
Chapter 4

Recurrent Neural Networks (RNNs): Architectures, Training
Tricks, and Introduction to Influential Research

Susmita Das, Amara Tariq, Thiago Santos, Sai Sandeep Kantareddy,
and Imon Banerjee

Abstract

Recurrent neural networks (RNNs) are neural network architectures with hidden state and which use
feedback loops to process a sequence of data that ultimately informs the final output. Therefore, RNN
models can recognize sequential characteristics in the data and help to predict the next likely data point in
the data sequence. Leveraging the power of sequential data processing, RNN use cases tend to be
connected to either language models or time-series data analysis. However, multiple popular RNN
architectures have been introduced in the field, starting from SimpleRNN and LSTM to deep RNN, and
applied in different experimental settings. In this chapter, we will present six distinct RNN architectures and
will highlight the pros and cons of each model. Afterward, we will discuss real-life tips and tricks for training
the RNN models. Finally, we will present four popular language modeling applications of the RNN
models –text classification, summarization, machine translation, and image-to-text translation– thereby
demonstrating influential research in the field.

Key words Recurrent neural network (RNN), LSTM, GRU, Bidirectional RNN (BRNN), Deep
RNN, Language modeling

1 Introduction

Recurrent neural network (RNN) is a specialized neural network
with feedback connection for processing sequential data or time-
series data in which the output obtained is fed back into it as input
along with the new input at every time step. The feedback connec-
tion allows the neural network to remember the past data when
processing the next output. Such processing can be defined as a
recurring process, and hence the architecture is also known as
recurring neural network.

RNN concept was first proposed by Rumelhart et al. [1] in a
letter published by Nature in 1986 to describe a new learning
procedure with a self-organizing neural network. Another impor-
tant historical moment for RNNs is the (re-)discovery of Hopfield

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_4,
© The Author(s) 2023

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_4&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_4#DOI

networks which is a special kind of RNN with symmetric connec-
tions where the weight from one node to another and from the
latter to the former are the same (symmetric). The Hopfield net-
work [2] is fully connected, so every neuron’s output is an input to
all the other neurons, and updating of nodes happens in a binary
way (0/1). These types of networks were specifically designed to
simulate the human memory.

118 Susmita Das et al.

The other types of RNNs are input-output mapping networks,
which are used for classification and prediction of sequential data.
In 1993, Schmidhuber et al. [3] demonstrated credit assignment
across the equivalent of 1,200 layers in an unfolded RNN and
revolutionized sequential modeling. In 1997, one of the most
popular RNN architectures, the long short-term memory
(LSTM) network which can process long sequences, was proposed.

In this chapter, we summarize the six most popular contempo-
rary RNN architectures and their variations and highlight the pros
and cons of each. We also discuss real-life tips and tricks for training
the RNN models, including various skip connections and gradient
clipping. Finally, we highlight four popular language modeling
applications of the RNN models –text classification, summariza-
tion, machine translation, and image-to-text translation– thereby
demonstrating influential research in each area.

2 Popular RNN Architectures

In addition to the SimpleRNN architecture, many variations were
proposed to address different use cases. In this section, we will
unwrap some of the popular RNN architectures like LSTM,
GRU, bidirectional RNN, deep RNN, and attention models and
discuss their pros and cons.

2.1 SimpleRNN SimpleRNN architecture, which is also known as SimpleRNN,
contains a simple neural network with a feedback connection. It
has the capability to process sequential data of variable length due
to the parameter sharing which generalizes the model to process
sequences of variable length. Unlike feedforward neural networks
which have separate weights for each input feature, RNN shares the
same weights across several time steps. In RNN, the output of a
present time step depends on the previous time steps and is
obtained by the same update rule which is used to obtain the
previous outputs. As we will see, the RNN can be unfolded into a
deep computational graph in which the weights are shared across
time steps.

The RNN operating on an input sequence x(t) with a time step
index t ranging from 1 to τ is illustrated in Fig. 1. The time step
index t may not necessarily refer to the passage of time in the real
world; it can refer to the position in the sequence. The cycles in the

computational graph represent the impact of the past value of a
variable on the present time step. The computational graph has a
repetitive structure that unfolds the recursive computation of the
RNN which corresponds to a chain of events. It shows the flow of
the information, forward in the time of computing the outputs and
losses and backward when computing the gradients. The unfolded
computational graph is shown in Fig. 1. The equation
corresponding to the computational graph is h(t) = f(h(t-1) , x(t) ;
W), where h is the hidden state of the network, x is the input, t is
the time step, and W denotes the weights of the network connec-
tions comprising of input-to-hidden, hidden-to-hidden, and
hidden-to-output connection weights.

RNN Architectures and Research 119

o

h

x

Unfold
h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1) o(t) o(t+1)

Fig. 1 (Left) Circuit diagram for SimpleRNN with input x being incorporated into hidden state h with a feedback
connection and an output o. (Right) The same SimpleRNN network shown as an unfolded computational graph
with nodes at every time step

2.1.1 Training

Fundamentals

Training is performed by gradient computation of the loss function
with respect to the parameters involved in forward propagation
from left to right of the unrolled graph followed by back-
propagation moving from right to left through the graph. Such
gradient computation is an expensive operation as the runtime
cannot be reduced by parallelism because the forward propagation
is sequential in nature. The states computed in the forward pass are
stored until they are reused in the back-propagation. The back-
propagation algorithm applied to RNN is known as back-propa-
gation through time (BPTT) [4].

The following computational operations are performed in
RNN during the forward propagation to calculate the output and
the loss.

aðtÞ = b þ Whðt -1Þ þ UxðtÞ

hðtÞ = tanhðaðtÞÞ
oðtÞ = c þ VhðtÞ

ŷðtÞ = σðoðtÞÞ

120 Susmita Das et al.

where b and c are the biases and U, V , and W are the weight matrix
for input-to-hidden connections, hidden-to-output connection,
and hidden-to-hidden connections respectively, and σ is a sigmoid
function. The total loss for a sequence of x values and its
corresponding y values is obtained by summing up the losses over
all time steps.

τ

t =1

LðtÞ =Lððxð1Þ, , xðτÞÞ, ðyð1Þ, , yðτÞÞÞ
To minimize the loss, the gradient of the loss function is

calculated with respect to the parameters associated with it. The
parameters associated with the nodes of the computational graph
are U, V , W, b, c, x(t) , h(t) , o(t) , and L(t) . The output o(t) is the
argument to the softmax to obtain the vector ŷ of probabilities over
the output. During back-propagation, the gradient for each node is
calculated recursively starting with the nodes preceding the final
loss. It is then iterated backward in time to back-propagate gradi-
ents through time. tanh is a popular choice for activation function
as it tends to avoid vanishing gradient problem by retaining
non-zero value longer through the back-propagation process.

2.1.2 SimpleRNN

Architecture Variations

Based on Parameter

Sharing

Variations of SimpleRNN can be designed depending upon the
style of graph unrolling and parameter sharing [5]:

• Connection between hidden units. The RNN produces outputs at
every time step, and the parameters are passed between hidden-
to-hidden units (Fig. 2a). This corresponds to the standard
SimpleRNN presented above and is widely used.

• Connection between outputs to hidden units. The RNN produces
outputs at every time step, and the parameters are passed from
an output at a particular time step to the hidden unit at the next
time step (Fig. 2b).

• Sequential input to single output. The RNN produces a single
output at the end after reading the entire sequence and has
connections between the hidden units at every time step
(Fig. 2c).

2.1.3 SimpleRNN

Architecture Variations

Based on Inputs and

Outputs

Different variations also exist depending on the number of inputs
and outputs:

• One-to-one: The traditional RNN has one-to-one input to out-
put mapping at each time step t as shown in Fig. 3a.

• One-to-many: One-to-many RNN has one input at a time step
for which it generates a sequence of outputs at consecutive time
steps as shown in Fig. 3b. This type of RNN architecture is often
used for image captioning.

RNN Architectures and Research 121

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1) o(t) o(t+1)

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o(t-1)o(....) o(t) o(t+1)

h(....) h(....)h(t-1) h(t) h(t+1)

x(t-1) x(t) x(t+1)

o

(a) (b)

(c)

Fig. 2 Types of SimpleRNN architectures based on parameter sharing: (a) SimpleRNN with connections
between hidden units, (b) SimpleRNN with connections from output to hidden units, and (c) SimpleRNN with
connections between hidden units that read the entire sequence and produce a single output

• Many-to-one: Many-to-one RNN has many inputs and one out-
put, at each time step as shown in Fig. 3c. This type of RNN
architecture is used for text classification.

• Many-to-many: Many-to-many RNN architecture can be
designed in two ways. First, the input is taken by the RNN and
the corresponding output is given at the same time step as
illustrated in Fig. 3d. This type of RNN is used for named entity
recognition. Second, the input is taken by the RNN at each time
step and the output is given by the RNN at the next time step
depending upon all the input sequence as illustrated in
Fig. 3e. Popular uses of this type of RNN architecture are in
machine translation.

2.1.4 Challenges of

Long-Term Dependencies

in SimpleRNN

SimpleRNN works well with the short-term dependencies, but
when it comes to long-term dependencies, it fails to remember
the long-term information. This problem arises due to the vanish-
ing gradient or exploding gradient [6]. When the gradients are
propagated over many stages, it tends to vanish most of the times
or sometimes explodes. The difficulty arises due to the exponen-
tially smaller weight assigned to the long-term interactions com-
pared to the short-term interactions. It takes very long time to learn
the long-term dependencies as the signals from these dependencies
tend to be hidden by the small fluctuations arising from the short-
term dependencies.

122 Susmita Das et al.

h(t) h(t+1) h(t+2)

x(t)

o(t)

h(t)

x(t)

o(t) o(t+1) o(t+2)

h(t) h(t+1) h(t+2)

x(t+1) x(t+2) x(t)

o(t) o(t+1) o(t+2)

h(t–2) h(t–1) h(t)

x(t–1) x(t) x(t–2)

o(t)

h(t–2) h(t–1) h(t)

x(t–1) x(t) x(t–2)

o(t)

h(t+1)

o(t+1)

h(t+2)

o(t+2)

(a)

(d) (e)

(b) (c)

Fig. 3 (a) One-to-one RNN. (b) One-to-many RNN. (c) Many-to-one RNN. (d) Many-to-many RNN. (e) Many-to-
many RNN. x represents the input and o represents the output

2.2 Long Short-Term

Memory (LSTM)

To address this long-term dependency problem, gated RNNs were
proposed. Long short-term memory (LSTM) is a type of gated
RNN which was proposed in 1997 [7]. Due to the property of
remembering the long-term dependencies, LSTM has been a suc-
cessful model in many applications like speech recognition,
machine translation, image captioning, etc. LSTM has an inner
self loop in addition to the outer recurrence of the RNN. The
gradients in the inner loop can flow for longer duration and are
conditioned on the context rather than being fixed. In each cell, the
input and output is the same as that of ordinary RNN but has a
system of gating units to control the flow of information. Figure 4
shows the flow of the information in LSTM with its gating units.

There are three gates in the LSTM—the external input gate,
the forget gate, and the output gate. The forget gate at time t and
state si (f

ðtÞ
i) decides which information should be removed from

the cell state. The gate controls the self loop by setting the weight
between 0 and 1 via a sigmoid function σ. When the value is near to
1, the information of the past is retained, and if the value is near to

0, the information is discarded. After the forget gate, the internal
state s

ðtÞ
i is updated. Computation for external input gate (gt

i) is
similar to that of forget gate with a sigmoid function to obtain a
value between 0 and 1 but with its own parameters. The output
gate of the LSTM also has a sigmoid unit which determines
whether to output the value or to shut off the value ht i via the
output gate qt i .

RNN Architectures and Research 123

X

ot

ht

ct

ht

xt

h(t–1)

s s s

c(t–1)

X

X

tanh

tanh

+

Fig. 4 Long short-term memory with cell state ct , hidden state ht , input xt , and output ot

f
ðtÞ
i = σ

j

U f
i , jx

t
j þ

j

W f
i , jh

ðt -1Þ
j þ bf i

s
ðtÞ
i = f t i s

ðt -1Þ
i þ gt iσ bi þ

j

U i, jx
t
j þ

j

W i, jh
ðt -1Þ
j

g t
i = σ bg i þ

j

U g
i , jx

t
j þ

j

W g
i , jh

ðt -1Þ
j

ht i = tanhðst i Þqt i
qt i = σ bo i þ

j

U o
i , jx

t
i þ W o

i , jh
ðt -1Þ
j

xt is the input vector at time t, h(t) is the hidden layer vector, bi
denote the biases, and Ui and Wi represent the input weights and
the recurrent weights, respectively.

124 Susmita Das et al.

X

X

1–Reset
gate

Update
gate

X

+

ht

xt

s s

h(t–1)

tanh

Fig. 5 Gated recurrent neural network (GRU) with input xt and hidden unit ht

2.3 Gated Recurrent

Unit (GRU)

In LSTM, the computation time is large as there are a lot of
parameters involved during back-propagation. To reduce the com-
putation time, gated recurrent unit (GRU) was proposed in the
year 2014 by Cho et al. with less gates than in LSTM [8]. The
functionality of the GRU is similar to that of LSTM but with a
modified architecture. The representation diagram for GRU can be
found in Fig. 5. Like LSTM, GRU also solves the vanishing and
exploding gradient problem by capturing the long-term dependen-
cies with the help of gating units. There are two gates in GRU, the
reset gate and the update gate. The reset gate determines how
much of the past information it needs to forget, and the update
gate determines how much of the past information it needs to carry
forward.

The computation at the reset gate (rt i) and the update gate (u
t
i),

as well as hidden state (ht i) and the at time t, can be represented by the
following:

r
ðtÞ
i = σðbr i þ

j

U r
i,jx

ðtÞ
j þ

j

W r
i,jh

ðtÞ
j Þ

u
ðtÞ
i = σðbu i þ

j

Uu
i,jx

ðtÞ
j þ

j

W u
i,jh

ðtÞ
j Þ

h
ðtÞ
i =u

ðt -1Þ
i h

ðt -1Þ
i þ ð1-uiÞ

× σðbi þ
j

U i,jx
ðt -1Þ
j þ

j

W i,j r
ðt -1Þ
j h

ðt -1Þ
j Þ

where bi denotes biases and Ui and Wi denote initial and recurrent
weights, respectively.

RNN Architectures and Research 125

When the reset gate value is close to 0, the previous hidden
state value is discarded and reset with the present value. This
enables the hidden state to forget the past information that is
irrelevant for future. The update gate determines how much of
the relevant past information to carry forward for future.

The property of the update gate to carry forward the past
information allows it to remember the long-term dependencies.
For short-term dependencies, the reset gate will be frequently
active to reset with current values and remove the previous ones,
while, for long-term dependencies, the update gate will be often
active for carrying forward the previous information.

2.3.1 Advantage of LSTM

and GRU over SimpleRNN

The LSTM and GRU can handle the vanishing gradient issue of
SimpleRNN with the help of gating units. The LSTM and GRU
have the additive feature that they retain the past information by
adding the relevant past information to the present state. This
additive property makes it possible to remember a specific feature
in the input for longer time. In SimpleRNN, the past information
loses its relevance when new input is seen. In LSTM and GRU, any
important feature is not overwritten by new information. Instead, it
is added along with the new information.

2.3.2 Differences

Between LSTM and GRU

There are a few differences between LSTM and GRU in terms of
gating mechanism which in turn result in differences observed in
the content generated. In LSTM unit, the amount of the memory
content to be used by other units of the network is regulated by the
output gate, whereas in GRU, the full content that is generated is
exposed to other units. Another difference is that the LSTM com-
putes the new memory content without controlling the amount of
previous state information flowing. Instead, it controls the new
memory content that is to be added to the network. On the other
hand, the GRU controls the flow of the past information when
computing the new candidate without controlling the candidate
activation.

2.4 Bidirectional

RNN (BRNN)

In SimpleRNN, the output of a state at time t only depends on the
information of the past x(1) ,, x(t-1) and the present input x(t) .
However, for many sequence-to-sequence applications, the present
state output depends on the whole sequence information. For
example, in language translation, the correct interpretation of the
current word depends on the past words as well as the next words.
To overcome this limitation of SimpleRNN, bidirectional RNN
(BRNN) was proposed by Schuster and Paliwal in the year
1997 [9].

Bidirectional RNNs combine an RNN which moves forward
with time, beginning from the start of the sequence, with another
RNN that moves backward through time, beginning from the end
of the sequence. Figure 6 illustrates a bidirectional RNN with h(t)

the state of the sub-RNN that moves forward through time and g(t)

the state of the sub-RNN that moves backward with time. The
output of the sub-RNN that moves forward is not connected to
the inputs of sub-RNN that moves backward and vice versa. The
output o(t) depends on both past and future sequence data but is
sensitive to the input values around t.

126 Susmita Das et al.

o(t–1)

g(...) g(...)

o(t+1)o(t)

g(t–1) g(t+1)g(t)

h(...) h(...)h(t–1) h(t+1)h(t)

x(t–1) x(t+1)x(t)

Fig. 6 Bidirectional RNN with forward sub-RNN having ht hidden state and
backward sub-RNN having gt hidden state

2.5 Deep RNN Deep models are more efficient than their shallow counterparts,
and, with the same hypothesis, deep RNN was proposed by
Pascanu et al. in 2014 [10]. In “shallow” RNN, there are generally
three blocks for computation of parameters: the input state, the
hidden state, and the output state. These blocks are associated with
a single weight matrix corresponding to a shallow transformation
which can be represented by a single-layer multilayer perceptron
(MLP). In deep RNN, the state of the RNN can be decomposed
into multiple layers. Figure 7 shows in general a deep RNN with
multiple deep MLPs. However, different types of depth in an RNN
can be considered separately like input-to-hidden, hidden-to-
hidden, and hidden-to-output layer. The lower layer in the hierar-
chy can transform the input into an appropriate representation for
higher levels of hidden state. In hidden-to-hidden state, it can be
constructed with a previous hidden state and a new input. This
introduces additional non-linearity in the architecture which
becomes easier to quickly adapt changing modes of the input. By
introducing deep MLP in hidden-to-output state makes the layer
compact which helps in summarizing the previous inputs and helps
in predicting the output easily. Due to the deep MLP in the RNN
architecture, the learning becomes slow and optimization is
difficult.

RNN Architectures and Research 127

o1 o2 o3 ot

h1
(n) h2

(n) h3
(n) ht

(n)

h1
(2) h2

(2) h3
(2) ht

(2)

h1
(1) h2

(1) h3
(1) ht

(1)

x1 x2 x3 xt

Fig. 7 Deep recurrent neural network

2.6 Encoder–
Decoder

Encoder–decoder architecture was proposed by Cho et al. (2014)
[8] to map a variable length input sequence to a variable length
output sequence. Therefore, it is also known as sequence-to-
sequence architecture. Before encoder–decoder was introduced,
there were RNN models which were used for sequence-to-
sequence applications, but they had limitations as the input and
output sequences had to have the same length. Encoder–decoder
was used for addressing variable length sequence-to-sequence pro-
blems such as machine translation or speech recognition where the
input sequence and output sequence lengths may not be the same
in most of the cases. Encoder and decoder are both RNNs where
the encoder RNN encodes the whole input X = xð1Þ, . . . ::, xðnxÞ

into a context vector c and outputs the context vector c which is
fed as an input to the decoder RNN. The decoder RNN generates
an output sequence Y = yð1Þ, . . . ::, yðny Þ. In the encoder–decoder
model, the input length xðnxÞ and the output length yðny Þ can be
different unlike the previous RNN models. The number of hidden
layers in encoder and decoder are not necessarily be the same. The
limitation of this architecture is that it fails to properly summarize a

long sequence if the context vector is too small. This problem was
solved by Bahdanau et al. (2015) [11] by making the context vector
a variable length sequence with added attention mechanism.

128 Susmita Das et al.

2.7 Attention Models

(Transformers)

Due to the sequential learning mechanism, the context vector
generated by the encoder (see Subheading 2.6) is more focused
on the later part of the sequence than on the earlier part. An
extension to the encoder–decoder model was proposed by
Bahdanau et al. [11] for machine translation where the model
generates each word based on the most relevant information in
the source sentence and previously generated words. Unlike the
previous encoder–decoder model where the whole input sequence
is encoded into a single context vector, this extended encoder–
decoder model learns to give attention to the relevant words pres-
ent in the source sequence regardless of the position in the
sequence by encoding the input sequence into sequences of vectors
and chooses selectively while decoding each word. This mechanism
of paying attention to the relevant information that are related to
each word is known as attention mechanism.

Although this model solves the problem for fixed-length con-
text vectors, the sequential decoding problem still persists. To
decode the sequence in less time by introducing parallelism, self-
attention was proposed by Google Brain team, Ashish Vaswani et al.
[12]. They invented the Transformer model which is based on self-
attention mechanism and was designed to reduce the computation
time. It computes the representation of a sequence that relates to
different positions of the same sequence. The self-attention mech-
anism was embedded in the Transformer model. The Transformer
model has a stack of six identical layers each for encoding the
sequence and decoding the sequence as illustrated in Fig. 8. Each
layer of the encoder and decoder has sub-layers comprising multi-
head self-attention mechanisms and position-wise fully connected
layers. There is a residual connection around the two sub-layers
followed by normalization. In addition to the two sub-layers, there
is a third layer in the decoder that performs multi-head attention
over the output of the encoder stack. In the decoder, the multi-
head attention is masked to prevent the position from attending the
later part of the sequence. This ensures that the prediction for a
position p depends only on the positions less than p in the sequence.
The attention function can be described as mapping a query and
key-value pairs to an output. All the parameters involved in the
computation are all vectors. To calculate the output, scalar
dot product operation is performed on the query and all keys,
and divide each key by dk

p
(where dk is the dimension on

the keys). Finally, the softmax is applied to it to obtain the
weights on the values. The computation of attention function
can be represented by the following equation:

AttentionðQ ,K ,V Þ= sof tmaxð QKT

dk

p ÞV , where Q, K, and V are

all matrices corresponding to query, keys, and values, respectively. A
more in-depth coverage of Transformers is provided in Chap. 6.

RNN Architectures and Research 129

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Input

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Output

Fig. 8 Transformer with six layers of encoders and six layers of decoders

3 Tips and Tricks for RNN Training

As previously stated, the vanishing gradient and exploding gradient
problems are well-known concerns when it comes to properly
training RNN models [13, 14]. The fundamental challenge arises
from the fact that RNNs can be naturally unfolded, allowing their
recurrent connections to perform feedforward calculations, which
result in an RNN with the same number of layers as the number of
elements in the sequence. Two major issues arise as a result:

https://doi.org/10.1007/978-1-0716-3195-9_6

130 Susmita Das et al.

• Gradient vanishing problem. It becomes difficult to effectively
learn long-term dependencies in sequences due to the gradient
vanishing problem [6]. As a result, a prospective model predic-
tion will be essentially unaffected by earlier layers.

• Exploding gradient problem. Adding more layers to the network
amplifies the effect of large gradients, increasing the risk of a
learning derailment since significant changes to the network
weights can be performed at each step, potentially causing the
gradients to blow out exponentially. In fact, weights that are
closer to the input layer will obtain larger updates than weights
that are closer to the output layer, and the network may become
unable to learn correlations between temporally distant events.

To overcome these limitations, we need to create solutions so
that the RNN model can work on various time scales, with some
sections operating on fine-grained time scales and handling small
details and others operating on coarse time scales and efficiently
transferring information from the distant past to the present. In this
section, we discuss several popular strategies to tackle these issues.

3.1 Skip Connection The practice of skipping layers effectively simplifies the network by
using fewer direct connected layers in the initial training stages.
This speeds learning by reducing the impact of vanishing gradients,
as there are fewer layers to propagate through. As the network
learns the feature space during the training phase, it gradually
restores the skipped layers. Lin et al. [15] proposed the use of
such skip connections, which follows from the idea of incorporating
delays in feedforward neural networks from Lang et al. [16]. Con-
ceptually, skip connections are a standard module in deep architec-
tures and are commonly referred to as residual networks, as
described by He et al. [17]. They are responsible to skip layers in
the neural network and feeding the output of one layer as the input
to the next layers. This technique is used to allow gradients to flow
through a network directly, without passing through non-linear
activation functions, and it has been empirically proven that these
additional steps are often beneficial for the model convergence
[17]. Skip connections can be used through the non-sequential
layer in two fundamental ways in neural networks:

• Additive Skip Connections. In this type of design, the data
from early layers is transported to deeper layers via matrix addi-
tion, causing back-propagation to be done via addition
(Fig. 9b). This procedure does not require any additional para-
meters because the output from the previous layer is added to
the layer ahead. One of the most common techniques used in
this type of architecture is to stack the skip residual blocks
together and use an identity function to preserve the gradient
[18]. The core concept is to use a vector addition to back-

� �

RNN Architectures and Research 131

Fig. 9 Skip connection residual architectures: (a) concatenate output of previous layer and skip connection; (b)
sum of the output of previous layer and skip connection

propagate through the identity function. The gradient is then
simply multiplied by one, and its value is preserved in the earlier
layers.

• Concatenative Skip Connections. Another way for establish-
ing skip connections is to concatenate previous feature maps.
The aim of concatenation is to leverage characteristics acquired
in prior layers to deeper layers. In addition, concatenating skip
connections provides an alternate strategy for assuring feature
reusability of the same dimensionality from prior layers without
the need to learn duplicate maps. Figure 9(a) illustrates a dia-
gram example of how the architecture looks like. The primary
concept of the architecture is to allow subsequent layers to reuse
intermediary representations, allowing them to maintain more
information and enhance long-term dependency performance.

3.2 Leaky Units One of the major challenges when training RNNs is capturing
long-term dependencies and efficiently transferring information
from distant past to present. An effective method to obtain coarse
time scales is to employ leaky units [19], which are hidden units
with linear self-connections and a weight on the connections that is
close to one. In a leaky RNN, hidden units are able to access values
from prior states and can be utilized to obtain temporal representa-
tions. Formula ht= α ht-1 + (1- α) ht expresses the state update

rule of a leaky unit, where α∈ (0, 1) is an example of a linear self-
connection from ht-1 to ht, and it is a parameter to be learned
during the training stage. Essentially, α controls the information
flow in the state. When α is near one, the state is almost unchanged,
and information about the past is retained for a long time, and
when α is close to zero, the information about the past is rapidly
discarded, and the state is largely replaced by a new state ht.

132 Susmita Das et al.

3.3 Clipping

Gradients

Gradient clipping is a technique that tries to overcome the explod-
ing gradient problem in RNN training, by constraining gradient
norms (element-wise) to a predetermined minimum or maximum
threshold value since the exploding gradients are clipped and the
optimization begins to converge to the minimum point. Gradient
clipping can be used in two fundamental ways:

• Clipping-by-value. Using this technique, we define a minimum
clip value and a maximum clip value. If a gradient exceeds the
threshold value, we clip the gradient to the maximum threshold.
If the gradient is less than the lower limit of the threshold, we
clip the gradient to the minimum threshold.

• Clipping-by-norm. The idea behind this technique is very
similar to clipping-by-value. The key difference is that we clip
the gradients by multiplying the unit vector of the gradients with
the threshold. Gradient descent will be able to behave properly
even if the loss landscape of the model is irregular since the
weight updates will also be rescaled. This significantly reduces
the likelihood of an overflow or underflow of the model.

4 RNN Applications in Language Modeling

Language modeling is the process of learning meaningful vector
representations for language or text using sequence information
and is generally trained to predict the next token or word given the
input sequence of tokens or words. Bengio et al. [20] proposed a
framework for neural network-based language modeling. RNN
architecture is particularly suited to processing free-flowing natural
language due to its sequential nature. As described by Mikolov et al.
[21], RNNs can learn to compress a whole sequence as opposed to
feedforward neural networks that compress only a single input
item. Language modeling can be an independent task or be part
of a language processing pipeline with downstream prediction or
classification task. In this section, we will discuss applications of
RNN for various language processing tasks.

RNN Architectures and Research 133

4.1 Text

Classification

Many interesting real-world applications concerning language data
can be modeled as text classification. Examples include sentiment
classification, topic or author identification, and spam detection
with applications ranging from marketing to query-answering
[22, 23]. In general, models for text classification include some
RNN layers to process sequential input text [22, 23]. The embed-
ding of the input learnt by these layers is later processed through
varying classification layers to predict the final class label. Many-to-
one RNN architectures are often employed for text classification.

As a recent technical innovation, RNNs have been combined
with convolutional neural networks (CNNs), thus combining the
strengths of two architectures, to process textual data for classifica-
tion tasks. LSTMs are popular RNN architecture for processing
textual data because of their ability to track patterns over long
sequences, while CNNs have the ability to learn spatial patterns
from data with two or more dimensions. Convolutional LSTM
(C-LSTM) combines these two architectures to form a powerful
architecture that can learn local phrase-level patterns as well as
global sentence-level patterns [24]. While CNN can learn local
and position-invariant features and RNN is good at learning global
patterns, another variation of RNN has been proposed to introduce
position-invariant local feature learning into RNN. This variation is
called disconnected RNN (DRNN) [25]. Information flow
between tokens/words at the hidden layer is limited by a hyper-
parameter called window size, allowing the developer to choose the
width of the context to be considered while processing text. This
architecture has shown better performance than both RNN and
CNN on several text classification tasks [25].

4.2 Text

Summarization

Text summarization approaches can be broadly categorized into
(1) extractive and (2) abstractive summarization. The first approach
relies on selection or extraction of sentences that will be part of the
summary, while the latter generates new text to build a summary.
RNN architectures have been used for both types of summarization
techniques.

4.2.1 Extractive Text

Summarization

Extractive summarization frameworks use many-to-one RNN as a
classifier to distinguish sentences that should be part of the sum-
mary. For example, a two-layer RNN architecture is presented in
[26] where one layer processes words in one sentence and the other
layer processes many sentences as a sequence. The model generates
sentence-level labels indicating whether the sentence should be part
of the summary or not, thus producing an extractive summary of
the input document. Xu et al. have presented a more sophisticated
extractive summarization model that not only extracts sentences to
be part of the summary but also proposes possible syntactic com-
pressions for those sentences [27]. Their proposed architecture is a

combination of CNN and bidirectional LSTM, while a neural
classifier evaluates possible syntactic compressions in the context
of the sentence as well as the broader context of the document.

134 Susmita Das et al.

4.2.2 Abstractive Text

Summarization

Abstractive summarization frameworks expect the RNN to process
input text and generate a new sequence of text that is the summary
of input text, effectively using many-to-many RNN as a text gener-
ation model. While it is relatively straightforward for extractive
summarizers to achieve basic grammatical correctness as correct
sentences are picked from the document to generate a summary,
it has been a major challenge for abstractive summarizers. Gram-
matical correctness depends on the quality of the text generation
module. Grammatical correctness of abstractive text summarizers
has improved recently due to developments in contextual text
processing, language modeling, as well as availability of computa-
tional power to process large amounts of text.

Handling of rare tokens/words is a major concern for modern
abstractive summarizers. For example, proper nouns such as specific
names of people and places occur less frequently in the text; how-
ever, generated summaries are incomplete and incomprehensible if
such tokens are ignored. Nallapati et al. proposed a novel solution
composed of GRU-RNN layers with attention mechanism by
including switching decoder in their abstractive summarizer archi-
tecture [28] where the text generator module has a switch which
can enable the module to choose between two options: (1) generate
a word from the vocabulary and (2) point to one of the words in the
input text. Their model is capable of handling rare tokens by
pointing to their position in the original text. They also employed
large vocabulary trick which limits the vocabulary of the generator
module to tokens of the source text only and then adds frequent
tokens to the vocabulary set until its size reaches a certain thresh-
old. This trick is useful in limiting the size of the network.

Summaries have latent structural information, i.e., they convey
information following certain linguistic structures such as “What-
Happended” or “Who-Action-What.” Li et al. presented a recur-
rent generative decoder based on variational auto-encoder (VAE)
[29]. VAE is a generative model that takes into account latent
variables, but is not inherently sequential in nature. With the his-
torical dependencies in latent space, it can be transformed into a
sequential model where generative output is taking into account
history of latent variables, hence producing a summary following
latent structures.

4.3 Machine

Translation

Neural machine translation (NMT) models are trained to process
input sequence of text and generate an output sequence which is
the translation of the input sequence in another language. As
mentioned in Subheading 2.6, machine translation is a classic
example of conversion of one sequence to another using encoder–

decoder architecture where lengths of both sequences may be
different. In 2014, many-to-many RNN-based encoder–decoder
architecture was proposed where one RNN encodes the input
sequence of text to a fixed-length vector representation, while
another RNN decodes the fixed-length vector to the target trans-
lated sequence [30]. Both RNNs are jointly trained to maximize
the conditional probability of the target sequence given the input
sequence. Later, attention-based modeling was added to vanilla
encoder–decoder architecture for machine translation. Luong
et al. discussed two types of attention mechanism in their work
on NMT: (i) global and (ii) local attention [31]. In global atten-
tion, a global context vector is estimated by learning variable length
alignment and attention scores for all source words. In local atten-
tion, the model predicts a single aligned position for the current
target word and then computes a local context vector from atten-
tion predicted for source words within a small window of the
aligned position. Their experiments show significant improvement
in translation performance over models without attention. Local
attention mechanism has the advantage of being computationally
less expensive than global attention mechanism.

RNN Architectures and Research 135

4.4 Image-to-Text

Translation

Image-to-text translation models are expected to convert visual
data (i.e., images) into textual data (i.e., words). In general, the
image input is passed through some convolutional layers to gener-
ate a dense representation of the visual data. Then, the embedded
representation of the visual data is fed to an RNN to generate a
sequence of text. Many-to-one RNN architectures are popular for
this task.

In 2015, Karpathy et al. [32] presented their influential work
on training region convolutional neural network (RCNN) to gen-
erate representation vectors for image regions and bidirectional
RNN to generate representation vectors for corresponding caption
in semantic alignment with each other. They also proposed novel
multi-modal RNN to generate a caption that is semantically aligned
with the input image. Image regions were selected based on the
ranked output of an object detection CNN.

Xu et al. proposed an attention-based framework to generate
image caption that was inspired by machine translation models
[33]. They used image representations generated by lower convo-
lutional layers from a CNN model rather than the last fully
connected layer and used an LSTM to generate words based on
hidden state, last generated word, and context vector. They defined
the context vector as a dynamic representation of the image gener-
ated by applying an attention mechanism on image representation
vectors from lower convolutional layers of CNN. Attention mech-
anism allowed the model to dynamically select the region to focus
on while generating a word for image caption. An additional
advantage of their approach was intuitive visualization of the

model’s focus for generation of each word. Their visualization
experiments showed that their model was focused on the right
part of the image while generating each important word.

136 Susmita Das et al.

Such influential works in the field of automatic image caption-
ing were based on image representations generated by CNNs
designed for object detection. Some recently proposed captioning
models have sought to change this trend. Biten et al. proposed a
captioning model for images used to illustrate new articles
[34]. Their caption generation LSTM takes into account both
CNN-generated image features and semantic embeddings to the
text of corresponding new articles to generate a template of a
caption. This template contains spaces for the names of entities
like organizations and places. These places are filled in using atten-
tion mechanism on the text of the corresponding article.

4.5 ChatBot for

Mental Health and

Autism Spectrum

Disorder

ChatBots are automatic conversation tools that have gained vast
popularity in e-commerce and as digital personal assistants like
Apple’s Siri and Amazon’s Alexa. ChatBots represent an ideal appli-
cation for RNN models as conversations with ChatBots represent
sequential data. Questions and answers in a conversation should be
based on past iterations of questions and answers in that conversa-
tion as well as patterns of sequences learned from other conversa-
tions in the dataset.

Recently, ChatBots have found application in screening and
intervention for mental health disorders such as autism spectrum
disorder (ASD). Zhong et al. designed a Chinese-language Chat-
Bot using bidirectional LSTM in sequence-to-sequence framework
which showed great potential for conversation-mediated interven-
tion for children with ASD [35]. They used 400,000 selected
sentences from chatting histories involving children in many
cases. Rakib et al. developed similar sequence-to-sequence model
based on Bi-LSTM to design a ChatBot to respond empathetically
to mentally ill patients [36]. A detailed survey of medical ChatBots
is presented in [37]. This survey includes references to ChatBots
built using NLP techniques, knowledge graphs, as well as modern
RNN for a variety of applications including diagnosis, searching
through medical databases, dialog with patients, etc.

5 Conclusion

Due to the sequential nature of their architecture, RNNs are
applied for ordinal or temporal problems, such as language transla-
tion, text summarization, and image captioning, and are
incorporated into popular applications such as Siri, voice search,
and Google Translate. In addition, they are also often used to
analyze longitudinal data in medical applications (i.e., cases where
repeated observations are available at different time points for each

patient of a dataset). While research in RNN is still an evolving area
and new architectures are being proposed, this chapter summarizes
fundamentals of RNN including different traditional architectures,
training strategies, and influential work. It may serve as a stepping
stone for exploring sequential models using RNN and provides
reference pointers.

RNN Architectures and Research 137

References

1. Rumelhart DE, Hinton GE, Williams RJ
(1986) Learning representations by back-
propagating errors. Nature 323(6088):
533–536

2. Hopfield JJ (1982) Neural networks and phys-
ical systems with emergent collective computa-
tional abilities. Proc Natl Acad Sci 79(8):
2554–2558

3. Schmidhuber J (1993) Netzwerkarchitekturen,
Zielfunktionen und Kettenregel (Network
architectures, objective functions, and chain
rule), Habilitation thesis, Institut für Informa-
tik, Technische Universitüt München

4. Mozer MC (1995) A focused backpropagation
algorithm for temporal. Backpropag Theory
Architect Appl 137

5. Goodfellow I, Bengio Y, Courville A (2016)
Deep learning. MIT Press, Cambridge

6. Hochreiter S (1998) The vanishing gradient
problem during learning recurrent neural nets
and problem solutions. Int J Uncertainty Fuzz-
iness Knowledge Based Syst 6(02):107–116

7. Hochreiter S, Schmidhuber J (1997) Long
short-term memory. Neural Comput 9(8):
1735–1780

8. Cho K, Van Merriënboer B, Gulcehre C,
Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations
using RNN encoder-decoder for statistical
machine translation. Preprint. arXiv:14061078

9. Schuster M, Paliwal KK (1997) Bidirectional
recurrent neural networks. IEEE Trans Signal
Process 45(11):2673–2681

10. Pascanu R, Gulcehre C, Cho K, Bengio Y
(2013) How to construct deep recurrent neu-
ral networks. Preprint. arXiv:13126026

11. Bahdanau D, Cho K, Bengio Y (2014) Neural
machine translation by jointly learning to align
and translate. Preprint. arXiv:14090473

12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J,
Jones L, Gomez AN, Kaiser Ł, Polosukhin I
(2017) Attention is all you need. In: Advances
in neural information processing systems, pp
5998–6008

13. Bengio Y, Simard P, Frasconi P (1994)
Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Trans Neural
Netw 5(2):157–166. https://doi.org/10.110
9/72.279181

14. Pascanu R, Mikolov T, Bengio Y (2013) On
the difficulty of training recurrent neural
networks. In: Dasgupta S, McAllester D (eds)
Proceedings of the 30th international confer-
ence on machine learning, PMLR, Atlanta, vol
28, pp 1310–1318

15. Berger AL, Pietra VJD, Pietra SAD (1996) A
maximum entropy approach to natural lan-
guage processing. Comput Linguist 22(1):
39–71

16. Becker S, Hinton G (1992) Self-organizing
neural network that discovers surfaces in
random-dot stereograms. Nature 355:161–
163. https://doi.org/10.1038/355161a0

17. He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
2016 IEEE conference on computer vision
and pattern recognition (CVPR), pp
770–778. https://doi.org/10.1109/CVPR.
2016.90

18. Wu H, Zhang J, Zong C (2016) An empirical
exploration of skip connections for sequential
tagging. Preprint. arXiv:161003167

19. Jaeger H (2002) Tutorial on training recurrent
neural networks, covering BPPT, RTRL, EKF
and the echo state network approach.
GMD-Forschungszentrum
Informationstechnik 5

20. Bengio Y, Ducharme R, Vincent P (2001) A
neural probabilistic language model. In:
Advances in neural information processing sys-
tems, pp 932–938

21. Mikolov T, Karafiát M, Burget L et al (2010)
Recurrent neural network based language
model. In: INTERSPEECH 2010. Citeseer

22. Jain G, Sharma M, Agarwal B (2019) Optimiz-
ing semantic lstm for spam detection. Int J
Inform Technol 11(2):239–250

https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1038/355161a0
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

138 Susmita Das et al.

23. Bagnall D (2015) Author identification using
multi-headed recurrent neural networks. Pre-
print. arXiv:150604891

24. Zhou C, Sun C, Liu Z, Lau F (2015) A
C-LSTM neural network for text classification.
Preprint. arXiv:151108630

25. Wang B (2018) Disconnected recurrent neural
networks for text categorization. In: Proceed-
ings of the 56th annual meeting of the associa-
tion for computational linguistics (volume 1:
long papers), pp 2311–2320

26. Nallapati R, Zhai F, Zhou B (2017) Summar-
unner: a recurrent neural network based
sequence model for extractive summarization
of documents. In: Thirty-first AAAI conference
on artificial intelligence

27. Xu J, Durrett G (2019) Neural extractive text
summarization with syntactic compression.
Preprint. arXiv:190200863

28. Nallapati R, Zhou B, dos Santos C, Gulcehre
Ç , Xiang B (2016) Abstractive text summariza-
tion using sequence-to-sequence rnns and
beyond. In: Proceedings of the 20th SIGNLL
conference on computational natural language
learning, pp 280–290

29. Li P, Lam W, Bing L, Wang Z (2017) Deep
recurrent generative decoder for abstractive
text summarization. In: Proceedings of the
2017 conference on empirical methods in nat-
ural language processing, pp 2091–2100

30. Cho K, van Merrienboer B, Gülçehre Ç,
Bahdanau D, Bougares F, Schwenk H, Bengio
Y (2014) Learning phrase representations
using RNN encoder-decoder for statistical
machine translation. In: The 2014 conference
on empirical methods in natural language pro-
cessing (EMNLP)

31. Luong MT, Pham H, Manning CD (2015)
Effective approaches to attention-based neural
machine translation. Preprint.
arXiv:150804025

32. Karpathy A, Fei-Fei L (2015) Deep visual-
semantic alignments for generating image
descriptions. In: Proceedings of the IEEE con-
ference on computer vision and pattern recog-
nition, pp 3128–3137

33. Xu K, Ba J, Kiros R, Cho K, Courville A,
Salakhudinov R, Zemel R, Bengio Y (2015)
Show, attend and tell: neural image caption
generation with visual attention. In: Interna-
tional conference on machine learning, PMLR,
pp 2048–2057

34. Biten AF, Gomez L, Rusinol M, Karatzas D
(2019) Good news, everyone! context driven
entity-aware captioning for news images. In:
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp
12466–12475

35. Zhong H, Li X, Zhang B, Zhang J (2020) A
general chinese chatbot based on deep learning
and its’ application for children with ASD. Int J
Mach Learn Comput 10:519–526. https://
doi.org/10.18178/ijmlc.2020.10.4.967

36. Rakib AB, Rumky EA, Ashraf AJ, Hillas MM,
Rahman MA (2021) Mental healthcare chatbot
using sequence-to-sequence learning and
bilstm. In: Brain informatics, springer interna-
tional publishing, pp 378–387

37. Tjiptomongsoguno ARW, Chen A, Sanyoto
HM, Irwansyah E, Kanigoro B (2020) Medical
chatbot techniques: a review. In: Silhavy R,
Silhavy P, Prokopova Z (eds) Software engi-
neering perspectives in intelligent systems.
Springer International Publishing, Cham, pp
346–356

https://doi.org/10.18178/ijmlc.2020.10.4.967
https://doi.org/10.18178/ijmlc.2020.10.4.967
http://creativecommons.org/licenses/by/4.0/

	Chapter 4: Recurrent Neural Networks (RNNs): Architectures, Training Tricks, and Introduction to Influential Research
	1 Introduction
	2 Popular RNN Architectures
	2.1 SimpleRNN
	2.1.1 Training Fundamentals
	2.1.2 SimpleRNN Architecture Variations Based on Parameter Sharing
	2.1.3 SimpleRNN Architecture Variations Based on Inputs and Outputs
	2.1.4 Challenges of Long-Term Dependencies in SimpleRNN

	2.2 Long Short-Term Memory (LSTM)
	2.3 Gated Recurrent Unit (GRU)
	2.3.1 Advantage of LSTM and GRU over SimpleRNN
	2.3.2 Differences Between LSTM and GRU

	2.4 Bidirectional RNN (BRNN)
	2.5 Deep RNN
	2.6 Encoder-Decoder
	2.7 Attention Models (Transformers)

	3 Tips and Tricks for RNN Training
	3.1 Skip Connection
	3.2 Leaky Units
	3.3 Clipping Gradients

	4 RNN Applications in Language Modeling
	4.1 Text Classification
	4.2 Text Summarization
	4.2.1 Extractive Text Summarization
	4.2.2 Abstractive Text Summarization

	4.3 Machine Translation
	4.4 Image-to-Text Translation
	4.5 ChatBot for Mental Health and Autism Spectrum Disorder

	5 Conclusion
	References

