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A Non-technical Introduction to Machine Learning 

Olivier Colliot 

Abstract 

This chapter provides an introduction to machine learning for a non-technical readership. Machine learning 
is an approach to artificial intelligence. The chapter thus starts with a brief history of artificial intelligence in 
order to put machine learning into this broader scientific context. We then describe the main general 
concepts of machine learning. Readers with a background in computer science may skip this chapter. 
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1 Introduction 

Machine learning (ML) is a scientific domain which aims at allow-
ing computers to perform tasks without being explicitly pro-
grammed to do so [1]. To that purpose, the computer is trained 
using the examination of examples or experiences. It is part of a 
broader field of computer science called artificial intelligence 
(AI) which aims at creating computers with abilities that are char-
acteristic of human or animal intelligence. This includes tasks such 
as perception (the ability to recognize images or sounds), 
reasoning, decision-making, or creativity. Emblematic tasks which 
are easy to perform for a human and are inherently difficult for a 
computer are, for instance, recognizing objects, faces, or animals in 
photographs or recognizing words in speech. On the other hand, 
there are also tasks which are inherently easy for a computer and 
difficult for a human, such as computing with large numbers or 
memorizing exactly huge amounts of text. Machine learning is the 
AI technique that has achieved the most impressive successes over 
the past years. However, it is not the only approach to AI, and 
conceptually different approaches also exist. 

Machine learning also has close ties to other scientific fields. 
First, it has evident strong links to statistics. Indeed, most machine 
learning approaches exploit statistical properties of the data. More-
over, some classical approaches used in machine learning were

Olivier Colliot (ed.), Machine Learning for Brain Disorders, Neuromethods, vol. 197, https://doi.org/10.1007/978-1-0716-3195-9_1, 
© The Author(s) 2023

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-3195-9_1&domain=pdf
https://doi.org/10.1007/978-1-0716-3195-9_1#DOI


actually invented in statistics (for instance, linear or logistic regres-
sion). Nowadays, there is a constant interplay between progress in 
statistics and machine learning. ML has also important ties to signal 
and image processing, ML techniques being efficient for many 
applications in these domains and signal/image processing con-
cepts being often key to the design or understanding of ML tech-
niques. There are also various links to different branches of 
mathematics, including optimization and differential geometry. 
Besides, some inspiration for the design of ML approaches comes 
from the observation of biological cognitive systems, hence the 
connections with cognitive science and neuroscience. Finally, the 
term data science has become commonplace to refer to the use of 
statistical and computational methods for extracting meaningful 
patterns from data. In practice, machine learning and data science 
share many concepts, techniques, and tools. Nevertheless, data 
science puts more emphasis on the discovery of knowledge from 
the data, while machine learning focuses on solving tasks.
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This chapter starts by providing a few historical landmarks 
regarding artificial intelligence and machine learning (Subheading 
2). It then proceeds with the main concepts of ML which are 
foundational to understand other chapters of this book. 

2 A Bit of History 

As a scientific endeavor, artificial intelligence is at least 80 years old. 
Here, we provide a very brief overview of this history. For more 
details, the reader may refer to [2]. A non-exhaustive timeline of AI 
is shown in Fig. 1. 

Fig. 1 A brief timeline of AI with some of the landmark advances
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Even if this is debatable, one often considers AI to emerge in 
the 1940s–1950s with a series of important concepts and events. 
In 1943, the neurophysiologist Warren McCulloch and the logician 
Walter Pitts proposed an artificial neuron model, which is a mathe-
matical abstraction of a biological neuron [3], and showed that sets 
of neurons can compute logical operations. In 1948, the mathema-
tician and philosopher Norbert Wiener coined the term “cybernet-
ics” [4] to designate the scientific study of control and 
communication in humans, animals, and machines. This idea that 
such processes can be studied within the same framework in both 
humans/animals and machines is a conceptual revolution. In 1949, 
the psychologist Donald Hebb [5] described a theory of learning 
for biological neurons which was later influential in the modifica-
tion of the weights of artificial neurons. 

In 1950, Alan Turing, one of the founders of computer science, 
introduced a test (the famous “Turing test”) for deciding if a 
machine can think [6]. Actually, since the question can a machine 
think? is ill-posed and depends on the definition of thinking, Turing 
proposed to replace it with a practical test. The idea is that of a game 
in which an interrogator is given the task of determining which of 
two players A and B is a computer and which is a human (by using 
only responses to written questions). In 1956, the mathematician 
John McCarthy organized what remained as the famous Dart-
mouth workshop and which united ten prominent scientists for 
2 months (among which were Marvin Minsky, Claude Shannon, 
Arthur Samuel, and others). This workshop is more important by 
its scientific program than by its outputs. Let us reproduce here the 
first sentences of the proposal written by McCarthy et al. [7] as we  
believe that they are particularly enlightening on the prospects of 
artificial intelligence: 

We propose that a 2 month, 10 man study of artificial intelligence be carried 
out during the summer of 1956 at Dartmouth College in Hanover, New 
Hampshire. The study is to proceed on the basis of the conjecture that every 
aspect of learning or any other feature of intelligence can in principle be so 
precisely described that a machine can be made to simulate it. An attempt 
will be made to find how to make machines use language, form abstractions 
and concepts, solve kinds of problems now reserved for humans, and 
improve themselves. We think that a significant advance can be made in 
one or more of these problems if a carefully selected group of scientists work 
on it together for a summer. 

There was no major advance made at the workshop, although a 
reasoning program, able to prove theorems, was presented by Allen 
Newell and Herbert Simon [8] at this occasion. This can be con-
sidered as the start of symbolic AI (we will come back later on the 
two main families of AI: symbolic and connexionist). Let us end the 
1950s with the invention, in 1958, of the perceptron by Frank 
Rosenblatt [9], whose work was built upon the ideas of McCulloch, 
Pitts, and Hebb. The perceptron was the first actual artificial



neuron. It was able to recognize images. This is an important 
landmark for several reasons. The perceptron, with some modifica-
tions, is still the building block of modern deep learning algo-
rithms. To mimic an artificial neuron (Fig. 2), it is composed of a 
set of inputs (which correspond to the information entering the 
synapses) xi, which are linearly combined and then go through a 
non-linear function g to produce an output y. This was an impor-
tant advance at the time, but it had strong limitations, in particular 
its inability to discriminate patterns which are not linearly separable. 
More generally, in the field of AI as a whole, unreasonable promises 
had been made, and they were not delivered: newspapers were 
writing about upcoming machines that could talk, see, write, and 
think; the US government funded huge programs to design auto-
matic translation programs, etc. This led to a dramatic drop in 
research funding and, more generally, in interest in AI. This is 
often referred to as the first AI winter (Fig. 3). 
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Even though research in AI continued, it was not before the 
early 1980s that real-world applications were once again considered 
possible. This wave was that of expert systems [10], which are a type 
of symbolic AI approach but with domain-specific knowledge. 
Expert systems led to commercial applications and to a real boom 
in the industry. A specific programming language, called LISP [11], 
became dominant for the implementation of expert systems. Com-
panies started building LISP machines, which were dedicated com-
puters with specific architecture tailored to execute LISP efficiently. 
One cannot help thinking of a parallel with current hardware 
dedicated to deep learning. However, once again, expectations 
were not met. Expert systems were very large and complex sets of 
rules. They were difficult to maintain and update. They also had 
poor performances in perception tasks such as image and speech 
recognition. Academic and industrial funding subsequently 
dropped. This was the second AI winter. 

At this stage, it is probably useful to come back to the two main 
families of AI: symbolic and connexionist (Fig. 4). They had impor-
tant links at the beginning (see, e.g., the work of McCulloch and 
Pitt aiming to perform logical operations using artificial neurons), 
but they subsequently developed separately. In short, these two 
families can be described as follows. The first operates on symbols 
through sets of logical rules. It has strong ties to the domain of 
predicate logic. Connexionism aims at training networks of artificial 
neurons. This is done through the examination of training exam-
ples. More generally, it is acceptable to put most machine learning 
methods within the connexionist family, even though they don’t 
rely on artificial neuron models, because their underlying principle 
is also to exploit statistical similarities in the training data. For a 
more detailed perspective on the two families of AI, the reader can 
refer to the very interesting (and even entertaining!) paper of 
Cardon et al. [12].
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(a) 

(b) 

Fig. 2 (a) Biological neuron. The synapses form the input of the neuron. Their signals are combined, and if the 
result exceeds a given threshold, the neuron is activated and produces an output signal which is sent through 
the axon. (b) The perceptron: an artificial neuron which is inspired by biology. It is composed of the set of 
inputs (which correspond to the information entering the synapses) xi, which are linearly combined with 
weights wi and then go through a non-linear function g to produce an output y. Image in panel (a) is courtesy of 
Thibault Rolland
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Fig. 3 Summers and winters of AI 

Fig. 4 Two families of AI. The symbolic approach operates on symbols through 
logical rules. The connexionist family actually not only encompasses artificial 
neural networks but more generally machine learning approaches 

Let us come back to our historical timeline. The 1980s saw a 
rebirth of connexionism and, more generally, the start of the rise of 
machine learning. Interestingly, it is at that time that two of the 
main conferences on machine learning started: the International 
Conference on Machine Learning (ICML) in 1980 and Neural 
Information Processing Systems (NeurIPS, formerly NIPS) in 
1987. It had been known for a long time that neural networks 
with multiple layers (as opposed to the original perceptron with a 
single layer) (Fig. 5) could solve non-linearly separable problems, 
but their training remained difficult. The back-propagation algo-
rithm for training multilayer neural networks was described by 
David Rumelhart, Geoffrey Hinton, and Ronald Williams [13]  in  
1986, as well as by Yann LeCun in 1985 [14], who also refined the 
procedure in his PhD thesis published in 1987. This idea had 
actually been explored since the 1960s, but it was only in the 
1980s that it was efficiently used for training multilayer neural 
networks. Finally, in 1989, Yann LeCun proposed the convolu-
tional neural network [15], an architecture inspired by the organi-
zation of the visual cortex, whose principle is still at the core of



state-of-the-art algorithms for many image processing and recog-
nition tasks. Multilayer neural networks demonstrated their utility 
in several real-world applications such as digit recognition on 
checks and ZIP codes [16]. Nevertheless, they would not become 
the dominant machine learning approach until the 2010s. Indeed, 
at the time, they required considerable computing power for train-
ing, and there was often not enough training data. 
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Fig. 5 A multilayer perceptron model (here with only one hidden layer, but there 
can be many more) 

During the 1980s and 1990s, machine learning methods 
continued to develop. Interestingly, connections between machine 
learning and statistics increased. We are not going to provide an 
overview of the history of statistics, but one should note that many 
statistical methods such as linear regression [17], principal compo-
nent analysis [18], discriminant analysis [19], or decision trees [20] 
can actually be used to solve machine learning tasks such as auto-
matic categorization of objects or prediction. In the 1980s, deci-
sion trees witnessed important developments (see, e.g., the ID3 
[21] and CART [21] algorithms). In the 1990s, there were impor-
tant advances in the statistical theory of learning (in particular, the 
works of Vladimir Vapnik [22]). A landmark algorithm developed 
at that time was the support vector machine (SVM) [23] which 
worked well with small training datasets and could handle 
non-linearities through the use of kernels. The machine learning 
field continued to expand through the 2000s and 2010s, with new 
approaches but also more mature software packages such as scikit-
learn [24]. More generally, it is actually important to have in mind 
that what is currently called AI owes more to statistics (and other 
mathematical fields such as optimization in particular) than to 
modeling of brain circuitry and that even approaches that take 
inspiration from neurobiology can actually be viewed as complex 
statistical machineries.
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2012 saw the revival of neural networks and the beginning of 
the era of deep learning. It was undoubtedly propelled by the 
considerable improvement obtained on the ImageNet recognition 
challenge which contains 14 million natural images belonging to 
20,000 categories. The solution, proposed by Alex Krizhevsky, Ilya 
Sutskever, and Geoffrey Hinton [25], was a convolutional neural 
network with a large number of layers, hence the term deep 
learning. The building blocks of this solution were already present 
in the 1980s, but there was not enough computing power nor large 
training datasets for them to work properly. In the interval, things 
had changed. Computers had become exponentially more power-
ful, and, in particular, the use of graphical processing units (GPU) 
considerably sped up computations. The expansion of the Internet 
had provided massive amounts of data of various sorts such as texts 
and images. In the subsequent years, deep learning [26] approaches 
became increasingly sophisticated. In parallel, efficient and mature 
software packages including TensorFlow [27], PyTorch [28], or 
Keras [29], whose development is supported by major companies 
such as Google and Facebook, enable deep learning to be used 
more easily by scientists and engineers. 

Artificial intelligence in medicine as a research field is about 
50 years old. In 1975, an expert system, called MYCIN, was 
proposed to identify bacteria causing various infectious diseases 
[30]. More generally, there was a growing interest in expert systems 
for medical applications. Medical image processing also quickly 
became a growing field. The first conference on Information Pro-
cessing in Medical Imaging (IPMI) was held in 1977 (it existed 
under a different name since 1969). The first SPIE Medical Image 
Processing conference took place in 1986, and the Medical Image 
Computing and Computer-Assisted Intervention (MICCAI) con-
ference started in 1998. Image perception tasks, such as segmenta-
tion or classification, soon became among the key topics of this 
field, even though the methods came in majority from traditional 
image processing and not from machine learning. In the 2010s, 
machine learning approaches became dominant for medical image 
processing and more generally in artificial intelligence in medicine. 

To conclude this part, it is important to be clear about the 
different terms, in particular those of artificial intelligence, machine 
learning, and deep learning (Fig. 6). Machine learning is one 
approach to artificial intelligence, and other radically different 
approaches exist. Deep learning is a specific type of machine 
learning approach. It has recently obtained impressive results on 
some types of data (in particular, images and text), but this does not 
mean that it is the universal solution to all problems. As we will see 
in this book, there are tasks for which other types of approaches 
perform best.
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Fig. 6 Artificial intelligence, machine learning, and deep learning are not 
synonymous. Deep learning is a type of machine learning which involves 
neural networks with a large number of hidden layers. Machine learning is one 
approach to artificial intelligence, but other approaches exist 

3 Main Machine Learning Concepts 

As aforementioned, machine learning aims at making a computer 
capable of performing a task without explicitly being programmed 
for that task. More precisely, it means that one will not write a 
sequence of instructions that will directly perform the considered 
task. Instead, one will write a program that allows the computer to 
learn how to perform the task by examining examples or experi-
ences. The output of this learning process is a computer program 
itself that performs the desired task, but this program was not 
explicitly written. Instead, it has been learned automatically by the 
computer. 

In 1997, Tom Mitchell gave a more precise definition of a 
well-posed machine learning problem [31]: 

A computer program is said to learn from experience E with respect to some 
task T and some performance measure P, if its performance at task T, as 
measured by P, improves with experience E. 

He then provides the example of a computer that learns to play 
checkers: task T is playing checkers, performance measure P is the 
proportion of games won, and the training experience E is playing 
checker games against itself. Very often, the experience E will not 
be an actual action but the observation of a set of examples, for 
instance, a set of images belonging to different categories, such as 
photographs of cats and dogs, or medical images containing tumors 
or without lesions. Please refer to Box 1 for a summary. 

Box 1: Definition of machine learning 
Machine learning definition [31]: 

a computer program is said to learn from experience E with respect to 
some task T and some performance measure P, if its performance at 
task T, as measured by P, improves with experience E.
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Box 1 (continued)
Example: learning to detect tumors from medical images

• Task T: detect tumors from medical image

• Performance measure P: proportion of tumors correctly 
identified

• Experience E: examining a dataset of medical images where 
the presence of tumors has been annotated 

3.1 Types of 

Learning 

One usually considers three main types of learning: supervised 
learning, unsupervised learning, and reinforcement learning (Box 
2). In both supervised and unsupervised learning, the experience E 
is actually the inspection of a set of examples, which we will refer to 
as training examples or training set. 

Box 2: Supervised, Unsupervised, and Reinforcement 
learning
• Supervised learning. Learns from labeled examples, i.e., 

examples for which the output that we are trying to learn is 
known 

– Example 1. The task is computer-aided diagnosis 
(a classification problem), and the label can be the diagno-
sis of each patient, as defined by an expert physician. 

– Example 2. The task is the prediction of the age of a person 
from a set of biological variables (e.g., a brain MRI). This is 
a regression problem. The label is the true age of a given 
person in the training set.

• U 

– 

nsupervised learning. Learns from unlabeled examples 

Example 1. Given a large set of newspaper articles, auto-
matically cluster them into groups dealing with the same 
topic based only on the text of the article. The topics can, 
for example, be economics, politics, or international 
affairs. The topics are not known a priori. 

– Example 2. Given a set of patients with autism spectrum 
disorders, the aim is to discover a cluster of patients that 
share the same characteristics. The clusters are not known a 
priori. Examples 1 and 2 will be referred to as clustering 
tasks. 

– Example 3. Given a large set of medical characteristics 
(various biological measurements, clinical and cognitive 
tests, medical images), find a small set of variables that 
best explain the variability of the dataset. This is a 
dimensionality reduction problem.



–
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Box 2 (continued)
• Reinforcement learning. Learns by iteratively performing 

actions to maximize some reward 

– Classical approach used for learning to play games (chess, 
go, etc.) or in the domain of robotics 

Currently few applications in the domain of brain diseases 

3.1.1 Supervised 

Learning 

In supervised learning, the machine learns to perform a task by 
examining a set of examples for which the output is known (i.e., the 
examples have been labeled). The two most common tasks in 
supervised learning are classification and regression (Fig. 7). Classi-
fication aims at assigning a category for each sample. The examples 
can, for instance, be different patients, and the categories are the 
different possible diagnoses. The outputs are thus discrete. Exam-
ples of common classification algorithms include logistic regression 
(in spite of its name, it is a classification method), linear discrimi-
nant analysis, support vector machines, random forest classifiers, 
and deep learning models for classification. In regression, the out-
put is a continuous number. This can be, for example, the future 
clinical score of a patient that we are trying to predict. Examples of 
common regression methods include simple or multiple linear 
regression, penalized regression, and random forest regression. 
Finally, there are many other tasks that can be framed as a super-
vised learning problem, including, for example, data synthesis, 
image segmentation, and many others which will be described in 
other chapters of this book. 

3.1.2 Unsupervised 

Learning 

In unsupervised learning, the examples are not labeled. The two 
most common tasks in unsupervised learning are clustering and 
dimensionality reduction (Fig. 8). Clustering aims at discovering 
groups within the training set, but these groups are not known a 
priori. The objective is to find groups such that members of the 
same group are similar, while members of different groups are 
dissimilar. For example, one can aim to discover disease subtypes 
which are not known a priori. Some classical clustering methods 
are k-means or spectral clustering, for instance. Dimensionality 
reduction aims at finding a space of variables (of lower dimension 
than the input space) that best explain the variability of the 
training data, given a larger set of input variables. This produces a 
new set of variables that, in general, are not among the input 
variables but are combinations of them. Examples of such methods 
include principal component analysis, Laplacian eigenmaps, or 
variational autoencoders.
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Fig. 7 Two of the main supervised learning tasks: classification and regression. 
The upper panel presents a classification task which aims at linearly separating 
the orange and the blue class. Each sample is described by two variables. The 
lower panel presents a linear regression task in which the aim is to predict the 
body mass index from the age of a person. Figure courtesy of Johann Faouzi 

3.1.3 Reinforcement 

Learning 

In reinforcement learning, the machine will take a series of actions 
in order to maximize a reward. This can, for example, be the case of 
a machine learning to play chess, which will play games against itself 
in order to maximize the number of victories. These methods are 
widely used for learning to play games or in the domain of robotics. 
So far, they have had few applications to brain diseases and will not 
be covered in the rest of this book. 

3.1.4 Discussion Unsupervised learning is obviously attractive because it does not 
require labels. Indeed, acquiring labels for a training set is usually 
time-consuming and expensive because the labels need to be 
assigned by a human. This is even more problematic in medicine 
because the labels must be provided by experts in the field. It is thus 
in principle attractive to adopt unsupervised strategies, even for



tasks which could be framed as supervised learning problems. Nev-
ertheless, up to now, the performances of supervised approaches are 
often vastly superior in many applications. However, in the past 
years, an alternative strategy called self-supervised learning, where 
the machine itself provides its own supervision, has emerged. This is 
a promising approach which has already led to impressive results in 
different fields such as natural language processing in particular 
[32–34]. 
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Clustering 

Fig. 8 Clustering task. The algorithm automatically identifies three groups 
(corresponding to the red circles) from unlabeled examples (the blue dots). 
The groups are not known a priori. Figure courtesy of Johann Faouzi 

3.2 Overview of the 

Learning Process 

In this section, we aim at formalizing the main concepts underlying 
most supervised learning methods. Some of these concepts, with 
modifications, also extend to unsupervised cases. 

The task that we will consider will be to provide an output, 
denoted as y, from an input given to the computer, denoted as x. At  
this moment, the nature of x does not matter. It can, for example, 
be any possible photograph as in the example presented in Fig. 9. 
It could also be a single number, a series of numbers, a text, etc. For 
now, the nature of y can also be varied. Typically, in the case of 
regression, it can be a number. In the case of classification, it 
corresponds to a label (for instance, the label “cat” in our example). 
For now, you do not need to bother about how these data (images, 
labels, etc.) are represented in a computer. For those without a 
background in computer science, this will be briefly covered in 
Subheading 3.3. 

Learning will aim at finding a function f that can transform 
x into y, that is, such that y= f(x). For now, f can be of any type—



just imagine it as an operation that can associate a given x with a
given y. In Chap. the functions f will be artificial neural networks.
Learning aims at finding a function f which will provide the correct
output for each given input. Let us call the loss function and denote
ℓ a function that measures the error that is made by the function f.
The loss function takes two arguments: the true output y and the
predicted output f(x). The lower the loss function value, the closer
the predicted output is to the true output. An example of loss
function is the classical least squares loss ℓ(y, f(x))= (y - f(x))2,
but many others exist. Ideally, the best function f would be the one
that produces the minimal error for any possible input x and asso-
ciated output y, not only those which we have at our disposal, but
any other possible new data. Of course, we do not have any possible
data at our disposal. Thus, we are going to use a set of data called
the training set. In supervised learning, this set is labeled, i.e., for
each example in this set, we know the value of both x and y. Let us
denote as (x(1), y(1)), . . ., (x(n), y(n)) the n examples of the training

3,

16 Olivier Colliot

Fig. 9 Main concepts underlying supervised learning, here in the case of classification. The aim is to be able to 
recognize the content of a photograph (the input x) which amounts to assigning it a label (the output y). In other 
words, we would like to have a function f that transforms x into y. In order to find the function f, we will make 
use of a training set (x(1) , y(1) ), . . .,  (x(n) , y(n) ) (which in our case is a set of photographs which have been 
labeled). All images come from https://commons.wikimedia.org/ and have no usage restriction

https://commons.wikimedia.org/


set which are n pairs of inputs and outputs. We are now going to 
search for the function f that makes the minimum error over the 
n samples of the training set. In other words, we are looking for the 
function which minimizes the average error over the training set. 
Let us call this average error the cost function:
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J ðf Þ= 
1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

Learning will then aim at finding the function f̂ which mini-
mizes the cost function: 

f̂ = argmin 
f ∈F 

1 
n 

n 

i =1 

ℓ yðiÞ, f ðxðiÞÞ 

In the above equation, argmin indicates that we are interested 
in the function f that minimizes the cost J( f ) and not in the value of 
the cost itself. F is the space that contains all admissible functions. 
F can, for instance, be the set of linear functions or the set of neural 
networks with a given architecture. 

The procedure that will aim at finding f that minimizes the cost 
is called an optimization procedure. Sometimes, the minimum can 
be find analytically (i.e., by directly solving an equation for f ), but 
this will rarely be the case. In other cases, one will resort to an 
iterative procedure (i.e., an algorithm): the function f is iteratively 
modified until we find the function which minimizes the cost. 
There are cases where we will have an algorithm that is guaranteed 
to find the global minimum and others where one will only find a 
local minimum. 

Minimizing the errors on the training set does not guarantee 
that the trained computer will perform well on new examples which 
were not part of the training set. A first reason may be that the 
training set is too different from the general population (for 
instance, we have trained a model on a dataset of young males, 
and we would like to apply it to patients of any gender and age). 
Another reason is that, even if the training set characteristics follow 
those of the general population, the learned function f may be too 
specific to the training set. In other words, it has learned the 
training set “by heart” but has not discovered a more general rule 
that would work for other examples. This phenomenon is called 
overfitting and often arises when the dimensionality of the data is 
too high (there are many variables to represent an input), when the 
training set is too small, or when the function f is too flexible. A way 
to prevent overfitting will be to modify the cost function so that it 
not only represents the average error across training samples but 
also constrains the function f to have some specific properties.
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Table 1 
Example where the input is a series of number. Here each patient is 
characterized by several variables 

Age (years) Height (cm) Weight (kg) 

Patient 1 52.5 172 52 

Patient 2 75.1 182 78 

Patient 3 32.7 161 47 

Patient 4 45 190 92 

3.3 Inputs and 

Features 

In the previous section, we made no assumption on the nature of 
the input x. It could be an image, a number, a text, etc. 

The simplest form of input that one can consider is when x is a 
single number. Examples include age, clinical scores, etc. However, 
for most problems, characterization of a patient cannot be done 
with a single number but requires a large set of measurements 
(Table 1). In such a case, the input can be a series of numbers 
x1, . . ., xp which can be arranged into a vector: 

x = 

x1 

⋮ 

xp 

However, there are cases where the input is not a vector of 
numbers. This is the case when the input is a medical image, a text, 
or a DNA sequence, for instance. Of course, in a computer, every-
thing is stored as numbers. An image is an array of values represent-
ing the grayscale intensity of each pixel (Fig. 10). A text is a 
sequence of characters which are each coded as a number. However, 
unlike in the example presented in Table 1, these numbers are not 
meaningful by themselves. For this reason, a common approach is 
to extract features, which will be series of numbers that meaning-
fully represent the input. For example, if the input is a brain 
magnetic resonance image (MRI), relevant features could be the 
volumes of different anatomical regions of the brain (this specific 
process is done using a technique called image segmentation which 
is covered in another chapter). This would result in a series of 
numbers that would form an input vector. The development of 
efficient methods for extracting meaningful features from raw data 
is important in machine learning. Such an approach is often called 
feature engineering. Deep learning methods allow for avoiding 
extracting features by providing an end-to-end approach from the 
raw data to the output. In some areas, this has made feature 
engineering less important, but there are still applications where 
the so-called handcrafted features are competitive with deep 
learning methods.
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Fig. 10 In a computer, an image is represented as an array of numbers. Each number corresponds to the gray 
level of a given pixel. Here the example is a slice of an anatomical MRI which has been severely undersampled 
so that the different pixels are clearly visible. Note that an anatomical MRI is actually a 3D image and would 
thus be represented by a 3D array rather than by a 2D array. Image courtesy of Ninon Burgos 

3.4 Illustration in a 

Simple Case 

We will now illustrate step by step the above concepts in a very 
simple case: univariate linear regression. Univariate means that the 
input is a single number as in the example shown in Fig. 7. Linear 
means that the model f will be a simple line. The input is a number 
x and the output is a number y. The loss will be the least 
squares loss: ℓ(y, f(x))= (y - f(x))2 . The model f will be a linear 
function of x that is f(x)=w1x+w0 and corresponds to the equa-
tion of a line, w1 being the slope of the line and w0 the intercept. To 
further simplify things, we will consider the case where there is no 
intercept, i.e., the line passes through the origin. Different values of 
w1 correspond to different lines (and thus to different functions f ) 
and to different values of the cost function J( f ), which can be in 
our case rewritten as J(w1) since f only depends on the parameter w1 

(Fig. 11). The best model is the one for which J(w1) is minimal. 
How can we find w1 such that J(w1) is minimal? We are going to 

use the derivative of J: dJ dw1 
. A minimum of J(w1) is necessarily such 

that dJ dw1 
=0 (in our specific case, the converse is also true). In our 

case, it is possible to directly solve dJ 
dw1 

=0. This will nevertheless 
not be the case in general. Very often, it will not be possible to solve 
this analytically. We will thus resort to an iterative algorithm. One 
classical iterative method is gradient descent. In the general case, 
f depends not on only one parameter w1 but on a set of parameters 
(w1, . . ., wp) which can be assembled into a vector w. Thus, instead 
of working with the derivative dJ dw1 

, we will work with the gradient 
∇wJ. The gradient is a vector that indicates the direction that one 
should follow to climb along J. We will thus follow the opposite of 
the gradient, hence the name gradient descent. This process is 
illustrated in Fig. 12, together with the corresponding algorithm.
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Fig. 11 We illustrate the concepts of supervised learning on a very simple case: univariate linear regression 
with no intercept. Training samples correspond to the black circles. The different models f(x)=w1x 
correspond to the different lines. Each model (and thus each value of the parameter w1) corresponds to a 
value of the cost J(w1). The best model (the blue line) is the one which minimizes J(w1); here it corresponds to 
the line with a slope w1= 1 

repeat 
w1 ← w1 − η dJ 

dw1 

until convergence; 

Fig. 12 Upper panel: Illustration of the concept of gradient descent in a simple case where the model f is 
defined using only one parameter w1. The value of w1 is iteratively updated by following the opposite of the 
gradient. Lower panel: Gradient descent algorithm where η is the learning rate, i.e., the speed at which w1 will 
be updated
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4 Conclusion 

This chapter provided an introduction to machine learning 
(ML) for a non-technical readership (e.g., physicians, neuroscien-
tists, etc.). ML is an approach to artificial intelligence and thus 
needs to be put into this larger context. We introduced the main 
concepts underlying ML that will be further expanded in 
Chaps. 2–6. The reader can find a summary of these main concepts, 
as well as notations, in Box 3. 

B
•
ox 3: Summary of main concepts 
The input x

• The output y

• The training samples (x(1) , y(1) ), . . ., (x(n) , y(n) )

• The model: transforms the input into the output 

f such that y= f(x)

• The set of possible models F

• The loss: measures the error between the predicted and the 
true output, for a given sample 

ℓ(y, f(x))

• The cost function: measures the average error across the 
training samples 

J f = 1 n 
n 
i =1ℓ y

ðiÞ, f xðiÞ

• Learning process: finding the model which minimizes the cost 
function 

f̂ = argmin f ∈F J f 
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