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Abstract 

Reproducibility is a cornerstone of science, as the replication of findings is the process through which they 
become knowledge. It is widely considered that many fields of science are undergoing a reproducibility 
crisis. This has led to the publications of various guidelines in order to improve research reproducibility. 

This didactic chapter intends at being an introduction to reproducibility for researchers in the field of 
machine learning for medical imaging. We first distinguish between different types of reproducibility. For 
each of them, we aim at defining it, at describing the requirements to achieve it, and at discussing its utility. 
The chapter ends with a discussion on the benefits of reproducibility and with a plea for a nondogmatic 
approach to this concept and its implementation in research practice. 
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1 Introduction 

Reproducibility is at the core of the scientific method. In its general 
and most common meaning, it corresponds to the ability to repro-
duce the findings of a given experimental study. This is a necessary 
(but not sufficient) condition for a scientific statement to become 
accepted as new knowledge. Let’s illustrate this with a simple 
example, considering the following statement: “the volume of the 
hippocampus is, on average, smaller in patients with Alzheimer’s 
disease (AD) than in healthy people of comparable age.” Such 
statement was the conclusion of studies which measured such 
volume from magnetic resonance images (MRI). To the best of 
our knowledge, the first study to assert this was that of Seab et al 
[1]. This was later reproduced by many other studies (e.g., [2, 3]). 
It is now widely accepted, which would not have been the case if the 
study had proven impossible to reproduce. Note that, as stated 
above, this is a necessary but not a sufficient condition. Indeed, 
there could be other reasons for such statement not to be consid-
ered as knowledge. For instance, let’s imagine that some other
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(continued)

researchers discover that there is an artifact that is systematically 
present in the MRI of patients with AD and which leads to errone-
ous volume estimation. Then, the statement could not be consid-
ered new knowledge even though it had been reproduced several 
times.
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Machine learning (ML) is, in part, an experimental science. 
This is not the case of the entirety of the discipline, part of which 
is theoretical (for instance, mathematical proofs of convergence or 
of approximation capabilities of different classes of models) or 
methodological (the invention of a new approach). Nevertheless, 
since ML ultimately aims at solving practical problems, its experi-
mental component is essential. Typically, one would want to be able 
to make statements of the type described above from an experimen-
tal study. Here is an example of such statement: “this ML model 
(for instance, a specific convolutional neural network [CNN] archi-
tecture), using MRI data as input, is capable of classifying AD 
patients and healthy controls with an accuracy superior to 80%.” 
In order to end an article with such a statement, one needs to 
conduct an experimental study. For such findings to become 
knowledge, it needs to be subsequently reproduced. Of course, 
this statement is unlikely to be universal, and one would want to 
know under which conditions it holds: for instance, is it restricted 
to a specific class of MRI scanners, to specific disease stages, to 
specific age ranges? 

Box 1: Glossary 
The readers will find the definition of the terms we used in the 
present document.

• Reproducibility, replicability, repeatability. In the present 
document, these will be used as synonyms of reproducibility.

• Original study. Study that first showed a finding.

• Replication study. Study that subsequently aimed at replicat-
ing an original study, with the hope to support its findings.

• Research artifact. Any output of scientific research: papers, 
code, data, protocols. . . . Not to be confused with imaging 
artifacts which are defects of imaging data.

• Claims. The conclusions of a study. Basically a set of state-
ments describing the results and a set of limitations which 
delineate the boundaries within which the claims are stated 
(the term “claim” is here used in the broad scientific sense not 
with the specific meaning it has in the context of regulation of 
medical devices although the two may be related).

• Limitations. A set of restrictions under which the claims may 
not hold (usually because the corresponding settings have not 
been explored).
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oxB 1 (continued)
• Method. The ML approach described in the paper, indepen-

dently of its implementation.

• Code. The implementation of the method.

• Software dependencies. Other software packages that the 
main code relies on and which are necessary for its execution.

• Public data. Data that can be accessed by anybody with no or 
little restriction (for instance, the data hosted at https:// 
openneuro.org).

• Semi-public data. Data which requires approval of a research 
project (for instance, the Alzheimer’s Disease Neuroimaging 
Initiative [ADNI] http://www.adni-info.org). The research-
ers can then use the data only for the intended research 
purpose and cannot redistribute it.

• Data split. Separation into training, validation, and test sets.

• Data leakage. Faulty procedure which has led information 
from the training set to leak into the test set. See refs. 4, 5 for 
details.

• Error margins. A general term for providing the precision of 
the performance estimates (e.g., standard-error or confidence 
intervals).

• Researcher degrees of freedom. Number of different com-
ponents (e.g., different architectures, hyperparameter values, 
subsamples. . .) which have been tried before arriving to the 
final method [6]. Too many degrees of freedom tend to 
produce methods that do not generalize.

• p-hacking. A bad practice that involves too many degrees of 
freedom and which consists is trying many different statistical 
procedures until a significant p-value is found.

• Acquisition settings. Factors that influence the scan of a 
given patient (imaging device, acquisition paratemeters, 
image quality).

• Image artifacts. Defects of a medical image, these may 
include noise, field heterogeneity, motion artifacts, and 
others.

• Preregistration. The deposit of the study protocol prior to 
performing the study. Limits degrees of freedom and 
increases likelihood of robust findings. 

In the examples above, we have actually illustrated only one on 
the many possible meanings of reproducibility: the addition of new 
evidence to support a scientific finding of an original study through 
reproduction under different experimental conditions (see Box 1 for 
a glossary of some of the key concepts used). However, it is also 
used for very different meanings. In computational sciences, it is

https://openneuro.org
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often used for the ability to exactly reproduce the results (i.e., the 
exact numbers) in a given study. In sciences which aim at providing 
measurements (as is often the case in medical imaging), the word 
may be used to describe the variability of a given measurement tool 
under different acquisition settings. We shall provide more details 
on these different meanings in Subheading 2. Finally, the topics of 
reproducibility and open science are obviously related since the 
latter favors the former. However, open science encompasses a 
broader objective which is to make all research artifacts (code, 
data, papers. . .) openly available for the benefit of the whole society. 
Conversely, open research may still be unreproducible (e.g., 
because it has relied on faulty statistical procedures). 
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There has been increasing concern that science is undergoing a 
reproducibility crisis [7–10]. This is present in various fields from 
psychology [11] to preclinical oncology research [12]. ML [13– 
17], digital medicine [18], ML for healthcare [19, 20], and ML for 
medical imaging [21] are no exception. The concerns are multifac-
eted. In particular, they include two substantially different aspects: 
the report of failures to reproduce previous studies and the obser-
vation that many papers do not provide sufficient information for 
reproducing their results. It is important to have in mind that, while 
the two may be related, there is not a direct relationship 
between them: it may very well be that a paper seems to include 
all the necessary information for reproduction and that reproduc-
tion attempts fail (for instance, because the original study had too 
many degrees of freedom and led to a method that only works on a 
single dataset, see Subheading 4). 

Various guidelines have been proposed to improve research 
reproducibility. Such guidelines may be general [10] or devoted 
to specific fields including brain imaging [22–25] and ML for 
healthcare and life sciences [26, 27]. Moreover many other papers, 
even though not strictly providing guidelines, provide very valuable 
pieces of advice for making research more trustworthy and in 
particular more reproducible (e.g., [14, 19, 28–32]). 

This chapter is an introduction to the topic of reproducibility 
for researchers in the field of ML for medical imaging. It is not 
meant at providing a replacement for the aforementioned previ-
ously published guidelines that we strongly encourage the reader to 
refer to. 

The remainder of the chapter is organized as follows. We first 
start by introducing different types of reproducibility (Subheading 
2). For each of them, we attempt to clearly define it and describe 
what are the requirements to achieve it and the benefits it can 
provide (Subheadings 3, 4, 5, and 6). All this information is given 
with having the field of ML for medical imaging as a target, even 
though part of it may apply to other fields. Finally, we conclude 
with a discussion which both describes the benefits of reproducibil-
ity but also advocates for a nondogmatic point of view on the topic 
(Subheading 7).
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2 The Polysemy of Reproducibility 

The term “reproducibility” has been used with various meanings 
which may range from the exact reproduction of a study with the 
same material and methods, to the reproduction of a result using 
new experimental data to the support of a scientific idea using a 
completely different experimental setup [33, 34]. Moreover, vari-
ous terms have been introduced including reproducibility, replica-
bility, repeatability, reliability, robustness, generalizability. . .Some 
of these words, for instance, reproducibility vs replicability, have 
even been used by some authors with opposite meanings 
[33, 34]. We will not aim at assigning an unambiguous meaning 
to each of these words, as we find this of little interest, and will use 
the term “reproducibility,” “replicability,” and “repeatability” as 
synonyms. On the other hand, we believe, as many other authors 
[19, 23, 33, 35], that it is important to distinguish between differ-
ent types of reproducibility. To that purpose, it is useful to have a 
taxonomy of reproducibility. Below, we describe such a taxonomy. 
We do not claim that it is novel, as it takes inspiration from other 
papers [14, 19, 23, 33, 35] nor that it should be universally 
adopted. Furthermore, boundaries between different types of 
reproducibility are partly fuzzy. We simply hope that it will be useful 
for the different concepts that we subsequently introduce and that 
it will be well adapted to the field of ML for medical imaging. 

We distinguish between four main types of reproducibility: 
exact reproducibility, statistical reproducibility, conceptual 
reproducibility, and measurement reproducibility. We describe 
those four main types in the following sections. They are also 
summarized in Fig. 1. As will be explained below, the three first 
types have relationships with each other (this is why they have the 
same color in the figure) while the fourth is more separated. 

What Is It? Exact reproducibility aims at reproducing strictly 
identical results as those of a previously published paper. Con-
cretely, this amounts to being able to reproduce tables and figures 
as they appear in the original paper following the same procedures 
as the authors. 

What Does It Require? Exact reproducibility requires to have 
access to all components that led to the results including, of course, 
data and code.
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Fig. 1 Different types of reproducibility. Note that, in the case of “statistical” and “conceptual” reproducibility, 
the terms come from [19] but the exact definition provided in each corresponding section may differ 

Access to data is obviously necessary [19, 22, 27]. Open data has 
been described (together with code and papers) as one of the pillars 
of open science [22]. It is widely accepted that scientific data should 
adhere to the FAIR (Findable, Accessible, Interoperable, Reusable) 
principles (please refer to https://www.go-fair.org/fair-principles

https://www.go-fair.org/fair-principles


and [36] for more details). Among these principles, accessibility is 
often the most difficult to adhere to for medical imaging data 
(or healthcare data in general). It is very common in medical papers 
that data is mentioned as available upon request. However, a study 
has showed that, when data is subsequently requested, many 
researchers actually do not comply with the data accessibility state-
ment [37]. This is worrisome, and more transparent ways of data 
sharing would be welcome. However, as mentioned above, such 
transparent sharing procedures may be difficult to put in place for 
healthcare data. In particular, making the data public is often 
difficult due to regulatory and privacy constraints [19]. Gorgo-
lewski and Poldrack [22] provide useful pieces of advice to facilitate 
sharing, but there are cases where public sharing will remain impos-
sible. In particular, one must distinguish between research data 
(acquired as part of a research protocol), which can often be made 
public or semi-public1 provided that adequate measures have been 
taken at data collection (e.g., adequate participant consent), and 
routine clinical data (acquired as part of the routine clinical care of 
the patients), which sharing can be much more complicated. It is 
important that data is easily findable and that it is shared on a server 
which has a long-term maintenance. General purpose data reposi-
tories such as Zenodo2 provide a good solution. Another important 
aspect is to adhere to community standards for data organization, 
so that it can easily be reused by researchers. For brain imaging, the 
community standard is BIDS (Brain Imaging Data Structure) [38].3 

This standard is already very mature and has already been extended 
to incorporate other modalities such as microscopy images, for 
instance (Microscopy-BIDS [39]). Note that there is an ongoing 
proposal to extend it to other organs (MIDS – Medical Imaging 
Data Structure [40]4 ). Finally, we would like to draw the attention 
to an important point that is often overlooked. Even when a study 
relies on public or semi-public data, it is absolutely necessary to 
specify which samples (e.g., which participants and which scans) 
have been used; otherwise, the study is not reproducible [41]. Ide-
ally, one would provide code to automatically make the data selec-
tion [42] in order to ease the replication. 
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Another key component is that the code is accessible [19, 22, 
27]. Indeed, it would be delusional to think that exactly the same 
results could be obtained using a reimplementation based on infor-
mation provided in the paper (even though it is good practice to 
provide as much detail as possible about the methods in the paper).

1 See glossary Box 1. 
2 https://zenodo.org/. 
3 https://bids.neuroimaging.io/. 
4 See BIDS extension proposal (BEP) number 25 (BEP025) https://bids.neuroimaging.io/get_involved. 
html#extending-the-bids-specification

https://zenodo.org/
https://bids.neuroimaging.io/
https://bids.neuroimaging.io/get_involved.html#extending-the-bids-specification
https://bids.neuroimaging.io/get_involved.html#extending-the-bids-specification


Theoretically, it does not mean that the code must come with an 
open software license. However, doing so has many additional 
benefits such as allowing other researchers to use the code or 
parts of it for different purposes. The code should be made accord-
ing to good coding practices which include the use of a versioning 
system and adequate documentation [20]. Furthermore, although 
not strictly needed for reproducibility, the use of continuous inte-
gration makes the code more robust and eases its long-term main-
tenance. Besides, it is good to ease as much as possible the 
installation of dependencies [27]. This can be done with pip5 

when programming in Python. One can also use containers such 
as Docker.6 One can find useful additional advice in the Tips for 
Publishing Research Code.7 Note that we are not saying that all 
these components should be present in any study or are prerequi-
sites for good research. They constitute an ideal 
reproducibility goal.
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Sharing well-curated notebooks is also a way to ease reproduc-
ibility of results by other researchers. This can be done through 
standard means, but dedicated servers also exist. One can, for 
instance, cite an interesting initiative called NeuroLibre8 which 
provides a preprint server for reproducible data analysis in neuro-
science, in particular providing curated and reviewed Jupyter 
notebooks [43]. 

In ML, sharing the code itself is not enough for exact repro-
ducibility. First, every element of the training procedure should be 
stored: this includes the data splits and the criteria for model 
selection. Moreover, there usually are non-deterministic compo-
nents so it is necessary to store random seeds [27]. Furthermore, 
software/operating system versions, the GPU model/version, and 
threading have been deemed necessary to obtain exact reproduc-
ibility [44]. The ClinicaDL software platform provides a framework 
for easing exact reproducibility of deep learning for neuroimag-
ing [5].9 Although it is targeted at brain imaging, many of its 
components and concepts are applicable to medical imaging in 
general. Also in the field of brain imaging, NiLearn10 facilitates 
the reproducibility of statistics and ML. One can also cite Pymia11 

which provides data handling and validation functionalities for deep 
learning in medical imaging [45]. 

5 https://pypi.org/project/pip/. 
6 https://www.docker.com/. 
7 https://github.com/paperswithcode/releasing-research-code. 
8 https://neurolibre.org/. 
9 https://clinicadl.readthedocs.io/en/latest/. 
10 https://nilearn.github.io/stable/index.html. 
11 https://github.com/rundherum/pymia.

https://pypi.org/project/pip/
https://www.docker.com/
https://github.com/paperswithcode/releasing-research-code
https://neurolibre.org/
https://clinicadl.readthedocs.io/en/latest/
https://nilearn.github.io/stable/index.html
https://github.com/rundherum/pymia
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Finally, it may seem obvious, but, even when the code is shared, 
the underlying theory of the method, all its components, and 
implementation details need to be present in the paper [14]. 

It is in principle possible to retrain models identically if the 
above elements are provided. It nevertheless remains a good prac-
tice to share trained models, in order to allow other researchers to 
check that retraining indeed led to the same results but also to save 
computational resources. However, models can be attacked to 
recover training data [27, 46]. This is not a problem when the 
training data is public. When it is privacy-sensitive, methods to 
preserve privacy exist [27, 47]. 

In medical imaging, preprocessing and feature extraction are 
often critical steps that will subsequently influence the ML results. 
It is thus necessary to also provide code for such parts. Several 
software initiatives including BIDSApps [48]12 and Clinica [49]13 

provide ready-to-use tools for preprocessing and feature extraction 
for various brain imaging modalities. Applicable to many medical 
imaging modalities, the ITK [50, 51]14 framework provides a wide 
range of processing tools. It can ease the work of researchers who 
do not want to spend time on preprocessing and feature extraction 
pipelines and focus on the ML part of their work. 

Why Is It Useful? It has been claimed that exact reproducibility is 
of little interest, that pursuing it is a waste of energy of the commu-
nity, and that its only possible use would be the detection of 
outright fraud which is rare [52]. We disagree with that view. 
Let’s start with fraud. It may be of low occurrence, although its 
exact prevalence is difficult to establish. Even so, it is of disastrous 
consequences as it leads to loss of trust by students, scientists, and 
the general public. In particular, a survey of 1,576 researchers 
indicated that 40% of them believe that fraud is a factor that 
“always/often” contributes to irreproducible research and that 
70% of them think that it “sometimes” contributes [7]. Exact 
reproducibility can certainly contribute to reduce fraud as full 
transparency obviously makes fraud more difficult. Fraud remains 
possible (one could forge some data and share it), but it is more 
difficult to achieve under transparency constraints. Fraud may be 
rare but errors are much more common. The framework of exact 
reproducibility eases the detection of errors which is a service to 
science and even to the authors themselves. In particular, it may 
help discover “biases and artifacts in the data that were missed by 
the authors and that cannot be discovered if the data are never 
made available” [27]. Similarly, it can lead to the discovery of

12 https://bids-apps.neuroimaging.io/. 
13 https://www.clinica.run/. 
14 https://itk.org/.

https://bids-apps.neuroimaging.io/
https://www.clinica.run/
https://itk.org/


4 Statistical Reproducibility

wrong validation schemes, including data leakage or errors in 
implementation that make it inconsistent with the methodology 
presented in the paper. Overall, it may make progress slower, but it 
will definitely make it steadier. However, this does not mean that 
exact reproducibility should be aimed in all works or made a 
requirement for all publications (see Subheading 7.4).
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What Is It? Statistical reproducibility aims at reproducing findings 
under statistically equivalent conditions.15 The specific definition 
may vary, but the following choices are often considered reason-
able. The implementation of the method (the code) remains the 
same. Random components are left random. Regarding the data, 
the general idea is that the sample would be drawn from the same 
population. One could, for instance, use subsamples of the original 
data or another subsample of a larger source population. An inter-
esting case is to study different data splits. A less restrictive view of 
statistical reproducibility would be to use another dataset whose 
characteristics are similar to those of the original dataset (for 
instance, similar age, sex, scanner distributions). Note that the 
boundary between statistical and conceptual reproducibility 
(defined in the next section) is fuzzy. We do not believe it is possible 
to draw exact frontiers that would delimit the statistical variations 
that are admissible in a statistical reproducibility study. Finally, it is 
important that those who conduct the statistical replication study 
clearly indicate which components of variability they study. 

What Does It Require? Here one needs to distinguish between 
two types of factors: those necessary to attempt reproducibility and 
those that increase the likelihood of successful reproducibility. 

Regarding the first type, most factors are common with those 
for exact reproducibility. Code needs to be accessible so that varia-
tions coming from reimplementation do not impact the replication. 
Random seeds, GPU model, or other software/execution para-
meters will not be set to be identical because the aim is precisely 
to check if the findings of the study are statistically reproducible 
under such variations. Knowing their value in the original study is 
nevertheless useful in order to dissect potential reasons for failed 
replication. Trained models are in a similar situation: they will 
usually not be used for statistical replication (models will be 
retrained) but shall prove useful to dissect potential failures. Data

15 We use the term of [19] although with a slightly different (more extensive) meaning.



accessibility is also very valuable because it will allow studying 
different data splits, or subsamples.
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The abovementioned elements make it possible for other 
researchers to attempt statistical replication of a given study. On 
the other hand, there are features of the original study that will 
make such replication more likely to be successful (equivalently, one 
could say that the original findings are robust). One important 
factor is that the original study reports error margins (reporting 
the standard error or equivalently a confidence interval). It is 
important in this specific context because statistical reproducibility 
does not aim at obtaining (and cannot obtain) exactly the same 
results. One wants the results to be compatible with original ones: 
typically a successful replication would produce results which are 
within the error margin of the original study. Beyond the topic of 
statistical reproducibility, the report of error margins is of great 
importance in general, in particular in the field of ML for medical 
imaging, because it provides a precision on the estimates of the 
performance. Unfortunately, this practice is still too uncommon in 
the ML field as a whole [19]. Even worse, it is not uncommon to 
find faulty interpretations of estimates. For instance, one should 
never estimate standard errors (SE) from multiple runs of a cross-
validation, as the number of runs can be made arbitrarily large and 
as a consequence the SE arbitrarily small (see [4]). A very common 
example is papers which report empirical standard deviation 
(SD) across k-folds (or more generally across splits). Unlike what 
is quite widely believed, this value does not allow to gauge the 
precision of the performance estimation. It provides some insight 
on the variability of the learning procedure under variations of the 
training and validation sets. Further, keep in mind that when the 
number of splits is small, such gauge will be very rough. When the 
number of splits is sufficiently large (and typically using random 
splits rather than k-fold), it is possible to assess if a “learner” (i.e., 
an ML procedure to perform a task) is superior to another one by 
counting the fraction of folds on which it obtains superior perfor-
mance (e.g., 75%) [53]. See Chap. 21 for more details on this 
question. However, in no case can such procedures estimate the 
precision of the performance of the trained model, in other words 
the precision of the computed biomarker or computer-aided diag-
nosis tool. This requires an independent test set, from which SE 
and confidence intervals can be computed. 

Why Is It Useful? Statistical replication has many merits. First, by 
reassessing ML methods using different data splits, one can spot 
faulty procedures including data leakage which is prevalent in the 
field of medical imaging [54–57]. See refs. 4, 5 for more details on 
data leakage. Beyond procedures which are clearly wrong, it can 
also detect lack of robustness to different parameters. One would



consider that the procedure is not statistically replicable if it leads to 
substantially different results under different train/test data splits, 
different random seeds, or small changes in hyperparameters. Such 
an ML algorithm would display poor robustness and would be 
unlikely to be of future clinical use. Note that, regarding the use 
of different train/test data splits, these would need to preserve a 
distribution of metadata (for instance, age, sex, diagnosis. . .) 
between train and test that is similar to that of the original study. 
Most classically, if the original study has stratified the splits, the 
statistical replication study would also need to stratify the splits. 
Using different distributions (e.g., not stratified) is also interesting 
but, in our view, falls within conceptual rather than statistical 
reproducibility. Furthermore, it is very interesting to attempt repli-
cation on a different dataset with statistically equivalent character-
istics: for instance, another subsample which has not been used in 
the original study (but comes from the same larger dataset) or a 
different dataset but with similar characteristics (e.g., same MRI 
scanners, similar age, similar disease stage. . .). Unsuccessful replica-
tion may be an indication of overfitting of the dataset of the original 
study through excessive experimentation with different architec-
tures or hyperparameters which ended up with a method that 
would work only on this very specific dataset. This is referred to 
as the researcher degrees of freedom [6, 22]. This concept extends 
beyond the field of ML. It actually comes from experimental 
sciences where different statistical procedures are tried until a sta-
tistically significant result is found, a bad practice known as p-hack-
ing [58]. It is important that researchers in our field have this 
problem in mind. Experimental sciences have proposed preregis-
tered and registered studies as a potential solution to ban such bad 
practices. Preregistration means that the research plan is written 
down and made public before the study starts. It can, for example, 
be published on the Open Science Framework website.16 This 
mechanism reduces the researcher degrees of freedom and is thus 
likely to lead to more robust results. Registration goes one step 
further. The research plan is submitted to a journal and peer-
reviewed. Thus (most of) the peer review is done before the results 
are known. It has the additional advantage of putting more focus 
on methodological soundness than on the groundbreaking nature 
of results (for instance, negative results will be published). More 
details about preregistration and registration can be found in 
[59]. Preregistration and registration are not yet widely used in 
ML for medical imaging. Such practices would certainly not fit all 
studies because they leave no room for methodological creativity. 
On the other hand, they should be very valuable to experimental
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16 https://osf.io.

https://osf.io
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studies aiming at validating ML methods. We believe that, as a 
community, we should try to adapt such procedures to our field.
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What Is It? Conceptual reproducibility can be seen as the 
ultimate goal: the one which lead to the consolidation of scientific 
knowledge. The general idea is to be able to validate the findings 
under conceptually similar conditions.17 Conceptually similar 
means that the method, the data, and the experiments are compati-
ble with the claims of the original study but they are not identical. 
We will come back to the notion of claims of a study, and their 
relationships to generalizability and limitations, later in this section. 

What Does It Require? Again, we may distinguish between fac-
tors that make it possible to attempt replication and those that will 
make it more likely to be successful. 

In theory, nothing but the original paper should be strictly 
necessary. Nevertheless, this assumes that the original paper has 
adhered to the scientific gold standard of providing all details 
necessary for replication: not only a description of the methods 
which makes reimplementation possible but a detailed description 
of the datasets and experimental procedure. It is particularly worri-
some that many medical imaging publications do not even report 
basic demographic statistics [30]. [14] argues that the replication 
should be independent of the implementation. We agree in princi-
ple but believe that such requirement would considerably lower the 
number of conceptual replication attempts, while more are needed 
to advance our field in a steadier manner. In practice, it is extremely 
useful to be able to access the code, not only to save a lot of time 
but also to make sure that an unsuccessful replication is not due to a 
faulty reimplementation. The same can be said for trained models. 
Access to the original data can be useful to dissect the potential 
reasons for differences in results. In summary, none of the elements 
of exact reproducibility are required, all of them are welcome. 

There are several characteristics of an original study that make it 
less likely for it to be replicated. Low sample size not only means 
that it is less likely to find a true effect if it exists but also increases 
the odds that a positive finding is false [9]. This is not only true in 
ML but in experimental sciences in general. Ideally, the sample size 
should be justified by a previous power analysis [24]. Causes for 
failure of statistical reproducibility also apply here. In particular, too 
many researcher degrees of freedom increase the likelihood of

17 Again, we use the term of [19] although with a slightly different meaning.
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having built a method that is overly specific to a dataset. Another 
problem is that the datasets used in medical imaging ML papers are 
very often not representative of what would be found in the clinic 
[30]. Indeed, they often come from research datasets where the 
inclusion criteria are specific, the medical imaging protocols are 
harmonized, and the data quality is controlled. Thus, it is necessary 
to have more studies including clinical routine data (e.g., [60, 61]). 
Finally, it is very important to have in mind that most scientific 
findings will not universally replicate but that the replication will 
only succeed under specific conditions. This is why it is critical that 
scientific papers precisely define their claims and their limitations. 
For instance, a claim could be that a given algorithm can segment 
brain tumors with a Dice of 0.9±0.02 when the MR images are 
acquired at 3 Tesla and have only minimal artifacts. The same paper 
would mention as limitations that it is unclear how the algorithm 
would perform at 1.5 Tesla or with data of lower quality. One can 
see that stating clear claims and limitations will allow defining the 
scope of conceptual replication studies. Studies outside that scope 
would aim at studying generalizability beyond original claims.
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Why Is It Useful? As mentioned above, conceptual reproducibil-
ity is the ultimate goal, the one which, through accumulation of 
evidence, builds consensus about new scientific knowledge. Its 
utility in general is thus obvious. More specifically, it provides 
different benefits. In particular, in the field of ML for medical 
imaging, it allows studying the generalizability of a method. It is 
thus a step towards its applicability to the clinic. To that aim, the use 
of multiple datasets is of paramount importance. This will not only 
allow ruling out that a method is overly specific to a given dataset. It 
will allow defining which are the bounds within which the method 
applies. This includes the machine model, the acquisition para-
meters, and the data quality. It also includes factors which are 
unrelated to imaging such as population age, sex, geographic ori-
gin, disease severity, and others. 

What Is It? Measurement reproducibility is the study of the varia-
bility of a specific measurement under different acquisition condi-
tions. We are aware that, at first sight, this concept does not fit 
ideally in our taxonomy (see Subheading 7.1 for a more detailed 
discussion). Nevertheless, we chose to present it as a separate entity 
because this is a very common meaning of the word reproducibility



in medical imaging18 (e.g., [62–69]) and we thus believe that it 
deserves a special treatment. Here, we consider an algorithm that 
produces a measurement for each individual patient (for instance, 
the volume of an anatomical structure computed by a segmentation 
method). A prototypical example of measurement reproducibility is 
the test-retest reproducibility: how much does the measure vary 
when applied to two different scans of the same patient? One can 
then introduce different variations: scans on the same day or not, 
scans on the same or different machines, systematic addition of 
noise or artifacts to the data. . . . Finally, some authors call inter-
method reproducibility the comparison of different software 
packages for the measurement of the same anatomical entity 
[70]. We do not believe this falls within the topic of reproducibility 
but rather of methods’ comparison.19 
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What Does It Require? The code is necessary to make sure that 
variations do not depend on implementation and to ease the repro-
ducibility study. The trained models are also very welcome to 
facilitate the process. It is then necessary to have access to test-
retest data, meaning different acquisitions of the same patient. As 
mentioned above: the more varied these different acquisitions, the 
more extensive the study. Ideally, one would want to have access to 
scans performed on the same day [62, 67], on different days 
[65, 66], at different times during the day (e.g., before or after 
caffeine consumption, a factor which affects functional MRI mea-
sures [71]), on different imaging devices [63], and with different 
acquisition parameters [68]. . .It is unlikely to obtain that many 
scans for the same patients. A more feasible approach is to study 
these different factors of variations for different patients. Further-
more, starting with a given image, it is possible to simulate different 
types of alterations and defects by adding them to the original 
image. This can be very useful because it allows generating very 
large numbers of images easily and to control for specific imaging 
characteristics (such as, e.g., the level of noise or the strength of 
motion artifacts). Such simulations can involve completely syn-
thetic images called phantoms [72] which mimic real images. It 
can also be done through the addition of defects to real images [73– 
75]. Ideally, measurement reproducibility should be performed in 
different populations of participants separately (for instance, a child 
with autism spectrum disorder or a patient with Parkinson’s disease 
is more likely to move during the acquisition, and the image is thus 
more likely to be affected by motion artifacts). 

18 Note that the word is used to evaluate reproducibility of automatic methods across different scans of the same 
subject but also when a human rater is involved (manual or semi-automated measurements), including intra-rater 
(measurement twice by the same rater) and inter-rater (two different raters) reproducibility from a single scan. 
19 It is of interest to compare which of them is the most accurate or robust, with respect to a ground truth. 
However, as mentioned above, we do not believe it falls within the topic of reproducibility.
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Why Is It Useful? Measurement reproducibility is central for 
measurement sciences, and medical imaging is one of those. It is 
an extremely precious information to the user (for instance, the 
radiologist). Indeed, it provides, at the individual patient level, and 
ideally for different categories of patients, the precision that they 
may expect from the measurement tool. There is a wide tradition to 
perform such reproducibility studies in radiology journals. We 
believe that it would be very welcome that it becomes more com-
monplace in the ML for medical imaging community. 

7 Discussion 

7.1 About the 

Different Types of 

Reproducibility 

We have presented different types of reproducibility. Our taxonomy 
is not original nor aims at being universal. The boundaries between 
types are partly fuzzy. For instance, to which degree replication 
with a different but similar dataset should be considered statistical 
or conceptual reproducibility? We do not believe such questions to 
be of great importance. Rather, it is fruitful, following Gundersen 
and Kjensmo [14] and Peng [76], to consider reproducibility as a 
spectrum. In particular, one can consider that the first three types 
provide increasing support for a finding: conceptual provides more 
support than statistical which in turns provides more support than 
exact. The amount of components necessary to perform them is in 
the reverse order: exact requires more than statistical which requires 
more than conceptual. Does it mean that only conceptual repro-
ducibility matters? Absolutely not. As we mentioned, other types of 
reproducibility are necessary to dissect why a given replication has 
failed as well as to better specify the bounds within which a scientific 
claim is valid. Last but not least, exact reproducibility also helps 
build trust in science. 

We must admit that measurement reproducibility does not fit 
very well in this landscape. Moreover, one could also argue that it is 
a type of conceptual reproducibility, which is partly true as it aims at 
studying the reproducibility when varying the input data. We nev-
ertheless believe it deserves a special treatment, for several reasons. 
First, here reproducibility is studied at the individual (i.e., patient) 
level and not at the population level. Also, the emphasis is on the 
measurement rather than the finding. Even if it has its role in the 
building of scientific knowledge, it has specific practical implica-
tions for the user. Moreover, as mentioned above, this is actually 
the most widely used meaning of reproducibility in medical imag-
ing, and it seemed important that the reader is acquainted with it.
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7.2 The Many 

Benefits of 

Reproducibility 

“Der Weg ist das Ziel” is a German saying which can be roughly 
translated as: “the path is the goal.” Indeed, reproducibility allows 
researchers to discover many new places down the road before 
reaching the final destination. Even if this destination is never 
reached, the benefits of the travel are of major importance. Let us 
try to list some of them. 

There are many individual benefits for researchers and labs. An 
important one is that aiming at reproducible research results in 
reusable research artifacts. How agreeable it is for a researcher to 
easily reuse an old code for a new project! How useful it is for a 
research lab to have data organized according to community stan-
dards making it easier to reuse and share! Moreover, papers that 
come with shared data [22, 77, 78] or code attract [79], on 
average, more citations. Thus aiming at reproducibility is also in 
the researchers’ self-interest. 

There are also considerable benefits for the scientific commu-
nity as a whole. As mentioned before, reproducible research is often 
associated to open code, open data, and available trained models. 
This allows researchers not only to use them to perform replication 
studies but also to use these research artifacts for completely differ-
ent purposes such as building new methods or conducting analysis 
on pooled datasets. In the specific case of ML for medical imaging, 
it also allows assessing independently the influence of preproces-
sing, feature extraction, and ML method. This is particularly impor-
tant when claims of superiority of a new ML method are made, but 
the original paper uses overly specific preprocessing steps. 

Of course, at the end of the path, the goal itself brings many 
benefits. These have already largely described in the previous sec-
tions so we will just mention them briefly. Conceptual replication 
studies are necessary for corroborating findings and thus building 
new scientific knowledge. Statistical replication allows ensuring that 
results are not due to cherry picking. Exact replication allows 
detecting errors and increases trust in science in general. 

7.3 Awareness Is 

Rising 

Throughout this chapter, we have referred to numerous papers, 
resources, and tools that demonstrate that awareness regarding 
reproducibility has strongly risen in the past years. 

Various papers and studies have highlighted the lack of repro-
ducibility in different fields (e.g., [11, 15, 19]). In machine learning 
for medical imaging, Simko et al. [21] have studied the reproduc-
ibility of methods (mainly code availability and usability thus 
restricted to exact reproducibility) published at the Medical Imag-
ing with Deep Learning (MIDL) conference from 2018 to 2022



and found that about 20% of papers came with a repository that was 
deemed reproducible. 
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Various papers have been published providing advice and 
guidelines [10, 17, 22–27]. Some of the guidelines include repro-
ducibility checklists. Some checklists are associated to a specific 
journal or conference and are provided to the reviewers so that 
they can take these aspects in consideration when evaluating papers. 
One can cite, for example, the MICCAI (Medical Image Comput-
ing and Computer-Assisted Intervention conference) reproducibil-
ity checklist.20,21 

Finally, it is very important that reproducibility studies, asses-
sing all aspects of reproducibility (exact, statistical, conceptual, 
measurement), are performed, published, and widely read. Unfor-
tunately, it is still easier to publish in a high-impact journal a study 
that is not reproducible but describes exciting results than a repli-
cation study. The good news is that this is starting to change. 
Reproducibility challenges have been proposed in various fields 
including machine learning22 and medical image computing 
[80]. In the field of neuroimaging, the journal NeuroImage: 
Reports publishes Open Data Replication Reports.23 the Organi-
zation for Human Brain Mapping has a replication award.24 and the 
MRITogether workshop25 emphasizes reproducibility. 

7.4 One Size Does 

Not Fit All 

We hope the reader is now convinced of the benefits of aiming 
towards reproducible research. Does it mean that reproducibility 
requirements should be the same for all studies? We strongly believe 
the opposite. To take an extreme example, requiring all studies to 
be exactly reproducible with minimal efforts (like with running a 
single command) would be an awful idea. We believe, on the 
contrary, that reproducibility efforts should vary according to 
many factors including the type of study and the context in which 
it is performed. One would probably not have the same level of 
requirement for a methodological paper and for an extensive medi-
cal application with strong claims about clinical applicability. For 
the former, one may be satisfied with an experiment on a single or a 
few datasets. For the later, one would expect the study to include

20 https://miccai2021.org/files/downloads/MICCAI2021-Reproducibility-Checklist.pdf. 
21 https://github.com/JunMa11/MICCAI-Reproducibility-Checklist. 
22 https://paperswithcode.com/rc2022. 
23 https://www.journals.elsevier.com/neuroimage-reports/infographics/neuroimage-reports-presents-open-
data-replication-reports?utm_campaign=STMJ_176479_SC&utm_medium=email&utm_acid=268008024& 
SIS_ID=&dgcid=STMJ_176479_SC&CMX_ID=&utm_in=DM292849&utm_source=AC_. 
24 https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=3731. 
25 https://mritogether.esmrmb.org/.
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multiple datasets with varying characteristics and a comprehensive 
assessment of generalizability under different factors such as imag-
ing devices and acquisition parameters. Also, there are some cases 
where sharing the code is not desired (e.g., because an industrial 
application is foreseen) or where the code will not adhere to best 
development practices because it is just a prototype to test a new 
methodology. Nevertheless, sharing weakly documented code is 
always better than no sharing at all. Similarly, there are cases 
where data sharing is difficult or even impossible due to regulatory 
constraints. As mentioned above, reproducibility is a spectrum. 
Where a given study should lie in this spectrum should depend on 
the type of study and the constraints the researchers face.
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We thus advocate for a nondogmatic approach to reproducibil-
ity. Guidelines are extremely useful, but they should not be carved 
in stone. Also, we believe that the requirements should be assessed 
by the reviewers on a case-by-case basis. Indeed, what matters is 
that the reproducibility level matches the claims made in the paper. 
Of course, it is a good thing that journals and conferences provide 
requirements for reporting essential information. It is helpful to 
researchers and makes the community progress towards better 
science. Also, some bad practices such as data leakage or 
p-hacking need to be banished. But we believe that very high 
reproducibility requirements (e.g., requiring that exact reproduc-
ibility is feasible) at the level of a given journal or conference would 
be counterproductive. Finally, we like the idea of a badging system 
[27] which would tag papers according to their reproducibility 
level. It remains to be seen how such system should be 
implemented. 

To conclude, we firmly believe that it is essential for researchers 
and students in the field of ML for medical imaging to be trained to 
the concepts and practice of reproducibility. It will be beneficial to 
them as well as to the community in general. But this does not 
mean that researchers should aim at perfect reproducibility in all 
their studies. Diversity in research approaches and practices is also a 
factor that drives science forward and which should be preserved. 
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