did not specify how 
they extracted the “super-pixels” necessary to the application of the 
method, though it could have been interesting to consider neuro-
anatomical regions instead of creating the voxel groups with an 
agnostic method. 

Ball et al. [33] used SHAP to obtain explanations at the indi-
vidual level from three different models trained to predict partici-
pants’ age from regional cortical thicknesses and areas: regularized 
linear model, Gaussian process regression, and XGBoost (Fig. 21). 
The authors exhibited a set of regions driving predictions for all 
models and showed that regional attention was highly correlated on 
average with weights of the regularized linear model. However, 
they showed that while being consistent across models and training 
folds, explanations of SHAP at the individual level were generally 
not correlated with feature importance obtained from the weight 
analysis of the regularized linear model. The authors also exempli-
fied that the global contribution of a region to the final prediction 
error (“brain age delta”), even with a high SHAP value, was in 
general small, which indicated that this error was best explained by 
changes spread across several regions [33]. 

3.6 Intrinsic Methods 

Applied to 

Neuroimaging 

Attention modules have been increasingly used in the past couple of 
years, as they often allow a boost in performance while being rather 
easy to implement and interpret. To diagnose various brain diseases 
from brain CT images, Fu et al. [39] built a model integrating a 
“two-step attention” mechanism that selects both the most3.6.1 Attention Modules



important slices and the most important pixels in each slice. The 
authors then leveraged these attention modules to retrieve the five 
most suspicious slices and highlight the areas with the more signifi-
cant attention.
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Fig. 22 Attribution maps (left, in-house database; right, ADNI database) generated by an attention mechanism 
module, indicating the discriminant power of various brain regions for Alzheimer’s disease diagnosis. (Adapted 
from [42] (CC BY 4.0)) 

In their study of Alzheimer’s disease, Jin et al. [42] used a 3D 
attention module to capture the most discriminant brain regions 
used for Alzheimer’s disease diagnosis. As shown in Fig. 22, they 
obtained significant correlations between attention patterns for two 
independent databases. They also obtained significant correlations 
between regional attention scores of two different databases, which 
indicated a strong reproducibility of the results. 

3.6.2 Modular 

Transparency 

Modular transparency has often been used in brain imaging analy-
sis. A possible practice consists in first generating a target probabil-
ity map of a black box model, before feeding this map to a classifier 
to generate a final prediction, as done in [43, 46]. 

Qiu et al. [46] used a convolutional network to generate an 
attribution map from patches of the brain, highlighting brain 
regions associated with Alzheimer’s disease diagnosis (see Fig. 23). 
Lee et al. [43] first parcellated gray matter density maps into 
93 regions. For each of these regions, several deep neural networks 
were trained on randomly selected voxels, and their outputs were 
averaged to obtain a mean regional disease probability. Then, by 
concatenating these regional probabilities, they generated a region-
wise disease probability map of the brain, which was further used to 
perform Alzheimer’s disease detection. 

The approach of Ba et al. [24] was also applied to Alzheimer’s 
disease detection [50] (preprint). Though that work is still a pre-
print, the idea is interesting as it aims at reproducing the way a 
radiologist looks at an MR image. The main difference with [24]  is



the initialization, as the context network does not take as input the 
whole image but clinical data of the participant. Then the frame-
work browses the image in the same way as in the original paper: a 
patch is processed by a recurrent neural network and from its 
internal state the glimpse network learns which patch should be 
looked at next. After a fixed number of iterations, the internal state 
of the recurrent neural network is processed by a classification 
network that gives the final outcome. The whole system is inter-
pretable as the trajectory of the locations (illustrated in Fig. 24) 
processed by the framework allows understanding which regions 
are more important for the diagnosis. However, this framework 
may have a high dependency to clinical data: as the initialization 
depends on scores used to diagnose Alzheimer’s disease, the classi-
fication network may learn to classify based on the initialization 
only, and most of the trajectory may be negligible to assess the 
correct label. 
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Fig. 23 Randomly selected samples of T1-weighted full MRI volumes are used as input to learn the 
Alzheimer’s disease status at the individual level (Step 1). The application of the model to whole images 
leads to the generation of participant-specific disease probability maps of the brain (Step 2). (Adapted from 
Brain: A Journal of Neurology, 143, [46], 2020, with permission of Oxford University Press) 

Another framework, the DaniNet, proposed by Ravi et al. [47], 
is composed of multiple networks, each with a defined function, as 
illustrated in Fig. 25.

• The conditional deep autoencoder (in orange) learns to reduce 
the size of the slice x to a latent variable Z (encoder part) and
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Fig. 24 Trajectory taken by the framework for a participant from the ADNI test set. A bounding box around the 
first location attended to is included to indicate the approximate size of the glimpse that the recurrent neural 
network receives; this is the same for all subsequent locations. (Adapted from [50]. Permission to reuse was 
kindly granted by the authors) 

Fig. 25 Pipeline used for training the proposed DaniNet framework that aims to learn a longitudinal model of 
the progression of Alzheimer’s disease. (Adapted from [47] (CC BY 4.0)) 

then to reconstruct the original image based on Z and two 
additional variables: the diagnosis and age (generator part). Its 
performance is evaluated thanks to the reconstruction loss Lrec .



Interpretability 693

• Discriminator networks (in yellow) either force the encoder to 
take temporal progression into account (Dz) or try to determine 
if the output of the generator are real or generated images (Db).

• Biological constraints (in grey) force the previous generated 
image of the same participant to be less atrophied than the 
next one (voxel loss) and learn to find the diagnosis thanks to 
regions of the generated images (regional loss).

• Profile weight functions (in blue) aim at finding appropriate 
weights for each loss to compute the total loss. 

The assembly of all these components allows learning a longitudi-
nal model that characterizes the progression of the atrophy of each 
region of the brain. This atrophy evolution can then be visualized 
thanks to a neurodegeneration simulation generated by the trained 
model by sampling missing intermediate values. 

3.7 Benchmarks 

Conducted in the 

Literature 

This section describes studies that compared several interpretability 
methods. We separated evaluations based on metrics from those 
which are purely qualitative. Indeed, even if the interpretability 
metrics are not mature yet, it is essential to try to measure quanti-
tatively the difference between methods rather than to only rely on 
human perception, which may be biased. 

3.7.1 Quantitative 

Evaluations 

Eitel and Ritter [37] tested the robustness of four methods: stan-
dard perturbation, gradient input, guided back-propagation, and 
LRP. To evaluate these methods, the authors trained ten times the 
same model with a random initialization and generated attribution 
maps for each of the ten runs. For each method, they exhibited 
significant differences between the averaged true positives/nega-
tives attribution maps of the ten runs. To quantify this variance, 
they computed the ℓ2-norm between the attribution maps and 
determined for each model the brain regions with the highest 
attribution. They concluded that LRP and guided back-
propagation were the most consistent methods, both in terms of 
distance between attribution maps and most relevant brain regions. 
However, this study makes a strong assumption: to draw these 
conclusions, the network should provide stable interpretations 
across retrainings. Unfortunately, Thibeau-Sutre et al. [51] showed 
that the study of the robustness of the interpretability method and 
of the network should be done separately, as their network retrain-
ing was not robust. Indeed, they first showed that the interpretabil-
ity method they chose (optimized perturbation) was robust 
according to different criteria, and then they observed that network 
retraining led to different attribution maps. The robustness of an 
interpretability method thus cannot be assessed from the protocol 
described in [37]. Moreover, the fact that guided back-propagation



is one of the most stable method meets the results of [6], who 
observed that guided back-propagation always gave the same result 
independently from the weights learned by a network (see 
Subheading 4.1). 
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Böhle et al. [34] measured the benefit of LRP with β-rule 
compared to guided back-propagation by comparing the intensities 
of the mean attribution map of demented patients and the one of 
cognitively normal controls. They concluded that LRP allowed a 
stronger distinction between these two classes than guided back-
propagation, as there was a greater difference between the mean 
maps for LRP. Moreover, they found a stronger correlation 
between the intensities of the LRP attribution map in the hippo-
campus and the hippocampal volume than for guided back-
propagation. But as [6] demonstrated that guided back-
propagation has serious flaws, it does not allow drawing strong 
conclusions. 

Nigri et al. [45] compared the standard perturbation method 
to a swap test (see Subheading 3.4) using two properties: the 
continuity and the sensitivity. The continuity property is verified if 
two similar input images have similar explanations. The sensitivity 
property affirms that the most salient areas in an explanation map 
should have the greater impact in the prediction when removed. 
The authors carried out experiments with several types of models, 
and both properties were consistently verified for the swap test, 
while the standard perturbation method showed a significant 
absence of continuity and no conclusive fidelity values [45]. 

Finally, Rieke et al. [48] compared four visualization methods: 
standard back-propagation, guided back-propagation, standard 
perturbation, and brain area perturbation. They computed the 
Euclidean distance between the mean attribution maps of the 
same class for two different methods and observed that both gradi-
ent methods were close, whereas brain area perturbation was dif-
ferent from all others. They concluded that as interpretability 
methods lead to different attribution maps, one should compare 
the results of available methods and not trust only one 
attribution map. 

3.7.2 Qualitative 

Evaluations 

Some works compared interpretability methods using a purely 
qualitative evaluation. 

First, Eitel et al. [38] generated attribution maps using the LRP 
and gradient input methods and obtained very similar results. 
This could be expected as it was shown that there is a strong link 
between LRP and gradient input (see Subheading 2.3.2). 

Dyrba et al. [36] compared DeconvNet, guided back-
propagation, deep Taylor decomposition, gradient input, LRP 
(with various rules), and Grad-CAM. The different methods 
roughly exhibited the same highlighted regions but with a



significant variability in focus, scatter, and smoothness, especially 
for the Grad-CAM method. These conclusions were derived from a 
visual analysis. According to the authors, LRP and deep Taylor 
decomposition delivered the most promising results with a highest 
focus and less scatter [36]. 
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Tang et al. [49] compared two interpretability methods that 
seemed to have different properties: guided Grad-CAM would 
provide a fine-grained view of feature salience, whereas standard 
perturbation highlights the interplay of features among classes. A 
similar conclusion was drawn by Rieke et al. [48]. 

3.7.3 Conclusions from 

the Benchmarks 

The most extensively compared method is LRP, and each time it has 
been shown to be the best method compared to others. However, 
its equivalence with gradient input for networks using ReLU 
activations still questions the usefulness of the method, as gra-
dient input is much easier to implement. Moreover, the studies 
reaching this conclusion are not very insightful: [37] may suffer 
from methodological biases; [34] compared LRP only to guided 
back-propagation, which was shown to be irrelevant [6]; and [36] 
only performed a qualitative assessment. 

As proposed in conclusion by Rieke et al. [48], a good way to 
assess the quality of interpretability methods could be to produce 
some form of ground truth for the attribution maps, for example, 
by implementing simulation models that control for the level of 
separability or location of differences. 

4 Limitations and Recommendations 

Many methods have been proposed for interpretation of deep 
learning models. The field is not mature yet, and none of them 
has become a standard. Moreover, a large panel of studies has been 
applied to neuroimaging data, but the value of the results obtained 
from the interpretability methods is often still not clear. Further-
more, many applications suffer from methodological issues, making 
their results (partly) irrelevant. In spite of this, we believe that using 
interpretability methods is highly useful, in particular to spot cases 
where the model exploits biases in the data set. 

4.1 Limitations of the 

Methods 

It is not often clear whether the interpretability methods really 
highlight features relevant to the algorithm they interpret. This 
way, Adebayo et al. [6] showed that the attribution maps produced 
by some interpretability methods (guided back-propagation and 
guided Grad-CAM) may not be correlated at all with the weights 
learned by the network during its training procedure. They prove it 
with a simple test called “cascading randomization.” In this test, 
the weights of a network trained on natural images are randomized 
layer per layer, until the network is fully randomized. At each step,



they produce an attribution map with a set of interpretability meth-
ods to compare it to the original ones (attribution maps produced 
without randomization). In the case of guided back-propagation 
and guided Grad-CAM, all attribution maps were identical, which 
means that the results of these methods were independent of the 
training procedure. 
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Unfortunately, this type of failures does not only affect inter-
pretability methods but also the metrics designed to evaluate their 
reliability, which makes the problem even more complex. Tomsett 
et al. [52] investigated this issue by evaluating interpretability 
metrics with three properties:

• Inter-rater interpretability assesses whether a metric always 
rank different interpretability methods in the same way for dif-
ferent samples in the data set.

• Inter-method reliability checks that the scores given by a met-
ric on each saliency method fluctuate in the same way between 
images.

• Internal consistency evaluates if different metrics measuring 
the same property (e.g., fidelity) produce correlated scores on 
a set of attribution maps. 

They concluded that the investigated metrics were not reliable, 
though it is difficult to know the origin of this unreliability due to 
the tight coupling of model, interpretability method, and metric. 

4.2 Methodological 

Advice 

Using interpretability methods is more and more common in med-
ical research. Even though this field is not yet mature and the 
methods have limitations, we believe that using an interpretability 
method is usually a good thing because it may spot cases where the 
model took decisions from irrelevant features. However, there are 
methodological pitfalls to avoid and good practices to adopt to 
make a fair and sound analysis of your results. 

You should first clearly state in your paper which interpretabil-
ity method you use as there exist several variants for most of the 
methods (see Subheading 2), and its parameters should be clearly 
specified. Implementation details may also be important: for the 
Grad-CAM method, attribution maps can be computed at various 
levels in the network; for a perturbation method, the size and the 
nature of the perturbation greatly influence the result. The data on 
which methods are applied should also be made explicit: for a 
classification task, results may be completely different if samples 
are true positives or true negatives, or if they are taken from the 
train or test sets. 

Taking a step back from the interpretability method and espe-
cially attribution maps is fundamental as they present several limita-
tions [34]. First, there is no ground truth for such maps, which are 
usually visually assessed by authors. Comparing obtained results



with the machine learning literature is a good first step, but be 
aware that you will most of the time find a paper to support your 
findings, so we suggest to look at established clinical references. 
Second, attribution maps are usually sensitive to the interpretability 
method, its parameters (e.g., β for LRP), but also to the final scale 
used to display maps. A slight change in one of these variables may 
significantly impact the interpretation. Third, an attribution map is 
a way to measure the impact of pixels on the prediction of a given 
model, but it does not provide underlying reasons (e.g., pathologi-
cal shape) or explain potential interactions between pixels. A given 
pixel might have a low attribution when considered on its own but 
have a huge impact on the prediction when combined with another. 
Fourth, the quality of a map strongly depends on the performance 
of the associated model. Indeed, low-performance models are more 
likely to use wrong features. However, even in this case, attribution 
maps may be leveraged, e.g., to determine if the model effectively 
relies on irrelevant features (such as visual artefacts) or if there are 
biases in the data set [53]. 
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One must also be very careful when trying to establish new 
medical findings using model interpretations, as we do not always 
know how the interpretability methods react when applied to cor-
related features. Then even if a feature seems to have no interest for 
a model, this does not mean that it is not useful in the study of the 
disease (e.g., a model may not use information from the frontal 
lobe when diagnosing Alzheimer’s disease dementia, but this does 
not mean that this region is not affected by the disease). 

Finally, we suggest implementing different interpretability 
methods to obtain complementary insights from attribution 
maps. For instance, using LRP in addition to the standard back-
propagation method provides a different type of information, as 
standard back-propagation gives the sensibility of the output with 
respect to the input, while LRP shows the contribution of each 
input feature to the output. Moreover, using several metrics allows 
a quantitative comparison between them using interpretability 
metrics (see Subheading 2.7). 

4.3 Which Method 

Should I Choose? 

We conclude this section on how to choose an interpretability 
method. Some benchmarks were conducted to assess the properties 
of some interpretability methods compared to others (see Subhead-
ing 3.7). Though these are good initiatives, there are still not 
enough studies (and some of them suffer from methodological 
flaws) to draw solid conclusions. This is why we give in this section 
some practical advice to the reader to choose an interpretability 
method based on more general concepts. 

Before implementing an interpretability method, we suggest 
reviewing the following points to help you choose carefully.
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• Implementation complexity Some methods are more diffi-
cult to implement than others and may require substantial cod-
ing efforts. However, many of them have already been 
implemented in libraries or GitHub repositories (e.g., [54]), so 
we suggest looking online before trying to re-implement them. 
This is especially true for model-agnostic methods, such as 
LIME, SHAP, or perturbations, for which no modification of 
your model is required. For model-specific methods, such as 
back-propagation ones, the implementation will depend on the 
model, but if its structure is a common one (e.g., regular CNN 
with feature extraction followed by a classifier), it is also very 
likely that an adequate implementation is already available (e.g., 
Grad-CAM on CNN in [54]).

• Time cost Computation time greatly differs from one method 
to another, especially when input data is heavy. For instance, 
perturbing high dimension images is time expensive, and it 
would be much faster to use standard back-propagation.

• Method parameters The number of parameters to set varies 
between methods, and their choice may greatly influence the 
result. For instance, the patch size, the step size (distance 
between two patches), as well as the type of perturbation (e.g., 
white patches or blurry patches) must be chosen for the standard 
perturbation method, while the standard back-propagation does 
not need any parameter. Thus, without prior knowledge on the 
interpretability results, methods with no or only a few para-
meters are a good option.

• Literature Finally, our last piece of advice is to look into the 
literature to determine the methods that have commonly been 
used in your domain of study. A highly used method does not 
guarantee its quality (e.g., guided back-propagation [6]), but it 
is usually a good first try. 

To sum up, we suggest that you choose (or at least begin with) an 
interpretability method that is easy to implement, time efficient, 
with no parameters (or only a few) to tune, and commonly used. In 
the context of brain image analysis, we suggest using the standard 
back-propagation or Grad-CAM methods. Before using a method 
you do not know well, you should check that other studies did not 
show that this method is not relevant (which is the case for guided 
back-propagation or guided Grad-CAM) or that it is not equivalent 
to another method (e.g., LRP on networks with ReLU activation 
layers and gradient input). 

Regarding interpretability metrics, there is no consensus in the 
community as the field is not mature yet. General advice would be 
to use different metrics and confront them to human observers, 
taking, for example, the methodology described in [1].
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5 Conclusion 

Interpretability of machine learning models is an important topic, 
in particular in the medical field. First, this is a natural need 
expressed by clinicians who are potential users of medical decision 
support systems. Moreover, it has been shown in many occasions 
that models with high performance can actually be using irrelevant 
features. This is dangerous because it means that they are exploiting 
biases in the training data sets and thus may dramatically fail when 
applied to new data sets or deployed in clinical routine. 

Interpretability is a very active field of research and many 
approaches have been proposed. They have been extensively 
applied in neuroimaging and very often allowed highlighting clini-
cally relevant regions of the brain that were used by the model. 
However, comparative benchmarks are not entirely conclusive, and 
it is currently not clear which approach is the most adapted for a 
given aim. In other words, it is very important to keep in mind that 
the field of interpretability is not yet mature. It is not yet clear 
which are the best methods or even if the most widely used 
approaches will still be considered a standard in the near future. 

That being said, we still strongly recommend that a classifica-
tion or regression model be studied with at least one interpretability 
method. Indeed, evaluating the performance of the model is not 
sufficient in itself, and the additional use of an interpretation 
method may allow detecting biases and models that perform well 
but for bad reasons and thus would not generalize to other settings. 

Acknowledgements 

The research leading to these results has received funding from the 
French government under management of Agence Nationale de la 
Recherche as part of the “Investissements d’avenir” program, ref-
erence ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and refer-
ence ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-
IA Institut Hospitalo-Universitaire-6). 

Appendices 

A Short Reminder on 

Network Training 

Procedure 

During the training phase, a neural network updates its weights to 
make a series of inputs match with their corresponding target 
labels: 

1. Forward pass The network processes the input image to com-
pute the output value.
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2. Loss computation The difference between the true labels and 
the output values is computed according to a criterion (cross-
entropy, mean squared error. . .). This difference is called the 
loss and should be as low as possible. 

3. Backward pass For each learnable parameter of the network, 
the gradients with respect to the loss are computed. 

4. Weight update Weights are updated according to the gradi-
ents and an optimizer rule (stochastic gradient descent, Adam, 
Adadelta. . .). 

As a network is a composition of functions, the gradients of the 
weights of a layer l with respect to the loss can be easily obtained 
according to the values of the gradients in the following layers. This 
way of computing gradients layer per layer is called back-
propagation. 

B Description of the 

Main Brain Disorders 

Mentioned in the 

Reviewed Studies 

This appendix aims at shortly presenting the diseases considered by 
the studies reviewed in Subheading 3. 

The majority of the studies focused on the classification of 
Alzheimer’s disease (AD), a neurodegenerative disease of the 
elderly. Its pathological hallmarks are senile plaques formed by 
amyloid-β protein and neurofibrillary tangles that are tau protein 
aggregates. Both can be measured in vivo using either PET imaging 
or CSF biomarkers. Several other biomarkers of the disease exist. In 
particular, atrophy of gray and white matter measured from T1w 
MRI is often used, even though it is not specific to AD. There is 
strong and early atrophy in the hippocampi that can be linked to the 
memory loss, even though other clinical signs are found and other 
brain areas are altered. The following diagnosis statuses are 
often used:

• AD refers to demented patients.

• CN refers to cognitively normal participants.

• MCI refers to patients in with mild cognitive impairment (they 
have an objective cognitive decline, but it is not sufficient yet to 
cause a loss of autonomy).

• Stable MCI refers to MCI patients who stayed stable during a 
defined period (often three years).

• Progressive MCI refers to MCI patients who progressed to 
Alzheimer’s disease during a defined period (often three years). 

Most of the studies analyzed T1w MRI data, except [49] where the 
patterns of amyloid-β in the brain are studied. 

Frontotemporal dementia is another neurodegenerative disease 
in which the neuronal loss dominates in the frontal and temporal 
lobes. Behavior and language are the most affected cognitive 
functions.
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Parkinson’s disease is also a neurodegenerative disease. It pri-
marily affects dopaminergic neurons in the substantia nigra. A 
commonly used neuroimaging technique to detect this loss of 
dopaminergic neurons is the SPECT, as it uses a ligand that binds 
to dopamine transporters. Patients are affected by different symp-
toms linked to motor faculties such as tremor, slowed movements, 
and gait disorder but also sleep disorder, depression, and other 
symptoms. 

Multiple sclerosis is a demyelinating disease with a neurode-
generative component affecting younger people (it begins between 
the ages of 20 and 50). It causes demyelination of the white matter 
in the brain (brain stem, basal ganglia, tracts near the ventricles), 
optic nerve, and spinal cord. This demyelination results in auto-
nomic, visual, motor, and sensory problems. 

Intracranial hemorrhage may result from a physical trauma or 
non-traumatic causes such as a ruptured aneurysm. Different sub-
types exist depending on the location of the hemorrhage. 

Autism is a spectrum of neurodevelopmental disorders affect-
ing social interaction and communication. Diagnosis is done based 
on clinical signs (behavior), and the patterns that may exist in the 
brain are not yet reliably described as they overlap with the neuro-
typical population. 

Some brain characteristics that may be related to brain disor-
ders and detected in CT scans were considered in the data set 
CQ500:

• Midline Shift is a shift of the center of the brain past the center 
of the skull.

• Mass Effect is caused by the presence of an intracranial lesion 
(e.g., a tumor) that is compressing nearby tissues.

• Calvarial Fractures are fractures of the skull. 

Finally, one study [33] learned to predict the age of cognitively 
normal patients. Such algorithm can help in diagnosing brain dis-
orders as patients will have a greater brain age than their chrono-
logical age, and then it establishes that a participant is not in the 
normal distribution. 
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