
Chapter 20

Evaluating Machine Learning Models and Their Diagnostic
Value

Gael Varoquaux and Olivier Colliot

Abstract

This chapter describes model validation, a crucial part of machine learning whether it is to select the best
model or to assess performance of a given model. We start by detailing the main performance metrics for
different tasks (classification, regression), and how they may be interpreted, including in the face of class
imbalance, varying prevalence, or asymmetric cost–benefit trade-offs. We then explain how to estimate
these metrics in an unbiased manner using training, validation, and test sets. We describe cross-validation
procedures—to use a larger part of the data for both training and testing—and the dangers of data
leakage—optimism bias due to training data contaminating the test set. Finally, we discuss how to obtain
confidence intervals of performance metrics, distinguishing two situations: internal validation or evaluation
of learning algorithms and external validation or evaluation of resulting prediction models.

Key words Validation, Performance metrics, Cross-validation, Data leakage, External validation

1 Introduction

A machine learning (ML) model is validated by evaluating its
prediction performance. Ideally, this evaluation should be represen-
tative of how the model would perform when deployed in a real-life
setting. This is an ambitious goal that goes beyond the settings of
academic research. Indeed, a perfect validation would probe
robustness to any possible variation of the input data that may
include different acquisition devices and protocols, different prac-
tices that vary from one country to another, from one hospital to
another, and even from one physician to another. A less ambitious
goal for validation is to provide an unbiased estimate of the model
performance on new—never before seen—data similar to that used
for training (but not the same data!). By similar, we mean data that
have similar clinical or sociodemographic characteristics and that
have been acquired using similar devices and protocols. To go
beyond such internal validity, external validation would evaluate

Olivier Colliot (ed.),Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_20,
© The Author(s) 2023

601

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_20&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_20#DOI

generalization to data from different sources (for example, another
dataset, data from another hospital).

602 Gael Varoquaux and Olivier Colliot

This chapter addresses the following questions. How to quan-
tify the performance of the model? This will lead us to present, in
Subheading 2, different performance metrics that are adequate for
different ML tasks (classification, regression, . . .). How to estimate
these performance metrics? This will lead to the presentation of
different validation strategies (Subheading 3). We will also explain
how to derive confidence intervals for the estimated performance
metrics, drawing the distinction between evaluating a learning
algorithm or a resulting prediction model. We will present various
caveats that pertain to the use of performance metrics on medical
data as well as to data leakage, which can be particularly insidious.

2 Performance Metrics

Metrics allow to quantify the performance of an ML model. In this
section, we describe metrics for classification and regression tasks.
Other tasks (segmentation, generation, detection,. . .) can use some
of these but will often require other metrics that are specific to these
tasks. The reader may refer to Chap. 13 for metrics dedicated to
segmentation and to Subheading 6 of Chap. 23 for metrics dedi-
cated to segmentation, classification, and detection.

2.1 Metrics for

Classification

For classification tasks, the results can be summarized in a matrix
called the confusion matrix (Fig. 1). For binary classification, the
confusion matrix divides the test samples into four categories,
depending on their true and predicted labels:2.1.1 Binary

Classification

Fig. 1 Confusion matrix. The confusion matrix represents the results of a
classification task. In the case of binary classification (two classes), it divides
the test samples into four categories, depending on their true (e.g., disease
status, D) and predicted (test output, T) labels: true positives (TP), true negatives
(TN), false positives (FP), false negatives (FN)

https://doi.org/10.1007/978-1-0716-3195-9_13
https://doi.org/10.1007/978-1-0716-3195-9_23
https://doi.org/10.1007/978-1-0716-3195-9_23

(continued)

Machine-Learning Evaluation 603

• True Positives (TP): Samples for which the true and predicted
labels are both 1. Example: The patient has cancer (1), and the
model classifies this sample as cancer (1).

• TrueNegatives (TN): Samples for which the true and predicted
labels are both 0. Example: The patient does not have cancer (0),
and the model classifies this sample as non-cancer (0).

• False Positives (FP): Samples for which the true label is 0 and
the predicted label is 1. Example: The patient does not have
cancer (0), and the model classifies this sample as cancer (1).

• False Negatives (FN): Samples for which the true label is 1 and
the predicted label is 0. Example: The patient has cancer (1), and
the model classifies this sample as non-cancer (0).

Are false positives and false negatives equally problematic? This
depends on the application. For instance, consider the case of
detecting brain tumors. For a screening application, detected posi-
tive cases would then be subsequently reviewed by a human expert,
and one can thus consider that false negatives (missed brain tumor)
lead to more dramatic consequences than false positives. On the
opposite, if a detected tumor leads the patient to be sent to brain
surgery without complementary exam, false positives are problem-
atic and brain surgery is not a benign operation. For automatic
volumetry from magnetic resonance images (MRI), one could
argue that false positives and false negatives are equally problematic.

Box 1: Performance Metrics for Binary Classification

Basic metrics

T denotes test: classifier output;D denotes diseased status.

• Sensitivity (also called recall): A fraction of positive samples
actually retrieved.

Sensitivity= TP
TPþFN Estimates P(T + jD+).

• Specificity: A fraction of negative samples actually classified as
negative.

Specificity= TN
TNþFP Estimates P(T-jD-).

• Positive predictive value (PPV, also called precision): A
fraction of the positively classified samples that are indeed
positive.

PPV= TP
TPþFP Estimates P(D+ jT +).

• Negative predictive value (NPV): A fraction of the nega-
tively classified samples that are indeed negative.

NPV= TN
TNþFN Estimates P(D-jT -).

PPV Sensitivity

ðTPþFPÞ× ðTPþFNÞ× ðTNþFPÞ× ðTNþFNÞ

604 Gael Varoquaux and Olivier Colliot

Box 1 (continued)
Summary metrics

• Accuracy: A fraction of the samples correctly classified.

Accuracy= TPþTN
TPþFPþTNþFN.

• Balanced accuracy (BA): Accuracy metric that accounts for
unbalanced samples.

BA= SensitivityþSpecificity
2 .

• F1 score: Harmonic mean of PPV (precision) and sensitivity
(recall).

F 1 = 2
1 þ 1 = 2TP

2TPþFPþFN :

• Matthews correlation coefficient (MCC). MCC=1 for per-
fect classification, MCC=0 for random classification,
MCC=-1 for perfectly wrong classification.

MCC= TP×TN-FP×FNp .

• Markedness = TP
TPþFP - FP

FPþTN =PPV þNPV- 1.

• Area under the receiver operating characteristic curve
(ROC AUC).

• Area under the precision–recall curve (PR AUC, also
called average precision).

Multiple performance metrics can be derived from the confu-
sion matrix, all easily computed using sklearn.metrics from
scikit-learn [1]. They are summarized in Box 1. One can distinguish
between basic metrics that only focus on false positives or false
negatives and summary metrics that aim at providing an overview
of the performance with a single metric.

The performance of a classifier is characterized by pairs of basic
metrics: either sensitivity and specificity, or PPV and NPV, which
characterize respectively the probability of the test given the dis-
eased status or vice versa (see Box 1). Note that each basic metric
characterizes only the behavior of the classifier on the positive class
(D+) or the negative class (D-); thus measuring both sensitivity
and specificity and PPV and NPV is important. Indeed, a classifier
always reporting a positive prediction would have a perfect sensitiv-
ity, but a disastrous specificity.

Simple Summaries and

Their Pitfalls

It is convenient to use summary metrics that provide a more global
assessment of the performance, for instance, to select a “best”
model. However, as we will see, summary metrics, when used in
isolation, can lead to erroneous conclusions. The most widely used
summary metric is arguably accuracy. Its main advantage is a natural
interpretation: the proportion of correctly classified samples. How-
ever, it is misleading when the data are imbalanced. Let us for

instance consider a dataset with 10 cancer samples and
990 non-cancer samples. A trivial majority classifier that decides
that cancer does not exist achieves 99% accuracy. Balanced accuracy
helps for imbalanced samples. However, balanced accuracy also
comes with its loopholes. Indeed, a high balanced accuracy does
not always mean that individuals classified as diseased are likely to be
so. Let us consider a diagnostic test for a disease that has a sensitivity
of 99% and a specificity of 90% (and thus a balanced accuracy of
94.5%). Suppose that a given person takes the test and that the test is
positive. At this point, we do not have enough information to
compute the probability that the person actually has the disease.

Machine-Learning Evaluation 605

The probability that the person has the disease is given by the
PPV, related to the sensitivity and the specificity by Bayes’ rule:

P (D+ | T+) =
sensitivity× prevalence

(1− specificity)× (1− prevalence) + sensitivity× prevalence
.

Diseased

Test positive

Bayes’ rule thus shows that we must account for the prevalence: the
proportion of the people with the disease in the target population,
the population in which the test is intended to be applied. The
target population can be the general population for a screening test.
It could be the population of people with memory complaints for a
test aiming to diagnose Alzheimer’s disease. Now, suppose that the
prevalence is low, which will often be the case for a screening test in
the general population. For instance, prevalence=0.001. This
leads to P(D+ jT +)=0.0098≈1%. So, if the test is positive, there
is only 1% chance that the patient has the disease. Even though our
classifier has seemingly good sensitivity, specificity, and balanced
accuracy, it is not very informative on the general population. The
PPV and NPV readily give the information of interest: P(D+ jT +)
and P(D-jT -). However, they are not natural metrics to report a
classifier’s performance because, unlike sensitivity and specificity,
they are not intrinsic to the test (in other words the trained ML
model) but also depend on the prevalence and thus on the target
population (Fig. 2).

100

10–2

10–4

10–6

10–8

10–10 10–8 10–6 10–4 10–2 1 – 10–21
2

prevalence

1 – 10–4 1 – 10–6 1 – 10–8 1 – 10–10

sensitivity = 0.99

specificity = 0.9
PPV

NPV

Fig. 2 NPV and PPV as functions of prevalence when the sensitivity and the specificity are fixed (image
courtesy of Johann Faouzi)

s

606 Gael Varoquaux and Olivier Colliot

Summary Metrics for Low

Prevalence

The F1 score is another summary metric, built as the harmonic
mean of the sensitivity (recall) and PPV (precision). It is popular
in machine learning but, as we will see, it also has substantial
drawbacks. Note that it is equal to the Dice coefficient used for
segmentation. Given that it builds on the PPV rather than the
specificity to characterize retrieval, it accounts slightly better for
prevalence. In our example, the F1 score would have been low.
The F1 score can nevertheless be misleading if the prevalence is
high. In such a case, one can have high values for sensitivity,
specificity, PPV, F1 score but a low NPV. A solution can be to
exchange the two classes. The F1 score becomes informative again.
Those shortcomings are fundamental, as the F1 score is
completely blind to the number of true negatives, TNs. This is
probably one of the reasons why it is a popular metric for seg-
mentation (usually called Dice rather than F1) as in this task TN is
almost meaningless (TN can be made arbitrarily large by just
changing the field of view of the image). In addition, this metric
has no simple link to the probabilities of interest, even more so
after switching classes.

Another option is to use Matthews Correlation Coefficient
(MCC). The MCC makes full use of the confusion matrix and can
remain informative even when prevalence is very low or very high.
However, its interpretation may be less intuitive than that of the
other metrics. Finally, markedness [2] is a seldom known summary
metric that deals well with low-prevalence situations as it is built
from the PPV and NPV (Box 1). Its drawback is that it is as much
related to the population under study as to the classifier.

As we have seen, it is important to distinguish metrics that are
intrinsic characteristics of the classifier (sensitivity, specificity,
balanced accuracy) from those that are dependent on the target
population and in particular of its prevalence (PPV, NPV, MCC,
markedness). The former are independent of the situation in
which the model is going to be used. The latter inform on the
probability of the condition (the output label) given the output
of the classifier, but they depend on the operational situation
and, in particular, on the prevalence. The prevalence can be
variable (for instance, the prevalence of an infectious disease
will be variable across time, and the prevalence of a neurodegen-
erative disease will depend on the age of the target population),
and a given classifier may be intended to be applied in variou
situations. This is why the intrinsic characteristics (sensitivity and
specificity) need to be judged according to the different
intended uses of the classifier (e.g., a specificity of 90% may
be considered excellent for some applications, while it would
be considered unacceptable if the intended use is in a
low-prevalence situation).

Machine-Learning Evaluation 607

Metrics for Shifts in

Prevalence

Odds enable designing metrics that characterize the classifier but
are adapted to target populations with a low prevalence. Odds are
defined as the ratio between the probability that an event occurs
and the probability this event does not occur:OðaÞ= PðaÞ

1-PðaÞ. Ratios
between odds can be invariant to the sampling frequency
(or prevalence) of a—see Appendix “Odds Ratio and Diagnostic
Tests Evaluation” for an introduction to odds and their important
properties. For this reason, they are often used in epidemiology. A
classifier can be characterized by the ratio between the pre-test and
post-test odds, often called the positive likelihood ratio:

LR þ = OðDþjTþÞ
OðDþÞ = sensitivity

1- specif icity. This quantity depends only on sen-

sitivity and specificity, properties of the classifier only, and not of the
prevalence on the study population. Yet, given a target population,
post-test odds can easily be obtained by multiplying LR+ by
pre-test odds, itself given by prevalence: OðDþÞ= prevalence

1- prevalence.
The larger the LR+ , the more useful the classifier and a classifier
with LR+=1 or less brings no additional information on the
likelihood of the disease. An equivalent to LR+ characterizes the
negative class: controlling on “T-” instead of “T+ ” gives the
negative likelihood ratio: LR - = 1- sensitivity

specificity ; and low values of
LR- (below 1) denote more useful predictions. These metrics,
LR+ and LR-, are very useful in a situation common in biomedical
settings where the only data available to learn and evaluate a classi-
fier are study population with nearly balanced classes, such as a case–
control study, while the target application—the general
population—is one with a different prevalence (e.g., a very low
prevalence) or when the intended use considers variable
prevalences.

Multi-threshold Metrics Many classification algorithms output a continuous value that is
then thresholded to get a binary label. When the output is a
probability, one often simply uses a threshold of 0.5. However,
there are cases where one is interested to study the performance
for varying thresholds on the output. The two main tools for that
purpose are the receiver operating characteristic (ROC) curve and
the precision–recall (PR) curve. The ROC curve plots the Sensitiv-
ity as a function of 1- Specificity (Fig. 3). It can be again summar-
ized with a single value: the area under the ROC curve (ROC
AUC). The ROC AUC has a probabilistic interpretation: it is the
probability that a positive sample has a higher classification score
(as positive) than a negative sample. A perfect classification corre-
sponds to an ROC AUC of 1 and a random classification to an
ROC AUC of 0.5. While chance remains 0.5 whatever the class
imbalance, the ROC curve becomes less interesting for highly
imbalanced classes, because a seamingly small difference on speci-
ficity or sensitivity may make a large difference to the application,
but not change much the ROC curve. For this reason, it is often

complemented with the precision–recall (PR) curve that focuses on
the minority class. The PR curve plots the Precision (also called
PPV) as a function of Recall (also called sensitivity) (Fig. 4). It can
also be summarized using a single measure: the PR AUC, also
called average precision. As for the ROC AUC, a perfect classifica-
tion corresponds to a value of 1. However, unlike for ROC AUC, a
dummy classification does not necessarily lead to a value of 0.5. It
depends on the prevalence.

608 Gael Varoquaux and Olivier Colliot

Fig. 3 ROC curve for different classifiers. AUC denotes the area under the curve,
typically used to extract a number summarizing the ROC curve

Fig. 4 Precision–recall curve for different classifiers. AUC denotes the area under
the curve, often called average precision here. Note that the chance level
depends on the class imbalance (or prevalence), here 0.57

Machine-Learning Evaluation 609

Box 2: Assessing Confidence Scores and Calibration

Expected calibration error (ECE): average classifier error
It is computed by consideringK bins of confidence scores and
comparing the observed fraction of positives to the mean
confidence score. The ECE itself is then the average over
the bins: ECE= K

i=1PðiÞ � f i- s i , where fi is the observed
fraction of positive instances in bin i, si is the mean of classifier
scores for the instances in bin i, and P(i) is the fraction of all
instances that fall into bin i [3].

Example for a Gaussian Naive Bayes classifier (GaussianNB).

Metrics on individual probabilities: error on P(y|X)

Brier score =
∑

i

(ŝi − yi)2
Observed (binary) label

Confidence score

Minimal for Ŝ =PðyjX Þ

Brier skill score = 1− Brier(ŝ, y)
Brier(ȳ, y)

Class prevalence

A value of 1 means a perfect prediction, while a value of
0 means that the confidence scores are not more informative
than the class prevalence.

Confidence Scores and

Calibration

It can be useful to interpret a non-thresholded classifier score as a
confidence score or a probability, for instance, to balance cost and
benefits when the prediction is used to decide on an intervention
[4]. But a continuous score by itself does not warrant such inter-
pretation: a classifier may be over-confident, under-confident, or
have uneven scores over the population, even for good binary
decisions. Two types of metrics, detailed in Box 2, are useful to

evaluate continuous outputs as probabilities: the expected calibra-
tion error (ECE) and the Brier score. The ECE measures whether,
on samples predicted with a score s, the error rate is indeed s, in
which case the classifier is said to be calibrated. The Brier score is
minimal when the classifier score is the true probability of the class
given the data for an individual, for instance, the probability of the
presence of a tumor given the image. These two notions are similar,
but it is important to understand that ECE controls average error
rates, while Brier score controls individual probabilities, which is
much more stringent and more useful to the practitioner [5]. Accu-
rate probabilities of individual predictions can be used for optimal
decision-making, e.g., opting for brain surgery only for individuals
for which a diagnostic model predicts cancer with high confidence.

610 Gael Varoquaux and Olivier Colliot

A given value of ECE is easy to interpret, as it qualifies prob-
abilities mostly independently of prediction performance. On the
other hand, the Brier score accounts for both the quality of prob-
abilities and corresponding binary decisions as a low Brier score
captures the ability to give good probabilistic prediction of the
output. For any classification problem, there exist many classifiers
with 0 expected calibration errors, including some with very poor
predictions. On the other hand, even the best possible prediction
has a non-zero Brier score, unless the output is a deterministic
function of the data. The Brier skill score, a variant of the Brier
score, is often used to assess how far a predictor is from the best
possible prediction, more independent of the intrinsic uncertainty
in the data. The Brier skill score is a rescaled version of the Brier
score taking as a reference a reasonable baseline: 1 is a perfect
prediction, while negative values mean predictions worse than
guessing from class prevalence.

To Conclude When assessing a classifier:

• Always look at all the individual metrics: false positives and false
negatives are seldom equivalent. Understand the medical prob-
lem to know the right trade-off [4].

• Never trust a single summary metric (accuracy, balanced accu-
racy, ROC AUC, . . .).

• Consider the prevalence in your target population. It may be
that the prevalence in your testing sample is not representative of
that of the target population. In that case, aside from LR+ and
LR-, performance metrics computed from the testing sample
will not be representative of those in the target population.

2.1.2 Multi-class

Classification

When there are multiple classes to distinguish, the main difference
with two-class classification is that the problem can no longer be
separated into a positive class (typically individuals with the medical
condition of interest) and a negative class (individuals without). As
a consequence, sensitivity and specificity no longer have a meaning

for the whole data, nor do F1 score, or the ROC or precision–recall
curves. Accuracy is still defined and easy to compute, but still suffers
from its common drawbacks, in particular that it may not be
straightforward to interpret in the face of class imbalance.

Machine-Learning Evaluation 611

A classic approach is to aggregate metrics for binary settings
considering successively each class as the positive instances and all
the others as the negatives, in a form of “one versus all.” There are
different approaches to averaging the results for each class. Macro-
averaging computes the metric, for instance, the ROC AUC, for
each class, and then averages the results. One drawback is that it
may put too much emphasis on classes that are more infrequent.
Weighted or micro-averaging combines the results of the different
classes weighed by the number of instances of each class. The
difference between the two is that weighted averaging computes
the average of the metric weighted by the number of true instances
for each class, while micro-averaging computes the metric by add-
ing the number of TPs (resp., TNs, FPs, FNs) across all classes.

Inspecting the confusion matrix extended to multi-class set-
tings gives an interesting tool to understand errors: it displays how
many times a given true class is predicted as another (Fig. 5). A
perfect prediction has non-zero entries only on the diagonal. The
confusion matrix may be interesting to reveal which classes are
commonly confused, as its name suggests. In our example,
instances that are actually of class C2 are often predicted as of
class C3.

Multilabel Classification Multilabel settings are when the multiple classes are not mutually
exclusive: for instance, if an individual can have multiple patholo-
gies. The problem is then to detect the presence or absence of each
label for an individual. In terms of evaluation, multilabel settings
can be understood as several binary classification problems, and
thus the corresponding metrics can be used on each label. As in
the multi-class settings, there are different ways to average the
results for each label—macro, micro—that put more or less empha-
sis on the rare labels.

Fig. 5 Multi-class confusion matrix, for a 3-class problem, C1, C2, C3. Each
entry gives the number of instances predicted of a given class, knowing the
actual class. A perfect prediction would give non-zero entries only on the
diagonal

612 Gael Varoquaux and Olivier Colliot

2.2 Metrics for

Regression

In regression settings, the outcome to predict y is continuous, for
instance, an individual’s age, cognitive scores, or glucose level.
Corresponding error metrics gauge how far the prediction ŷ is
from the observed y.

R2 Score. The go-to metric here is typically the R2 score, some-
times called explained variance—however, the term R2 score
should be preferred, as some authors define explained variance as
ignoring bias. Mathematically, the R2 score is the fraction of vari-
ance of the outcome y explained by the prediction ŷ, relative to the
variance explained by the mean �y on the test set:

R2=1-
SSðy - ŷÞ
SSðy - �yÞ ,

where SS is the sum of squares on the test data. A strong benefit of
this metric is that it comes with a natural scale: an R2 of 1 implies
perfect prediction, while anR2 of zero implies a trivial and not very
useful prediction. Note that chance-level predictions (as obtained
for instance by learning on permuted y) yield slightly negative
predictions: indeed, even when the data do not support a predic-
tion of y—as in chance settings—it is impossible to estimate the
mean y perfectly and predictions will be worse than the actual mean.
In this respect, the R2 score has a different behavior in machine
learning settings compared to inferential statistics settings not
focused on prediction: in-sample (for inferential statistics) versus
out-of-sample settings (for machine learning). Indeed, when the
mean of y is computed on the same data as the model, the R2
score is positive and is the square of the correlation between y and ŷ.
This is not the case in predictive settings, and the correlation
between y and ŷ should not be used to judge the quality of a
prediction [6], because it discards errors on the mean and the
scale of the prediction, which are important in practice.

Absolute Error Measures. Reporting only the R2 score is not
sufficient to characterize well a predictive model. Indeed, the R2
score depends on the variance of the outcome y in the study
population and thus does not enable comparing predictive models
on different samples. For this purpose, it is important to report also
an absolute error measure. The root mean square error (RMSE)
and the mean absolute error (MAE) are two of such measures that
give an error in the scale of the outcome: if the outcome y is an age
in years, the error is also in years. The mean absolute error is easier
to interpret. Compared to the root mean square error, the mean
absolute error will put much less weight on some rare large devia-
tions. For instance, consider the following prediction error (on 11
observations):

Machine-Learning Evaluation 613

Fig. 6 Visualizing prediction errors—plotting the predicted outcome as a
function of the observed one enables to detect structure in the error beyond
summary metric. Here the error increases for large values of y, for which there is
also a systematic undershoot

error = ½1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 100�
MAE=10 RMSE≈30:17:

Note that if the error was uniformly equal to the same value (10, for
instance), both measures would give the same result.

Assessing the Distribution of Errors. The difference between the
mean absolute error and the root mean square error arises from the
fact that both measures account differently for the tails of the
distribution of errors. It is often useful to visualize these errors, to
understand how they are structured. Figure 6 shows such visualiza-
tion: predicted y as a function of observed y. It reveals that for large
values of y, the predictive model has a larger prediction error, but
also that it tends to undershoot: predict a value that underestimates
the observed value. This aspect of the prediction error is not well
captured by the summary metrics because there are comparatively
much less observations with large y.

Concluding Remarks on Performance Metrics. Whether it is in
regression or in classification, a single metric is not enough to
capture all aspects of prediction performance that are important
for applications. Heterogeneity of the error, as we have just seen in
our last example, can be present not only as a function of prediction
target, but of any aspect of the problem, for instance, the sex of the
individuals. Problems related to fairness, where some groups (e.g.,
demographic, geographic, socioeconomic groups) suffer more
errors than others, can lead to loss of trust or amplification of
inequalities [7]. For these reasons, it may be important to also
report error metrics on relevant subgroups, following common
medical research practice of stratification.

614 Gael Varoquaux and Olivier Colliot

3 Evaluation Strategies

The previous section detailed metrics for assessing the performance
of a ML model. We now focus on how to estimate the expected
prediction performance of the model with these metrics. Impor-
tantly, we draw the difference between evaluating a learning proce-
dure, or learner, and a learnedmodel. While these two questions are
often conflated in the literature, the first one must account for
uncontrolled fluctuations in the learning procedure, while the sec-
ond one controls a given model on a target external population.
The first question is typically of interest to the methods researcher,
to conclude on learning procedures, while the second is central to
the medical research, to conclude on the clinical application of a
model.

Additional information on validation strategies, seen from the
perspective of regulatory science, can be found in Subheading 3 of
Chap. 23. We focus here on an accessible discussion of the main
concepts to have in mind concerning model evaluation strategies,
and Raschka [8] gives a more mathematically detailed coverage of
related topics.

3.1 Evaluating a

Learning Procedure

We first focus on assessing the expected performance of a learning
procedure on data drawn from a given population. Here, the model
is validated on data with similar characteristics to the one used for
training, a validation sometimes called internal validation. Most
importantly, performance should not be evaluated using the same
data that were used for training [6]. Therefore, the first step is to
split the data into a training set and a testing set. This should be
done before starting any work on the data, be it training a ML
model or even doing simple statistics for identifying interesting
features. Splitting the data can be done using sklearn.model_
selection.train_test_split or sklearn.model_selec-
tion.ShuffleSplit(n_splits=1) from scikit-learn. When
one simply performs a single split of the data into training and
testing set, the validation method is called “hold-out.” One should
nevertheless check that the training and testing sets have similar
characteristics. More precisely, we want the output variable distri-
bution to be approximately the same in the training and testing
sets. This is called stratification. For instance, for classification,
the proportion of diseased individuals should approximately
be the same in the two sets. To that purpose, use Stratified-
ShuffleSplit(n_splits=1). In medical applications, it is
recommended to control not only for the disease status but also
for other variables, such as sociodemographic information (age,
sex, . . .) or some relevant clinical variables. It will often be difficult
(and it is not even necessary) to obtain almost identical distribu-
tions between training and testing sets. In practice, it is often

https://doi.org/10.1007/978-1-0716-3195-9_23
https://doi.org/10.1007/978-1-0716-3195-9_23

sufficient to have similar means and variances for continuous vari-
ables and similar proportions for categorical variables. The first two
rows of Fig. 7 illustrate the concepts of “hold-out” and
stratification.

Machine-Learning Evaluation 615

Non-independent Samples. Prediction may be performed across
non-independent data points, for instance, different points in a
time series, or repeated measures of the same individual. In such
case, it is important that samples in the train and test sets are
independent, which may require selecting separated time windows.
Also, the cross-validation should mimic the intended usage of the
predictor. For instance, a diagnostic model intended to be applied
to new individuals should be evaluated making sure that there are
no shared individuals between the train and test sets.

3.1.1 Cross-validation The split between train and test sets is arbitrary. With the same
machine learning algorithm, two different data splits will lead to
two different observed performances, both of which are noisy
estimates of the expected generalization performance of prediction
models built with this learning procedure. A common strategy to
obtain better estimates consists in performing multiple splits of the
whole dataset into training and testing sets: a so-called cross-valida-
tion loop. For each split, a model is trained using the training set,
and the performances are computed using the testing set. The
performances over all the testing sets are then aggregated. Figure 7
displays different cross-validation methods. k-fold cross-validation
consists in splitting the data into k sets (called folds) of approxi-
mately equal size. It ensures that each sample in the dataset is used
exactly once for testing. For classification, sklearn.model_
selection.StratifiedKFold performs stratified k-fold cross-
validation.

In each split, ideally, one would want to have a large training
set, because it usually allows training better performing models,
and a large testing set, because it allows a more accurate estimation
of the performance. But the dataset size is not infinite. Splitting out
10–20% for the test set is a good trade-off [9], which amounts to
k=5 or 10 in a k-fold. With small datasets, to maximize the amount
of train data, it may be tempting to leave out only one observation,
in a so-called leave-one-out cross-validation. However, such deple-
tion of the test set gives overall worse estimates of the generaliza-
tion performance. Increasing the number of splits is, however,
useful, and thus another strategy consists in performing a large
number of random splits of the data, breaking from the regularity
of the k-fold. If the number of splits is sufficiently large, all samples
will be approximately used the same number of times for training
and testing. This strategy can be done using sklearn.model_
selection.StratifiedSuffleSplit(n_splits) and is
called “Repeated hold-out” or “Monte-Carlo cross-validation.”

616 Gael Varoquaux and Olivier Colliot

Fig. 7 Different validation methods, from top to bottom. The first method, called “hold-out,” involves a single
split of the dataset into training and testing sets. It is thus not a cross-validation method. Stratification is the
procedure that controls that the output variable (for instance, disease vs. healthy) has approximately the same
distribution in the training and testing sets. k-fold cross-validation consists in splitting the data into k sets
(called folds) of approximately equal size. Repeated hold-out consists in performing a large number of random
splits of the data

Beyond giving a good estimate of the generalization performance,
an important benefit of this strategy is that it enables to study
the variability of the performances. However, running many splits
may be computationally expensive with models that are slow to
train.

Machine-Learning Evaluation 617

3.1.2 The Need of an

Additional Validation Set

Often, it is useful to make choices on the model to maximize
prediction performance: make changes on the architecture, tune
hyper-parameters, perform early stopping,. . . . As the test set per-
formance is our best estimate of prediction performance, it would
be be natural to run cross-validation and pick the best model.
However, in such a situation, the performances reported on the
testing set will have an optimistic bias: a data-dependent choice has
been made on this test set. There are two main solutions to this
issue. The first one is usually applied when the model training is fast
and the dataset is of small size. It is called nested cross-validation. It
consists in running two loops of cross-validation, one nested into
the other. The inner loop serves for hyper-parameter tuning or
model selection, while the outer loop is used to evaluate the per-
formance. The second solution is to separate from the whole data-
set the test set, which will only be used to evaluate the
performances. Then, the remainder of the dataset can be further
split into training data and data used to make modeling choices,
called the validation set.1 Such a procedure is illustrated in Fig. 8.
Commonly, the training and validation sets will be used in a cross-
validation manner. They can then be used to experiment with
different models, tune parameters, It is absolutely crucial that
the test set is isolated at the very beginning, before any experiment
is done. It should be left untouched and used only at the end of the
study to report the performances. As for the split between training
and validation sets, it is desirable that stratification is done when
isolating the test set.

If the dataset is very small, nested cross-validation should be
preferred as it gives better testing power than hold-out: all the data
are used alternatively for model testing. If the dataset feels too small
to split into train, validation, test, it may be too small to conduct a
trustworthy machine learning study [10].

3.1.3 Various Sources of

Data Leakage

Data leakage denotes cases where some information from the train-
ing set has “leaked” into the test set. As a consequence, the estima-
tion of the performances is likely to be optimistic. Data leakage can
be introduced in many ways, some of which are particularly insidi-

1 In Chapter 23, the validation set is called the tuning set, as it is the standard practice in regulatory science and
because it insists on the fact that it should not be used to evaluate the final performance, which should be done on
an independent test set. In the present chapter, we use the term validation set as it is the most common in the
academic setting.

ous and may not be obvious to a researcher that is not familiar with
a specific application field. Below, we describe some common causes
of data leakage. A summary can be found in Box 3.

618 Gael Varoquaux and Olivier Colliot

Fig. 8 A standard approach consists in splitting the whole dataset into training, validation, and test sets. The
test set must be isolated from the very beginning, left untouched until the end of the study and only be used to
evaluate the performance. The training and validation sets are often used in a cross-validation manner. They
can be used to experiment with different architectures and tune parameters

Box 3: Some Common Causes of Data Leakage

• Perform feature selection using the whole dataset.

• Perform dimensionality reduction using the whole dataset.

• Perform parameter selection using the whole dataset or the
test set.

• Perform model or architecture search using the whole dataset
or the test set.

• Report the performance obtained on the validation set that
was used to decide when to stop training (in deep learning).

• For a given patient, put some of its visits in the training set
and some in the validation set.

• For a given 3D medical image, put some 2D slices in the
training set and some in the validation set.

Machine-Learning Evaluation 619

A first basic cause of data leakage is to use the whole dataset for
performing various operations on the data. A very common example
is to perform feature selection using thewhole dataset and then to use
the selected features for model training. A similar situation is when
dimensionality reduction is performed on the whole dataset. If this is
done in an unsupervised manner (for example, using principal com-
ponent analysis), it is likely to introduce less bias in the performance
estimation because the target is not used. It nevertheless remains, in
principle, a bad practice. A common practice in deep learning is to
perform early stopping, i.e., use the validation set to determine when
to stop training. If this is the case, the validation performances can be
overoptimistic, and a separate test dataset should be used to report
performance. Another cause of data leakage is when there are multi-
ple longitudinal visits (i.e., the patient is evaluated at several time
points) or multiple modalities for a given patient. In such as case, one
should never put data from the same patient in both the training and
validation sets. For instance, one should not, for a given patient, put
the visit at month 0 in the training set and the visit at month 6 in the
validation set. Similarly, one should not use the magnetic resonance
imaging (MRI) data of a given patient for training and the positron
emission tomography (PET) image for validation. A similar situation
arises when dealing with 3D medical image. It is absolutely manda-
tory to avoid putting some of the 2D slices of a given patient in the
training set and the rest of the slices in the validation set. More
generally, in medical applications, the split between training and test
sets should always be done at the patient level. Unfortunately, data
leakage is still prevalent in many machine learning studies on brain
disorders. For instance, a literature review identified that up to 40% of
the studies on convolutional neural networks for automatic classifica-
tion of Alzheimer’s disease from T1-weighted MRI potentially suf-
fered from data leakage [11].

3.1.4 Statistical Testing Train–test splits, cross-validation, and the like seek to estimate the
expected generalization performance of a learning procedure.
Keeping test data rigorously independent from algorithm develop-
ment minimizes the bias of this estimation. However, there are
multiple sources of arbitrary variations in these estimates. The most
obvious one is the intrinsic randomness of certain aspects of learning
procedures, such as the random initial weights in deep learning.
Indeed, while fixing the seed of the random number generator may
remove the randomness on given train data, this stability is mislead-
ing given this choice is arbitrary and not representative of the overall
behavior of the machine learning algorithm on the data distribution
of interest [12]. A systematic study of machine learning benchmarks
[13] shows that their most important sources of variance are:

Choice of test data/split. A given test set is an arbitrary
sample of the actual population
that we are trying to generalize
to. As a result, the corresponding

Sources of Variance

measure of performance is an
imperfect estimate of the actual
expected performance. Subhead-
ing 3.2, below, gives the resulting
confidence intervals for a fixed
test set. Using multiple splits,
and thus multiple test sets,
improves the estimation [13],
though it makes computing con-
fidence intervals hard [14].

Hyper-parameter optimization. The choice of hyper-parameters is
imperfect, for instance, because
of limited resources to tune
these hyper-parameters. Another
attempt to tune hyper-parameter
would lead to a slightly different
choice. Thus benchmarks do not
give an absolute characterization
of a learning procedure but are
muddied by imperfect hyper-
parameters.

Random seeds. As mentioned above, random
choices in a learning procedure—
initial weights, random drop-out
for neural networks, or boot-
straps in bagging—lead to
uncontrolled fluctuations in
benchmarking results that do
not characterize the procedure’s
ability to generalize to new data.

620 Gael Varoquaux and Olivier Colliot

Conclusions Must Account

for Benchmarking Variance

With all these sources of arbitrary variance, the question is: given
benchmarks of a learning procedure performance, or improvement,
is it likely to generalize reliably to new data or rather to be due to
benchmarking fluctuations? Considering, for instance, the perfor-
mance metrics in Table 1, it seems a safe bet to say that the
convolutional neural network outperforms the two others but
what about the difference between the two other models? From
an application perspective, the question is whether this observed
difference is likely to generalize to new data.

To answer this question, we must account for estimation error
for the expected generalization performance from the different
sources of uncontrolled variance in the benchmarks, as listed
above. The first source of error comes from the limited sample
size to test the predictions of the different learning procedures.
Indeed, suppose that the testing set was composed of 100 samples.
In that case, if only 3 more samples had been misclassified by the

support vector machine, the two models would have had the same
performance. A difference of 3 out of 100 could be easily due to
having drawn 3 samples not representative of the population. Other
sources of variance are due to how stable the learning pipeline is:
sensitivity to hyper-parameters, random initialization, etc.

Machine-Learning Evaluation 621

Table 1
Accuracies obtained by different ML models on a binary classification
task. Which model performs best? While it is quite likely that the
convolutional neural network outperforms the two other models, it is less
clear for the two other models. It seems that the support vector machine
results in a slightly higher accuracy but is it due to random fluctuations in
the benchmarks? Will the difference carry over to new data?

Model Accuracy

Logistic regression 0.72

Support vector machine 0.75

Convolutional neural network 0.95

Box 4: Statistical Procedure to Characterize a Learner

1. Perform k runs of:
(a) Randomly splitting out a test set

(b) Training the learning procedure on the train set

(c) Measuring the performance p on the test set

Choose different values of arbitrary parameters (such
as random seeds) on each run, and if enough computing
power, run hyper-parameter optimization each time. This
results in a set of performance measures
ℳ= fm1, :::,mkg.

2. Use all the values {m1, ..., mk} to conclude on the perfor-
mance of the learner:
fidence intervals are given by percentiles of ℳ.

ndard deviation of ℳ can be used to gauge typical
variance of performance, as it requires
performing a smaller number of runs
k than percentiles. Standard error
should not be used (see text).

rner comparison can be done by comparing two such set
of values ℳ and ℳ ′ , typically count-
ing the fractions of values in ℳ that
outperformℳ ′ (without any pairing).
Statistical procedures such as t-test
should not be used (see text).

Con
Sta

Lea

622 Gael Varoquaux and Olivier Colliot

A Simple Statistical Testing

Procedure

Training and testing a prediction pipeline multiple times are needed
to estimate the variability of the performance measure. The simplest
solution is to do this several times while varying the arbitrary
factors, such as split between the train and the test or random
initialization (see Box 4). The resulting set of performance measures
is similar to bootstrap samples and can be used to draw conclusions
on the distribution of performances in a test set. Confidence inter-
vals can be computed using percentiles of this distribution. Two
learning procedures can be compared by counting the number of
times that one outperforms the other: outperforming 75% of the
times is typically considered as a reliable improvement [13]. If the
available computing power enables training learning procedures
only a few times, empirical standard deviations should be used, as
they require less runs to estimate. The improvements brought by a
learning procedure can then be compared to these standard
deviations.

Note these procedures do not perform classic null-hypothesis
significance testing, which is difficult here. In particular, the stan-
dard error across the various runs should not be used instead of the
standard deviation: the standard error is the standard deviation
divided by the number of runs. The number of runs can be made
arbitrarily large given enough compute power, thus making the
standard error arbitrarily small. But in no way does the uncertainty
due to the limited test data vanish. This uncertainty can be quanti-
fied for a fixed test set—see Subheading 3.2, but in repeated splits or
cross-validation, it is difficult to derive confidence intervals because
the runs are not independent [14, 15]. In particular, it is invalid to
use a standard hypothesis test—such as a T-test—across the different
folds of a cross-validation. There are some valid options to perform
hypothesis testing in a cross-validation setting [14, 16], but they
must be implemented with care.

Another reason not to rely on null-hypothesis testing is that
their statistical significance only asserts that the expected
performance—or improvement—is non-zero over a test population
of infinite size. From a practical perspective, we care about mean-
ingful improvements on test sets of finite size, which is related to
the notion of acceptance tests —as opposed to significance—in the
Neyman–Pearson framework of statistical testing [17]. Unlike null-
hypothesis significance testing, it requires choosing a non-zero
difference considered as acceptable, for instance as implicitly set
by considering that a new learning procedure should improve upon
an existing one 75% of the times—far from chance, which lies at
50%.

3.2 Generalization to

an External Population

The Importance of External Validation
The procedures described above characterize the expected

error of a learning procedure applied on a given population. A
related, but different, question is that of characterizing the error

of a given predictive model, typically output by a training machine
learning procedure on a study population. That second question,
related to the notion of external validity, is important for two
reasons. First, it characterizes the specific predictive model that
will be used in practice, “in production.” Indeed, variance in the
learning procedure will lead to arbitrary variation in model perfor-
mance as large as typical improvements achieved by developing
better models [13]. Second, characterizing the model on the target
population may be important, as it may differ markedly from the
study population. Indeed, the techniques in the previous section
rely on splitting the initial dataset in training and testing
(or validation) sets; hence, these different sets are by construction
drawn from the same population and have similar characteristics
(data coming from the same hospital/centers/countries, similar
age/sex,. . .). They only demonstrate the ability of the model to
generalize to new but similar data. To better assess model utility,
guidelines on evaluating clinical prediction models insist on exter-
nal validation using data collected later in time, or in a different
geographical area [18].

Machine-Learning Evaluation 623

Testing whether a prediction model can generalize to dissimilar
data is important as it is all too frequent that the study sample, on
which the model was developed, does not represent the target
population [19]. The target data may, for instance, come from
different hospitals and different countries, be acquired with differ-
ent acquisition devices and protocols or with different sociodemo-
graphic or clinical characteristics than those of the training data. For
instance, it has been shown that the type of MRI scanner can have a
substantial impact on the generalization ability of ML models. To
assess such generalization ability, a common practice is to use one
or several additional datasets for testing, these datasets being
acquired using different protocols and at different sites (Fig. 9).
Most often, these datasets come from other research studies (dif-
ferent from the one used for training). However, research studies
do not usually reflect well clinical routine data. Indeed, in research
studies, the acquisition protocols are often standardized and rigor-
ous data quality control is applied. Moreover, participants may not
be representative of the target population. This can be due to
inclusion/exclusion criteria (for instance, excluding patients with
vascular abnormalities in a study on Alzheimer’s disease) or due to
uncontrolled biases. For instance, participants to research studies
tend to have a higher socioeconomic status than the general popu-
lation. Therefore, it is highly valuable to also perform validation on
clinical routine data, whenever possible, as it is more likely to reflect
“real-life” situations. One should nevertheless be aware that a given
clinical routine dataset may come with specificities that may not
generalize to all settings. For instance, data collected within a
specialized center of a university hospital may substantially differ
from that seen by a general practitioner.

624 Gael Varoquaux and Olivier Colliot

Fig. 9 In order to assess the generalization ability of a model under different conditions (such as data coming
from different hospitals/countries, acquired with different devices and protocols. . .), a common practice is to
use one or several additional datasets that come from other studies than the one used for training

Testing Procedures for External Validation

External validation of a predictive model relies on an indepen-
dent test set and not cross-validation. Statistical testing thus
amounts to derive confidence intervals or null-hypothesis signifi-
cance testing for the metric of interest on this test set, exactly as
when characterizing a diagnostic test [20].

For simple metrics that rely on counting successes, such as
accuracy, sensitivity, PPV, NPV, the sampling distribution can be
deduced from a binomial law. Table 2 gives such confidence inter-
vals for a different set of the test set and different values of the
ground-truth accuracy. These can be easily adapted to other counts
of errors as follows:

Accuracy N is the size of the test set

Sensitivity N is the number of negative samples in the test set

Specif icity N is the number of positive samples in the test set

PPV N is the number of positively classif ied test samples

NPV N is the number of negatively classif ied test samples

We believe it is very important to have in mind the typical
orders of magnitude reported in Table 2. It is not uncommon to
find medical classification studies where the test set size is about a
hundred or less. In such a situation, the uncertainty on the estima-
tion of the performance is very high.

These parametric confidence intervals are easy to compute and
refer to. But actual confidence intervals may be wider if the samples
are not i.i.d. In addition, some interesting metrics, such as AUC
ROC, do not come with such parametric confidence interval. A

general and good option, applicable to all situations, is to approxi-
mate the sampling distribution of the metric of interest by boot-
strapping the test set [8].

Machine-Learning Evaluation 625

Table 2
Binomial confidence intervals on accuracy (95% CI) for different values of
ground-truth accuracy

N 65% 80% 90% 95%

100 [-9.0% 9.0%] [-8.0% 8.0%] [-6.0% 5.0%] [-5.0% 4.0%]

1000 [-3.0% 2.9%] [-2.5% 2.4%] [-1.9% 1.8%] [-1.4% 1.3%]

10,000 [-0.9% 0.9%] [-0.8% 0.8%] [-0.6% 0.6%] [-0.4% 0.4%]

100,000 [-0.3% 0.3%] [-0.2% 0.2%] [-0.2% 0.2%] [-0.1% 0.1%]

Finally, note that all these confidence intervals assume that the
available labels are the ground truth. In practice, medical truth is
difficult to establish, and label error may bias the estimation of error
rates.

When comparing two classifiers, a McNemar’s test is useful to
test whether the observed difference in errors can be explained
solely by sampling noise [21, 22]. The test is based on the number
of samples misclassified by one classifier and not the other, n01 and
vice versa n10. The test statistics is then written (|n01 - n10|- 1)2/
(n01 +n10); it is distributed under the null as a χ2 with 1 degree of
freedom. To compare classifiers scanning the trade-off between
specificity and sensitivity without choosing a specific threshold on
their score, one option is to compare areas under the curve of the
ROC, using the DeLong test [23] or a permutation scheme to
define the null [24].

4 Conclusion

Evaluating machine learning models is crucial. Can we claim that a
new model outperforms an existing one? Is a given model trust-
worthy enough to be “deployed,” making decisions in actual clini-
cal settings? A good answer to these questions requires model
evaluation experiments adapted to the application settings. There
is no one-size-fits-all solution. Multiple performance metrics are
often important, chosen to reflect target population and cost–
benefit trade-offs of decisions, as discussed in Subheading 2. The
prediction model must always be evaluated on unseen “test” data,
but different evaluation goals lead to procedures to choose these
test data. Evaluating a “learner”—a model construction
algorithm—leads to cross-validation, while evaluating the fitness

of a given prediction rule—as output by model fitting—calls for
left-out data representative of the target population. In all settings,
accounting for uncertainty or variance of the performance estimate
is important, for instance, to avoid investing in models that bring
no reliable improvements.

626 Gael Varoquaux and Olivier Colliot

Acknowledgements

This work was supported by the French government under man-
agement of Agence Nationale de la Recherche as part of the “Inves-
tissements d’avenir” program, reference ANR-19-P3IA-0001
(PRAIRIE 3IA Institute), ANR-10-IAIHU-06 (Agence Nationale
de la Recherche-10-IA Institut Hospitalo-Universitaire-6),
ANR-20-CHIA-0026 (LearnI). We thank Sebastian Raschka for
detailed feedback.

Appendix

Odds Ratio and

Diagnostic Tests

Evaluation

Odds and odds ratio are frequently used in biostatistics and epide-
miology, but less in machine learning. Here we give a quick intro-
duction to these topics.

Odds Odds are a measure of likelihood of an outcome: the ratio of the
number of events that produce that outcome to the number that do
not. The odds OðaÞ of an outcome a are simply related to the
probability P(a) of this outcome:

Odds of a OðaÞ= PðaÞ
1-PðaÞ : ð1Þ

In other words, OðaÞ is the number of times the event a would
occur for each occurrence of the opposite event. This intuitive
explanation has led odds to be often used for sports gambling.
For instance, if the odds are 3 (or more specifically in gambling
terminology 3 : 1) for FC Barcelona vs. Real Madrid, it means that
FC Barcelona has a probability of winning against Real Madrid of
75% (PðaÞ= OðaÞ

OðaÞþ1). Coming back to diseases, supposing that only
a minority of the population is affected, if the odds of the disease are
1%, which can be written as 1 : 100, this means that for every
diseased person in the population, there are 100 persons without
it. The prevalence is thus 1

101 =0:99%≈1%. One can see that when
the prevalence is low, it is close to the odds, which is not the case
when prevalence gets higher. This is true in general of probabilities
and odds: when the probability is low, it is close to the odds.

Machine-Learning Evaluation 627

Odds Ratio and Invariance

to Class Sampling

The odds ratio measures the association between two events, a and
b, which we can arbitrarily call respectively outcome and property.
The odds ratio is defined as the ratio of the odds of the outcome in
the group where the property holds to that in the group where the
property does not hold:

Odds ratio between a and b ORða, bÞ= Oðajb=þÞ
Oðajb= - Þ :

ð2Þ
To compute the odds ratio, the problem is fully specified by the
counts in the following contingency table:

ð3Þ

The odds are written: Oðajb=þÞ= nþþ
n-þ

and Oðajb= - Þ= nþ-
n- -

;
hence, the odds ratio reads

ORða, bÞ= nþþ
n-þ

n- -

nþ-
: ð4Þ

Note that this expression is unchanged swapping the role of a and
b; the odds ratio is symmetric, OR(a, b)=OR(b, a).

Invariance to Class Sampling

Suppose we have sampled the population selecting with a frequency
f on the outcome a + , for instance, to oversample the positive
outcome or the positive property.2 In Eq. 4, n++ is replaced by
f n++ and n+- by f n+-; however, the factor f cancels out and the
overall expression of the odds ratio is unchanged. This is a central
property of the odds ratio:

The odds ratio is unchanged by sample selection bias on one of the variables
(a or b).

This property is one reason why odds and odds ratio are so
central to biostatistics and epidemiology: sampling or recruitment
bias is an important concern in these fields. For instance, a case–
control study has a very different prevalence as the target popula-
tion, where the frequency of the disease is typically very low.

2 Indeed, thankfully, many diseases have a prevalence much lower than 50%, e.g., 1%, which is already considered a
frequent disease. Therefore, in order to have a sufficient number of diseased individuals in the sample without
dramatically increasing the cost of the study, diseased participants will be oversampled. One extreme example, but
very common in medical research, is a case–control study where the number of diseased and healthy individuals is
equal.

1-P D P D-

628 Gael Varoquaux and Olivier Colliot

Confusion with Risk Ratio
The odds ratio is often wrongly interpreted as a risk ratio—or
relative risk—which is more easily understood.

The risk ratio is the ratio of the probability of an outcome in a
group where the property holds to the probability of this outcome
in a group where this property does not hold. The risk ratio thus
differs from the odds ratio in that it is expressed for probabilities
and not odds. Even though the values for odds ratio and risk ratio
are often close because, in most diseases being diseased in much less
likely than not, they are fundamentally different because the odds
ratio does not depend on sampling whereas the risk ratio does.

Likelihood Ratio of

Diagnostic Tests or

Classifiers

The likelihood ratio used to characterize diagnostic tests or classi-
fiers is strongly related to the odds ratio introduced above, though
it is not strictly speaking an odds ratio. It is defined as

LR þ =
PðTþ jDþÞ
PðTþ jD- Þ : ð5Þ

Using the expressions in Box 1 and the fact that P(T+ |D+)=1-
P(T -|D+), the LR+ can be written as

LR þ =
Sensitivity

1- Specificity
: ð6Þ

Link to Pre-test and Post-test Odds
We can write this in terms of the contingency table in Eq. 3 (the link
to the confusion matrix in Fig. 1 is given by a=D, b=T and thus
n++=TP, n-+=FP, n+-=FN, n--=TN):

LRþ =
nþþ

nþþ þ nþ-

n-þ þ n- -

n-þ
ð7Þ

=
nþþ
n-þ

PðDþjTþÞ
PðD- jTþÞ=OðDþjTþÞ

n-þ þ n- -

nþþ þ nþ-

PðD- Þ
PðDþÞ =

1
OðDþÞ

ð8Þ

LRþ =
OðD þ jT þÞ

OðDþÞ : ð9Þ

Indeed, OðD þ jTþÞ= PðDþjTþÞ
1-PðDþjTþÞ =

PðDþjTþÞ
PðD- jTþÞ and

OðDþÞ= PðDþÞ = PðDþÞ .ð þÞ ð Þ
O(D+) is called the pre-test odds (the odds of having the

disease in the absence of test information). O(D+ |T+) is called
the post-test odds (the odds of having the disease once the test
result is known).

Machine-Learning Evaluation 629

Equation 9 shows how the LR+ relates pre- and post-test odds,
an important aspect of its practical interpretation.

Invariance to Prevalence
If the prevalence of the population changes, the quantities are
changed as follows: nþþ → f nþþ, nþ- → f nþ- ,
n-þ → ð1- f Þ n-þ, n- - → ð1- f Þ n- - , affecting LR+ as
follows:

LR þ =
f nþþ

ð1- f Þ n-þ
ð1- f Þ n-þ þ ð1- f Þ n- -

f nþþ þ f nþ-
: ð10Þ

The factors f and (1- f) cancel out, and thus the expression of LR
+ is unchanged for a change of the pre-test frequency of the label
(prevalence of the test population). This is alike odds ratio, though
the likelihood ratio is not an odds ratio (and does not share all
properties; for instance, it is not symmetric).

References

1. Pedregosa F, et al (2011) Scikit-learn: machine
learning in python. J Mach Learn Res 12(85):
2825–2830

2. Powers D (2011) Evaluation: from precision,
recall and f-measure to ROC, informedness,
markedness & correlation. J Mach Learn Tech-
nol 2(1):37–63

3. Naeini MP, Cooper G, Hauskrecht M (2015)
Obtaining well calibrated probabilities using
Bayesian binning. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence

4. Vickers AJ, Van Calster B, Steyerberg EW
(2016) Net benefit approaches to the evalua-
tion of prediction models, molecular markers,
and diagnostic tests. BMJ 352:i6

5. Perez-Lebel A, Morvan ML, Varoquaux G
(2023) Beyond calibration: estimating the
grouping loss of modern neural networks. In:
ICLR 2023 Conference

6. Poldrack RA, Huckins G, Varoquaux G (2020)
Establishment of best practices for evidence for
prediction: a review. JAMA Psychiatry 77(5):
534–540

7. Barocas S, Hardt M, Narayanan A (2019) Fair-
ness and machine learning.http://www.
fairmlbook.org

8. Raschka S (2018) Model evaluation, model
selection, and algorithm selection in machine
learning. Preprint arXiv:181112808

9. Varoquaux G, Raamana PR, Engemann DA,
Hoyos-Idrobo A, Schwartz Y, Thirion B
(2017) Assessing and tuning brain decoders:

cross-validation, caveats, and guidelines. Neu-
roImage 145:166–179

10. Varoquaux G (2018) Cross-validation failure:
small sample sizes lead to large error bars. Neu-
roImage 180:68–77

11. Wen J, Thibeau-Sutre E, Diaz-Melo M, Sam-
per-González J, Routier A, Bottani S,
Dormont D, Durrleman S, Burgos N,
Colliot O, et al (2020) Convolutional neural
networks for classification of Alzheimer’s dis-
ease: overview and reproducible evaluation.
Med Image Anal 63:101694

12. Bouthillier X, Laurent C, Vincent P (2019)
Unreproducible research is reproducible. In:
International Conference on Machine
Learning, PMLR, pp 725–734

13. Bouthillier X, Delaunay P, Bronzi M,
Trofimov A, Nichyporuk B, Szeto J, Moham-
madi Sepahvand N, Raff E, Madan K, Voleti V,
et al (2021) Accounting for variance in
machine learning benchmarks. Proc Mach
Learn Syst 3:747–769

14. Bates S, Hastie T, Tibshirani R (2021) Cross-
validation: what does it estimate and how well
does it do it? Preprint arXiv:210400673

15. Bengio Y, Grandvalet Y (2004) No unbiased
estimator of the variance of k-fold cross-valida-
tion. J Mach Learn Res 5(Sep):1089–1105

16. Nadeau C, Bengio Y (2003) Inference for the
generalization error. Mach Learn 52(3):
239–281

http://www.fairmlbook.org
http://www.fairmlbook.org

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

630 Gael Varoquaux and Olivier Colliot

17. Perezgonzalez JD (2015) Fisher, Neyman-
Pearson or NHST? A tutorial for teaching
data testing. Front Psychol 6:223

18. Moons KG, Altman DG, Reitsma JB, Ioannidis
JP, Macaskill P, Steyerberg EW, Vickers AJ,
Ransohoff DF, Collins GS (2015) Transparent
reporting of a multivariable prediction model
for individual prognosis or diagnosis (tripod):
explanation and elaboration. Ann Int Med
162(1):W1–W73

19. Dockès J, Varoquaux G, Poline JB (2021) Pre-
venting dataset shift from breaking machine-
learning biomarkers. GigaScience 10(9):
giab055

20. Shapiro DE (1999) The interpretation of diag-
nostic tests. Statist Methods Med Res 8(2):
113–134

21. Leisenring W, Pepe MS, Longton G (1997) A
marginal regression modelling framework for
evaluating medical diagnostic tests. Statist Med
16(11):1263–1281

22. Dietterich TG (1998) Approximate statistical
tests for comparing supervised classification
learning algorithms. Neural Comput 10(7):
1895–1923

23. DeLong ER, DeLong DM, Clarke-Pearson DL
(1988) Comparing the areas under two or
more correlated receiver operating characteris-
tic curves: a nonparametric approach.
Biometrics 44:837–845

24. Bandos AI, Rockette HE, Gur D (2005) A
permutation test sensitive to differences in
areas for comparing ROC curves from a paired
design. Statist Med 24(18):2873–2893

http://creativecommons.org/licenses/by/4.0/

	Chapter 20: Evaluating Machine Learning Models and Their Diagnostic Value
	1 Introduction
	2 Performance Metrics
	2.1 Metrics for Classification
	2.1.1 Binary Classification
	Box 1: Performance Metrics for Binary Classification
	Simple Summaries and Their Pitfalls
	Summary Metrics for Low Prevalence
	Metrics for Shifts in Prevalence
	Multi-threshold Metrics
	Box 2: Assessing Confidence Scores and Calibration
	Confidence Scores and Calibration
	To Conclude

	2.1.2 Multi-class Classification
	Multilabel Classification

	2.2 Metrics for Regression

	3 Evaluation Strategies
	3.1 Evaluating a Learning Procedure
	3.1.1 Cross-validation
	3.1.2 The Need of an Additional Validation Set
	3.1.3 Various Sources of Data Leakage
	Box 3: Some Common Causes of Data Leakage
	3.1.4 Statistical Testing
	Sources of Variance
	Conclusions Must Account for Benchmarking Variance
	Box 4: Statistical Procedure to Characterize a Learner
	A Simple Statistical Testing Procedure

	3.2 Generalization to an External Population

	4 Conclusion
	Appendix
	Odds Ratio and Diagnostic Tests Evaluation
	Odds
	Odds Ratio and Invariance to Class Sampling
	Likelihood Ratio of Diagnostic Tests or Classifiers

	References

