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Abstract 

Recurrent neural networks (RNNs) are neural network architectures with hidden state and which use 
feedback loops to process a sequence of data that ultimately informs the final output. Therefore, RNN 
models can recognize sequential characteristics in the data and help to predict the next likely data point in 
the data sequence. Leveraging the power of sequential data processing, RNN use cases tend to be 
connected to either language models or time-series data analysis. However, multiple popular RNN 
architectures have been introduced in the field, starting from SimpleRNN and LSTM to deep RNN, and 
applied in different experimental settings. In this chapter, we will present six distinct RNN architectures and 
will highlight the pros and cons of each model. Afterward, we will discuss real-life tips and tricks for training 
the RNN models. Finally, we will present four popular language modeling applications of the RNN 
models –text classification, summarization, machine translation, and image-to-text translation– thereby 
demonstrating influential research in the field. 

Key words Recurrent neural network (RNN), LSTM, GRU, Bidirectional RNN (BRNN), Deep 
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1 Introduction 

Recurrent neural network (RNN) is a specialized neural network 
with feedback connection for processing sequential data or time-
series data in which the output obtained is fed back into it as input 
along with the new input at every time step. The feedback connec-
tion allows the neural network to remember the past data when 
processing the next output. Such processing can be defined as a 
recurring process, and hence the architecture is also known as 
recurring neural network. 

RNN concept was first proposed by Rumelhart et al. [1] in a  
letter published by Nature in 1986 to describe a new learning 
procedure with a self-organizing neural network. Another impor-
tant historical moment for RNNs is the (re-)discovery of Hopfield
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networks which is a special kind of RNN with symmetric connec-
tions where the weight from one node to another and from the 
latter to the former are the same (symmetric). The Hopfield net-
work [2] is fully connected, so every neuron’s output is an input to 
all the other neurons, and updating of nodes happens in a binary 
way (0/1). These types of networks were specifically designed to 
simulate the human memory.
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The other types of RNNs are input-output mapping networks, 
which are used for classification and prediction of sequential data. 
In 1993, Schmidhuber et al. [3] demonstrated credit assignment 
across the equivalent of 1,200 layers in an unfolded RNN and 
revolutionized sequential modeling. In 1997, one of the most 
popular RNN architectures, the long short-term memory 
(LSTM) network which can process long sequences, was proposed. 

In this chapter, we summarize the six most popular contempo-
rary RNN architectures and their variations and highlight the pros 
and cons of each. We also discuss real-life tips and tricks for training 
the RNN models, including various skip connections and gradient 
clipping. Finally, we highlight four popular language modeling 
applications of the RNN models –text classification, summariza-
tion, machine translation, and image-to-text translation– thereby 
demonstrating influential research in each area. 

2 Popular RNN Architectures 

In addition to the SimpleRNN architecture, many variations were 
proposed to address different use cases. In this section, we will 
unwrap some of the popular RNN architectures like LSTM, 
GRU, bidirectional RNN, deep RNN, and attention models and 
discuss their pros and cons. 

2.1 SimpleRNN SimpleRNN architecture, which is also known as SimpleRNN, 
contains a simple neural network with a feedback connection. It 
has the capability to process sequential data of variable length due 
to the parameter sharing which generalizes the model to process 
sequences of variable length. Unlike feedforward neural networks 
which have separate weights for each input feature, RNN shares the 
same weights across several time steps. In RNN, the output of a 
present time step depends on the previous time steps and is 
obtained by the same update rule which is used to obtain the 
previous outputs. As we will see, the RNN can be unfolded into a 
deep computational graph in which the weights are shared across 
time steps. 

The RNN operating on an input sequence x(t) with a time step 
index t ranging from 1 to τ is illustrated in Fig. 1. The time step 
index t may not necessarily refer to the passage of time in the real 
world; it can refer to the position in the sequence. The cycles in the



computational graph represent the impact of the past value of a 
variable on the present time step. The computational graph has a 
repetitive structure that unfolds the recursive computation of the 
RNN which corresponds to a chain of events. It shows the flow of 
the information, forward in the time of computing the outputs and 
losses and backward when computing the gradients. The unfolded 
computational graph is shown in Fig. 1. The equation 
corresponding to the computational graph is h(t) = f(h(t-1) , x(t) ; 
W), where h is the hidden state of the network, x is the input, t is 
the time step, and W denotes the weights of the network connec-
tions comprising of input-to-hidden, hidden-to-hidden, and 
hidden-to-output connection weights. 
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Fig. 1 (Left) Circuit diagram for SimpleRNN with input x being incorporated into hidden state h with a feedback 
connection and an output o. (Right) The same SimpleRNN network shown as an unfolded computational graph 
with nodes at every time step 

2.1.1 Training 

Fundamentals 

Training is performed by gradient computation of the loss function 
with respect to the parameters involved in forward propagation 
from left to right of the unrolled graph followed by back-
propagation moving from right to left through the graph. Such 
gradient computation is an expensive operation as the runtime 
cannot be reduced by parallelism because the forward propagation 
is sequential in nature. The states computed in the forward pass are 
stored until they are reused in the back-propagation. The back-
propagation algorithm applied to RNN is known as back-propa-
gation through time (BPTT) [4]. 

The following computational operations are performed in 
RNN during the forward propagation to calculate the output and 
the loss. 

aðtÞ = b þ Whðt -1Þ þ UxðtÞ 

hðtÞ = tanhðaðtÞÞ 
oðtÞ = c þ VhðtÞ 

ŷðtÞ = σðoðtÞÞ



120 Susmita Das et al.

where b and c are the biases and U, V , and W are the weight matrix 
for input-to-hidden connections, hidden-to-output connection, 
and hidden-to-hidden connections respectively, and σ is a sigmoid 
function. The total loss for a sequence of x values and its 
corresponding y values is obtained by summing up the losses over 
all time steps. 

τ 

t =1 

LðtÞ =Lððxð1Þ, . . . . . . , xðτÞÞ, ðyð1Þ, . . . . . . , yðτÞÞÞ 
To minimize the loss, the gradient of the loss function is 

calculated with respect to the parameters associated with it. The 
parameters associated with the nodes of the computational graph 
are U, V , W, b, c, x(t) , h(t) , o(t) , and L(t) . The output o(t) is the 
argument to the softmax to obtain the vector ŷ of probabilities over 
the output. During back-propagation, the gradient for each node is 
calculated recursively starting with the nodes preceding the final 
loss. It is then iterated backward in time to back-propagate gradi-
ents through time. tanh is a popular choice for activation function 
as it tends to avoid vanishing gradient problem by retaining 
non-zero value longer through the back-propagation process. 

2.1.2 SimpleRNN 

Architecture Variations 

Based on Parameter 

Sharing 

Variations of SimpleRNN can be designed depending upon the 
style of graph unrolling and parameter sharing [5]:

• Connection between hidden units. The RNN produces outputs at 
every time step, and the parameters are passed between hidden-
to-hidden units (Fig. 2a). This corresponds to the standard 
SimpleRNN presented above and is widely used.

• Connection between outputs to hidden units. The RNN produces 
outputs at every time step, and the parameters are passed from 
an output at a particular time step to the hidden unit at the next 
time step (Fig. 2b).

• Sequential input to single output. The RNN produces a single 
output at the end after reading the entire sequence and has 
connections between the hidden units at every time step 
(Fig. 2c). 

2.1.3 SimpleRNN 

Architecture Variations 

Based on Inputs and 

Outputs 

Different variations also exist depending on the number of inputs 
and outputs:

• One-to-one: The traditional RNN has one-to-one input to out-
put mapping at each time step t as shown in Fig. 3a.

• One-to-many: One-to-many RNN has one input at a time step 
for which it generates a sequence of outputs at consecutive time 
steps as shown in Fig. 3b. This type of RNN architecture is often 
used for image captioning.
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Fig. 2 Types of SimpleRNN architectures based on parameter sharing: (a) SimpleRNN with connections 
between hidden units, (b) SimpleRNN with connections from output to hidden units, and (c) SimpleRNN with 
connections between hidden units that read the entire sequence and produce a single output

• Many-to-one: Many-to-one RNN has many inputs and one out-
put, at each time step as shown in Fig. 3c. This type of RNN 
architecture is used for text classification.

• Many-to-many: Many-to-many RNN architecture can be 
designed in two ways. First, the input is taken by the RNN and 
the corresponding output is given at the same time step as 
illustrated in Fig. 3d. This type of RNN is used for named entity 
recognition. Second, the input is taken by the RNN at each time 
step and the output is given by the RNN at the next time step 
depending upon all the input sequence as illustrated in 
Fig. 3e. Popular uses of this type of RNN architecture are in 
machine translation. 

2.1.4 Challenges of 

Long-Term Dependencies 

in SimpleRNN 

SimpleRNN works well with the short-term dependencies, but 
when it comes to long-term dependencies, it fails to remember 
the long-term information. This problem arises due to the vanish-
ing gradient or exploding gradient [6]. When the gradients are 
propagated over many stages, it tends to vanish most of the times 
or sometimes explodes. The difficulty arises due to the exponen-
tially smaller weight assigned to the long-term interactions com-
pared to the short-term interactions. It takes very long time to learn 
the long-term dependencies as the signals from these dependencies 
tend to be hidden by the small fluctuations arising from the short-
term dependencies.



122 Susmita Das et al.

h(t) h(t+1) h(t+2) 

x(t) 

o(t) 

h(t) 

x(t) 

o(t) o(t+1) o(t+2) 

h(t) h(t+1) h(t+2) 

x(t+1) x(t+2) x(t) 

o(t) o(t+1) o(t+2) 

h(t–2) h(t–1) h(t) 

x(t–1) x(t) x(t–2) 

o(t) 

h(t–2) h(t–1) h(t) 

x(t–1) x(t) x(t–2) 

o(t) 

h(t+1) 

o(t+1) 

h(t+2) 

o(t+2) 

(a) 

(d) (e) 

(b) (c) 

Fig. 3 (a) One-to-one RNN. (b) One-to-many RNN. (c) Many-to-one RNN. (d) Many-to-many RNN. (e) Many-to-
many RNN. x represents the input and o represents the output 

2.2 Long Short-Term 

Memory (LSTM) 

To address this long-term dependency problem, gated RNNs were 
proposed. Long short-term memory (LSTM) is a type of gated 
RNN which was proposed in 1997 [7]. Due to the property of 
remembering the long-term dependencies, LSTM has been a suc-
cessful model in many applications like speech recognition, 
machine translation, image captioning, etc. LSTM has an inner 
self loop in addition to the outer recurrence of the RNN. The 
gradients in the inner loop can flow for longer duration and are 
conditioned on the context rather than being fixed. In each cell, the 
input and output is the same as that of ordinary RNN but has a 
system of gating units to control the flow of information. Figure 4 
shows the flow of the information in LSTM with its gating units. 

There are three gates in the LSTM—the external input gate, 
the forget gate, and the output gate. The forget gate at time t and 
state si (f 

ðtÞ 
i ) decides which information should be removed from 

the cell state. The gate controls the self loop by setting the weight 
between 0 and 1 via a sigmoid function σ. When the value is near to 
1, the information of the past is retained, and if the value is near to



0, the information is discarded. After the forget gate, the internal 
state s

ðtÞ 
i is updated. Computation for external input gate (gt 

i ) is  
similar to that of forget gate with a sigmoid function to obtain a 
value between 0 and 1 but with its own parameters. The output 
gate of the LSTM also has a sigmoid unit which determines 
whether to output the value or to shut off the value ht i via the 
output gate qt i . 
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Fig. 4 Long short-term memory with cell state ct , hidden state ht , input xt , and output ot 
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xt is the input vector at time t, h(t) is the hidden layer vector, bi 
denote the biases, and Ui and Wi represent the input weights and 
the recurrent weights, respectively.
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Fig. 5 Gated recurrent neural network (GRU) with input xt and hidden unit ht 

2.3 Gated Recurrent 

Unit (GRU) 

In LSTM, the computation time is large as there are a lot of 
parameters involved during back-propagation. To reduce the com-
putation time, gated recurrent unit (GRU) was proposed in the 
year 2014 by Cho et al. with less gates than in LSTM [8]. The 
functionality of the GRU is similar to that of LSTM but with a 
modified architecture. The representation diagram for GRU can be 
found in Fig. 5. Like LSTM, GRU also solves the vanishing and 
exploding gradient problem by capturing the long-term dependen-
cies with the help of gating units. There are two gates in GRU, the 
reset gate and the update gate. The reset gate determines how 
much of the past information it needs to forget, and the update 
gate determines how much of the past information it needs to carry 
forward. 

The computation at the reset gate (rt i) and the update gate (u
t 
i), 

as well as hidden state (ht i) and the at time t, can be represented by the 
following: 

r
ðtÞ 
i = σðbr i þ 

j 

U r 
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j Þ 
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where bi denotes biases and Ui and Wi denote initial and recurrent 
weights, respectively.
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When the reset gate value is close to 0, the previous hidden 
state value is discarded and reset with the present value. This 
enables the hidden state to forget the past information that is 
irrelevant for future. The update gate determines how much of 
the relevant past information to carry forward for future. 

The property of the update gate to carry forward the past 
information allows it to remember the long-term dependencies. 
For short-term dependencies, the reset gate will be frequently 
active to reset with current values and remove the previous ones, 
while, for long-term dependencies, the update gate will be often 
active for carrying forward the previous information. 

2.3.1 Advantage of LSTM 

and GRU over SimpleRNN 

The LSTM and GRU can handle the vanishing gradient issue of 
SimpleRNN with the help of gating units. The LSTM and GRU 
have the additive feature that they retain the past information by 
adding the relevant past information to the present state. This 
additive property makes it possible to remember a specific feature 
in the input for longer time. In SimpleRNN, the past information 
loses its relevance when new input is seen. In LSTM and GRU, any 
important feature is not overwritten by new information. Instead, it 
is added along with the new information. 

2.3.2 Differences 

Between LSTM and GRU 

There are a few differences between LSTM and GRU in terms of 
gating mechanism which in turn result in differences observed in 
the content generated. In LSTM unit, the amount of the memory 
content to be used by other units of the network is regulated by the 
output gate, whereas in GRU, the full content that is generated is 
exposed to other units. Another difference is that the LSTM com-
putes the new memory content without controlling the amount of 
previous state information flowing. Instead, it controls the new 
memory content that is to be added to the network. On the other 
hand, the GRU controls the flow of the past information when 
computing the new candidate without controlling the candidate 
activation. 

2.4 Bidirectional 

RNN (BRNN) 

In SimpleRNN, the output of a state at time t only depends on the 
information of the past x(1) , .. . ., x(t-1) and the present input x(t) . 
However, for many sequence-to-sequence applications, the present 
state output depends on the whole sequence information. For 
example, in language translation, the correct interpretation of the 
current word depends on the past words as well as the next words. 
To overcome this limitation of SimpleRNN, bidirectional RNN 
(BRNN) was proposed by Schuster and Paliwal in the year 
1997 [9]. 

Bidirectional RNNs combine an RNN which moves forward 
with time, beginning from the start of the sequence, with another 
RNN that moves backward through time, beginning from the end 
of the sequence. Figure 6 illustrates a bidirectional RNN with h(t)



the state of the sub-RNN that moves forward through time and g(t) 

the state of the sub-RNN that moves backward with time. The 
output of the sub-RNN that moves forward is not connected to 
the inputs of sub-RNN that moves backward and vice versa. The 
output o(t) depends on both past and future sequence data but is 
sensitive to the input values around t. 
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Fig. 6 Bidirectional RNN with forward sub-RNN having ht hidden state and 
backward sub-RNN having gt hidden state 

2.5 Deep RNN Deep models are more efficient than their shallow counterparts, 
and, with the same hypothesis, deep RNN was proposed by 
Pascanu et al. in 2014 [10]. In “shallow” RNN, there are generally 
three blocks for computation of parameters: the input state, the 
hidden state, and the output state. These blocks are associated with 
a single weight matrix corresponding to a shallow transformation 
which can be represented by a single-layer multilayer perceptron 
(MLP). In deep RNN, the state of the RNN can be decomposed 
into multiple layers. Figure 7 shows in general a deep RNN with 
multiple deep MLPs. However, different types of depth in an RNN 
can be considered separately like input-to-hidden, hidden-to-
hidden, and hidden-to-output layer. The lower layer in the hierar-
chy can transform the input into an appropriate representation for 
higher levels of hidden state. In hidden-to-hidden state, it can be 
constructed with a previous hidden state and a new input. This 
introduces additional non-linearity in the architecture which 
becomes easier to quickly adapt changing modes of the input. By 
introducing deep MLP in hidden-to-output state makes the layer 
compact which helps in summarizing the previous inputs and helps 
in predicting the output easily. Due to the deep MLP in the RNN 
architecture, the learning becomes slow and optimization is 
difficult.
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Fig. 7 Deep recurrent neural network 

2.6 Encoder– 
Decoder 

Encoder–decoder architecture was proposed by Cho et al. (2014) 
[8] to map a variable length input sequence to a variable length 
output sequence. Therefore, it is also known as sequence-to-
sequence architecture. Before encoder–decoder was introduced, 
there were RNN models which were used for sequence-to-
sequence applications, but they had limitations as the input and 
output sequences had to have the same length. Encoder–decoder 
was used for addressing variable length sequence-to-sequence pro-
blems such as machine translation or speech recognition where the 
input sequence and output sequence lengths may not be the same 
in most of the cases. Encoder and decoder are both RNNs where 
the encoder RNN encodes the whole input X = xð1Þ, . . . ::, xðnxÞ 

into a context vector c and outputs the context vector c which is 
fed as an input to the decoder RNN. The decoder RNN generates 
an output sequence Y = yð1Þ, . . . ::, yðny Þ. In the encoder–decoder 
model, the input length xðnxÞ and the output length yðny Þ can be 
different unlike the previous RNN models. The number of hidden 
layers in encoder and decoder are not necessarily be the same. The 
limitation of this architecture is that it fails to properly summarize a



long sequence if the context vector is too small. This problem was 
solved by Bahdanau et al. (2015) [11] by making the context vector 
a variable length sequence with added attention mechanism. 
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2.7 Attention Models 

(Transformers) 

Due to the sequential learning mechanism, the context vector 
generated by the encoder (see Subheading 2.6) is more focused 
on the later part of the sequence than on the earlier part. An 
extension to the encoder–decoder model was proposed by 
Bahdanau et al. [11] for machine translation where the model 
generates each word based on the most relevant information in 
the source sentence and previously generated words. Unlike the 
previous encoder–decoder model where the whole input sequence 
is encoded into a single context vector, this extended encoder– 
decoder model learns to give attention to the relevant words pres-
ent in the source sequence regardless of the position in the 
sequence by encoding the input sequence into sequences of vectors 
and chooses selectively while decoding each word. This mechanism 
of paying attention to the relevant information that are related to 
each word is known as attention mechanism. 

Although this model solves the problem for fixed-length con-
text vectors, the sequential decoding problem still persists. To 
decode the sequence in less time by introducing parallelism, self-
attention was proposed by Google Brain team, Ashish Vaswani et al. 
[12]. They invented the Transformer model which is based on self-
attention mechanism and was designed to reduce the computation 
time. It computes the representation of a sequence that relates to 
different positions of the same sequence. The self-attention mech-
anism was embedded in the Transformer model. The Transformer 
model has a stack of six identical layers each for encoding the 
sequence and decoding the sequence as illustrated in Fig. 8. Each 
layer of the encoder and decoder has sub-layers comprising multi-
head self-attention mechanisms and position-wise fully connected 
layers. There is a residual connection around the two sub-layers 
followed by normalization. In addition to the two sub-layers, there 
is a third layer in the decoder that performs multi-head attention 
over the output of the encoder stack. In the decoder, the multi-
head attention is masked to prevent the position from attending the 
later part of the sequence. This ensures that the prediction for a 
position p depends only on the positions less than p in the sequence. 
The attention function can be described as mapping a query and 
key-value pairs to an output. All the parameters involved in the 
computation are all vectors. To calculate the output, scalar 
dot product operation is performed on the query and all keys, 
and divide each key by dk 

p
(where dk is the dimension on 

the keys). Finally, the softmax is applied to it to obtain the 
weights on the values. The computation of attention function 
can be represented by the following equation:



AttentionðQ ,K ,V Þ= sof  tmaxð QKT 

dk 

p ÞV , where Q, K, and V are 

all matrices corresponding to query, keys, and values, respectively. A 
more in-depth coverage of Transformers is provided in Chap. 6. 

RNN Architectures and Research 129

Encoder 

Encoder 

Encoder 

Encoder 

Encoder 

Encoder 

Input 

Decoder 

Decoder 

Decoder 

Decoder 

Decoder 

Decoder 

Output 

Fig. 8 Transformer with six layers of encoders and six layers of decoders 

3 Tips and Tricks for RNN Training 

As previously stated, the vanishing gradient and exploding gradient 
problems are well-known concerns when it comes to properly 
training RNN models [13, 14]. The fundamental challenge arises 
from the fact that RNNs can be naturally unfolded, allowing their 
recurrent connections to perform feedforward calculations, which 
result in an RNN with the same number of layers as the number of 
elements in the sequence. Two major issues arise as a result:

https://doi.org/10.1007/978-1-0716-3195-9_6
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• Gradient vanishing problem. It becomes difficult to effectively 
learn long-term dependencies in sequences due to the gradient 
vanishing problem [6]. As a result, a prospective model predic-
tion will be essentially unaffected by earlier layers.

• Exploding gradient problem. Adding more layers to the network 
amplifies the effect of large gradients, increasing the risk of a 
learning derailment since significant changes to the network 
weights can be performed at each step, potentially causing the 
gradients to blow out exponentially. In fact, weights that are 
closer to the input layer will obtain larger updates than weights 
that are closer to the output layer, and the network may become 
unable to learn correlations between temporally distant events. 

To overcome these limitations, we need to create solutions so 
that the RNN model can work on various time scales, with some 
sections operating on fine-grained time scales and handling small 
details and others operating on coarse time scales and efficiently 
transferring information from the distant past to the present. In this 
section, we discuss several popular strategies to tackle these issues. 

3.1 Skip Connection The practice of skipping layers effectively simplifies the network by 
using fewer direct connected layers in the initial training stages. 
This speeds learning by reducing the impact of vanishing gradients, 
as there are fewer layers to propagate through. As the network 
learns the feature space during the training phase, it gradually 
restores the skipped layers. Lin et al. [15] proposed the use of 
such skip connections, which follows from the idea of incorporating 
delays in feedforward neural networks from Lang et al. [16]. Con-
ceptually, skip connections are a standard module in deep architec-
tures and are commonly referred to as residual networks, as 
described by He et al. [17]. They are responsible to skip layers in 
the neural network and feeding the output of one layer as the input 
to the next layers. This technique is used to allow gradients to flow 
through a network directly, without passing through non-linear 
activation functions, and it has been empirically proven that these 
additional steps are often beneficial for the model convergence 
[17]. Skip connections can be used through the non-sequential 
layer in two fundamental ways in neural networks:

• Additive Skip Connections. In this type of design, the data 
from early layers is transported to deeper layers via matrix addi-
tion, causing back-propagation to be done via addition 
(Fig. 9b). This procedure does not require any additional para-
meters because the output from the previous layer is added to 
the layer ahead. One of the most common techniques used in 
this type of architecture is to stack the skip residual blocks 
together and use an identity function to preserve the gradient 
[18]. The core concept is to use a vector addition to back-
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Fig. 9 Skip connection residual architectures: (a) concatenate output of previous layer and skip connection; (b) 
sum of the output of previous layer and skip connection 

propagate through the identity function. The gradient is then 
simply multiplied by one, and its value is preserved in the earlier 
layers.

• Concatenative Skip Connections. Another way for establish-
ing skip connections is to concatenate previous feature maps. 
The aim of concatenation is to leverage characteristics acquired 
in prior layers to deeper layers. In addition, concatenating skip 
connections provides an alternate strategy for assuring feature 
reusability of the same dimensionality from prior layers without 
the need to learn duplicate maps. Figure 9(a) illustrates a dia-
gram example of how the architecture looks like. The primary 
concept of the architecture is to allow subsequent layers to reuse 
intermediary representations, allowing them to maintain more 
information and enhance long-term dependency performance. 

3.2 Leaky Units One of the major challenges when training RNNs is capturing 
long-term dependencies and efficiently transferring information 
from distant past to present. An effective method to obtain coarse 
time scales is to employ leaky units [19], which are hidden units 
with linear self-connections and a weight on the connections that is 
close to one. In a leaky RNN, hidden units are able to access values 
from prior states and can be utilized to obtain temporal representa-
tions. Formula ht= α ht-1 + (1- α) ht expresses the state update



rule of a leaky unit, where α∈ (0, 1) is an example of a linear self-
connection from ht-1 to ht, and it is a parameter to be learned 
during the training stage. Essentially, α controls the information 
flow in the state. When α is near one, the state is almost unchanged, 
and information about the past is retained for a long time, and 
when α is close to zero, the information about the past is rapidly 
discarded, and the state is largely replaced by a new state ht. 
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3.3 Clipping 

Gradients 

Gradient clipping is a technique that tries to overcome the explod-
ing gradient problem in RNN training, by constraining gradient 
norms (element-wise) to a predetermined minimum or maximum 
threshold value since the exploding gradients are clipped and the 
optimization begins to converge to the minimum point. Gradient 
clipping can be used in two fundamental ways:

• Clipping-by-value. Using this technique, we define a minimum 
clip value and a maximum clip value. If a gradient exceeds the 
threshold value, we clip the gradient to the maximum threshold. 
If the gradient is less than the lower limit of the threshold, we 
clip the gradient to the minimum threshold.

• Clipping-by-norm. The idea behind this technique is very 
similar to clipping-by-value. The key difference is that we clip 
the gradients by multiplying the unit vector of the gradients with 
the threshold. Gradient descent will be able to behave properly 
even if the loss landscape of the model is irregular since the 
weight updates will also be rescaled. This significantly reduces 
the likelihood of an overflow or underflow of the model. 

4 RNN Applications in Language Modeling 

Language modeling is the process of learning meaningful vector 
representations for language or text using sequence information 
and is generally trained to predict the next token or word given the 
input sequence of tokens or words. Bengio et al. [20] proposed a 
framework for neural network-based language modeling. RNN 
architecture is particularly suited to processing free-flowing natural 
language due to its sequential nature. As described by Mikolov et al. 
[21], RNNs can learn to compress a whole sequence as opposed to 
feedforward neural networks that compress only a single input 
item. Language modeling can be an independent task or be part 
of a language processing pipeline with downstream prediction or 
classification task. In this section, we will discuss applications of 
RNN for various language processing tasks.
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4.1 Text 

Classification 

Many interesting real-world applications concerning language data 
can be modeled as text classification. Examples include sentiment 
classification, topic or author identification, and spam detection 
with applications ranging from marketing to query-answering 
[22, 23]. In general, models for text classification include some 
RNN layers to process sequential input text [22, 23]. The embed-
ding of the input learnt by these layers is later processed through 
varying classification layers to predict the final class label. Many-to-
one RNN architectures are often employed for text classification. 

As a recent technical innovation, RNNs have been combined 
with convolutional neural networks (CNNs), thus combining the 
strengths of two architectures, to process textual data for classifica-
tion tasks. LSTMs are popular RNN architecture for processing 
textual data because of their ability to track patterns over long 
sequences, while CNNs have the ability to learn spatial patterns 
from data with two or more dimensions. Convolutional LSTM 
(C-LSTM) combines these two architectures to form a powerful 
architecture that can learn local phrase-level patterns as well as 
global sentence-level patterns [24]. While CNN can learn local 
and position-invariant features and RNN is good at learning global 
patterns, another variation of RNN has been proposed to introduce 
position-invariant local feature learning into RNN. This variation is 
called disconnected RNN (DRNN) [25]. Information flow 
between tokens/words at the hidden layer is limited by a hyper-
parameter called window size, allowing the developer to choose the 
width of the context to be considered while processing text. This 
architecture has shown better performance than both RNN and 
CNN on several text classification tasks [25]. 

4.2 Text 

Summarization 

Text summarization approaches can be broadly categorized into 
(1) extractive and (2) abstractive summarization. The first approach 
relies on selection or extraction of sentences that will be part of the 
summary, while the latter generates new text to build a summary. 
RNN architectures have been used for both types of summarization 
techniques. 

4.2.1 Extractive Text 

Summarization 

Extractive summarization frameworks use many-to-one RNN as a 
classifier to distinguish sentences that should be part of the sum-
mary. For example, a two-layer RNN architecture is presented in 
[26] where one layer processes words in one sentence and the other 
layer processes many sentences as a sequence. The model generates 
sentence-level labels indicating whether the sentence should be part 
of the summary or not, thus producing an extractive summary of 
the input document. Xu et al. have presented a more sophisticated 
extractive summarization model that not only extracts sentences to 
be part of the summary but also proposes possible syntactic com-
pressions for those sentences [27]. Their proposed architecture is a



combination of CNN and bidirectional LSTM, while a neural 
classifier evaluates possible syntactic compressions in the context 
of the sentence as well as the broader context of the document. 
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4.2.2 Abstractive Text 

Summarization 

Abstractive summarization frameworks expect the RNN to process 
input text and generate a new sequence of text that is the summary 
of input text, effectively using many-to-many RNN as a text gener-
ation model. While it is relatively straightforward for extractive 
summarizers to achieve basic grammatical correctness as correct 
sentences are picked from the document to generate a summary, 
it has been a major challenge for abstractive summarizers. Gram-
matical correctness depends on the quality of the text generation 
module. Grammatical correctness of abstractive text summarizers 
has improved recently due to developments in contextual text 
processing, language modeling, as well as availability of computa-
tional power to process large amounts of text. 

Handling of rare tokens/words is a major concern for modern 
abstractive summarizers. For example, proper nouns such as specific 
names of people and places occur less frequently in the text; how-
ever, generated summaries are incomplete and incomprehensible if 
such tokens are ignored. Nallapati et al. proposed a novel solution 
composed of GRU-RNN layers with attention mechanism by 
including switching decoder in their abstractive summarizer archi-
tecture [28] where the text generator module has a switch which 
can enable the module to choose between two options: (1) generate 
a word from the vocabulary and (2) point to one of the words in the 
input text. Their model is capable of handling rare tokens by 
pointing to their position in the original text. They also employed 
large vocabulary trick which limits the vocabulary of the generator 
module to tokens of the source text only and then adds frequent 
tokens to the vocabulary set until its size reaches a certain thresh-
old. This trick is useful in limiting the size of the network. 

Summaries have latent structural information, i.e., they convey 
information following certain linguistic structures such as “What-
Happended” or “Who-Action-What.” Li et al. presented a recur-
rent generative decoder based on variational auto-encoder (VAE) 
[29]. VAE is a generative model that takes into account latent 
variables, but is not inherently sequential in nature. With the his-
torical dependencies in latent space, it can be transformed into a 
sequential model where generative output is taking into account 
history of latent variables, hence producing a summary following 
latent structures. 

4.3 Machine 

Translation 

Neural machine translation (NMT) models are trained to process 
input sequence of text and generate an output sequence which is 
the translation of the input sequence in another language. As 
mentioned in Subheading 2.6, machine translation is a classic 
example of conversion of one sequence to another using encoder–



decoder architecture where lengths of both sequences may be 
different. In 2014, many-to-many RNN-based encoder–decoder 
architecture was proposed where one RNN encodes the input 
sequence of text to a fixed-length vector representation, while 
another RNN decodes the fixed-length vector to the target trans-
lated sequence [30]. Both RNNs are jointly trained to maximize 
the conditional probability of the target sequence given the input 
sequence. Later, attention-based modeling was added to vanilla 
encoder–decoder architecture for machine translation. Luong 
et al. discussed two types of attention mechanism in their work 
on NMT: (i) global and (ii) local attention [31]. In global atten-
tion, a global context vector is estimated by learning variable length 
alignment and attention scores for all source words. In local atten-
tion, the model predicts a single aligned position for the current 
target word and then computes a local context vector from atten-
tion predicted for source words within a small window of the 
aligned position. Their experiments show significant improvement 
in translation performance over models without attention. Local 
attention mechanism has the advantage of being computationally 
less expensive than global attention mechanism. 
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4.4 Image-to-Text 

Translation 

Image-to-text translation models are expected to convert visual 
data (i.e., images) into textual data (i.e., words). In general, the 
image input is passed through some convolutional layers to gener-
ate a dense representation of the visual data. Then, the embedded 
representation of the visual data is fed to an RNN to generate a 
sequence of text. Many-to-one RNN architectures are popular for 
this task. 

In 2015, Karpathy et al. [32] presented their influential work 
on training region convolutional neural network (RCNN) to gen-
erate representation vectors for image regions and bidirectional 
RNN to generate representation vectors for corresponding caption 
in semantic alignment with each other. They also proposed novel 
multi-modal RNN to generate a caption that is semantically aligned 
with the input image. Image regions were selected based on the 
ranked output of an object detection CNN. 

Xu et al. proposed an attention-based framework to generate 
image caption that was inspired by machine translation models 
[33]. They used image representations generated by lower convo-
lutional layers from a CNN model rather than the last fully 
connected layer and used an LSTM to generate words based on 
hidden state, last generated word, and context vector. They defined 
the context vector as a dynamic representation of the image gener-
ated by applying an attention mechanism on image representation 
vectors from lower convolutional layers of CNN. Attention mech-
anism allowed the model to dynamically select the region to focus 
on while generating a word for image caption. An additional 
advantage of their approach was intuitive visualization of the



model’s focus for generation of each word. Their visualization 
experiments showed that their model was focused on the right 
part of the image while generating each important word. 
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Such influential works in the field of automatic image caption-
ing were based on image representations generated by CNNs 
designed for object detection. Some recently proposed captioning 
models have sought to change this trend. Biten et al. proposed a 
captioning model for images used to illustrate new articles 
[34]. Their caption generation LSTM takes into account both 
CNN-generated image features and semantic embeddings to the 
text of corresponding new articles to generate a template of a 
caption. This template contains spaces for the names of entities 
like organizations and places. These places are filled in using atten-
tion mechanism on the text of the corresponding article. 

4.5 ChatBot for 

Mental Health and 

Autism Spectrum 

Disorder 

ChatBots are automatic conversation tools that have gained vast 
popularity in e-commerce and as digital personal assistants like 
Apple’s Siri and Amazon’s Alexa. ChatBots represent an ideal appli-
cation for RNN models as conversations with ChatBots represent 
sequential data. Questions and answers in a conversation should be 
based on past iterations of questions and answers in that conversa-
tion as well as patterns of sequences learned from other conversa-
tions in the dataset. 

Recently, ChatBots have found application in screening and 
intervention for mental health disorders such as autism spectrum 
disorder (ASD). Zhong et al. designed a Chinese-language Chat-
Bot using bidirectional LSTM in sequence-to-sequence framework 
which showed great potential for conversation-mediated interven-
tion for children with ASD [35]. They used 400,000 selected 
sentences from chatting histories involving children in many 
cases. Rakib et al. developed similar sequence-to-sequence model 
based on Bi-LSTM to design a ChatBot to respond empathetically 
to mentally ill patients [36]. A detailed survey of medical ChatBots 
is presented in [37]. This survey includes references to ChatBots 
built using NLP techniques, knowledge graphs, as well as modern 
RNN for a variety of applications including diagnosis, searching 
through medical databases, dialog with patients, etc. 

5 Conclusion 

Due to the sequential nature of their architecture, RNNs are 
applied for ordinal or temporal problems, such as language transla-
tion, text summarization, and image captioning, and are 
incorporated into popular applications such as Siri, voice search, 
and Google Translate. In addition, they are also often used to 
analyze longitudinal data in medical applications (i.e., cases where 
repeated observations are available at different time points for each



patient of a dataset). While research in RNN is still an evolving area 
and new architectures are being proposed, this chapter summarizes 
fundamentals of RNN including different traditional architectures, 
training strategies, and influential work. It may serve as a stepping 
stone for exploring sequential models using RNN and provides 
reference pointers. 
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Bahdanau D, Bougares F, Schwenk H, Bengio 
Y (2014) Learning phrase representations 
using RNN encoder-decoder for statistical 
machine translation. In: The 2014 conference 
on empirical methods in natural language pro-
cessing (EMNLP) 

31. Luong MT, Pham H, Manning CD (2015) 
Effective approaches to attention-based neural 
machine translation. Preprint. 
arXiv:150804025 

32. Karpathy A, Fei-Fei L (2015) Deep visual-
semantic alignments for generating image 
descriptions. In: Proceedings of the IEEE con-
ference on computer vision and pattern recog-
nition, pp 3128–3137 

33. Xu K, Ba J, Kiros R, Cho K, Courville A, 
Salakhudinov R, Zemel R, Bengio Y (2015) 
Show, attend and tell: neural image caption 
generation with visual attention. In: Interna-
tional conference on machine learning, PMLR, 
pp 2048–2057 

34. Biten AF, Gomez L, Rusinol M, Karatzas D 
(2019) Good news, everyone! context driven 
entity-aware captioning for news images. In: 
Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition, pp 
12466–12475 

35. Zhong H, Li X, Zhang B, Zhang J (2020) A 
general chinese chatbot based on deep learning 
and its’ application for children with ASD. Int J 
Mach Learn Comput 10:519–526. https:// 
doi.org/10.18178/ijmlc.2020.10.4.967 

36. Rakib AB, Rumky EA, Ashraf AJ, Hillas MM, 
Rahman MA (2021) Mental healthcare chatbot 
using sequence-to-sequence learning and 
bilstm. In: Brain informatics, springer interna-
tional publishing, pp 378–387 

37. Tjiptomongsoguno ARW, Chen A, Sanyoto 
HM, Irwansyah E, Kanigoro B (2020) Medical 
chatbot techniques: a review. In: Silhavy R, 
Silhavy P, Prokopova Z (eds) Software engi-
neering perspectives in intelligent systems. 
Springer International Publishing, Cham, pp 
346–356

https://doi.org/10.18178/ijmlc.2020.10.4.967
https://doi.org/10.18178/ijmlc.2020.10.4.967
http://creativecommons.org/licenses/by/4.0/

	Chapter 4: Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research
	1 Introduction
	2 Popular RNN Architectures
	2.1 SimpleRNN
	2.1.1 Training Fundamentals
	2.1.2 SimpleRNN Architecture Variations Based on Parameter Sharing
	2.1.3 SimpleRNN Architecture Variations Based on Inputs and Outputs
	2.1.4 Challenges of Long-Term Dependencies in SimpleRNN

	2.2 Long Short-Term Memory (LSTM)
	2.3 Gated Recurrent Unit (GRU)
	2.3.1 Advantage of LSTM and GRU over SimpleRNN
	2.3.2 Differences Between LSTM and GRU

	2.4 Bidirectional RNN (BRNN)
	2.5 Deep RNN
	2.6 Encoder-Decoder
	2.7 Attention Models (Transformers)

	3 Tips and Tricks for RNN Training
	3.1 Skip Connection
	3.2 Leaky Units
	3.3 Clipping Gradients

	4 RNN Applications in Language Modeling
	4.1 Text Classification
	4.2 Text Summarization
	4.2.1 Extractive Text Summarization
	4.2.2 Abstractive Text Summarization

	4.3 Machine Translation
	4.4 Image-to-Text Translation
	4.5 ChatBot for Mental Health and Autism Spectrum Disorder

	5 Conclusion
	References


