
Chapter 17 

Data-Driven Disease Progression Modeling 

Neil P. Oxtoby 

Abstract 

Intense debate in the neurology community before 2010 culminated in hypothetical models of Alzheimer’s 
disease progression: a pathophysiological cascade of biomarkers, each dynamic for only a segment of the full 
disease timeline. Inspired by this, data-driven disease progression modeling emerged from the computer 
science community with the aim to reconstruct neurodegenerative disease timelines using data from large 
cohorts of patients, healthy controls, and prodromal/at-risk individuals. This chapter describes selected 
highlights from the field, with a focus on utility for understanding and forecasting of disease progression. 
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1 Introduction 

Chronic progressive diseases are a major drain on social and eco-
nomic resources. Many of these diseases have no treatments and no 
cure. In particular, age-related chronic diseases such as neurode-
generative diseases of the brain are a global healthcare pandemic-in-
waiting as most of the world’s population is living ever longer. A 
key example is Alzheimer’s disease—the leading cause of 
dementia—but there are numerous other conditions that cause 
abnormal deterioration of brain tissue, leading to loss of cognitive 
performance, bodily function, independence, and ultimately death. 
Despite the increasing socioeconomic burden, neurodegenerative 
disease research has made impressive progress in the past decade, 
driven largely by the availability of large observational datasets and 
the computational analyses this enables. 

Understanding neurodegenerative diseases is vital if they are to 
be managed, or even cured, but our understanding remains poor 
despite impressive progress in recent years. This poor understand-
ing can be attributed to the many challenges of neurodegenerative 
diseases: no well-defined time axis due in part to heterogeneity in 
onset/speed/presentation, and censoring/attrition especially in
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later stages as patients deteriorate. These challenges, coupled with 
intense debate in the neurology community (hypothetical models 
[1, 2]) and increasing availability of data, piqued the interest of 
computational researchers aiming to provide quantitative answers 
to the mysteries of neurodegenerative diseases. This has ranged 
from vanilla off-the-shelf machine learning approaches through to 
more holistic statistical modeling approaches, the most advanced of 
which is data-driven disease progression modeling (D3 PM).
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D3 PMs are defined by two key features: (1) they simultaneously 
reconstruct the disease timeline and estimate the quantitative dis-
ease signature/trajectory along this timeline; and (2) they are 
directly informed by observed data. D3 PMs strike a balance 
between pure unsupervised learning, which requires truly big 
data, and traditional longitudinal modeling, which relies on a 
well-defined temporal axis—neither of which are available in neu-
rodegenerative diseases. For a review of the history and develop-
ment of D3 PM, see refs. 3. 

The goal of this chapter is to highlight selected key D3 PMs in a 
practical manner. The focus is on model capabilities and data 
requirements, aiming to inform the reader’s D3 PM analysis strategy 
based on the desired disease insight(s) and the data available. 
Figure 1 places selected D3 PMs on a capability×data quadrant

Fig. 1 Quadrant matrix. D3 PMs all estimate a disease timeline, with some capable of estimating multiple 
subtype timelines, using either cross-sectional data (pseudo-timeline) or longitudinal data (time-shift). 
Abbreviations: EBM, event-based model; DEBM, discriminative EBM; KDE-EBM, kernel density estimation 
EBM; DPS, disease progression score; LTJMM, latent-time joint mixed model; GPPM, Gaussian process 
progression model; SuStaIn, subtype and stage inference; SubLign, subtyping alignment



matrix: single timeline estimation vs subtyping, and cross-sectional 
vs longitudinal data availability. Table A.1 lists more methodologi-
cal papers relevant to D3 PM, with model innovations grouped by 
the original paper for that method.
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The chapter is organized as follows. It starts with a brief discus-
sion of data preprocessing considerations in Subheading 2—an 
important step in medical data analysis. The treatment of D3 PMs 
is separated into models for cross-sectional data (Subheading 3) 
and models for longitudinal data (Subheading 4), each split into 
approaches that estimate a single timeline of disease progression 
and those capable of estimating multiple timelines within a dataset 
(subtyping). Subheading 5 concludes. 

For a detailed timeline of D3 PM development including taxon-
omy and pedigree of key models, see Appendix. 

2 Data Preprocessing 

This section briefly touches on two common preprocessing steps 
before fitting a D3 PM to data from a progressive condition such as 
an irreversible chronic disease: controlling for confounding vari-
ables, and handling missing data. We refer to input features as 
biomarkers and use “covariate” and “confounder” interchangeably. 
Missing data can refer to irregular/variable visits across individuals, 
or missing biomarker data due to one or more measurements not 
being performed for some reason. This section deals with the latter, 
since longitudinal models can typically handle irregular visits. 

Controlling for confounding variables is an important element 
of any D3 PM analysis. This helps to prevent the D3 PM from 
learning non-disease-related patterns such as due to confounding 
covariates. Confounders can be included as covariates in certain 
models—to account for that source of variation alongside other 
variables of interest. Another approach, often used for continuous-
valued confounders, is to “regress out” this source of variation prior 
to fitting a model—to remove non-disease-related signal in the 
data. This process involves training regression models on data 
from control participants (who are not expected to develop the 
disease being studied) and then removing the relevant trends from 
all data. This method can also be applied to categorical risk factors 
(discrete variables). The canonical example of a potentially con-
founding variable in neurodegenerative diseases of the brain is 
age—a key risk factor in many chronic diseases. Removing normal 
aging signal is often phrased as “adjusting for” or “controlling 
for” age. 

Handling missing data is an active area of research with a 
considerable body of literature. Broadly speaking, there are two 
strategies. The easiest is to exclude participants having any missing 
biomarker (or covariate) data, but this can considerably reduce the



3 Models for Cross-Sectional Data

sample size of data available for D3 PM analysis. The second 
approach is to impute the missing data, e.g., using group mean 
values. Imputation can be explicit or implicit. An example of 
implicit imputation is in Bayesian models that map data to prob-
abilities and then deal with missing data probabilistically such as in 
the event-based model [4] where P(event|x)=0.5 represents maxi-
mal uncertainty such as when a measurement x is missing. 
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Box 1: Models for Cross-Sectional Data

• Pro: Data-economical. 

Require cross-sectional data only.
• Con: Limited forecasting utility. 

Forecasting requires augmentation with 
longitudinal data.

• Key application(s): assessing disease severity from a single 
visit, e.g., economical stratification for clinical research/trials. 

3.1 Single Timeline 

Estimation Using 

Cross-Sectional Data 

There is only one framework for estimating disease timelines from 
cross-sectional data: event-based modeling. 

3.1.1 Event-Based Model The event-based model (EBM) emerged in 2011 [5, 6]. The con-
cept is simple: in a progressive disease, biomarker measurements 
only ever get worse, i.e., become increasingly and irreversibly 
abnormal. Thus, among a cohort of individuals at different stages 
of a single progressive disease, the cumulative sequence of bio-
marker abnormality events can be inferred from only a single visit 
per individual. This requires making a few assumptions: measure-
ments from individuals are independent and represent samples 
from a single sequence of cumulative abnormality, i.e., a single 
timeline of disease progression. Such assumptions are common-
place in many statistical analyses of disease progression and are 
reasonable approximations to make when analyzing data from 
research studies that typically have strict inclusion and exclusion 
criteria to focus on a single condition of interest. Unsurprisingly, 
the event-based model has proven to be extremely powerful, pro-
ducing insight into many neurodegenerative diseases: sporadic 
Alzheimer’s disease [7–10], familial Alzheimer’s disease [6, 11], 
Huntington’s disease [6, 12], Parkinson’s disease [13], and others 
[14, 15].
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Fig. 2 Event-based models fit a mixture model to map biomarker values to abnormality probabilities. Left to 
right shows the convergence of a kernel density estimate (KDE) mixture model. From Firth et al. [9] (CC BY 4.0) 

EBM Fitting The first step in fitting an event-based model maps biomarker 
values to abnormality values, similar to the hypothetical curves of 
biomarker abnormality proposed in 2010 [1, 2]. The EBM does 
this probabilistically, using bivariate mixture modeling where indi-
viduals can be labeled either as pre-event/normal or post-event/ 
abnormal to allow for (later) events that are yet to occur in patients, 
and similarly for the possibility of (earlier) events to have occurred 
in asymptomatic individuals. Various distributions have been pro-
posed for this mixture modeling: combinations of uniform [5, 6], 
Gaussian [5–7], and kernel density estimate (KDE) distributions 
[9]. This is visualized in Fig. 2. 

The second step in fitting an EBM over N events is to search 
the space of N! possible sequences S to reveal the most likely 
sequence (see refs. 6, 7, 9 for mathematical details). For small 
N≲10, it can be computationally feasible to perform an exhaustive 
search over all possible N! sequences to find the maximum likeli-
hood/a posteriori solution. The EBM uses a combination of 
multiply-initialized gradient ascent, followed by MCMC sampling 
to estimate uncertainty in the sequence. This results in a model 
posterior that is a collection of samples from the posterior proba-
bility density for each biomarker as a function of sequence position. 
This is presented as a positional variance diagram [6], such as in 
Fig. 3. 

For further information and to try out EBM tutorials, the 
reader is directed to the open-source kde_ebm package (github. 
com/ucl-pond/kde_ebm) and  disease-progression-modelling. 
github.io. 

3.1.2 Discriminative 

Event-Based Model 

The discriminative event-based model (DEBM) was proposed in 
2017 by Venkatraghavan et al. [16]. Whereas the EBM treats data 
from individuals as observations of a single group-level disease 
cascade (sequence), the DEBM estimates individual-level 
sequences and combines them into a group-level description of

https://github.com/ucl-pond/kde_ebm
https://github.com/ucl-pond/kde_ebm
https://disease-progression-modelling.github.io
https://disease-progression-modelling.github.io


disease progression. This is done using a Mallow’s model, which is 
the ranking/sequencing equivalent of a univariate Gaussian 
distribution—including estimation of a mean sequence and vari-
ance in this mean. Both EBM and DEBM estimate group-level 
biomarker abnormality using mixture modeling and both 
approaches directly estimate uncertainty in the sequence. 
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Fig. 3 The event-based model posterior is a positional variance diagram showing uncertainty (left-to-right) in 
the maximum likelihood sequence (top-to-bottom). Parkinson’s disease model from Oxtoby et al. [13] (CC BY 
4.0) 

Additionally, Venkatraghavan et al. [16, 17] also introduced a 
pseudo-temporal “disease time” that converts the DEBM posterior 
into a continuous measure of disease severity. 

DEBM Fitting As with the EBM, DEBM model fitting starts with mixture model-
ing (see Subheading 3.1.1). Next, a sequence is estimated for each 
individual by ranking the abnormality probabilities in descending 
order. A group-level mean sequence (with variance) is estimated by 
fitting the individual sequences to a Mallow’s model. For details, 
see refs. 16, 17 and subsequent innovations to the DEBM. Notably, 
DEBM is often quicker to fit than EBM, which makes it appealing 
for high-dimensional extensions, e.g., aiming to estimate voxel-
wise atrophy signatures from cross-sectional brain imaging data.



3.2 Subtyping Using
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For further information and to try it out, the reader is directed 
to the open-source pyebm package (https://github.com/ 
88vikram/pyebm). 

Box 2: Subtyping Models

•

Cross-Sectional Data 

Pro: Uncovering heterogeneity without conflating severity 
with subtype. 

Evidence suggests that disease subtypes exist.
• Con: Overly simplistic. 

Current models ignore comorbidity. 

Augmenting the event-based model concept with unsupervised 
machine learning, subtype and stage inference (SuStaIn), was intro-
duced by Young et al. [18]. This marriage of clustering to disease 
progression modeling has proven very powerful and popular, with 
high-impact results appearing in prominent journals for multiple 
brain diseases [19–21], chronic lung disease [22], and knee osteo-
arthritis [23]. SuStaIn’s popularity is perhaps unsurprising given 
that it was the first method capable of unraveling spatiotemporal 
heterogeneity (pathological severity across an organ) from pheno-
typic heterogeneity (disease subtypes) in progressive conditions 
using only cross-sectional data. 

Figure 4 (adapted from [18]) shows the concept behind SuS-
taIn. SuStaIn iteratively solves the clustering problem from 1 to 
Nmax 

S subtypes. The NS model is fitted by splitting each of the NS-
1 subtypes into two clusters and then solving the NS-cluster prob-
lem, which produces NS-1 candidate NS-cluster models, from 
which the maximum likelihood model is chosen, and then the 
algorithm continues to NS + 1 and so on. 

Young et al. [18] also introduced the z-score event progression 
model that breaks down individual biomarker events into piecewise 
linear transitions between z-scores of interest. This removes the need 
for mixture modeling (such as in event-based modeling) and enables 
inference to be performed at subthreshold biomarker values. 

SuStaIn Fitting 
For the user, a SuStaIn analysis is very similar to an event-based 

model analysis. For further information, the reader is directed to 
the open-source pySuStaIn package [24]  (https://github.com/ 
ucl-pond/pySuStaIn), which includes tutorials. As well as the 
z-score progression model, pySuStaIn includes the various 
event-based models (see Subheading 3.1), and the more recent 
scored-events model for ordinal data [25] such as visual ratings of 
medical images.

https://github.com/88vikram/pyebm
https://github.com/88vikram/pyebm
https://github.com/ucl-pond/pySuStaIn
https://github.com/ucl-pond/pySuStaIn
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Fig. 4 The concept of subtype and stage inference (SuStaIn). Reproduced from Young et al. [18] (CC BY 4.0)



4 Models for Longitudinal Data
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Box 3: Models for Longitudinal Data

• Pro: Good forecasting utility. 

High temporal precision allows individualized 
forecasting.

• Con: Data-heavy. 

Require longitudinal data (multiple visits, years). Can 
be slow to fit.

• Key application(s): assessing speed of disease progression and 
assessing individual variability. 

The availability of longitudinal data has fueled development of 
more sophisticated D3 PMs, inspired by mixed models. Mixed 
(effect) modeling is the workhorse of longitudinal statistical analy-
sis against a known timeline, e.g., age. Mixed models provide a 
hierarchical description of individual-level variation (random 
effects) about group-level trends (fixed effects), hence the common 
parlance “mixed-effects” models. Many of the D3 PMs for longitu-
dinal data discussed below are in fact mixed models with an addi-
tional latent-time parameter that characterizes the disease timeline. 
Similar approaches in various fields are known as “self-modeling 
regression” or “latent-time” models. We focus on parametric mod-
els, but also mention nonparametric models, and an emerging 
hybrid discrete-continuous model. 

4.1 Single Timeline 

Estimation Using 

Longitudinal Data 

There are both parametric and nonparametric approaches to esti-
mating disease timelines from longitudinal data. The common goal 
is to “stitch together” a full disease timeline (decades long) out of 
relatively short samples from individuals (a few years each) covering 
a range of severity in symptoms and biomarker abnormality. Some 
of the earliest work emerged from the medical image registration 
community, where “warping” images to a common template is one 
of the first steps in group analyses [26]. 

Broadly speaking, there are two categories of D3 PMs for 
longitudinal data: time-shifting models and differential equation 
models. Time-shifting models translate/deform the individual 
data, metaphorically stitching them together into a quantitative 
template of disease progression. Differential equation models esti-
mate a statistical model of biomarker dynamics in phase-plane space 
(position vs velocity), which is subsequently inverted to produce 
biomarker trajectories.
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4.1.1 Explicit Models for 

Longitudinal Data: Latent-

Time Models 

Jedynak et al. [27] introduced the disease progression score (DPS) 
model in 2012, which aligns biomarker data from individuals to a 
group template model using a linear transformation of age into a 
disease progression score si=αiage + βi. Individuals have their own 
rate of progression αi (constant over the short observation time) 
and disease onset βi. Group-level biomarker dynamics are modeled 
as sigmoid (“S”) curves. A Bayesian extension of the DPS approach 
(BPS) appeared in 2019 [28]. Code for both the DPS and BPS was 
released publicly: https://www.nitrc.org/projects/progscore; 
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/. 

Donohue et al. [29] introduced a self-modeling regression 
approach similar to the DPS model in 2014. It was later generalized 
into the more flexible latent-time joint mixed (effects) model 
(LTJMM) [30], which can include covariates as fixed effects and 
is a flexible Bayesian framework for inference. The LTJMM soft-
ware was released publicly: https://bitbucket.org/mdonohue/ 
ltjmm. 

A nonparametric latent-time mixed model appeared in 2017: 
the Gaussian process progression model (GPPM) of Lorenzi et al. 
[31]. This is a flexible Bayesian approach akin to (parametric) self-
modeling regression that doesn’t impose a parametric form for 
biomarker trajectories. More recent work supplemented the 
GPPM with a dynamical systems model of molecular pathology 
spread through the brain [32] that can regularize the GPPM fit to 
produce a more accurate disease timeline reconstruction that also 
provides insight into neurodegenerative disease mechanisms 
(which is a topic that could be a standalone chapter of this book). 
The GPPM and GPPM-DS model source code was released pub-
licly via gitlab.inria.fr/epione and tutorials are available at disease-
progression-model.github.io. 

In 2015, Schiratti et al. [33–35] introduced a general frame-
work for estimating spatiotemporal trajectories for any type of 
manifold-valued data. The framework is based on Riemannian 
geometry and a mixed-effects model with time reparametrization. 
It was subsequently extended by Koval et al. [36] to form the 
disease course mapping approach (available in the leaspy software 
package). Disease course mapping combines time warping (of age) 
and inter-biomarker spacing translation. Time warping changes 
disease progression dynamics—time shift/onset and acceleration/ 
progression speed—but not the trajectory. Inter-biomarker spa-
cings shift an individual’s trajectory to account for individual differ-
ences in the timing and ordering of biomarker trajectories. 

Figures 5 and 6 show example outputs of these models when 
trained on data from older people at risk of Alzheimer’s disease, 
including those with diagnosed mild cognitive impairment and 
dementia due to probable Alzheimer’s disease.

https://www.nitrc.org/projects/progscore
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/
https://bitbucket.org/mdonohue/ltjmm
https://bitbucket.org/mdonohue/ltjmm
https://gitlab.inria.fr/epione/GP_progression_model_V2
https://disease-progression-model.github.io
https://disease-progression-model.github.io
https://gitlab.com/icm-institute/aramislab/leaspy
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Fig. 5 Two examples of D3 PMs fit to longitudinal data: disease progression score [27] and Gaussian process 
progression model [31]. (a) Alzheimer’s disease progression score (2012) [27]. Reprinted from NeuroImage, 
Vol 63, Jedynak et al., A computational neurodegenerative disease progression score: Method and results with 
the Alzheimer’s Disease Neuroimaging Initiative cohort, 1478–1486, ©(2012), with permission from Elsevier. 
(b) Gaussian process progression model (2017) [31]. Reprinted from NeuroImage, Vol 190, Lorenzi et al., 
Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and 
prediction in Alzheimer’s disease, 56–68, ©(2019), with permission from Elsevier
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Fig. 6 Two additional examples of D3 PMs fit to longitudinal data: latent-time joint mixed model [30] and 
disease course mapping [36]. (a) Latent-time joint mixed model (2017) [30]. From [37] (CC BY 4.0). (b) 
Alzheimer’s disease course map (2021) [36] (CC BY 4.0)
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Fitting Longitudinal Latent-

Time Models 

Fitting D3 PMs for longitudinal data is more complex than for 
cross-sectional data, and the software packages discussed above 
each expect the data in slightly different formats. One thing they 
have in common is that renormalization (e.g., min-max or z-score) 
and reorientation (e.g., to be increasing) is required to put biomar-
kers on a common scale and direction. In some cases, such pre-
processing is necessary to ensure/accelerate model convergence. 
For example, the LTJMM used a quantile transformation followed 
by inverse Gaussian quantile function to put all biomarkers on a 
Gaussian scale. For further detailed discussion, including model 
identifiability, we refer the reader to the original publications 
cited above and the didactic resources at disease-progression-
modelling.github.io. 

4.1.2 Implicit Models for 

Longitudinal Data: 

Differential Equation 

Models 

Parametric differential equation D3 PMs emerged between 2011 
and 2014 [38–41], receiving a more formal treatment in 2017 
[42]. In a hat-tip to physics, these have also been dubbed “phase-
plane” models, which aids in their understanding as a model of 
velocity (biomarker progression rate) as a function of position 
(biomarker value). Model fitting is a two-step process whereby 
the long-time biomarker trajectory is estimated by integrating the 
phase-plane model estimated on observed data. 

A nonparametric differential equation D3 PM using Gaussian 
processes (GP-DEM) was introduced in 2018 [11]. This added 
flexibility to the preceding parametric approaches and produced 
state-of-the-art results in predicting symptom onset in familial 
Alzheimer’s disease. 

Fitting Differential Equation 

Models 

The concept is shown in Fig. 7: differential equation model fitting 
is a three-step process. First, estimate a single value per individual of 
biomarker “velocity” and “position,” and then estimate a group-
level differential equation model of velocity y as a function of 
position x, which is integrated/inverted to produce a biomarker 
trajectory x(t). For example, linear regression can produce esti-
mates of position (e.g., intercept) and velocity (e.g., gradient). 
Differential equation models can be univariate or multivariate and 
can include covariates explicitly. 

4.1.3 Hybrid Discrete-

Continuous Models 

Recent work introduced the temporal EBM (TEBM) [43, 44], 
which augments event-based modeling with hidden Markov mod-
eling to produce a hybrid discrete-continuous D3 PM. This is a 
halfway house between discrete models (great for medical decision 
making) and continuous models (great for detailed understanding 
of disease progression). Trained on data from ADNI, the TEBM 
revealed the full timeline of the pathophysiological cascade of Alz-
heimer’s disease, as shown in Fig. 8.

https://disease-progression-modelling.github.io
https://disease-progression-modelling.github.io
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Fig. 7 Differential equation models, or phase-plane models, for biomarker dynamics involve a three-step 
process: estimate individual-level position and velocity; fit a group-level model of velocity y vs position x; and 
integrate to produce a trajectory x(t). Reprinted by permission from Springer Nature: Oxtoby, N.P. et al., 
Learning Imaging Biomarker Trajectories from Noisy Alzheimer’s Disease Data Using a Bayesian Multilevel 
Model. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds) Bayesian and grAphical Models 
for Biomedical Imaging. Lecture Notes in Computer Science, vol 8677, pp. 85–94 ©(2014) [41]. (a) Data. (b) 
Differential fit. (c) Est. trajectory. (d) Stochastic model 

Fig. 8 Alzheimer’s disease sequence and timeline estimated by a hybrid discrete-continuous D3 PM: the 
temporal event-based model [43, 44]. Permission to reuse was kindly granted by the authors of [43] 

4.2 Subtyping Using 

Longitudinal Data 

Clustering longitudinal data without a well-defined time axis can be 
extremely difficult. Jointly estimating latent time for multiple tra-
jectories is an identifiability challenge, i.e., multiple parameter 
combinations can explain the same data. This is particularly chal-
lenging when observations span a relatively small fraction of the full 
disease timeline, as in age-related neurodegenerative diseases. 

Chen et al. [45] introduced SubLign for subtyping and align-
ing longitudinal disease data. The authors frame the challenge 
eloquently as having misaligned, interval-censored data: left cen-
soring from patients being observed only after disease onset and 
right censoring from patient dropout in more severe disease. Sub-
Lign combines a deep generative model (based on a recurrent 
neural network [46]) for learning individual latent time-shifts and 
parametric biomarker trajectories using a variational approach, fol-
lowed by k-means clustering. It was applied to data from a Parkin-
son’s disease cohort to recover some known clinical phenotypes in 
new detail.
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Poulet and Durrleman [47] recently added mixture-model 
clustering to the nonlinear mixed model approach of disease course 
mapping [36]. The framework jointly estimates model parameters 
and subtypes using a modification of the expectation-maximization 
algorithm. In simulated data experiments, their approach outper-
forms a naive baseline. Experiments on real data in Alzheimer’s 
disease distinguished rapid from slow clinical progression, with 
minimal differences in biomarker trajectories. 

5 Conclusion 

Twenty-first century medicine faces many challenges due to aging 
populations worldwide, including increasing socioeconomic bur-
den from age-related brain disorders like Alzheimer’s disease. Many 
failed clinical trials fueled intense debate in neurology in the first 
decade of this century, culminating in the prominent hypothesis of 
Alzheimer’s disease progression as a pathophysiological cascade of 
dynamic biomarker events. This inspired the emergence of data-
driven disease progression modeling (D3 PM) from the computer 
science community during the second decade of the twenty-first 
century—an explosion of quantitative models for neurodegenera-
tive disease progression enabling numerous high-impact insights 
across multiple brain disorders. The community continues to build 
and share open-source code (see Box 4) and run machine learning 
challenges [48–50]. What will the third decade of the twenty-first 
century bring for this exciting subset of machine learning for brain 
disorders? 
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Appendix 

A taxonomy and pedigree of key D3 PM papers is given in 
Table A.1. Box 4 contains links to open-source code for D3 PMs. 

Table A.1 
A taxonomy and pedigree of D3 PM papers. *Asterisks denote models for cross-sectional data 

Reference (first author only) Description 

Ashford, Curren. Psych. Rep. (2001) [51] Differential equation 

Gomeni, Alz. Dem. (2011) [52] Differential equation 

Sabuncu, Arch. Neurol. (2011) [38] Differential equation 

Samtani, J. Clin. Pharmacol. (2012) [39] Differential equation 

Jedynak, NeuroImage (2012) [27] Progression score (linear) 

Bilgel, IPMI (2015) [53] 

Bilgel, NIMG (2016) [54] Latent time mixed effects 

Bilgel, Alz. Dem. DADM (2019) [28] Bayesian 

*Fonteijn, IPMI (2011) [5]; Fonteijn, NIMG (2012) [6] Cumulative events 

*Young, Brain (2014) [7] Robust for sporadic disease 

) *Venkatraghavan, IPMI (2017) [16]; Venkatraghavan, 
NIMG (2019) [17] 

Individual-level 

*Young, Nat Commun (2018) [18] + Subtyping, + Z-score model 

*Young, Frontiers (2021) [55] + Scored events model 

*Firth, Alz Dem (2020) [9] +Nonparametric events 

Wijeratne, ML4H2020, IPMI (2021) [43, 44] +Transition times 

Villemagne, Lancet Neurol (2013) [40] Differential equation 

Budgeon, Stat. in Med. (2017) [42] Formalism 

Durrleman, Int. J. Comput. Vis. (2013) [56] Time warping 

) Schiratti, NeurIPS (2015) [33]; IPMI (2015) [34]; JMLR 
(2017) [35] 

Koval, Sci Rep (2021) [36] Latent-time mixed effects 

Poulet, IPMI (2021) [47] +Subtyping 

Donohue, Alz Dem (2014) [29] Latent-time fixed effects 

Li, Stat Meth Med Res (2017) [30] Latent-time mixed effects 

Oxtoby, MICCAI (2014) [57] Differential equation 

Oxtoby, Brain (2018) [11] +Nonparametric 

Guerrero, NeuroImage (2016) [58] Instantiated mixed effects



Table A.1

)
)
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(continued)

Reference (first author only) Description 

Leoutsakos, JPAD (2016) [59] Item response theory 

Lorenzi, NeuroImage (2017) [31] Nonparametric latent time 

Garbarino, IPMI (2019) [60] +Differential equation 

Garbarino, NeuroImage (2021) [32] Formalism 

Marinescu, NeuroImage (2019) [61] Spatial clustering (c.f. Schiratti/Bilgel) 

Petrella, Comp. Math. Meth. Med. (2019) [62] Differential equation 

Abi Nader, Brain Commun. (2021) [63] Differential equation 

Chen, AAAI (2022) [45] Subtyping 

Box 4: Example Open-Source D3 PM Code

• D3 PM tutorials: 

https://disease-progression-modelling.github.io
• EuroPOND Software Toolbox: 

https://europond.github.io/europond-software
• KDE EBM: 

https://ucl-pond.github.io/kde_ebm
• pyEBM: 

https://github.com/88vikram/pyebm
• leaspy: 

https://gitlab.com/icm-institute/aramislab/leaspy
• LTJMM: 

https://bitbucket.org/mdonohue/ltjmm 
https://github.com/mcdonohue/rstanarm

• DPS: 

source code; docker image
• pySuStaIn: 

https://ucl-pond.github.io/pySuStaIn
• TADPOLE-SHARE (from TADPOLE Challenge [48, 49]): 

https://github.com/tadpole-share/tadpole-algorithms

https://disease-progression-modelling.github.io
https://europond.github.io/europond-software
https://ucl-pond.github.io/kde_ebm
https://github.com/88vikram/pyebm
https://gitlab.com/icm-institute/aramislab/leaspy
https://bitbucket.org/mdonohue/ltjmm
https://github.com/mcdonohue/rstanarm
https://www.nitrc.org/projects/progscore
https://hub.docker.com/r/bilgelm/bayesian-ps-adni/
https://ucl-pond.github.io/pySuStaIn
https://tadpole.grand-challenge.org
https://github.com/tadpole-share/tadpole-algorithms
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