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Abstract 

Noninvasive brain imaging techniques allow understanding the behavior and macro changes in the brain to 
determine the progress of a disease. However, computational pathology provides a deeper understanding of 
brain disorders at cellular level, able to consolidate a diagnosis and make the bridge between the medical 
image and the omics analysis. In traditional histopathology, histology slides are visually inspected, under the 
microscope, by trained pathologists. This process is time-consuming and labor-intensive; therefore, the 
emergence of computational pathology has triggered great hope to ease this tedious task and make it more 
robust. This chapter focuses on understanding the state-of-the-art machine learning techniques used to 
analyze whole slide images within the context of brain disorders. We present a selective set of remarkable 
machine learning algorithms providing discriminative approaches and quality results on brain disorders. 
These methodologies are applied to different tasks, such as monitoring mechanisms contributing to disease 
progression and patient survival rates, analyzing morphological phenotypes for classification and quantita-
tive assessment of disease, improving clinical care, diagnosing tumor specimens, and intraoperative inter-
pretation. Thanks to the recent progress in machine learning algorithms for high-content image processing, 
computational pathology marks the rise of a new generation of medical discoveries and clinical protocols, 
including in brain disorders. 

Key words Computational pathology, Digital pathology, Whole slide imaging, Machine learning, 
Deep learning, Brain disorders 

1 Introduction 

1.1 What Are We 

Presenting? 

This chapter aims to assist the reader in discovering and under-
standing state-of-the-art machine learning techniques used to ana-
lyze whole slide images (WSI), an essential data type used in 
computational pathology (CP). We are restricting our review to 
brain disorders, classified within four generally accepted groups:

• Brain injuries: caused by blunt trauma and can damage brain 
tissue, neurons, and nerves.

• Brain tumors: can originate directly from the brain (and be 
cancerous or benign) or be due to metastasis (cancer elsewhere 
in the body and spreading to the brain). 
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• Neurodegenerative diseases: the brain and nerves deteriorate over 
time. We include, here, Alzheimer’s disease, Huntington’s dis-
ease, ALS (amyotrophic lateral sclerosis) or Lou Gehrig’s dis-
ease, and Parkinson’s disease.

• Mental disorders: (or mental illness) affect behavior patterns. 
Depression, anxiety, bipolar disorder, PTSD (post-traumatic 
stress disorder), and schizophrenia are common diagnoses. 

In the last decade, there has been exponential growth in the 
application of image processing and artificial intelligence 
(AI) algorithms within digital pathology workflows. The first 
FDA (US Food and Drug Administration) clearance of digital 
pathology for diagnosis protocols was as early as 2017,1 as the 
emergence of innovative deep learning (DL) technologies have 
made this possible, with the requested degree of robustness and 
repeatability. 

Ahmed Serag et al. [1] discuss the translation of AI into clinical 
practice to provide pathologists with new tools to improve diag-
nostic consistency and reduce errors. In the last five years, the 
authors reported an increase in academic publications (over 1000 
articles reported in PubMed) and over $100M invested in start-ups 
building practical AI applications for diagnostics. The three main 
areas of development are (i) network architectures to extract relevant 
features from WSI for classification or segmentation purposes, 
(ii) generative adversarial networks (GANs) to address some of 
the issues present in the preparation and acquisition of WSIs, and 
(iii) unsupervised learning to create labeling tools for precise anno-
tations. Regarding data, many top-tier conference competitions 
have been organized and released annotated datasets to the com-
munity; however, very few of them contain brain tissue samples. 
Those which do are from brain tumor regions obtained during a 
biopsy, making it harder to study other brain disorder categories 
which frequently require postmortem data. 

In [1], the authors also mention seven key challenges in diag-
nostic AI in pathology, listed as follows:

• Access to large well-annotated datasets. Most articles on brain 
disorders use private datasets due to hospital privacy constraints.

• Context switching between workflows refers to a seamless inte-
gration of AI into the pathology workflow.

• Algorithms are slow to run as image sizes are in gigapixels’ order 
and require considerable computational memory. 

1 https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-sys 
tem-digital-pathology.

https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology
https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology
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• Algorithms require configuration, and fully automated 
approaches with high accuracy are difficult to develop.

• Properly defined protocols are needed for training and 
evaluation.

• Algorithms are not properly validated due to a lack of open 
datasets. However, research in data augmentation might help 
in this regard.

• Introduction of intelligence augmentation to describe compu-
tational pathology improvements in diagnostic pathology. AI 
algorithms work best on well-defined domains rather than in 
the context of multiple clinicopathological manifestations 
among a broad range of diseases; however, they provide relevant 
quantitative insights needed for standardization and diagnosis. 

These challenges limit the translation from research to clinical 
diagnostics. We intend to give the readers some insights into the 
core problems behind the issues listed by briefly introducing WSI 
preparation and image acquisition protocols. Besides, we describe 
the state of the art of the proposed methods. 

1.2 Why AI for Brain 

Disorders? 

An important role of CP in brain disorders is related to the study 
and assessment of brain tumors as they cause significant morbidity 
and mortality worldwide, and pathology data is often available. In 
2022 [2], over 25k adults (14,170 men and 10,880 women) in the 
United States will have been diagnosed with primary cancerous 
tumors of the brain and spinal cord. 85% to 90% of all primary 
central nervous system (CNS) tumors (benign and cancerous) are 
located in the brain. Worldwide, over 300k people were diagnosed 
with a primary brain or spinal cord tumor in 2020. This disorder 
does not distinguish age, as nearly 4.2k children under the age of 
15 will have also been diagnosed with brain or CNS tumors in 
2022, in the United States. 

It is estimated that around one billion people have a mental or 
substance use disorder [3]. Some other key figures related to men-
tal disorders worldwide are given by [4]. Globally, an estimated 
264 million people are affected by depression. Bipolar disorder 
affects about 45 million people worldwide. Schizophrenia affects 
20 million people worldwide, and approximately 50 million have 
dementia. In Europe, an estimated 10.5 million people have 
dementia, and this number is expected to increase to 18.7 million 
in 2050 [5]. 

In the neurodegenerative disease group, 50 million people 
worldwide are living with Alzheimer’s and other types of dementia 
[6], Alzheimer’s disease being the underlying cause in 70% of 
people with dementia [5]. Parkinson’s disease affects approximately 
6.2 million people worldwide [7] and represents the second most 
common neurodegenerative disorder. As the incidence of



Alzheimer’s and Parkinson’s diseases rises significantly with age and 
people’s life expectancy has increased, the prevalence of such dis-
orders is set to rise dramatically in the future. For instance, there 
may be nearly 13 million people with Parkinson’s by 2040 [7]. 
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Brain injuries are also the subject of a considerable number of 
incidents. Every year, around 17 million people suffer a stroke 
worldwide, with an estimate of one in four persons having a stroke 
during their lifetime [8]. Besides, stroke is the second cause of 
death worldwide and the first cause of acquired disability [5]. 

These disorders also impact American regions, with over 500k 
deaths reported in 2019, due to neurological conditions. Among 
the conditions analyzed, the most common ones were Alzheimer’s 
disease, Parkinson’s, epilepsy, and multiple sclerosis [9]. 

In the case of brain tumors, treatment and prognosis require 
accurate and expedient histological diagnosis of the patient’s tissue 
samples. Trained pathologists visually inspect histology slides, fol-
lowing a time-consuming and labor-intensive procedure. There-
fore, the emergence of CP has triggered great hope to ease this 
tedious task and make it more robust. Clinical workflows in oncol-
ogy rely on predictive and prognostic molecular biomarkers. How-
ever, the growing number of these complex biomarkers increases 
the cost and the time for decision-making in routine daily practice. 
Available tumor tissue contains an abundance of clinically relevant 
information that is currently not fully exploited, often requiring 
additional diagnostic material. Histopathological images contain 
rich phenotypic information that can be used to monitor underly-
ing mechanisms contributing to disease progression and patient 
survival outcomes. 

In most other brain diseases, histological images are only 
acquired postmortem, and this procedure is far from being system-
atic. Indeed, it depends on the previous agreement of the patient to 
donate their brain for research purposes. Moreover, as mentioned 
above, the inspection of such images is complex and tedious, which 
further explains why it is performed in a minority of cases. Never-
theless, histopathological information is of the utmost importance 
in understanding the pathophysiology of most neurological disor-
ders, and research progress would be impossible without such 
images. Finally, there are a few examples, beyond brain tumors, in 
which a surgical operation leads to an inspection of resected when 
the patient is alive (this is, for instance, the case of pharmacoresis-
tant epilepsy). 

Intraoperative decision-making also relies significantly on his-
tological diagnosis, which is often established when a small speci-
men is sent for immediate interpretation by a neuropathologist. In 
poor-resource settings, access to specialists may be limited, which 
has prompted several groups to develop machine learning 
(ML) algorithms for automated interpretation. Computerized 
analysis of digital pathology images offers the potential to improve



clinical care (e.g., automated assistive diagnosis) and catalyze 
research (e.g., discovering disease subtypes or understanding the 
pathophysiology of a brain disorder). 
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1.3 How Do We 

Present the 

Information? 

In order to understand the potential and limitations of computa-
tional pathology algorithms, one needs to understand the basics 
behind the preparation of tissue samples and the image acquisition 
protocols followed by scanner manufacturers. Therefore, we have 
structured the chapter as follows. 

Subheading 2 presents an overview of tissue preservation tech-
niques and how they may impact the final whole slide image. 
Subheading 3 introduces the notion of digital pathology and 
computational pathology, and its differences. It also develops the 
image acquisition protocol and describes the pyramidal structure of 
the WSI and its benefits. In addition, it discusses the possible 
impact of scanners on image processing algorithms. Subheading 4 
describes some of the state-of-the-art algorithms in artificial intelli-
gence and its subcategories (machine learning and deep learning). 
This section is divided into methods for classifying and segmenting 
structures in WSI, and techniques that leverage deep learning algo-
rithms to extract meaningful features from the WSI and apply them 
to a specific clinical application. Finally, Subheading 5 explores new 
horizons in digital and computational pathology regarding explain-
ability and new microscopic imaging modalities to improve tissue 
visualization and information retrieval. 

2 Understanding Histological Images 

We dedicate this section to understanding the process of acquiring 
histological images. We begin by introducing the two main tissue 
preservation techniques used in neuroscience studies, i.e., the 
routine-FFPE (formalin-fixed paraffin-embedded) preparation 
and the frozen tissue. We describe the process involved in each 
method and the main limitations for obtaining an appropriate 
histopathological image for analysis. Finally, we present the main 
procedures used in anatomopathology, based on such tissue 
preparations. 

2.1 Formalin-Fixed 

Paraffin-Embedded 

Tissue 

FFPE is a technique used for preserving biopsy specimens for 
clinical examination, diagnostic, experimental research, and drug 
development. A correct histological analysis of tissue morphology 
and biomarker localization in tissue samples will hinge on the ability 
to achieve high-quality preparation of tissue samples, which usually 
requires three critical stages: fixation, processing (also known as 
pre-embedding), and embedding. 

Fixation is the process that allows the preservation of the tissue 
architecture (i.e., its cellular components, extracellular material, 
and molecular elements). Histotechnologists perform this



procedure right after removing the tissue, in case of surgical pathol-
ogy, or soon after death, during autopsy. Time is essential in pre-
venting the autolysis and necrosis of excised tissues and preserving 
their antigenicity. Five categories of fixatives are used in this stage: 
aldehydes, mercurials, alcohols, oxidizing agents, and picrates. The 
most common fixative used for imaging purposes is formaldehyde 
(also known as formalin), included in the aldehyde group. Fixation 
protocols are not standardized and vary according to the type of 
tissue and the histologic details needed to analyze it. The variability 
in this stage induces the possibility for several factors to affect this 
process, such as buffering (pH regulation), penetration (also 
depending on tissue thickness), volume (the usual ratio is 10:1), 
temperature, fixative concentration (10% solution is typical), and 
fixation time. These factors impact the quality of the scanned 
image, since stains used to highlight specific tissue properties may 
not react as expected. 
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After fixation, the tissue undergoes a processing stage necessary 
to create a paraffin embedding, which allows histotechnologists to 
cut the tissue into microscopic slides for further examination. The 
processing involves removing all water from the tissue using a series 
of alcohols and then clearing the tissue, which consists of removing 
the dehydrator with a miscible substance with the paraffin. Nowa-
days, tissue processors can automate this stage, by reducing inter-
expert variability. 

Dehydration and clearing will leave the tissue ready for the 
technician to create the embedded paraffin blocks. Depending on 
the tissue, these embeddings must be correctly aligned and ori-
ented, determining which tissue section or cut is studied. Also, the 
embedding parameters (e.g., embedding temperature or peculiar 
chemicals involved) may defer from the norm for unique studies, so 
the research entity and the laboratory making the acquisition need 
to define them beforehand. Figure 1 shows a paraffin embedding 
cassette where the FFPE tissue samples can be stored even at room 
temperature for long periods. 

Fig. 1 Paraffin cassettes
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These embeddings undergo two more stages before being 
scanned: sectioning and staining. These procedures are discussed 
in the last section as they are no longer related to tissue preserva-
tion; instead, they are part of the tissue preparation stages before 
imaging. 

2.2 Frozen 

Histological Tissue 

Pathologists often use this tissue preservation method during sur-
gical procedures where a rapid diagnosis of a pathological process is 
needed (extemporaneous preparation). In fact, frozen tissue pro-
duces the fastest stainable sections, although, compared to FPPE 
tissue, its morphological properties are not as good. 

Frozen tissue (technically referred to as cryosection) is created 
by submerging the fresh tissue sample into cold liquid (e.g., 
pre-cooled isopentane in liquid nitrogen) or by applying a tech-
nique called flash freezing, which uses liquid nitrogen directly. As in 
FFPE, the tissue needs to be embedded in a medium to fix it to a 
chuck (i.e., specimen holder) in an optimal position for microscopic 
analysis. However, unlike FFPE tissue, no fixation or 
pre-embedding processes are needed for preservation. 

For embedding, technicians use OCT (optimal cutting temper-
ature compound), a viscous aqueous solution of polyvinyl alcohol 
and polyethylene glycol designed to freeze, providing the ideal 
support for cutting the cryosections in the cryostat (microtome 
under cold temperature). Different embedding approaches exist 
depending on the tissue orientation, precision and speed of the 
process, tissue wastage, and the presence of freeze artifacts in the 
resulting image. Stephen R. Peters describes these procedures and 
other important considerations needed to prepare tissue samples 
using the frozen technique [10]. 

Frozen tissue preservation relies on storing the embeddings at 
low temperatures. Therefore, the tissue will degrade if the cold 
chain breaks due to tissue sample mishandling. However, as it 
better preserves the tissue’s molecular genetic material, it is fre-
quently used in sequencing analysis and immunohistochemistry 
(IHC). 

Other factors that affect the tissue quality and, therefore, the 
scanned images are the formation of ice crystals and the thickness of 
the sections. Ice crystals form when the tissue is not frozen rapidly 
enough, and it may negatively affect the tissue structure and, there-
fore, its morphological characteristics. On the other hand, frozen 
sections are often thicker than FFPE sections increasing the poten-
tial for lower resolution at higher magnifications and poorer 
images. 

2.3 Tissue 

Preparation 

We described the main pipeline to extract and preserve tissue 
samples for further analysis. Although the techniques described 
above can also be used for molecular and protein analysis (especially 
the frozen sections), we now focus only on the image pipeline by



describing the slide preparation for scanning and the potential 
artifacts observed in the acquired images. 
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Once the tissue embeddings are obtained, either by FFPE or 
frozen technique, they are prepared for viewing under a microscope 
or scanner. The tissue blocks are cut, mounted on glass slides, and 
stained with pigments (e.g., hematoxylin and eosin [H&E], saf-
fron, or molecular biomarkers) to enhance the contrast and high-
light specific cellular structures under the microscope. 

Cutting the embeddings involves using a microtome to cut 
very thin tissue sections, later placed on the slide. The thickness 
of these sections is usually in the range of 4–20 microns. It will 
depend on the microscopy technique used for image acquisition 
and the experiment parameters. Special diamond knives are needed 
to get thinner sections, increasing the price of the microtome 
employed. If we use frozen embeddings, a cryostat keeps the envir-
onment’s temperature low, avoiding tissue degradation. 

Once on the slide, the tissue is heated to adhere to the glass and 
avoid wrinkles. If warming the tissue damages some of its properties 
(especially for immunohistochemistry), glue-coated slides can be 
used instead. For cryosections, pathologists often prefer to add a 
fixation stage to resemble the readings of an FFPE tissue section. 
This immediate fixation is achieved using several chemicals, includ-
ing ethanol, methanol, formalin, acetone, or a 
combination. S. Peters describes the differences in the image qual-
ity based on these fixatives, as well as the proposed protocol for 
cutting and staining frozen sections [10]. For FFPE sections, 
Zhang and Xiong [11] describe neural histology’s cutting, mount-
ing, and staining methods. Protocols suggested by the authors are 
valuable guidelines for histotechnologists as tissue usually folds or 
tears, and bubbles form when cutting the embeddings. Minimizing 
these issues is essential to have good-quality images and accurate 
quantification of histological results. 

Staining is the last process applied to the tissue before being 
imaged. Staining agents do not react with the embedding chemicals 
used to preserve the tissue sample; therefore, the tissue section 
needs to be cleaned and dried beforehand (e.g., eliminating all 
remains of paraffin wax used in the embedding). In [12], the 
authors present a review of the development of stains, techniques, 
and applications throughout time. One of the most common stains 
used in histopathology is hematoxylin and eosin (H&E). This agent 
highlights cell nuclei with a purple-blue color and the extracellular 
matrix and cytoplasm with the characteristic pink. Other structures 
in the tissue will show different hues, shades, and combinations of 
these colors. Figure 2 shows an H&E-stained human brainstem 
tissue and specific structures found on it. 

Other staining agents can be used depending on the structure 
we would like to study or the clinical procedure. For instance, the 
toluidine blue stain is frequently used for intraoperative



consultation. Frozen sections are usually stained with this agent as 
it reacts almost instantly with the tissue. However, one disadvan-
tage is that it only presents shades of blue and purple, so there is 
considerably less differential staining of the tissue structures [10]. 
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White matter tracts (axons) 

Small nuclei (oligodendrocytes) 

Blood vessel wall 

Red blood cells (erythrocytes) in blood vessels 

Large nuclei with darkly stained nucleolus (neurons) 

Fig. 2 H&E-stained WSI from human brainstem tissue preserved using FFPE. Relevant structures were 
annotated by expert pathologist. Abbreviations. H&E: hematoxylin and eosin. FFPE: formalin-fixed paraffin-
embedded. WSI: whole slide image 

For brain histopathology, other biomarkers are also available. 
For instance, the cresyl violet (or Nissl staining) is commonly used 
to identify the neuronal structure in the brain and spinal cord tissue



[13]. Also, the Golgi method, which uses a silver staining tech-
nique, is used for observing neurons under the microscope 
[11]. Studies for Alzheimer’s disease also frequently use ALZ50 
and AT8 antibodies to reveal phosphorylated tau pathology using a 
standardized immunohistochemistry protocol [14–16]. Figure 3 
shows the difference between ALZ50 and AT8 biomarkers and 
tau pathologies found in the tissue. 
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Fig. 3 [Top left] ALZ50 antibody used to discover compacted structures (tau pathologies). Below the WSI is an 
example of a neurofibrillary tangle (left) and a neuritic plaque (right) stained with ALZ50 antibody. [Top right] 
AT8 antibody, the most widely used in clinics, helps to discover all structures in a WSI. Below the WSI, there is 
an example of a neurofibrillary tangle (left) and a neuritic plaque stained with AT8 antibody (right). 
Abbreviation. WSI: whole slide image 

Having the slide stained is the last stage to prepare for studying 
microscopic structures of diseased or abnormal tissues. Considering 
the number of people involved in these processes (pathologists, 
pathology assistants, histotechnologists, tissue technicians, and 
trained repository managing personnel) and the precision of each 
stage, standardizing certain practices to create valuable slides for 
further analysis is needed. 

Eiseman et al. [17] reported a list of best practices for biospeci-
men collection, processing, annotation, storage, and distribution. 
The proposal aims to set guidelines for managing large biospecimen 
banks containing the tissue sample embeddings excised from dif-
ferent organs with different pathologies and demographic 
distributions. 

More specific standardized procedures for tissue sampling and 
processing have also been reported. For instance, in 2012, the 
Society of Toxicologic Pathology charged a Nervous System Sam-
pling Working Group with devising recommended practices to



routinely screen the central nervous system (CNS) and peripheral 
nervous system (PNS) during nonclinical general toxicity studies. 
The authors proposed a series of approaches and recommendations 
for tissue fixation, collection, trimming, processing, histopathology 
examination, and reporting [18]. Zhang J. et al. also address the 
process of tissue preparation, sectioning, and staining but focus 
only on brain tissue [11]. Although these recommendations aim 
to standardize specific techniques among different laboratories, 
they are usually imprecise and approximate, leaving the final deci-
sion to the specialists based on the tissue handled. 
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Due to this lack of automation during surgical removal, fixa-
tion, tissue processing, embedding, microtomy, staining, and 
mounting procedures, several artifacts can impact the quality of 
the image and the results of the analysis. A review of these artifacts 
is presented in [19]. The authors review the causes of the most 
frequent artifacts, how to identify them, and propose some ideas to 
prevent them from interfering with the diagnosis of lesions. For 
better understanding and following the tissue preparation and 
image acquisition procedure, the authors proposed a classification 
of eight classes: prefixation artifacts, fixation artifacts, artifacts 
related to bone tissue, tissue-processing artifacts, artifacts related 
to microtomy, artifacts related to floatation and mounting, staining 
artifacts, and mounting artifacts. Figure 4 shows some of them. 

Fig. 4 [Top left] Folding artifact (floatation and mounting-related artifact), [Top right] Marking fixation process 
(fixation artifact), [Bottom left] Breaking artifact (microtome-related artifact), [Bottom right] Overlaying tissue 
(mounting artifact)
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3 Histopathological Image Analysis 

This section aims to better understand the role that digital pathol-
ogy plays in the analysis of complex and large amounts of informa-
tion obtained from tissue specimens. As an additional option to 
incorporate more images with higher throughput, whole slide 
image scanners are briefly discussed. Therefore, we must discuss 
the DICOM standard used in medicine to digitally represent the 
images and, in this case, the tissue samples. We then focus on 
computational pathology, which is the analysis of the reconstructed 
whole slide images using different pattern recognition techniques 
such as machine learning (including deep learning) algorithms. 
This section contains some extractions from Jimeénez’s thesis 
work [20]. 

3.1 Digital Pathology Digital systems were introduced to the histopathological examina-
tion in order to deal with complex and vast amounts of information 
obtained from tissue specimens. Digital images were originally 
generated by mounting a camera on the microscope. The static 
pictures captured only reflected a small region of the glass slide, and 
the reconstruction of the whole glass slide was not frequently 
attempted due to its complexity and the fact that it is time-
consuming. However, precision in the development of mechanical 
systems has made possible the construction of whole slide digital 
scanners. Garcia et al. [21] reviewed a series of mechanical and 
software systems used in the construction of such devices. The 
stored high-resolution images allow pathologists to view, manage, 
and analyze the digitized tissue on a computer monitor, similar to 
under an optical microscope but with additional digital tools to 
improve the diagnosis process. 

WSI technology, also referred to as virtual microscopy, has 
proven to be helpful in a wide variety of applications in pathology 
(e.g., image archiving, telepathology, image analysis). In essence, a 
WSI scanner operation principle consists of moving the glass slide a 
small distance every time a picture is taken to capture the entire 
tissue sample. Every WSI scanner has six components: (a) a micro-
scope with lens objectives, (b) a light source (bright field and/or 
fluorescent), (c) robotics to load and move glass slides around, 
(d) one or more digital cameras for capture, (e) a computer, and 
(f) software to manipulate, manage, and view digital slides 
[22]. The hardware and software used for these six components 
will determine the key features to analyze when choosing a scanner. 
Some research articles have compared the hardware and software 
capabilities of different scanners in the market. For instance, in 
[22], Farahani et al. compared 11 WSI scanners from different 
manufacturers regarding imaging modality, slide capacity, scan 
speed, image magnification, image resolution, digital slide format,



multilayer support, and special features their hardware and software 
may offer. This study showed that robotics and hardware used in a 
WSI scanner are currently state of the art and almost standard in 
every device. Software, on the other hand, has some ground for 
further development. A similar study by Garcia et al. [21] reviewed 
31 digital slide systems comparing the same characteristics in Far-
ahani’s work. In addition, the authors classified the devices into 
digital microscopes (WSI) for virtual slide creation and diagnosis-
aided systems for image analysis and telepathology. Automated 
microscopes were also included in the second group as they are 
the baseline for clinical applications. 
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3.2 Whole Slide 

Image Structure 

The Digital Imaging and Communications in Medicine (DICOM) 
standard was adopted to store WSI digital slides into commercially 
available PACS (picture archiving and communication system) and 
facilitate the transition to digital pathology in clinics and labora-
tories. Due to the WSI dimension and size, a new pyramidal 
approach for data organization and access was proposed by the 
DICOM Standards Committee in [23]. 

A typical digitalization of a 20 mm ×15 mm sample using a 
resolution of 0.25 μm/pixel, also referred to as 40× magnification, 
will generate an image of approximately 80, 000× 60, 000 pixels. 
Considering a 24-bit color resolution, the digitized image size is 
about 15 GB. Data size might even go one order of magnitude 
higher if the scanner is configured to a higher resolution (e.g., 80 ×, 
100×), Z planes are used, or additional spectral bands are also 
digitized. In any case, conventional storage and access to these 
images will demand excessive computational resources to be imple-
mented into commercial systems. Figure 5 describes the traditional 
approach (i.e., single frame organization), which stores the data in 
rows that extend across the entire image. This row-major approach 
has the disadvantage of loading unnecessary pixels into memory, 
especially if we want to visualize a small region of interest. 

Other types of organizations have also been studied. Figure 6 
describes the storage of pixels in tiles, which decreases the compu-
tational time for visualization and manipulation of WSI by loading 
only the subset of pixels needed into memory. Although this 
approach allows faster access and rapid visualization of the WSI, it 
fails when dealing with different magnifications of the images, as is 
the case in WSI scanners. Figure 7 depicts the issues with rapid 
zooming of WSI. Besides loading a larger subset of pixels into 
memory, algorithms to perform the down-sampling of the image 
are time-consuming. At the limit, to render a low-resolution 
thumbnail of the entire image, all the data scanned must be 
accessed and processed [23]. Stacking precomputed 
low-resolution versions of the original image was proposed in 
order to overcome the zooming problem. Figure 8 describes the 
pyramidal structure used to store different down-sampled versions
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Fig. 5 Single frame organization of whole slide images 

Fig. 6 Tiled image organization of whole slide images. Tiles’ size can range from 240 × 240 pixels up to 4096 
× 4096 pixels



of the original image. The bottom of the pyramid corresponds to 
the highest resolution and goes up to the thumbnail (lowest reso-
lution) image. For further efficiency, tiling and pyramidal methods 
are combined to facilitate rapid retrieval of arbitrary subregions of 
the image as well as access to different resolutions. As depicted in 
Fig. 8, each image in the pyramid is stored as a series of tiles. In 
addition, the baseline image tiles can contain different colors or 
z-planes if multispectral images are acquired or if tracking variations 
in the specimen thickness are needed. This combined approach can 
be easily integrated into a web architecture such as the one pre-
sented by Lajara et al. [24] as tiles of the current user’s viewport can 
be cached without high memory impact.
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Fig. 7 Rapid zooming issue when accessing lower-resolution images: large amount of data need to be loaded 
into memory. In this example, the image size at the highest resolution (221 nm/pixels) is 82,432 × 80,640 
pixels 

As mentioned in previous paragraphs, WSI can occupy several 
terabytes of memory due to the data structure. Depending on the 
application, lossless or lossy compression algorithms can be applied. 
Lossless compression typically yields a 3X-5X reduction in size; 
meanwhile, lossy compression techniques such as JPEG and 
JPEG2000 can achieve from 15X-20X up to 30X-50X reduction, 
respectively [23]. Due to no standardization of WSI file formats,



scan manufacturers may also develop their proprietary compression 
algorithms based on JPEG and JPEG2000 standards. Commercial 
WSI formats have a mean default compression value ranging from 
13X to 27X. Although the size of WSI files is considerably reduced, 
efficient data storage was not the main issue when designing WSI 
formats for more than 10 years. In [25], Helin et al. addressed this 
issue and proposed an optimization to the JPEG2000 format, 
which yields up to 176X compression. Although no computational 
time has been reported in the aforementioned study, this break-
through allows for efficient transmission of data through systems 
relying on Internet communication protocols. 
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Fig. 8 Pyramidal organization of whole slide images. In this example, the image size at the highest resolution 
(221 nm/pixels) is 82,432 × 80,640 pixels. The compressed (JPEG) file size is 2.22 GB, whereas the 
uncompressed version is 18.57 GB 

3.3 Computational 

Pathology 

Computational pathology is a term that refers to the integration of 
WSI technology and image analysis tools in order to perform tasks 
that were too cumbersome or even impossible to undertake manu-
ally. Image processing algorithms have evolved, yielding enough 
precision to be considered in clinical applications, such is the case 
for surgical pathology using frozen samples reported by Bauer et al. 
in [26]. Other examples mentioned in [22] include morphological 
analysis to quantitatively measure histological structures [27], auto-
mated selection of regions of interest such as areas of most active 
proliferative rate [28], and automated grading of tumors 
[29]. Moreover, educational activities have also benefited from 
the development of computational pathology. Virtual tutoring,



online medical examinations, performance improvement programs, 
and even interactive illustrations in articles and books are being 
implemented, thanks to this technology [22]. 
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In order to validate a WSI scanner for clinical use (diagnosis 
purposes), several tests are conducted following the guidelines 
developed by the College of American Pathologists (CAP) 
[30]. On average, reported discrepancies between digital slides 
and glass slides are in the range of 1–5%. However, even glass-to-
glass slide comparative studies can yield discrepancies due to 
observer variability, and increasing case difficulty. 

Although several studies in the medical community have 
reported using WSI scanners to perform the analysis of tissue 
samples, pathologists remain reluctant to adopt this technology in 
their daily practice. Lack of training, limiting technology, short-
comings in scanning all slides, cost of equipment, and regulatory 
barriers have been reported as the principal issues [22]. In fact, it 
was until early 2017 that the first WSI scanner was approved by the 
FDA and released to the market [31]. Nevertheless, WSI technol-
ogy represents a milestone in modern pathology, having the poten-
tial to enhance the practice of pathology by introducing new tools 
which help pathologists provide a more accurate diagnosis based on 
quantitative information. Besides, this technology is also a bridge 
for bringing omics closer to routine histopathology toward future 
breakthroughs as spatial transcriptomics. 

4 Methods in Brain Computational Pathology 

This section is dedicated to different machine learning and deep 
learning methodologies to analyze brain tissue samples. We 
describe the technology by focusing on how this is applied (i.e., at 
the WSI or the patch level), the medical task associated with it, the 
dataset used, the core structure/architecture of the algorithms, and 
the significant results. 

We begin by describing the general challenges in WSI analysis. 
Then we move on to deep learning methods concerning only WSI 
analysis, and we finalize with machine learning and deep learning 
applications for brain disorders focusing on the disease rather than 
the processing of the WSI. In addition, as in the primary biomedical 
areas, data annotation is a vital issue in computational pathology, 
generating accurate and robust results. Therefore, some new tech-
niques used to create reliable annotations—based on a seed-
annotated dataset—will be presented and discussed. 

4.1 Challenges in 

WSI Analysis Using ML 

Successful application of machine learning algorithms to WSIs can 
improve—or even surpass—the accuracy, reproducibility, and 
objectivity of current clinical approaches and propel the creation 
of new clinical tools providing new insights on various pathologies



[32]. Due to the characteristics of a whole slide image and the 
acquisition process described in the sections above, researchers 
usually face two nontrivial challenges related to the visual under-
standing of the WSIs and the inability of hardware and software to 
facilitate learning from such high-dimensional images. 
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Regarding the first challenge, the issue relies on the lack of 
generalization of ML techniques due to image artifacts and color 
variability in staining. Imaging artifacts directly result from the 
tissue section processing errors and the hardware (scanners) used 
to digitize the slide. The uneven illumination, focusing, and image 
tiling are a few imaging artifacts present in the WSI, being the first 
the most relevant and studied as it is challenging for an algorithm to 
extract useful features from some regions of the scanned tissue. It 
gets even worse when staining artifacts such as stain variability are 
also present. 

To address this problem, we find several algorithms for color 
normalization in the literature. Macenko [33], Vahadane [34], and 
Reinhard [35] algorithms are classical algorithms for color normal-
ization implementing image processing techniques such as histo-
gram normalization, color space transformations, color 
deconvolution (color unmixing), reference color density maps, or 
histogram matching. Extensions from these methods are also 
reported. For instance, Magee et al. [36] proposed two approaches 
to extend the Reinhard method: a multimodal linear normalization 
in the Lab color space and normalization in a representation space 
using stain-specific color deconvolution. 

The use of machine learning techniques, specifically deep con-
volutional neural networks, has also been studied for color normal-
ization. In [37], the authors proposed the StainNet for stain 
normalization. The framework consists of a GAN2 (teacher net-
work) trained to learn the mapping relationship between a source 
and target image, and an FCNN3 (student network) able to transfer 
the mapping relationship of the GAN based on image content into 
a mapping relationship based on pixel values. A similar approach 
using cycle-consistent GANs was also proposed for the normaliza-
tion of H&E-stained WSIs [38]. In the last case, synthetically 
generated images capture the representative variability in the color 
space of the WSI, enabling the architecture to transfer any color 
information from a new source image into a target color space. 

On the other hand, the second challenge related to the high 
dimensionality of WSIs is addressed in two ways: processing using 
patch-level or slide-level annotations. Dimitriou N. et al. reported 
an overview of the literature for both approaches in [32]. For 
patch-based annotations, the authors reported patch sizes ranging

2 GAN: generative adversarial networks. 
3 FCNN: fully convolutional neural network.



from 32 × 32 pixels up to 10,000 × 10,000 pixels and a frequent 
value of 256 × 256 pixels. Patches are generated and processed by 
sequentially dividing the WSI into tiles, which demand higher 
computational resources, by random sampling, leading to class 
imbalance issues, or by following a guided sampling based on 
pixel annotations. Patch-level annotations usually contain pixel-
level labels. Frequently approaches using these annotations focus 
on the segmentation of morphological structures in patches rather 
than the classification of the entire WSI. In [39], the authors 
studied the potential of semantic architectures such as the U-Net 
and compared it to classical CNN approaches for pixel-wise classifi-
cation. Another approach known as HistoSegNet [40] implements 
a combination of visual attention maps (or activation maps) using 
the Grad-CAM algorithm and CNN for semantic segmentation of 
WSI. In addition, several methods are summarized in [41, 42] 
using graph deep neural networks to detect and segment morpho-
logical structures in WSIs.
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Pixel labeling at high resolution is a time-demanding task and is 
prone to inter- and intra-expert variabilities impacting the learning 
process of machine learning algorithms. Therefore, despite the 
lower granularity of labeling, several studies have shown promising 
results when working with slide-based annotations. 

With no available information about the pixel label, most algo-
rithms usually aim to identify patches (or regions of interest in the 
WSI) that can collectively or independently predict the classification 
of the WSI. These techniques often rely on multiple instance 
learning, unsupervised learning, reinforcement learning, transfer 
learning, or a combination thereof [32]. Tellez et al. [43] proposed 
a two-step method for gigapixel histopathology analysis based on 
an unsupervised neural network compression algorithm to extract 
latent representations of patches and a CNN to predict image-level 
labels from those compressed images. In [44], the authors pro-
posed a four-stage methodology for survival prediction based on 
randomly sampled patches from different patients’ slides. They 
used PCA to reduce the features’ space dimension prior to the 
K-means clustering process to group patches according to their 
phenotype. Then, a deep convolutional network (DeepConvSurv) 
is used to determine which patches are relevant for the aggregation 
and final survival score. Qaiser et al. [45] proposed a model mim-
icking the histopathologist practice using recurrent neural net-
works (RNN) and CNN. In their proposal, they treat images as 
the environment and the RNN+CNN as the agent acting as a 
decision-maker (same as the histopathologists). The agent then 
looks at high-level tissue components (low magnification) and 
evaluates different regions of interest at low-level magnification, 
storing relevant morphological features into memory. Similarly, 
Momeni et al. [46] suggested using deep recurrent attention mod-
els (DRAMs) and CNN to create an attention-based architecture to



process large input patches and locate discriminatory regions more 
efficiently. This last approach needs, however, further validation as 
results are not conclusive and have not been accepted by the scien-
tific community yet. 
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Relevant features for disease analysis, diagnosis, or patient 
stratification can be extracted from individual patches by looking 
into cell characteristics or morphology; however, higher structural 
information, such as the shape or extent of a tumor, can only be 
captured in more extensive regions. Some approaches to processing 
multiple magnification levels of a WSI are reported in [47– 
51]. They involve leveraging the pyramidal structure of WSI to 
access features from different resolutions and model spatial correla-
tions between patches. 

All the studies cited so far have no specific domain of applica-
tion. Most of them were trained and tested using synthetic or 
public datasets containing tissue pathologies from different body 
areas. Therefore, most of the approaches can extend to different 
pathologies and diseases. In the following subsections, however, we 
will focus only on specific brain disorder methodologies. 

4.2 DL Algorithms for 

Brain WSI Analysis 

In recent times, deep-learning-based methods have shown 
promising results in digital pathology [52]. Unfortunately, only a 
few public datasets contain WSI of brain tissue, and most of them 
only contain brain tumors. In addition, most of them are annotated 
at the slide level, making the semantic segmentation of structures 
more challenging. Independently of the task (i.e., detection/classi-
fication or segmentation) and the application in brain disorders, we 
will explore the main ideas behind the methodologies proposed in 
the literature. 

For the analysis of benign or cancerous pathologies in brain 
tissue, tumor cell nuclei are of significant interest. The usual frame-
work for analyzing such pathologies was reported in [53] and used 
the WSI of diffuse glioma. The method first segments the regions 
of interest by applying classical image processing techniques such as 
mathematical morphology and thresholding. Then, several hand-
crafted features such as nuclear morphometry, region texture, 
intensity, and gradient statistics were computed and inputted to a 
nuclei classifier. Although such an approach—using quadratic dis-
criminant analysis and maximum a posteriori (MAP) as a classifica-
tion mechanism—reported an overall accuracy of 87.43%, it falls 
short compared to CNN, which relies on automated feature extrac-
tions using convolutions rather than on handcrafted features. Xing 
et al. [54] proposed an automatic learning-based framework for 
robust nucleus segmentation. The method begins by dividing the 
image into small regions using a sliding window technique. These 
patches are then fed to a CNN to output probability maps and 
generate initial contours for the nuclei using a region merging 
algorithm. The correct nucleus segmentation is obtained by



alternating dictionary-based shape deformation and inference. This 
method outperformed classical image processing algorithms with 
promising results (mean Dice similarity coefficient of 0.85 and 
detection F1 score of 0.77 computed using gold-standard regions 
within 15 pixels for every nucleus center) using CNN-based fea-
tures over classical ones. 
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Following a similar approach, Xu et al. [55] reported the use of 
deep convolutional activation features for brain tumor classification 
and segmentation. The authors used a pre-trained AlexNet CNN 
[56] on the ImageNet dataset to extract patch features from the last 
hidden layer of the architecture. Features are then ranked based on 
the difference between the two classes of interest, and the top 
100 are finally input to an SVM for classification. For the segmen-
tation of necrotic tissue, an additional step involving probability 
mappings from SVM confidence scores and morphological 
smoothing is applied. Other approaches leveraging the use of 
CNN-based features for glioma are presented in [47, 57]. The 
experiments reported achieved a maximum accuracy of 97.5% for 
classification and 84% for segmentation. Although these results 
seemed promising, additional tests with different patch sizes in 
[47] suggested that the method’s performance is data-dependent 
as numbers increase when larger patches, meaning more context 
information, are used. 

With the improvement of CNN architectures for natural 
images, more studies are also leveraging transfer learning to pro-
pose end-to-end methodologies for analyzing brain tumors. Ker 
et al. [58] used a pre-trained Google Inception V3 network to 
classify brain histology specimens into normal, low-grade glioma 
(LGG), or high-grade glioma (HGG). Meanwhile, Truong et al. 
[59] reported several optimization schemes for a pre-trained 
ResNet-18 for brain tumor grading. The authors also proposed 
an explainability tool base on tile-probability maps to aid patholo-
gists in analyzing tumor heterogeneity. A summary of DL 
approaches used in brain WSI processing, alongside other brain 
imaging modalities such as MRI or CT, is reported by Zadeh 
et al. in [60]. 

Let us now focus on studies dealing with tau pathology, which 
is a hallmark of Alzheimer’s disease. In [61], three different DL 
models were used to segment tau aggregates (tangles) and nuclei in 
postmortem brain WSIs of patients with Alzheimer’s disease. The 
three models included an FCNN, U-Net [62], and SegNet [63], 
with SegNet achieving the highest accuracy in terms of the 
intersection-over-union index. In [64], an FCNN was used on a 
dataset of 22 WSIs for semantic segmentation of tangle objects 
from postmortem brain WSIs. Their model is able to segment 
tangles of varying morphologies with high accuracy under diverse 
staining intensities. An FCNN model is also used in [65] to classify 
morphologies of tau protein aggregates in the gray and white



matter regions from 37 WSIs representing multiple degenerative 
diseases. In [14], tau aggregate analysis is processed on a dataset of 
six postmortem brain WSIs with a combined classification-
segmentation framework which achieved an F1 score of 81.3% and 
75.8% on detection and segmentation tasks, respectively. In [16], 
neuritic plaques have been processed from eight human brain WSIs 
from the frontal lobe, stained with AT8 antibody (majorly used in 
clinics, helping to highlight most of the relevant structures). The 
impact of the staining (ALZ50 [14] vs. AT8 [16]), the normaliza-
tion method, the slide scanner, the context, and the DL traceabil-
ity/explainability have been studied, and a comparison with 
commercial software has been made. A baseline of 0.72 for the 
Dice score has been reported for plaque segmentation, reaching 
0.75 using an attention U-Net. 
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Several domains in DL-based histopathological analysis of AD 
tauopathy remain unexplored. Firstly, even if, as discussed, a first 
work concerning neuritic plaques has been recently published by 
our team in [16], most of the existing works have used DL for 
segmentation of tangles rather than plaques, as the latter are harder 
to identify against the background gray matter due to their diffuse/ 
sparse appearance. Secondly, annotations of whole slide images are 
frequently affected by errors by human annotators. In such cases, a 
DL preliminary model may be trained using weakly annotated data 
and used to assist the expert in refining annotations. Thirdly, con-
temporary tau segmentation studies do not consider context infor-
mation. This is important in segmenting plaques from brain WSIs 
as these occur as sparse objects against an extended background of 
gray matter. Finally, DL models with explainability features have 
not yet been applied in tau segmentation from WSIs. This is a 
critical requirement for DL models used in clinical applications 
[66] [67]. The DL models should not only be able to precisely 
identify regions of interest, but clinicians and general users need to 
know the discriminative image features the model identifies as 
influencing their decisions. 

4.3 Applications of 

Brain Computational 

Pathology 

Digital systems were introduced to the histopathological examina-
tion to deal with complex and vast amounts of information 
obtained from tissue specimens. Whole slide imaging technology 
has proven to be helpful in a wide variety of applications in pathol-
ogy (e.g., image archiving, telepathology, image analysis), especially 
when combining this imaging technique with powerful machine 
learning algorithms (i.e., computational pathology). 

In this section, we will describe some applications of computa-
tional pathology for the analysis of brain tissue. Most methods 
focus on tumor analysis and cancer; however, we also find interest-
ing results in clinical applications, drug trials [68], and neurode-
generative diseases. The authors cited in this section aim to 
understand brain disorders and use deep learning algorithms to 
extract relevant information from WSI.
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In brain tumor research, an early survival study for brain glioma 
is presented in [44]. The approach has been previously described 
above. In brief, it is a four-stage methodology based on randomly 
sampled patches from different patients’ slides. They perform 
dimensionality reduction using PCA and then K-means clustering 
to group patches according to their phenotype. Then, the patches 
are sent to a deep convolutional network (DeepConvSurv) to 
determine which were relevant for the aggregation and final sur-
vival score. The deep survival model is trained on a small dataset 
leveraging the architecture the authors proposed. Also, the method 
is annotation-free, and it can learn information about one patient, 
regardless of the number or size of the WSIs. However, it has a high 
computational memory footprint as it needs hundreds of patches 
from a single patient’s WSI. In addition, the authors do not address 
the evaluation of the progression of the tumor, and a deeper 
analysis of the clusters could provide information about the phe-
notypes and their relation to brain glioma. 

Whole slide images have been used as a primary source of 
information for cancer diagnosis and prognosis, as they reveal the 
effects of cancer onset and its progression at the subcellular level. 
However, being an invasive image modality (i.e., tissue gathered 
during a biopsy), it is less frequently used in research and clinical 
settings. As an alternative, noninvasive and nonionizing imaging 
modalities, such as MRI, are quite popular for oncology imaging 
studies, especially in brain tumors. 

Although radiology and pathology capture morphologic data 
at different biological scales, a combination of image modalities can 
improve image-based analysis. In [69], the authors presented three 
classification methods to categorize adult diffuse glioma cases into 
oligodendroglioma and astrocytoma classes using radiographic and 
histologic image data. Thirty-two cases were gathered from the 
TCGA project4 containing a set of MRI data (T1, T1C, FLAIR, 
and T2 images) and its corresponding WSI, taken from the same 
patient at the same time point. The methods described were pro-
posed in the context of the Computational Precision Medicine 
(CPM) satellite event at MICCAI 2018, one of the first combining 
radiology and histology imaging analyses. The first one develops 
two independent pipelines giving two probability scores for the 
prediction of each case. The MRI pipeline preprocesses all images 
to remove the skull, co-register, and resample the data to leverage a 
fully convolutional neural network (CNN) trained on another MRI 
dataset (i.e., BraTS-2018) to segment tumoral regions. Several 
radiomic features are computed from such regions, and after reduc-
ing its dimensionality with PCA, a logistic regression classifier

4 https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/ 
typesan.

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/typesan
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/typesan


outputs the first probability score. WSIs also need a preprocessing 
stage as tissue samples may contain large areas of glass background. 
After a color space transformation to HSV (hue saturation value), 
lower and upper thresholds are applied to get a binary mask with 
the region of interest, which is then refined using mathematical 
morphology. Color-normalized patches of 224× 224 pixels are 
extracted from the region of interest (ROI) and filtered to exclude 
outliers. The remaining patches are used to refine a CNN (i.e., 
DenseNet-161) pre-trained on the ImageNet dataset. In the pre-
diction phase, the probability score of the WSI is computed using a 
voting system of the classes predicted for individual patches. The 
scores from both pipelines are finally processed in a confidence-
based voting system to determine the final class of each case. This 
proposal achieved an accuracy score of 0.9 for classification.
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The second and third approaches also processed data in two 
different pipelines. There are slight variations in the WSI prepro-
cessing step in the second method, including Otsu thresholding for 
glass background removal and histogram equalization for color 
normalization of patches of 448×448 pixels. Furthermore, the 
authors used a 3D CNN to generate the output predictions for 
the MRI data and a DenseNet pre-trained architecture for WSI 
patch classification. The last feature layer from each classification 
model is finally used as input to an SVM model for a unified 
prediction. In addition, regularization using dropout is performed 
in the test phase to avoid overfitting the models. The accuracy 
obtained with this methodology was 0.8. 

The third approach uses larger patches from WSI and an active 
learning algorithm proposed in [70] to extract regions of interest 
instead of randomly sampling the tissue samples. Features from the 
WSI patches are extracted using a VGG16 CNN architecture. The 
probability score is combined with the output probability of a 
U-Net + 2D DenseNet architecture used to process the MRI 
data. The method achieved an accuracy of 0.75 for unified classifi-
cation. Although results are promising and provide a valid approach 
to combining imaging modalities, data quality and quantity are still 
challenging. The use of pre-trained CNN architectures for transfer 
learning using a completely different type of imaging modality 
might impact the performance of the whole pipeline. As seen in 
previous sections, WSI presents specific characteristics depending 
on the preparation and acquisition procedures not represented in 
the ImageNet dataset. 

An extension to the previous study is presented in [71]. The 
authors proposed a two-stage model to classify gliomas into three 
subtypes. WSIs were divided into tiles and filtered to exclude 
patches containing glass backgrounds. An ensemble learning 
framework based on three CNN architectures (EfficientNet-B2, 
EfficientNet-B3, and SEResNeXt101) is used to extract features 
which are then combined with meta-data (i.e., age of the patient) to



predict the class of glioma. MRI data is preprocessed in the same 
way as described before and input to a 3D CNN network with a 3D 
ResNet architecture as a backbone. 
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The release of new challenges and datasets, such as the Compu-
tational Precision Medicine: Radiology-Pathology Challenge on 
brain tumor classification (CPM-RadPath), has also allowed studies 
using weakly supervised deep learning methods for glioma subtype 
classification. For instance, in [72], the authors combine 2D and 
3D CNN to process 388 WSI, and its corresponding multipara-
metric MRI collected from the same patients. Based on a confi-
dence index, the authors were able to fuse WSI- and-MRI-based 
predictions improving the final classification of the glioma subtype. 

Moving on from brain tumors, examining brain WSI also pro-
vides essential insights into spatial characteristics helpful in under-
standing brain disorders. 

In this area, analyzing small structures present in postmortem 
brain tissue is crucial to understanding the disease deeply. For 
instance, in Alzheimer’s disease, tau proteins are essential markers 
presenting the best histopathological correlation with clinical 
symptoms [73]. Moreover, these proteins can aggregate in three 
different structures within the brain (i.e., neurites, tangles, and 
neuritic plaques) and constitute one significant biomarker to 
study the progression of the disease and stratify patients 
accordingly. 

In [14], the authors addressed the detection task of the Alzhei-
mer’s patient stratification pipeline. The authors proposed a U-
Net-based methodology for tauopathies segmentation and a 
CNN-based architecture for tau aggregates’ classification. In addi-
tion, the pipelines were completed with a nonlinear color normali-
zation preprocessing and a morphological analysis of segmented 
objects. These morphological features can aid in the clustering of 
patients having different disease manifestations. One limitation, 
however, is the accuracy obtained in the segmentation/detection 
process. 

Understanding the accumulation of abnormal tau protein in 
neurons and glia allows differentiating tauopathies such as Alzhei-
mer’s disease, progressive supranuclear palsy (PSP), cortico-basal 
degeneration (CBD), and Pick’s disease (PiD). In [74], the authors 
proposed a diagnostic tool consisting of two stages: (1) an object 
detection pipeline based on the CNN YOLOv3 and (2) a random 
forest classifier. The goal is to detect different tau lesion types and 
then analyze their characteristics to determine to which specific 
pathology they belong. With an accuracy of 0.97 over 2522 WSI, 
the study suggests that machine learning methods can be applied to 
help differentiate uncommon neurodegenerative tauopathies. 

Tauopathies are analyzed using postmortem brain tissue sam-
ples. For in vivo studies, there exist tau PET tracers that, unfortu-
nately, have not been validated and approved for clinical use as



correlations with histological samples are needed. In [75], the 
authors proposed an end-to-end solution for performing large-
scale, voxel-to-voxel correlations between PET and high-resolution 
histological signals using open-source resources and MRI as the 
common registration space. A U-Net-based architecture segments 
tau proteins in WSI to generate 3D tau inclusion density maps later 
registered to MRI to validate the PET tracers. Although segmenta-
tion performance was around 0.91 accurate in 500 WSI, the most 
significant limitation is the tissue sample preparation, meaning 
extracting and cutting brain samples to reconstruct 3D histological 
volumes. Additional studies combining postmortem MRI and WSI 
for neurodegenerative diseases were reported by Jonkman et al. 
in [76]. 
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5 Perspectives 

This last section of the chapter deals with new techniques for the 
explainability of artificial intelligence algorithms. It also describes 
new ideas related to responsible artificial intelligence in the context 
of medical applications, computational histopathology, and brain 
disorders. Besides, it introduces new image acquisition technology 
mixing bright light and chemistry to improve intraoperative appli-
cations. Finally, we will highlight computational pathology’s strate-
gic role in spatial transcriptomics and refined personalized 
medicine. 

In [15, 16], we address the issue of accurate segmentation by 
proposing a two-loop scheme as shown in Fig. 9. In our method, a 
U-Net-based neural network is trained on several WSIs manually 
annotated by expert pathologists. The structures we focus on are 
neuritic plaques and tangles following the study in [14]. The net-
work’s predictions (in new WSIs) are then reviewed by an expert 
who can refine the predictions by modifying the segmentation 
outline or validating new structures found in the WSI. Additionally, 
an attention-based architecture is used to create a visual explanation 
and refine the hyperparameters of the initial architecture in charge 
of the prediction proposal. 

We tested the attention-based architecture with a dataset of 
eight WSIs divided into patches following an ROI-guided sam-
pling. Results show qualitatively in Fig. 10 that through this visual 
explanation, the expert in the loop could define the border of the 
neuritic plaque (object of interest) more accurately so the network 
can update its weights accordingly. Additionally, quantitative results 
(Dice score of approximately 0.7) show great promise for this 
attention U-Net architecture. 

Our next step is to use a single architecture for explainability 
and segmentation/classification. We believe our method will 
improve the accuracy of the neuritic plaques and tangles outline



and create better morphological features for patient stratification 
and understanding of Alzheimer’s disease [15, 16]. 
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Fig. 9 Expert-in-the-loop architecture proposal to improve tauopathies’ segmentation and to stratify AD 
patients 

Despite their high computational efficiency, artificial 
intelligence—in particular deep learning—models face important 
usability and translational limitations in clinical use, as in biomedi-
cal research. The main reason for these limitations is generally low 
acceptability by biomedical experts, essentially due to the lack of 
feedback, traceability, and interpretability. Indeed, domain experts 
usually feel frustrated by a general lack of insights, while the imple-
mentation of the tool itself requires them to make a considerable 
effort to formalize, verify, and provide a tremendous amount of 
domain expertise. Some authors speak of a “black-box” phenome-
non, which is undesirable for a traceable, interpretable, explicable, 
and, ultimately, responsible use of these tools.



560 Gabriel Jiménez and Daniel Racoceanu

Fig. 10 Attention U-Net results. The figure shows a patch of size 128 × 128 pixels, the ground-truth binary 
mask, and the focus progression using successive activation layers of the network 

In recent years, explainable AI (xAI) models have been devel-
oped to provide insights from and understand the AI decision-
making processes by interpreting their second-opinion quantifica-
tions, diagnoses, and predictions. Indeed, while explaining simple 
AI models for regression and classification tasks is relatively 
straightforward, the explainability task becomes more difficult as 
the model’s complexity increases. Therefore, a novel paradigm 
becomes necessary for better interaction between computer scien-
tists, biologists, and clinicians, with the support of an essential new 
actor: xAI, thus opening the way toward responsible AI: fairness, 
ethics, privacy, traceability, accountability, safety, and carbon 
footprint. 

In digital histopathology, several studies report on the usage 
and the benefits of explainable AI models. In [77], the authors 
describe an xAI-based software named HistoMapr and its applica-
tion to breast core biopsies. This software automatically identifies 
the regions of interest (ROI) and rapidly discovers key diagnostic 
areas from whole slide images of breast cancer biopsies. It generates
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a provisional diagnosis based on the automatic detection and clas-
sification of relevant ROIs and also provides a list of key findings to 
pathologists that led to the recommendation. An explainable seg-
mentation pipeline for whole slide images is described in [40], 
which does a patch-level classification of colon glands for different 
cancer grades using a CNN followed by inference of class activation 
maps for the classifier. The activation maps are used for final pixel-
level segmentation. The method outperforms other weakly super-
vised methods applied to these types of images and generalizes to 
other datasets easily. A medical use-case of AI versus human inter-
pretation of histopathology data using a liver biopsy dataset is 
described in [78], which also stresses the need to develop methods 
for causability or measurement of the quality of AI explanations. In 
[67], AI models like deep auto-encoders were used to generate 
features from whole-mount prostate cancer pathology images that 
pathologists could understand. This work showed that a combina-
tion of human and AI-generated features produced higher accuracy 
in predicting prostate cancer recurrence. Finally, in [16], the 
authors show that, besides providing valuable visual explanation 
insights, the use of attention U-Net is even helping to increase the 
results of neuritic plaques segmentation by pulling up the Dice 
score to 0.75 from 0.72 (with the original U-Net). 
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Based on the fusion of MRI and histopathology imaging data-
sets, a deep learning 3D U-Net model with explanations is used in 
[79] for prostate tumor segmentation. Grad-CAM [80] heat maps 
were estimated for the last convolutional layer of the U-Net for 
interpreting the recognition and localization capability of the 
U-Net. In [81], a framework named NeuroXAI is proposed to 
render explainability to existing deep learning models in brain 
imaging research without any architecture modification or reduc-
tion in performance. This framework implements seven state-of-
the-art explanation methods—including Vanilla gradient [82], 
Guided back-propagation, Integrated gradients [83], SmoothGrad 
[84], and Grad-CAM. These methods can be used to generate 
visual explainability maps for deep learning models like 2D and 
3D CNN, VGG [85], and Resnet-50 [86] (for classification) and 
2D/3D U-Net (for segmentation). In [87], the high-level features 
of three deep convolutional neural networks (DenseNet-121, Goo-
gLeNet, MobileNet) are analyzed using the Grad-CAM explain-
ability technique. The Grad-CAM outputs helped distinguish these 
three models’ brain tumor lesion localization capabilities. An 
explainability framework using SHAP [88] and LIME [89]  t  
predict patient age using the morphological features from a brain 
MRI dataset is developed in [90]. The SHAP explainability model 
is robust for this imaging modality to explain morphological feature 
contributions in predicting age, which would ultimately help 
develop personalized age-related biomarkers from MRI. Attempts 
to explain the functional organization of deep segmentation



models like DenseUnet, ResUnet, and SimUnet and understand 
how these networks achieve high accuracy brain tumor segmenta-
tion are presented in [91]. While current xAI methods mainly focus 
on explaining models on single image modality, the authors of [92] 
address the explainability issue in multimodal medical images, such 
as PET-CT or multi-stained pathological images. Combining 
modality-specific information to explain diagnosis is a complex 
clinical task, and the authors developed a new multimodal explana-
tion method with modality-specific feature importance. 
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Intraoperative tissue diagnostic methods have remained 
unchanged for over 100 years in surgical oncology. Standard light 
microscopy used in combination with H&E and other staining 
biomarkers has improved over the last decades with the appearance 
of new scanner technology. However, the steps involved in the 
preparation and some artifacts introduced by scanners pose a 
potential barrier to efficient, reproducible, and accurate intraopera-
tive cancer diagnosis and other brain disorder analyses. As an alter-
native, label-free optical imaging methods have been developed. 

Label-free imaging is a method for cell visualization which does 
not require labeling or altering the tissue in any way. Bright-field, 
phase contrast, and differential interference contrast microscopy 
can be used to visualize label-free cells. The two latter techniques 
are used to improve the image quality of standard bright-field 
microscopy. Among its benefits, the cells are analyzed in their 
unperturbed state, so findings are more reliable and biologically 
relevant. Also, it is a cheaper and quicker technique as tissue does 
not need any genetic modification or alteration. In addition, experi-
ments can run longer, making them appropriate for studying cellu-
lar dynamics [93]. Raman microscopy, a label-free imaging 
technique, uses infrared incident light from lasers to capture vibra-
tional signatures of chemical bonds in the tissue sample’s mole-
cules. The biomedical tissue is excited with a dual-wavelength fiber 
laser setup at the so-called pump and Stokes frequencies to enhance 
the weak vibrational effect [94]. This technique is known as coher-
ent anti-Stokes Raman scattering (CARS) or stimulated Raman 
scattering histology (SRH). 

Sarri et al. [95] proposed the first one-to-one comparison 
between SRH and H&E as the latter technique remains the stan-
dard in histopathology analyses. The evaluation was conducted 
using the same cryogenic tissue sample. SRH data was first col-
lected as it did not need staining. SRH and SHG (second harmonic 
generation, another label-free nonlinear optical technique) were 
combined to generate a virtual H&E slide for comparison. The 
results evidenced the almost perfect similarity between SRH and 
standard H&E slides. Both virtual and real slides show the relevant 
structures needed to identify cancerous and healthy tissue. In addi-
tion, SRH proved to be a fast histologic imaging method suitable 
for intraoperative procedures.
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Similar to standard histopathology, computational methods are 
also applicable to SRH technology. For instance, Hollon and Orrin-
ger [96] proposed a CNN methodology to interpret histologic 
features from SRH brain tumor images and accurately segment 
cancerous regions. Results show a slightly better performance 
(94.6%) than the one obtained by the pathologist (93.9%) in the 
control group. This study was extended and validated for intrao-
perative diagnosis in [97]. The study used 2.5 million SRH images 
and predicted brain tumor diagnosis in under 150 s with an accu-
racy of 94.6%. The results clearly show the potential of combining 
computational pathology and stimulated Raman histology for fast 
and accurate diagnostics in surgical procedures. 

Finally, due to its strategic positioning at the cross of molecular 
biology/omics, radiology/radiomics, and clinics, the rise of 
computational pathology—by generating “pathomic” features—is 
expected to play a crucial role in the revolution of spatial transcrip-
tomics, defined as the ability to capture the positional context of 
transcriptional activity in intact tissue. Spatial transcriptomics is 
expected to generate a set of technologies allowing researchers to 
localize transcripts at tissue, cellular, and subcellular levels by 
providing an unbiased map of RNA molecules in tissue sections. 
These techniques use microscopy and next-generation sequencing 
to allow scientists to measure gene expression in a specific tissue or 
cellular context, consistently paving the road toward more effective 
personalized medicine. Coupled with these new technologies for 
data acquisition, we have the release of new WSI brain datasets 
[98], new frameworks for deep learning analysis of WSI 
[99, 100], and methods to address the ever-growing concern of 
privacy and data sharing policies [101]. 
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