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Image Registration: Fundamentals and Recent Advances 
Based on Deep Learning 
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Abstract 

Registration is the process of establishing spatial correspondences between images. It allows for the 
alignment and transfer of key information across subjects and atlases. Registration is thus a central 
technique in many medical imaging applications. This chapter first introduces the fundamental concepts 
underlying image registration. It then presents recent developments based on machine learning, specifically 
deep learning, which have advanced the three core components of traditional image registration methods— 
the similarity functions, transformation models, and cost optimization. Finally, it describes the key applica-
tion of these techniques to brain disorders. 
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1 Introduction 

In medical image analysis, the correspondence between important 
features or analogous anatomy in two images is an important piece 
of information that can be used to study disease. Knowing the 
correspondences between spatial locations allows for comparisons 
between specific anatomical structures in the images. This allows us 
to answer questions such as “Is this structure larger in subject A 
than in subject B?” or “Is that structure malformed relative to the 
average population?” Likewise, knowing correspondences across 
time allows us to study changes in rates of disease processes. For 
example, “Is a disease causing the structure to grow or shrink 
over time?” or “How does the rate of change compare to an healthy 
individual?” 

Correspondences between images also provide the ability to 
transfer information, which can be used as prior knowledge for 
tasks such as segmentation. Knowing the boundary for a specific 
anatomical structure in image A allows the image to be used as an 
atlas for finding those same boundaries in other images. If the 
correspondences between images A and B are known, then the
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boundary in image A can be transferred through the correspon-
dences and used as an approximate starting point for finding the 
analogous boundaries in image B (called the fixed image).
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Fig. 1 Shown is an example of an atlas alignment using image registration between two different brain 
magnetic resonance images. The atlas image (top left) is transformed (top right) to be aligned with the fixed 
subject image (center). The transformation allows the anatomical labels from the atlas (bottom left) to be 
directly transferred (bottom right) to label the subject image 

In the field of medical imaging and computer vision, the task of 
computing and aligning correspondences between different images 
is referred to as image registration. Given two images, image regis-
tration algorithms use image features such as image intensities or 
structures in the images to find a transformation that best aligns the 
correspondences between the two images. In Fig. 1, we show an 
example where such an algorithm is used to align the image inten-
sities between two different brain images. We see that this align-
ment allows the anatomical labels on an atlas image to be directly 
transferred to the fixed image. 

While the primary concept of image registration is simple, 
finding the solution is not so straightforward. The subject has 
been studied extensively for the past 40 years [1], and there is still 
little of consensus on the best general approach for the problem. 
We often cannot determine what are the correct correspondences 
between two images. In addition, we rarely know the exact way to 
model the transformation that best aligns those correspondences. 
We see from the example in Fig. 1 that aligning the intensity 
correspondences does not accurately align all of the anatomical 
correspondences between the images.
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The number of varieties and applications of image registration 
that have been presented to date is tremendous [2, 3]. In this 
chapter, we will only discuss a limited subset of these techniques, 
specifically methods that have been developed in recent years that 
leverages machine learning (and in particular, deep CNNs) to solve 
the problem. We will start by providing a brief introduction to the 
fundamental building blocks of traditional image registration tech-
niques and then delve into how various pieces of these designs have 
been developed and improved upon using machine learning 
models. 

2 Fundamentals of Image Registration 

The main goal of an image registration algorithm is to take a 
moving image and transform it to be spatially or temporally aligned 
with a target fixed image. The algorithm is generally defined by two 
parts: the type of transformation allowed to be performed on the 
moving image (the transformation model) and a definition of good 
alignment (the similarity cost function) between the two images. 
The algorithm is often iterative, in which case there is also an 
optimizer, which searches for how to adjust the transformation to 
best minimize the cost function. This is typically performed by 
estimating a transformation using the model, applying it to the 
moving image, and then evaluating the cost function between the 
transformed moving image and the fixed image. This cost then 
informs the algorithm on how to estimate a more accurate trans-
formation for the next iteration. The process is repeated and opti-
mized until either the moving and fixed images are considered 
aligned (i.e., a local minimum is reached in the cost function) or a 
maximum iteration count is exceeded. Figure 2 summarizes this 
iterative framework as a block diagram. Figure 3 shows several 
examples of registration results when using different transforma-
tion models to register between two MR images of the brain. 

Evaluate 
Similarity Function 

Estimate New 
Transformation 

Moving 
Image 

Apply Transformation 
to Moving Image 

Registered 
Image 

Fixed 
Image 

Fig. 2 Block diagram of the general registration framework. The coloring represents the main pieces of the 
framework: the input images (green), the output image (purple), the similarity cost function (orange), the 
transformation model (blue), and the optimizer (yellow)
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Moving (a) (b) (c) Fixed 

Fig. 3 Shown are examples of registration results between a moving and fixed MR image of the brain from two 
different subjects, using a (a) rigid, (b) affine, and (c) deformable registration 

2.1 Registration as a 

Minimization Problem 

To describe the general registration problem, we begin by using 
functions Sðx ′ Þ and T ðxÞ to represent the moving and fixed images, 
where x′= (x′, y′, z′) and x= (x, y, z) describe 3D coordinates in the 
moving and fixed image domains ( S and  T , respectively), and 
Sðx ′ Þ and T ðxÞ are the intensities of each image at those coordi-
nates. The primary goal of image registration is to estimate a 
transformation v :  T → S , which maps corresponding loca-
tions between Sðx ′ Þ and T ðxÞ. This is generally represented as a 
pullback vector field, v(x), where the vectors are rooted in the fixed 
domain and point to locations in the moving domain. The field is 
applied to Sðx ′ Þ by pulling moving image intensities into the fixed 
domain. This produces the registration result, a transformed 
moving image, ~S, defined as 

~SðxÞ= S∘vðxÞ= SðvðxÞÞ , 8x∈ T , ð1Þ 

which has coordinates in the fixed domain. 
The typical registration algorithm aims to find v such that the 

images ~S and T are as similar as possible while constraining v to be 
smooth and continuous so that the transformation is physically 
sensible. This can be performed by minimizing a cost function 
C ð�, �Þ that evaluates how well aligned S∘vðxÞ and T ðxÞ are to each 
other, and forcing v to follow a specific transformation model. 
Together we can describe this problem as a standard minimization 
problem, 

argmin 
v 

C ðS∘v, T Þ, ð2Þ 

where the transformation v is the parameter being optimized. 

2.2 Types of 

Registration 

Registration algorithms are generally categorized by the transfor-
mation model used to constrain v and the cost function C to 
evaluate similarity. The optimization approach, while important, 
does not usually characterize the algorithm and is often chosen to 
best complement the other two components of the algorithm. In 
this section, we cover several standard models and cost functions
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that are regularly used in medical imaging. However, the actual 
number of registration varieties in the current literature is extensive 
and outside the scope of this chapter. Several literature reviews on 
image registration exist for a more comprehensive understanding of 
the subject [2, 3]. 
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2.2.1 Types of 

Transformation Models 

The transformation model used to constrain v in the registration 
algorithm is generally chosen to match the problem at hand. For 
example, suppose we know that the moving and fixed image is of 
the same person, and their only difference is caused by a turn of the 
head in the scanner. In such a case, we would want to use a 
registration algorithm that restricts v to only perform translations 
and rotations in order to limit the possible transformation to what 
we expect has occurred. However, if the two images are of different 
people, then we might consider a more fluid transformation that 
can nonlinearly align parts of the anatomy. Here we will discuss two 
main archetypes of transformation models that are regularly used in 
medical imaging. 

Global Transformation 

Models 

One common choice for the transformation model is to represent 
v entirely through a global transformation on the image coordinate 
system. Here v is described by a single linear transformation matrix 
M and a translation vector t= (tx, ty, tz): 

vðxÞ=Mxþ t : ð3Þ 

The transformation matrix M determines the restrictiveness of the 
model, which is often referred to as the model’s degrees of freedom 
(dof). Algorithms that only allow translations and rotations (6 dof1 ) 
are referred to as rigid registrations. In such cases, M is the product 
of three rotation matrices (one for each axis): 

0 0  
s θx - sin θx 
n θx cos θx 

cos θy 0 sin θy 
0 1 0
- sin θy 0 cos θy 

cos θz - sin θz 0 
sin θz cos θz 0 
0 0  

, 

ð4Þ 

where θx, θy, and θz determine the amount of rotation around each 
axis. If global scaling is also allowed (7 dof in total), then the 
algorithm becomes a similarity registration, and Mrigid is multiplied 
with an additional scaling matrix: 

M similarity = 

s 0 0  

0 s 0 

0 0  s 

M rigid , ð5Þ 

1 Here, dof are given for the 3D case since the vast majority of medical images are 3D.
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where s determines the amount of scaling. Finally, adding individual 
scaling and shearing (12 dof in total) allows for an affine registra-
tion. Here the scaling matrix is modified to have independent terms 
sx, sy, and sz for each axis, and a shear matrix is included in the 
product: 

M affine = 

1 hxy hxz 

hyx  1 hyz  

hzx hzy 1 

sx 0 0  

0 s y 0 

0 0  sz 

M rigid , ð6Þ 

where three pairs of shear terms describe the direction and magni-
tude of shearing in each axis (hyx and hzx for the x-axis; hxy and hzy for 
the y-axis; hxz and hyz for the z-axis). 

The main application of these models is to account for registra-
tion problems where the moving and fixed images differ by very 
limited transformations. Rigid registration is regularly used to align 
images of the same subject, allowing for more accurate longitudinal 
analysis. It is also applied to images from different subjects to 
remove global misalignment, such as movement or shifts in posi-
tion while still maintaining the physical structure in the images. 
Similarity and affine registrations are used when the images are 
expected to have differences in size or large regional transforma-
tions. In medical imaging, they offer a way to normalize different 
subjects in order to remove effects that are often considered unre-
lated to the disease being studied, such as the size of the head. In 
addition, affine registrations can be used to provide an initialization 
for more fluid registrations by removing large sweeping differences, 
and allowing the subsequent algorithm to focus on aligning more 
detailed differences. Figure 3a, b provides examples of results from 
rigid and affine registrations between brain MRIs from two differ-
ent subjects. 

Deformable Model The main disadvantage of using only a transformation matrix to 
represent v is its inability to account for local differences between 
the moving and fixed images. To perform such alignments, a 
deformable registration is necessary, where the transformation is 
individually defined at each point in the image using a vector field: 

vðxÞ= xþ uðxÞ : ð7Þ 

The vector field u is referred to as a displacement field and is 
generally restricted to be smooth and continuous to ensure the 
overall deformation is regularized so that the object is transformed 
in a physically sensible way. 

Deformable registration can be loosely divided between algo-
rithms that use parametric or nonparametric transformation models 
to represent v. Parametric registrations use a set number of para-
meters to control basis functions, such as splines [4] or radial basis



functions [5], to construct and interpolate v. The algorithm opti-
mizes these parameters to find the best v that minimizes the cost 
function. The transformations found under these models are often 
smooth and continuous by construction due to the basis 
functions used. 
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Nonparametric registrations are generally designed to create 
transformations that resemble physical motions such as elasticity 
[6], viscosity [7], diffusion [8], and diffeomorphism [9]. Rather 
than optimizing a set of parameters, the algorithm evolves the 
transformation at every iteration using forces imposed by the 
model. The strength and direction of these forces are determined 
by the cost function chosen and the constraints of the physical 
motion being modeled. 

The primary application of deformable registration is to com-
pute and align detailed correspondences between the moving and 
fixed images. This allows such registrations to be better suited for 
information transfer tasks, such as deforming anatomical labels in 
the moving image to match and label the same structures in the 
fixed image, and providing an initialization using various atlases and 
priors. In addition, the displacement field learned in the registra-
tion represents relative spatial change between correspondences in 
the moving and fixed image. Hence, it can be used to analyze 
morphology and shape differences between individuals 
[10, 11]. Figure 3c shows an example of a deformable registration 
performed using an adaptive bases algorithm after an affine align-
ment. Compared to the affine result, we see that the individual 
structures within the brain are now locally better aligned to match 
the same structures in the target brain. 

2.2.2 Types of Cost 

Functions 

The purpose of the similarity cost function is to quantify how 
closely aligned the transformed moving image and fixed images 
are to each other. Since it drives the optimization of the transfor-
mation model, the characteristics of the cost function determine 
what kind of images can be aligned, the degree of accuracy, and the 
ease of optimization. In this section, we will mainly discuss the 
three most popular intensity-based cost functions, which are avail-
able in most algorithms. Naturally, a large number of cost functions 
have been proposed in the literature, and a more complete list can 
be found here [2]. 

Sum of Square Differences. Sum of square differences (SSD), or equivalently mean squared 
error (MSE), between image intensities is one of the most basic 
and earliest cost functions used for evaluating the similarity 
between two images. It consists simply of subtracting the intensity 
difference at each voxel between two images, squaring the differ-
ence, and then summing across all the voxels in the entire image. 
This can be described using
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CSSDðT , ~SÞ= 
x∈T 

T ðxÞ- ~SðxÞ 2 : ð8Þ 

The advantage of SSD is that it is computationally efficient, requir-
ing only roughly three or four operations per voxel. In addition, it 
is very localized, since each voxel between the moving and fixed pair 
is calculated independently and then summed. This allows non-
overlapping regions of the image to be calculated and optimized in 
parallel. In addition, this provides high local acuity, which allows 
small spatial differences between the images to be resolved by the 
cost function. 

The main drawback of using SSD is that it is highly dependent 
on the absolute intensity values in the image. If correspondences in 
two images do not have exactly the same intensity range, the cost 
function will fail to register them correctly. As a result, SSD is very 
susceptible to errors in the presence of artifacts, intensity shifts, and 
partial voluming in the images. 

Normalized Cross 

Correlation 

The cross correlation (CC) function is a concept borrowed from 
signal processing theory for comparing the similarity between 
waveforms. It requires vectorizing the image (reshaping the 3D 
image grir into a single vector), subtracting the mean of each image, 
and then computing the dot product between the image vectors. 
The value is then divided by the magnitude of both mean sub-
tracted vectors. This can be described by 

CCCðT , ~SÞ= 
ðT - μT Þ 
jjT - μT jj

, 
ð~S- μ~SÞ 
jj~S- μ~S jj

ð9Þ 

= x∈ T ðT ðxÞ- μT Þð~SðxÞ- μ~SÞð  
jj~S- μ~S jj jjT - μT jj

, ð10Þ 

where μT and μ~S are the mean intensities of each image, and ||�|| 
indicate the ℓ2 norm of the vectorized image intensities. 

The primary advantage of CC over SSD is that it is robust to 
relative intensity shifts in the image, while SSD is not. This is due to 
the normalization using the image mean and magnitude, and the 
reliance on multiplication of voxel pairs instead of absolute differ-
ences. In the absence of an intensity shift, NCC can be shown to be 
equivalent to SSD as a cost function for optimization. 

The drawback of CC is that both the mean and magnitude 
require a calculation over the entire image; hence, NCC loses much 
of the parallelization potential of SSD. In addition, the gradient on 
the function is more complicated to evaluate, which makes it a more 
difficult problem to optimize.
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Mutual Information Mutual information (MI) is a probabilistic measure of similarity 
derived from information theory. Using mutual information for 
image registration was originally presented in [12], and since 
then, it has become one of the most widely used registration cost 
functions [3]. Its success largely comes from its probabilistic nature, 
which gives it robustness to noise and shifts in intensity. In addi-
tion, the measure avoids evaluating direct intensity differences and 
instead looks at how the intensities between the two images are 
interdependent. This makes it a very robust measure for evaluating 
similarity between images with different modalities. 

Mutual information is described from an information theory 
perspective. Hence, we start with a discrete random variable A, with 
PAðaÞ representing the probability of the value a occurring in A. 
The Shannon entropy [13] of this variable is defined by 

H ðAÞ= -
a 
PAðaÞ log PAðaÞð Þ  : ð11Þ 

If the random variable represents image intensity values, then this 
entropy measures how well a given intensity value in the image can 
be predicted. Similarly, for a second random variable B and joint 
probability distribution P , a, b , the joint entropy isA B 

H ðA,BÞ= -
a, b 

PA,Bða, bÞ log PA,Bða, bÞ , ð12Þ 

which represents how well a given pair of intensity value in the 
images can be predicted. Using these terms, the mutual informa-
tion is given by 

MI A, Bð Þ=H ðAÞ þ H ðBÞ-H ðA,BÞ , ð13Þ 

which becomes 

CMIðT , ~SÞ= - H ðT Þ þ H ð~SÞ-H ðT , ~SÞð , ð14Þ 

within the context of our registration problem. Since MI increases 
when the images are more similar, we negate the measure in order 
to fit our minimization framework. 

Intuitively, mutual information describes how dependent the 
intensities in one image are on the other. We see that, when the 
images are entirely independent, the joint entropy becomes the 
sum of the individual entropies and the mutual information is 
zero. On the other hand, when the images are entirely dependent 
(i.e., v maps S exactly to T ), then the joint entropy becomes the 
entropy of the fixed image and the mutual information is maxi-
mized. In practice, the entropy and joint entropies are calculated 
empirically from histograms (and joint histograms) of the intensi-
ties in the images. 

Since the range of entropy is sensitive to the size of the image, it 
is common to use a normalized variant of the measure called 
normalized mutual information (NMI) [14]:
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NMIðT , ~SÞ= 
H ðT Þ þ H ð~SÞ 

H ðT , ~SÞ : ð15Þ 

We see that this measure ranges from one to two, where two 
indicates a perfect alignment. Hence, we must again negate the 
measure when using it as a cost function to fit our minimization 
framework. 

The main drawback of mutual information comes from its 
probabilistic nature. The measure relies on an accurate estimate of 
the probability density of the image intensities. As a result, its 
effectiveness decreases significantly when working with small 
regions within the image, where there is not enough intensity 
samples to accurately estimate such densities. Likewise, the measure 
is ineffective when facing areas of the image that have poor statisti-
cal consistency or lack clear structure [15]. Examples of this include 
cases where there is overwhelming noise or conversely, when the 
area has very homogeneous intensities and provides very little 
information. As a result, mutual information must be calculated 
over a relatively large region of the image, which reduces the 
measure’s local acuity and diminishes its ability to handle small 
changes between the moving and fixed images. Lastly, as men-
tioned before, mutual information is almost entirely calculated 
from counts of intensity pairs, where the actual intensity value 
does not matter. While this is useful for addressing multimodal 
relationships, it also introduces inherent ambiguity into the mea-
sure. Given a moving and fixed image, their intensities can be paired 
in multiple ways to give the exact same mutual information after the 
transformation. Hence, the measure depends heavily on having a 
good initialization where the objects being registered are aligned 
well enough to give the correct intensity pairings at the start of the 
optimization. Otherwise, mutual information can cause the algo-
rithm to align intensity pairs that incorrectly represent the corre-
spondence between the images, resulting in registration 
errors [16]. 

3 Learning-Based Models for Registration 

From the previous sections, we can see that there are numerous 
avenues where machine learning models can potentially be 
employed to address specific parts of the registration problem. We 
can build models to estimate the similarity between images, find 
anatomical correspondences in images, speed up the optimization, 
or even learn to estimate the transformations directly. As with most 
learning models, these techniques can be very broadly categorized 
into supervised and unsupervised techniques. 

Supervised image registration within the context of machine 
learning entails utilizing sufficiently large training data sets of input



moving and fixed image pairs with their corresponding transforma-
tions. These data are used to train a model to learn those transfor-
mation parameters based on features discovered through the 
training process. The loss function quantifies the discrepancy 
between the predicted and input transformation parameters. For 
example, BIR-Net [17] presents a network for learning-based 
deformable registration using a dual supervision strategy where 
the loss is taken between the ground truth deformation field and 
the predicted field, in addition to the dissimilarity between the 
warped and fixed image. To prevent slow learning and overfitting, 
a hierarchical loss function is applied at various levels in the frontal 
part of the network. DeepFLASH [18] uses the fact that the entire 
optimization of large deformation diffeomorphic metric mappings 
(LDDMM) with geodesic shooting can be efficiently carried out in 
a low-dimensional bandlimited space. This motivates conversion of 
the velocity fields into the Fourier domain. However, neural net-
works that operate on complex values are inefficient and not 
straightforward. The method decomposes the registration frame-
work into separable real and imaginary components and proposes 
the use of a dual-net that handles the real and imaginary parts 
separately. 
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One of the primary challenges with employing supervised 
models for image registration is that registration problems rarely 
have ground truth transformation data between the images. 
Beyond simple rigid transformations, it is too laborious and com-
plex of a task to ask human graders to manually generate full 3D 
transforms between images. Instead, the desired transformations 
used in the training data are often obtained using outputs from 
traditional image registration algorithms or synthetically derived 
data sets, both of which can limit the capabilities of the model. 

Given this limitation, more focus has been directed toward 
unsupervised learning-based registration approaches, which are 
more closely related to their traditional analogs in that they lack 
the use of input transformation data. Optimization is driven via loss 
functions which incorporate intensity-based similarity quantifica-
tion in learning the correspondence between the fixed and moving 
images. This is conceptually analogous to the classic neural network 
example of unsupervised learning –the autoencoder (cf [19])– 
where differences between the input and the network-generated 
predicted version of the input are used to learn latent features 
characterizing the data. In the case of unsupervised image registra-
tion, the optimal transformation is that which maximizes the simi-
larity cost function between the input, specifically the fixed image, 
and the network-generated predicted version of the input, specifi-
cally the warped moving image as determined by the concomitantly 
derived transform. Direct analogs to iterative methods can be seen 
in approaches such as [20], which presents a recursive cascade 
network where the moving image is warped iteratively to fit the



r

fixed image. Each subnetwork is implemented as a convolutional 
neural network which predicts the deformation field from the 
current warped image and the fixed image. 
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In the following sections, we will provide an overview of several 
key methodological archetypes in the advancement of image regis-
tration that has been made possible through the application of 
machine learning models. As with other parts of this chapter, it is 
outside of our scope to attempt to provide a comprehensive cover-
age of such a broad topic. Instead, we opt to lean toward more 
contemporary deep neural network-driven approaches, which have 
arisen from recent widespread adoption of deep learning models in 
medical image analysis. However, we encourage interested readers 
to explore several published review articles that can provide a more 
historical survey of this topic [2, 21]. 

3.1 Feature 

Extraction 

Much of the early work incorporating machine learning into solv-
ing image registration problems involved the detection of 
corresponding features and then using that information to deter-
mine the correspondence relationship between spatial domains. 
These included training models to find key landmarks [22]  o  
segmentation of structures [23], and fitting established transforma-
tions models to provide a full transformation between the images. 
Unsurprisingly, adaptions of these ideas carried through to deep 
learning approaches. For example, at the start of the current era of 
deep learning in image-related research, the authors of [24] pro-
posed point correspondence detection using multiple feed-forward 
neural networks, each of which is trained to detect a single feature. 
These neural networks are relatively simple consisting of two 
hidden layers each with 60 neurons where the output is a probabil-
ity of it containing a specific feature at the center of a small image 
neighborhood. These detected point correspondences are then 
used to estimate the total affine transformation with the RANSAC 
algorithm [25]. Similarly, DeepFlow [26] uses CNNs to detect 
matching features (called deep matching) which are then used as 
additional information in the large displacement optical flow frame-
work [27]. A relatively small architecture, consisting of six layers, is 
used to detect features at different convolution sizes which are then 
matched across scales. Two algorithms for more traditional com-
puter vision applications are proposed in [28] and [29] where both 
are based on the VGG architecture [30] for 2D homography 
estimation. The former framework includes both a regression net-
work for determining corner correspondence and a classification 
network for providing confidence estimates of those predictions. 
The work in [29], which is publicly available, uses image patch pairs 
in the input layer and the ℓ1 photometric loss between them to 
remove the need for direct supervision. Finally, in the category of 
feature learning, Wu et al. use nested auto-encoders (AE) to map 
patchwise image content to learned feature vectors [31]. These



patches are then subsampled based on the importance criteria out-
lined in [32] which tends toward regions of high informational 
content such as edges. The AE-based feature vectors at these image 
patches are then used to drive a HAMMER-based registration [33] 
which is inherently a feature-based, traditional image registration 
approach. 
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3.2 Domain 

Adaptation 

In contrast to detecting discrete corresponding feature points to 
drive the image registration, a number of learning models have 
been built to predict the intensity similarity between images, 
directly. These techniques have largely been focused on addressing 
intermodality alignment, which remains an open problem due to 
the complexities of establishing accurate correspondence when the 
intensities themselves do not necessarily correspond. Models have 
been developed to learn intermodal spatial relationships by extend-
ing traditional concepts of image similarity, such as in [34], where 
intermodality transformations involving CT and MRI are learned 
by training on the intramodality image pairs using a basic U-net 
architecture and incorporating a loss function combining normal-
ized cross correlation (NCC) and explicit regularization for enfor-
cing smoothness of the displacement field. A related idea is 
developed in [35] which uses labeled data and intensity information 
during the training phase such that only unlabeled image data is 
required for prediction. The latter architecture is a densely 
connected U-net architecture with three types of residual shortcuts 
[36]. For the loss function, the authors use a multiscale Dice 
function with an explicit regularization term for estimating both 
global and local transformations. Similarity functions can also be 
formulated directly using learning models, such as in [37] where a 
two-channel network is developed for input image patches (T1-
and T2-weighted brain images), and likewise, the B-spline image 
registration algorithm developed from the Insight Toolkit [38], 
which leverages the output of a CNN-based similarity measure for 
comparison with an identical registration setup employing mutual 
information. 

In recent years, intermodality registration has benefited from 
progress made in the field of domain adaptation, also referred to as 
image synthesis in earlier works. The general premise behind these 
frameworks is that learning-based models can be used to establish 
the latent relationship between the intensity domains between 
different modalities. This allows an image in one modality to be 
synthesized into the other modality, or alternatively both modal-
ities can be moved into a third artificial modality that has shared 
features from both modalities. When applied to image registration, 
these synthesized modalities can then be used to convert multi-
modal registration problems into mono-modal problems that can 
be solved by leveraging the efficiency and accuracy of mono-modal 
registration techniques. [39]
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Of particular note in this area are methods developed around 
generative adversarial networks (GANs), first introduced by Good-
fellow and colleagues [40], which have increasingly found traction 
in addressing many types of deep learning problems in the medical 
imaging domain [41] including image registration. GANs are a 
special type of network composed of two adversarial subnetworks 
known as the generator (usually characterized by deconvolutional 
layers) and the discriminator (usually a CNN). These work in a 
minimax fashion to learn data distributions in the absence of exten-
sive sample data. Seeded with a random noise image (e.g., sampled 
from a uniform or Gaussian distribution), the generator produces 
synthetic images which are then evaluated by the discriminator as 
belonging either to the true or synthetic data distributions in terms 
of some probability scalar value. This back-and-forth results in a 
generator network which continually improves its ability to pro-
duce data that more closely resembles the true distribution while 
simultaneously enhancing the discriminator’s ability to judge 
between true and synthetic data sets. Since the original “vanilla” 
GAN paper, the number of proposed GAN extensions has exploded 
in the literature. Initial extensions included architectural modifica-
tions for improved stability in training which have since become 
standard (e.g., deep convolutional GANs [42]). Please refer to 
Chap. 5 for a more extensive coverage of GANs. 

In order to constrain the mapping between moving and fixed 
images, the GAN-based approach outlined in [43] combines a 
content loss term (which includes subterms for normalized mutual 
information, structural similarity [44], and a VGG-based filter 
feature ℓ2-norm between the two images) with a “cyclical” adver-
sarial loss. This is constructed in the style of [45] who proposed this 
GAN extension, CycleGAN, to ensure that the normally under-
constrained forward intensity mapping is consistent with a similarly 
generated inverse mapping for “image-to-image translation” (e.g., 
converting a Monet painting to a realistic photo or rendering a 
winter nature scene as its summer analog). However, in this case, 
the cyclical aspect is to ensure a regularized field through forward 
and inverse displacement consistency. 

The work of [46] employs discriminator training between 
finite-element modeling and generated displacements for the pros-
tate and surrounding tissues to regularize the predicted displace-
ment fields. The generator loss employs the weakly supervised 
learning method proposed by the same authors in [47] whereby 
anatomical labels are used to drive registration during training only. 
The generator is constructed from an encoder/decoder architec-
ture based on ResNet blocks [36]. The prediction framework 
includes both localized tissue deformation and the linear coordi-
nate system changes associated with the ultrasound imaging 
acquisition.

https://doi.org/10.1007/978-1-0716-3195-9_5
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In [48], the discriminator loss is based on quantification of how 
well two images are aligned where the negative cases derive from 
the registration generator and the positive cases consist of identical 
images (plus small perturbations). Explicit regularization is added 
to the total loss for the registration network which consists of a 
U-net type architecture that extracts two 3D image patches as input 
and produces a patchwise displacement field. The discriminator 
network takes an image pair as input and outputs the similarity 
probability. 

3.3 Transformation 

Learning 

Many of the methods described so far have been centered around 
using learning models to establish spatial correspondences between 
images, and then fitting traditional transformation models to align 
the images. An alternative approach is to directly learn and predict 
the transformation between images. Earlier work [49] employed 
CNN-based regression for estimation of 2D/3D rigid image align-
ment of 3D X-ray attenuation maps derived from CT and 
corresponding 2D digitally reconstructed (DRR) X-ray images. 
The transformation space is partitioned into distinct zones where 
each zone corresponds to a CNN-based regressor which learns 
transformation parameters in a hierarchical fashion. The loss func-
tion is the mean squared error on the transformation parameters. 

A novel deep learning perspective was given in [50] where 
displacement fields are assumed to form low-dimensional manifolds 
and are represented in the proposed fully connected network as 
low-dimensional vectors. From the input vector, the network gen-
erates a 2D displacement field used to warp the moving image using 
bilinear interpolation. The absolute intensity difference is used to 
optimize the parameters of network and latent vectors. Instead of 
explicit regularization of the displacement field, the sum of squares 
of the network weights is included with the intensity error term in 
the loss function. Instead of training with a loss function based on 
similarity measures between fixed and moving images, the works of 
[51, 52] formulate the loss in terms of the squared difference 
between ground truth and predicted transformation parameters. 
In terms of network architecture, [51] employs a variant of U-net 
for training/prediction based on reference deformations provided 
by registration of previously segmented ROIs for cardiac matching 
where priority is alignment of the epicardium and endocardium. 
Displacement fields are parameterized by stationary velocity fields 
[53]. In contrast, [52] uses a smaller version of the VGG architec-
ture to learn the parameters of a 6 ×6 ×6 thin-plate spline grid. 

In 2015, Jaderberg and his fellow co-authors described a pow-
erful new module, known as the spatial transformer network (STN) 
[54]2 which features prominently now in many contemporary deep

2 Note that these networks are different from transformers and visual transformers described in Chap. 6.
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learning-based registration approaches. Generally, STNs enhance 
CNNs by permitting a flexibility which allows for an explicit spatial 
invariance that goes beyond the implicitly limited translational 
invariance associated with the architecture’s pooling layers. In 
many image-based tasks (e.g., localization or segmentation), 
designing an algorithm that can account for possible pose or geo-
metric variation of the object(s) of interest within the image is 
crucial for maximizing performance. The STN is a fully differentia-
ble layer which can be inserted anywhere in the CNN to learn the 
parameters of the transformation of the input feature map (not 
necessarily an image) which renders the output in such a way so as 
to optimize the network based on the specified loss function. The 
added flexibility and the fact that there is no manual supervision or 
special handling required make this module an essential addition 
for any CNN-based toolkit.
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Fig. 4 Diagrammatic illustration of the spatial transformer network. The STN can be placed anywhere within a 
CNN to provide spatial invariance for the input feature map. Core components include the localization network 
used to learn/predict the parameters which transform the input feature map. The transformed output feature 
map is generated with the grid generator and sampler. ©2019 Elsevier. Reprinted, with permission, from [21] 

An STN comprises three principal components: (1) a localiza-
tion network, (2) a grid generator, and (3) a sampler (see Fig. 4). 
The localization network uses the input feature map to learn/ 
regress the transformation parameters which optimize a specified 
loss function. In many examples provided, this amounts to trans-
forming the input feature map to a quasi-canonical configuration. 
The actual architecture of the localization network is fairly flexible, 
and any conventional architecture, such as a fully connected net-
work (FCN), is suitable as long as the output maps to the continu-
ous estimate of the transformation parameters. These 
transformation parameters are then applied to the output of the 
grid generator which are simply the regular coordinates of the input



image (or some normalized version thereof). The sampler, or inter-
polator, is used to map the transformed input feature map to the 
coordinates of the output feature map. 
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Since Jaderberg’s original STN formulation, extensions have 
been proposed such as the inverse compositional STN (IC-STN) 
[55] and the diffeomorphic transformer network [56]. Two issues 
with the STN include the following: (1) potential boundary effects 
in which learned transforms require sampling outside the boundary 
of the input image which can cause potential learning errors for 
subsequent layers and (2) the single-shot estimate of the learned 
transform which can compromise accuracy for large transformation 
distances. The IC-STN addresses both of these issues by (1) propa-
gating transformation parameters instead of propagating warped 
input feature maps until the final transformation layer and (2) recur-
rent usage of the localization network for inferring transform com-
positions in the spirit of the inverse compositional Lucas-Kanade 
algorithm [57]. 

Although discussion of transform generalizability was included 
in the original STN paper [54], discussion was limited to affine, 
attention (scaling + translation), and thin-plate spline transforms 
which all comply with the requirement of differentiability. This 
work was extended to diffeomorphic transforms in [56]. The 
computational load associated with generating traditional diffeo-
morphisms through velocity field integration [58] motivated the 
use of continuous piecewise affine-based (CPAB) transformations 
[59]. The CPAB approach utilizes a tesselation of the image 
domain which translates into faster and more accurate generation 
of the resulting diffeomorphism. Although this does constrain the 
flexibility of the final transformation, the framework provides an 
efficient compromise for use in deep learning architectures. Analo-
gous to traditional image registration, the deep diffeomorphic 
transformer layer can be placed in serial following an affine-based 
STN layer for a global-to-local total transformation estimation. 
This is demonstrated in the experiments reported in [56]. 

The development of the STN has led to a number of notable 
generalized deep learning-based registration approaches. Voxel-
Morph, first presented in [60], incorporates a U-net architecture 
with a STN where the input layer consists of the concatenated full 
fixed and moving image volumes resized and cropped to 
160×192×224 voxels. The output consists of the voxelwise dis-
placement field of the same size as the input (times three—one for 
each vector component). The loss function for training combines 
cross correlation and a diffusion regularizer on the spatial gradients 
of the displacement field. This was extended to a generative 
approach in [61] to yield diffeomorphic transformations based on 
SVFs [53] using novel scaling and squaring network layers. The 
U-net architecture is used to estimate the distribution parameters 
of the velocity fields encapsulated by training data. A new imaging



pair can then be registered by sampling from this learned distribu-
tion, computing the resulting diffeomorphic transformation, and 
then warping the moving image. The underlying code has been 
made publically available which has facilitated independent evalua-
tions such as [62] to compare performance with traditional algo-
rithms (i.e., IRTK [63], AIR [64], Elastix [65], ANTs [66], and 
NiftyReg [67]). Other variations include CycleMorph [68], which 
uses a cycle-consistency objective to learn to produce the original 
image from the deformed image conditioned on the transforma-
tion. This prevents degeneracies in the learned registration fields 
and demonstrates the potential to preserve topologies by inducing 
cycle consistency on the images. Another generative image regis-
tration approach is that of [69] which uses a conditional variational 
autoencoder [70], an extension of the variational autoencoder [71] 
which permits incorporation of additional information for latent 
inference modeling. This multi-scale generative framework encodes 
the SVFs which are ultimately converted to the total transformation 
field in a similar fashion as [61]. 
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3.4 Optimization and 

Equation Solving 

A current limitation of traditional registration techniques is the 
computation cost associated with finding an iterative solution. 
Most existing registration methods do not scale linearly with 
image size; thus, as advancements in medical imaging lead to 
increasingly higher resolution data, the time scale to operate regis-
tration techniques can expand to hours, and possibly days, per 
registration. While not specific to image registration, one area of 
research that can help address this is the application of learning 
models to replace classic optimization and equation solving tech-
niques. These can lead to dramatic speed up of existing registration 
techniques while maintaining the same transformation models. 
Examples of advancements in this area include the use of 
learning-based ODE solutions to perform diffeomorphic registra-
tion [72] and the use of deep learning to initialize classical optimi-
zation approaches, such as Newton’s method [73]. 

4 Registration in the Study of Brain Disorders 

This final section will explore how learning-based models have 
impacted several primary applications of image registration, partic-
ularly for the study of diseases. As before, this discussion is far from 
comprehensive, but more to demonstrate current trends in using 
machine learning models to advance common areas of registration-
driven image analysis.
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4.1 Spatial 

Normalization and 

Atlasing 

Normative and disease-specific atlases play an important role in the 
characterization of a disease. By registering images from different 
subjects into a common atlas space (i.e., spatial normalization), we 
can remove typical variability between subjects, such as brain size, 
to allow for more sensitive detection of disease-driven differences 
between subjects. Learning-based registration can enable higher 
throughput registration during atlas construction [74], thus allow-
ing more subjects to be included into the atlas and better encom-
passing the variability within a cohort. Various models have been 
proposed to embed these advantages directly into the network, 
such as [75], which uses a joint learning framework where image 
attributes are used to learn conditional templates, and an efficient 
deformation to these templates is jointly learned. In addition, 
learning models have been used to provide priors for the atlas 
[76] and establish groupwise correspondence within a cohort [77]. 

4.2 Label Transfer As described in earlier sections, establishing correspondences 
between images via image registration allows for the transfer of 
spatially embedded data, such as structural annotations and seg-
mentations, between different images and subjects. This method, 
colloquially referred to as label transfer, allows for automatic iden-
tification of anatomy in the image that may be relevant to a disease. 
While a natural application of learning models for label transfer is to 
simply replace traditional registration approaches with learning-
based ones, there has also been more sophisticated integration of 
machine learning into these frameworks. Popular among these are 
joint techniques that aim to integrate and solve for both the seg-
mentation and registration problem simultaneously in the same 
framework [78, 79]. For example, LT-Net [80] learns a multi-
atlas registration using cycle consistency and a LSGAN objective 
[81] to discriminate synthesized images from real ones. Cycle 
consistency is applied in the image space (between the true atlas 
and the reconstructed atlas), the transformation space (a voxel 
warped from the forward transformation composed with the 
reversed transformation would end up in its starting point), and 
the segmentation label space. Learning models have also been 
shown to be effective for correcting systematic errors in both the 
registration and segmentation parts of the framework [82]. Other 
models have been proposed for replacing non-registration parts of 
the standard multi-atlas label transfer framework, such as the voting 
scheme [83]. 

4.3 Morphometry Voxel-based [84] and tensor-based [85] morphometry is the anal-
ysis of the transformation result from an image registration to study 
the shape and structural characteristics of a disease. In these 
approaches, a disease cohort is spatially normalized into a common 
space and the warped images and resulting deformation fields from 
each registration are statistically compared on a voxel level to reveal



morphological characteristics in the cohort. Machine learning 
models offer new ways to analyze the resulting morphology, such 
as integrating them as part of a multivariate biomarker framework 
to detect a disease [86, 87]. 
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5 Conclusion 

Image registration is a core pillar of modern-day image analysis, 
allowing for the alignment and transfer of spatial information 
between subjects and imaging modalities. Learning-based models 
have marked improvements on core aspects of image registration, 
ranging from more accurate feature detection, to better intensity 
correspondences, particularly across modalities, to improving the 
speed and accuracy of the alignment. 

Acknowledgements 

The authors wish to acknowledge the staff and researchers at the 
Penn Image Computing and Science Laboratory (PICSL) for their 
support and expertise. 

References 

1. Anuta PE (1970) Spatial registration of multi-
spectral and multitemporal digital imagery 
using fast Fourier transform techniques. IEEE 
Trans Geosci Electron 8(4):353–368 

2. Sotiras A, Davatzikos C, Paragios N (2013) 
Deformable medical image registration: a sur-
vey. IEEE Trans Med Imaging 32(7): 
1153–1190 

3. Pluim JP, Maintz JA, Viergever MA (2003) 
Mutual-information-based registration of 
medical images: a survey. IEEE Trans Med 
Imaging 22(8):986–1004 

4. Bookstein FL (1989) Principal warps: thin-
plate splines and the decomposition of defor-
mations. IEEE Trans. Pattern Anal. Mach. 
Intell. 11(6):567–585 

5. Rohde GK, Aldroubi A, Dawant BM (2003) 
The adaptive bases algorithm for intensity-
based nonrigid image registration. IEEE 
Trans Med Imaging 22(11):1470–1479 

6. Gee JC, Bajcsy RK (1998) Elastic matching: 
continuum mechanical and probabilistic analy-
sis. Brain Warping 2 

7. Christensen GE, Rabbitt RD, Miller MI 
(1996) Deformable templates using large 
deformation kinematics. IEEE Trans. Image 
Process. 5(10):1435–1447 

8. Thirion JP (1998) Image matching as a diffu-
sion process: an analogy with Maxwell’s 
demons. Med Image Anal 2(3):243–260 

9. Beg MF, Miller MI, Trouvé A, Younes L 
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51. Rohé MM, Datar M, Heimann T, 
Sermesant M, Pennec X (2017) SVF-Net: 
learning deformable image registration using 
shape matching. In: Descoteaux M, Maier-
Hein L, Franz A, Jannin P, Collins DL, Duch-
esne S (eds) Proceedings of the international 
conference on medical image computing and 
computer-assisted intervention. Springer 
International Publishing, Cham, pp 266–274 

52. Eppenhof KAJ, Lafarge MW, Moeskops P, 
Veta M, Pluim JPW (2018) Deformable 
image registration using convolutional neural 
networks. In: Proceedings of the SPIE: medical 
imaging: image processing 

53. Arsigny V, Commowick O, Pennec X, Ayache 
N (2006) A log-euclidean framework for statis-
tics on diffeomorphisms. In: Proceedings of 
the international conference on medical image 
computing and computer-assisted interven-
tion, vol 9, pp 924–31 

54. Jaderberg M, Simonyan K, Zisserman A, 
Kavukcuoglu K (2015) Spatial transformer 
networks. In: Neural information processing 
systems 

55. Lin CH, Lucey S (2017) Inverse compositional 
spatial transformer networks. In: Proceedings 
of the IEEE conference on computer vision 
and pattern recognition 

56. Detlefsen NS, Freifeld O, Hauberg S (2018) 
Deep diffeomorphic transformer networks. In: 
Proceedings of the IEEE conference on com-
puter vision and pattern recognition 

57. Baker S, Matthews I (2004) Lucas-kanade 
20 years on: a unifying framework. Int J Com-
put  Vis  56(3):221–255.  https://doi.  
org/10.1023/B:VISI.0000011205.11775.fd 

58. Beg MF, Miller MI, Trouvé A, Younes L 
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