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Abstract 

Psychiatric disorders include a broad panel of heterogeneous conditions. Among the most severe psychiatric 
diseases, in intensity and incidence, depression will affect 15–20% of the population in their lifetime, 
schizophrenia 0.7–1%, and bipolar disorder 1–2.5%. Today, the diagnosis is solely based on clinical evalua-
tion, causing major issues since it is subjective and as different diseases can present similar symptoms. These 
limitations in diagnosis lead to limitations in the classification of psychiatric diseases and treatments. There 
is therefore a great need for new biomarkers, usable at an individual level. Among them, magnetic resonance 
imaging (MRI) allows to measure potential brain abnormalities in patients with psychiatric disorders. This 
creates datasets with high dimensionality and very subtle variations between healthy subjects and patients, 
making machine and statistical learning ideal tools to extract biomarkers from these data. Machine learning 
brings different tools that could be useful to tackle these issues. On the one hand, supervised learning can 
support automated classification between different psychiatric conditions. On the other hand, unsupervised 
learning could allow the identification of new homogeneous subgroups of patients, refining our under-
standing of the classification of these disorders. In this chapter, we will review current research applying 
machine learning tools to brain imaging in psychiatry, and we will discuss its interest, limitations, and future 
applications. 
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1 Introduction 

Major psychiatric conditions affecting adults can be classified into 
several groups: affective disorders (e.g., bipolar disorders, major 
depressive disorders), psychotic disorders (e.g., schizophrenia), 
anxiety disorders (e.g., obsessive-compulsive disorders), neurode-
velopmental disorders (e.g., autism), and substance use disorders. 
We will focus this chapter on the two first categories, as they carry a 
high individual and societal burden and are highly prevalent 
throughout the world. 
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1.1 Major Depressive 

Disorder 

Major depressive disorder (MDD) is defined by the occurrence of 
one or more major depressive episodes without any manic or hypo-
manic episodes in the lifetime. Its prevalence can vary significantly 
according to the studies, but exceeds 15% of the population during 
their lifetime [1], and affects two women for one man. Depression 
can affect people at any time during their life [2]. Nowadays, the 
diagnosis is based on structured interviews, and the clinical criteria 
are given by, among others, two classification manuals: the Interna-
tional Classification of Diseases [1] and the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) 
[3]. According to the DSM-5, to meet the criteria for a major 
depressive episode, five of the nine following symptoms must be 
present over a 2-week period: depressed mood or anhedonia (loss 
of interest or pleasure), change in weight or appetite, sleep distur-
bances (insomnia or hypersomnia), psychomotor retardation or 
restlessness, loss of energy or fatigue, low self-esteem or guilt, 
difficulty in concentrating or indecisiveness, and thoughts of 
death or suicidal thoughts. Patients with MDD are at an increased 
risk of other comorbid disorders. Most commonly, they may pres-
ent alcohol abuse or dependence, anxiety disorders such as panic 
disorder, obsessive-compulsive disorder, and generalized anxiety 
disorder. Treatment options for MDD include a variable combina-
tion of pharmacotherapy (antidepressants such as serotonin selec-
tive reuptake inhibitors or tricyclics) and psychotherapy (cognitive 
behavioral therapy, interpersonal therapy, etc.). Despite consider-
able progress in its diagnosis and treatment, MDD remains under-
diagnosed and underestimated and remains a challenge for 
healthcare institutions, especially since one of the main risks of 
mood disorders (BD or MDD) is suicidal behavior. 

1.2 Bipolar Disorder Bipolar disorder (BD) is defined as a chronic mood disorder char-
acterized by episodes of depression and episodes of abnormal exci-
tation (mania, hypomania), separated by periods of “euthymia” 
(without any symptoms of major mood episode) [3]. This mood 
disorder affects around 1% of the world’s adult population [4], 
regardless of continent, socioeconomic status, or ethnicity. The 
course of BD is lifelong, but is heterogeneous in terms of number 
of episodes, relapses, polarity (i.e., higher number of manic or 
depressive episodes), and response to treatment. The impact of 
the disease on cognitive function and quality of life can be major 
[4]. Diagnosis, treatment, health, and social care are major goals in 
the management of BD. 

Manic episodes are defined by a period lasting at least 1 week, 
during which patients exhibit elevated mood and increased motor 
activity. The intensity of these symptoms defines the manic or 
hypomanic nature of the episode. During a manic episode, patients 
may experience psychotic symptoms such as hallucinations, delu-
sions, disorganized thinking, and sleep disturbances. The delusions 
may be consistent with the manic mood, with individuals displaying



grandiosity, megalomania, or messianic ideas. Impaired judgment 
and risk of endangering the patient often lead to hospitalization. 
Hypomanic episodes are characterized by lower symptom intensity 
(abnormally high, expansive, or irritable mood, as well as abnormal 
increase in activity or energy, most of the day) and must last at least 
4 consecutive days. Although there are no pathognomonic features 
of bipolar or unipolar depression, some clinical features are useful in 
distinguishing them: bipolar depression usually occurs at an earlier 
age, and the episodes are also more frequent and shorter, show an 
abrupt onset and termination, and are more frequently associated 
with substance abuse. Patients with bipolar depression may also 
present atypical symptoms, such as hypersomnia and weight insta-
bility. Psychosis (delusions and hallucinations) and catatonia are 
also more frequent in bipolar depression, whereas somatic com-
plaints are more common in unipolar depression. The presence of a 
family history of mania is also a relevant indicator of bipolar depres-
sion. The establishment of the diagnosis of BD is a major challenge 
and has several consequences: stabilizing the disease, allowing good 
social reintegration, avoiding relapses and side effects, and, finally, 
limiting the long-term effects of the disease, particularly on the 
cognitive level. Treatment strategies usually combine pharmaco-
therapy (mostly mood stabilizers) and psychosocial care, tailored 
to each patient. Mood stabilizers aim at decreasing the frequency of 
major mood episodes. Lithium, some anticonvulsants (such as 
valproate and carbamazepine), and some antipsychotics (such as 
aripiprazole, quetiapine, or olanzapine) are the three classes of 
available mood stabilizers. Psychosocial care includes cognitive 
rehabilitation strategies, psychoeducation, and interpersonal social 
and rhythm therapies. 
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1.3 Schizophrenia The annual incidence of schizophrenia is 0.2–0.4 per 1000, with a 
lifetime prevalence of about 0.8% [5], which can slightly vary 
between countries and cultural groups [6]. These differences are 
reduced when stricter diagnostic criteria are used for schizophrenia, 
such as the ones of the DSM-5. Research conducted by the WHO 
has further confirmed this observation by showing that 
schizophrenic disorder prevalence is similar across a wide range of 
cultures and countries, including developed and developing 
countries [6]. Its sex ratio is around 1:1. 

Schizophrenia is characterized by three main types of symp-
toms, namely, positive symptoms, negative symptoms, and cogni-
tive impairment [7]. Positive symptoms involve a loss of contact 
with reality; the patient has false beliefs (delusions) and perceptual 
experiences not shared with others (hallucinations) and may exhibit 
behavioral oddities. People with schizophrenia can experience dif-
ferent kinds of hallucinations: auditory, visual, olfactory, gustatory, 
or tactile. About delusions, patients with schizophrenia may have 
persecutory delusions, control delusions (e.g., belief in telepathy), 
grandiose delusions (e.g., belief in being a god), and somatic



delusions (e.g., belief that one’s body is rotting from the inside) 
[8]. Negative symptoms are characterized by a deficit state during 
which basic emotional and behavioral processes are diminished or 
absent. The most common negative symptoms are blunted affect, 
anhedonia, avolition, apathy, and alogia (i.e., reduction in the 
amount or content of speech). Negative symptoms are more fre-
quent and less fluctuating over time than positive symptoms 
[9]. They are also strongly associated with poor psychosocial func-
tioning [10]. Cognitive impairments in schizophrenia include def-
icits with attention and concentration, psychomotor speed, 
learning and memory, and executive function. A decline in cogni-
tive abilities from premorbid functioning is present in most of the 
patients, with cognitive functioning after the onset of the illness 
being relatively stable over time [10]. Despite this decline, cogni-
tive functioning in some patients could be in the normal range. As 
for the negative symptoms, cognitive impairment is strongly asso-
ciated with poor psychosocial functioning, particularly with regard 
to social and professional lives. 
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The etiology of schizophrenia is complex and multifactorial. 
Genetic and environmental factors seem to play a major role. The 
risk of developing schizophrenia is higher in patients’ relatives than 
in the general population [11, 12]. Adoption and twin studies have 
shown that this increased risk is genetic, with the risk being 
increased by the presence of an affected first-degree relative 
[12]. There are two main approaches to the treatment of schizo-
phrenia: pharmacological and psychosocial treatments [13]. Anti-
psychotics constitute the main medication, with major effects on 
reducing positive symptoms and preventing relapses. First-
generation antipsychotics include molecules such as chlorproma-
zine or haloperidol. Second-generation antipsychotics were devel-
oped to decrease the neurological and cognitive side effects. They 
are the most used molecules nowadays (quetiapine, aripiprazole, 
risperidone, clozapine, etc.). In contrast, their effects on negative 
symptoms and cognitive impairment are much more moderate 
[14]. Psychosocial interventions improve the management of 
schizophrenia, e.g., through symptom management or relapse pre-
vention. Other specific interventions that can improve the outcome 
of schizophrenia include family psychoeducation, supported 
employment, social skills training, psychoeducation, cognitive 
behavioral therapy, and integrated treatment of comorbid sub-
stance abuse [8]. 

The remainder of this chapter is organized as follows: We first 
describe the challenges in psychiatry that can potentially be 
addressed with machine learning. We then provide a 
non-exhaustive state of the art of machine learning with magnetic 
resonance imaging in psychiatry. We finally highlight the limitations 
of current approaches and propose perspectives for the field. Stud-
ies reviewed in this chapter are summarized in Table 1.
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2 Challenges for Machine Learning in Psychiatry 

Diagnosis and treatment are based on clinical diagnostic criteria 
developed from the subjective human experience, rather than on 
objective markers of illness. These criteria have been developed 
based on experts’ opinion and are included in the DSM-5 and 
ICD-10 manuals. This approach has some limitations. Diagnosis 
can vary across interview methodologies [50], and clinically identi-
cal symptoms can be caused by different underlying conditions. 
Therefore, the common diagnostic criteria, which are based on 
symptom manifestation alone, are not always reliable in the clinical 
context [51]. They are indeed often unstable over time and unspe-
cific [52] and provide little guidance to select the appropriate 
treatment. These misdiagnoses and misclassifications could lead to 
a poor therapeutic response and suboptimal management of the 
illness. Based on these observations, it appears necessary to develop 
objective markers and a better characterization of these illnesses. 

In this section, we will discuss how machine learning could be 
used to improve diagnosis, to help characterize the different mental 
illnesses, and to improve treatment response and prognostic 
approach. 

2.1 Improving the 

Diagnosis of 

Psychiatric Disorders 

In the early stages of research on machine learning and psychiatric 
disorders, researchers wanted to explore whether different diag-
noses could be predicted using machine learning algorithms 
applied to neuroimaging features. They mainly applied machine 
learning on structural MRI (sMRI) and functional MRI (fMRI) 
data (during tasks or at rest) [53]. Recent efforts have been made to 
apply machine learning on diffusion MRI [15], mostly in combina-
tion with other modalities [53, 54], and to explore whether adding 
modalities improves the diagnosis. Classification using machine 
learning in neuroimaging initially focused on major psychiatric 
disorders, such as MDD [55], schizophrenia [56], and bipolar 
disorder [54]. In a second phase, research has broadened the 
spectrum of psychiatric disorders such as anxiety disorders [23], 
anorexia [20], substance abuse [57], specific phobia [19], and 
autism spectrum disorders [58]. Machine learning using EEG has 
also been investigated for schizophrenia classification [59] as it is an  
affordable method for functional imaging and since it has a better 
temporal resolution than fMRI. While lots of machine learning 
studies in psychiatry focused on neuroimaging data, other fields 
of research were increasingly interested in using other modalities, 
such as proteomic, metabolomic [22], and genetic [24] data. 

Machine learning also opens perspectives for the identification 
of relevant features (e.g., the measured variables) for the diagnosis. 
Using interpretable models such as support vector machines (SVM) 
or decision trees lets researchers investigate features that are used in



the decision. Deep learning could also be used to find useful 
features without a priori preprocessing of the images when it is 
used in combination with interpretation techniques [59]. Another 
way to identify relevant features for the classification is to compare 
the prediction performances of different machine learning models 
with different input features. It then allows us to evaluate if the 
information present in the different features helps the classification. 
For example, this was shown in the study of Lin et al. [16], where 
the authors established that the G72 protein alone yielded almost as 
much information for the diagnosis of schizophrenia than com-
bined with other G72 single nucleotide polymorphisms. While this 
approach could be fruitful to build more resilient and interpretable 
algorithms, we should be careful when interpreting their results. 
We must keep in mind that statistical algorithms such as the 
machine learning ones are designed to predict (classes), while infer-
ence tests (i.e., univariate statistics) usually rely on association 
studies, which are more reliable to infer correlation and causal 
relations [60]. Moreover, when interpreting SVM weights, for 
example, one must keep in mind that some features are only includ-
ing noise but are still important when considered in combination 
with other features [61]. For all these reasons, even though finding 
important features is necessary to better understand the models, 
their interpretation to infer pathophysiology or biomarkers must be 
cautious. 
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2.2 Refining the 

Classification of 

Psychiatric Disorders 

Since there is a significant overlap in the clinical symptoms of 
different psychiatric disorders, many patients suffer from an impor-
tant delay in the diagnostic establishment, after a potentially harm-
ful diagnosis wavering. For instance, patients with BD wait on 
average 10 years before receiving an accurate diagnosis [62] and 
are often misdiagnosed with unipolar depression for years. As for 
MDD, it is often underdiagnosed even though fast and accurate 
diagnosis could avoid long-term cognitive impairment in under-
treated patients [63]. For all these reasons, making the right diag-
nosis as early as possible is a major public health challenge. 

Machine learning may be a useful tool to discriminate between 
different diagnoses. Indeed, the interest in machine learning is not 
only to distinguish a patient with a psychiatric disorder from a 
healthy subject – which is not the most difficult task for the 
clinician – but it could be used to help the clinician when the 
diagnosis becomes more difficult, e.g., to distinguish bipolar 
depression from unipolar depression [18] or to identify a patient 
at risk of psychosis [24]. 

As studies investigate new biomarkers to differentiate between 
different conditions, our current classification of psychiatric disor-
ders appears to be limited. There are numerous different classifica-
tion criteria to describe psychopathology, and theoretical 
frameworks are evolving rapidly [52], which contributes to our



limited understanding of these disorders. The classification of psy-
chiatric disorders is also a complex issue at the biological level, since 
biological boundaries between conditions are not binary and are 
blurred by the imprecision of the current genetic and imaging tools 
(e.g., between BD and schizophrenia [17]). Moreover, the hetero-
geneity in the clinical presentation of the patients limits the effi-
ciency of a binary classification task. A simple classification 
algorithm as SVM will only find the largest and shared biomarkers, 
leading to a suboptimal classification. 

Machine Learning for Psychiatric Disorders 1015

The question we might ask is whether changing our perspective 
and the way we approach psychiatric disorders’ heterogeneity will 
improve our understanding and management of the patients. To 
consider this heterogeneity, unsupervised machine learning seems 
to be an appropriate method, as it allows to find new homogeneous 
subgroup within the population without preconceptions. Current 
research is using unsupervised machine learning to automatically 
detect new subgroups (i.e., clusters) of patients based on similar 
cognitive [25], genetic [64], and/or cerebral [64] profiles. After 
subgrouping, supervised machine learning can be used to automat-
ically classify the patients into one group or another. For instance, 
Wu et al. [25] identified two phenotypic groups of patients with BD 
using a cognitive task battery. Then, they used classifiers to detect 
white matter tracts’ microstructural differences between the two 
groups. Newly developed algorithms combining supervised 
learning and clustering show promising results [65], as they can 
disentangle the heterogeneity of some disorders and improve diag-
nostic prediction at the same time. The HYDRA model is one of 
those promising algorithms that has already been used to find some 
subtypes of Alzheimer disease and to reveal meaningful biomarkers 
of this disease at the same time [66]. These semi-supervised clus-
tering algorithms [67] are also starting to be used in psychiatry 
[68] as they could help to reveal biomarkers while discriminating 
between two different homogeneous classes. Finally, these algo-
rithms are of special interest as they are also handling common 
source of variation in the groups to be classified (i.e., the age, the 
sex, or other clinical or biological variables) [ 69]. 

Other approaches aim to identify differences between the 
patients (the cases) and a reference population [70] (the controls). 
These so-called normative models drop the hypothesis that the 
patients do not belong to a homogeneous group, which is a step 
toward a finer analysis. Indeed, recent studies showed important 
clinical and biological heterogeneity between the patients, espe-
cially regarding brain structural abnormalities. Therefore, the 
hypothesis of an average patient, as it is in classical “case-control” 
studies, could limit our understanding of the diseases in the long 
term. Normative modeling could overpass this limitation as it 
allows to situate a given patient among the “norm” while consider-
ing the strong heterogeneity within the patients’ population. For



instance, Wolfer et al. [70] showed that deviations from the nor-
mative model of gray matter volume were frequent in both SZ and 
BD but highly heterogeneous. However, these models also induce 
an asymmetry as they hypothesize that the controls are homoge-
neous, which is debatable in practice. Nevertheless, it appears that 
subtyping leads to increased predictive accuracy in identifying indi-
viduals with mental illnesses compared with healthy controls, even 
though results are mixed [71]. This approach could gain attention 
with the development of new tools such as longitudinal normative 
brain charts that cover the whole lifespan [72]. 
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2.3 Predicting 

Evolution and 

Treatment Response 

Predicting the evolution of psychiatric disorders is an important 
challenge. As previously mentioned, clinicians’ choices are guided 
by recommendations based on broad symptom classifications, such 
as depression, anxiety, or psychosis criteria, and become persona-
lized over time through an empirical process of trials and errors. 
Being able to predict the prognosis of the mental illnesses would 
allow a better organization of care and more adapted psychoeduca-
tion consultations, would let clinicians set up strategies to prevent 
relapses, and would finally greatly improve the quality of life of the 
patients. Some studies tried to predict psychotic transition using 
neuroimaging [29] or using EEG [32] and clinical measures 
[35]. Schmaal et al. [31] used Gaussian process classifiers based 
on structural and functional MRI (emotional task) to characterize 
trajectories of depression (chronic, improvement, and rapid remis-
sion). They successfully classified the chronic group vs. the rapid 
remission group with an accuracy of 73%. Regarding other studies 
on depression, Kessler et al. [73] used self-reported clinical ques-
tionnaires of 1057 patients and machine learning algorithm to 
predict the course of MDD. They predicted the risk of suicide 
attempt with an AUC of 0.76 and whether the patient would 
experience a depressive episode lasting more than 2 weeks with an 
AUC of 0.71. Tran et al. [34] used electronical record’s informa-
tion such as medication, diagnosis, occurrence of interactions with 
health services, etc. with the aim of stratifying individuals according 
to their suicide risk. Interestingly, according to their results, their 
algorithms predicted the suicide risk better than clinicians, with an 
AUC of 0.73 vs. 0.57 for the prediction of high suicide risk 
patient vs. the rest of the population. It could also be possible to 
predict future substance abuse using neuroimaging data [33] and 
using combinations of demographic, clinical, cognitive, neuroim-
aging, and genetic data [30]. For schizophrenia, EEG-based 
machine learning could also be used to determine at-risk patients 
[59]. Machine learning could also be useful to predict the outcome 
of a first episode of psychosis [42] and to adapt the treatment. 
These studies highlight the possibility to stratify and classify indivi-
duals to optimize prognostic assessments, thanks to machine



learning. That would help the clinician to propose personalized 
care, such as primary care facilities for patients at high suicidal risk. 
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Regarding the treatment outcome, the major challenge is to 
determine whether machine learning could be used to predict 
treatment response. This knowledge would be extremely useful, 
as for now therapeutic choices are made through a trial-error 
process, which increases the time interval between the apparition 
of the symptoms and the administration of the adequate treatment. 
This leads to a serious socioeconomic burden and can have debil-
itating consequences. In depression, the interest of the machine 
learning approach was tested on pharmacological decision, for 
instance, to predict the response to serotonin reuptake inhibitor 
medications [27]. The authors were able to predict the treatment 
response using EEG-derived features with an accuracy of 87.9%. In 
another study, EEG features were also used to predict antipsycho-
tics response in schizophrenia [74]. More recently, studies focused 
on anatomical and functional MRI. For instance, Whitfield-Gabrieli 
et al. [28] used resting-state fMRI combined with FA maps as well 
as initial severity assessment to predict the response to cognitive 
behavioral therapy in patients with social anxiety. They were able to 
classify good and poor responders with an accuracy of 81% in a 
sample of 38 patients. Predicting treatment response is particularly 
interesting when the treatment is more invasive, such as for the use 
of electroconvulsive therapy (ECT). Indeed, one team showed 
(with a sample of 122 depressed patients) that the brain structure 
can predict the ECT response with an accuracy of 78% [75]. Finally, 
choosing the right treatment is not just about measuring its effec-
tiveness; it is always about balancing the cost and the acceptable 
benefit for the patients. In summary, all these features could be 
integrated in machine learning algorithms and used by the clini-
cians as tools to improve the accuracy of the therapeutic decisions. 

3 MRI and Machine Learning in Psychiatry: State of the Art (Table 1) 

To this day, unlike in some medical specialties such as neurology, 
MRI is rarely used for psychiatric clinical practice. However, it is 
extensively used in research as it provides a large variety of informa-
tion about the brain structure and function. Currently, sMRI is the 
easiest method to implement and the most used in the MRI studies. 
It is preferentially used to measure the cortex thickness and the 
cortical surface and to estimate the gray and white matter density 
and/or volume. Diffusion-weighted imaging (DWI) is less used 
but provides useful information on the white matter microstruc-
ture, thanks to different markers such as fractional anisotropy (the 
most used), mean diffusivity, and radial diffusivity. fMRI is of 
particular interest to investigate the neural correlates of cognition 
and emotion processes and their alteration in patients with



psychiatric conditions. Predictive models are thus useful tools when 
analyzing MRI data, because they allow to handle high-
dimensional inputs and fit more unknown variables than available 
observations. In neuroimaging, machine learning allows to model 
sets of effects rather than single effects and thus to build models 
that describe more than one isolated dimension of cognition. 
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3.1 Classification 

Versus Healthy 

Controls 

Classification of patients with psychiatric disorder vs. healthy con-
trols is a widely studied area of research. Even though most studies 
fail to obtain the 80% of accuracy needed for clinical relevance, they 
yield promising results and give important methodological insights. 

Regarding MDD, using sMRI, machine learning studies [55] 
found accuracies ranging from 67.6% to 90.3%. These results 
should be taken with great caution since they are usually obtained 
from small samples. For example, Mwangi et al. [39] obtained an 
accuracy of 90.3% using relevance vector machines and a sample of 
60 subjects. They also showed that the brain regions identified 
during the features selection process were consistent with those of 
previous studies that reported gray matter reductions in patients 
with MDD, which were mostly located in the frontal lobe, the 
orbitofrontal and cingulate cortex, the middle frontal gyrus, and 
the inferior and superior gyri [76]. As for fMRI studies, Gao et al. 
[55] found an accuracy ranging from 56% to 99%; Ramasubbu et al. 
[36] found a significant accuracy of 66% for very severe depression 
using resting-state fMRI in 19 control subjects vs. 45 patients with 
different intensities of depression; and Fu et al. [21] obtained an 
accuracy of 86% in a sample of 19 patients with MDD and 19 HC 
who were processing sad faces during fMRI scanning. 

Regarding bipolar disorder (BD), a recent literature review 
counted 25 studies using machine learning with different MRI 
modalities to classify BD vs. HC [54]. They found a median accu-
racy of 66% for BD vs. HC classification. Even though most studies 
used samples of less than 100 subjects, a study stood out by the 
number of samples. Using 3040 subjects, sMRI, and a linear SVM, 
Nunes et al. [43] obtained an accuracy of 65.23% using aggregate 
subject-level analyses and an accuracy of 58.67% when testing on 
left out sites. Their results, which highlighted the importance of 
regions such as the hippocampus, the amygdala, and the inferior 
frontal gyrus for the classification, were in good accordance with 
previous MRI studies in BD [76–78]. Regarding fMRI, the review 
of Claude et al. [54] highlighted that machine learning studies 
performed with an accuracy range between 37.5% and 83.5%. The 
minimum accuracy was 37.5% for the classification of bipolar 
depression vs. HC, during angry face processing using a Gaussian 
process classifier (GPC) [37]. DWI was not investigated much. In 
the review of Claude et al. [54], only two DWI studies were 
referenced. Achalia et al. [15] used DWI and machine learning on 
60 subjects and obtained an accuracy of 74% for DWI alone. Even



though DWI gave lower classification scores than sMRI (77.8%) 
and fMRI (80.3%), combining it with other modalities significantly 
enhanced the accuracy (87.6%). Mwangi et al. [40] also used DWI 
in combination with sMRI on 30 pediatric patients with BD and 
obtained a classification accuracy of 78.12%. 
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Regarding schizophrenia (SZ), Filippis et al. [56] conducted a 
systematic review focusing on sMRI and fMRI studies that attempt 
to classify SZ vs. HC. Notably, the study of Salvador et al. [38] 
focused on a sample of 128 patients with SZ and 127 HC and 
aimed to compare the classification score of different neuroimaging 
features such as voxel-based and wavelet-based (a transformation 
like Fourier transform) morphometry of gray and white matter, 
vertex-based cortical thickness and volume defined as regions of 
interest, as well as volumetric measures. They also compared differ-
ent methods, such as random forest, regressions with different 
regularization methods and levels, and SVM. The best results 
were obtained using the voxel-based and wavelet-based morphom-
etry in combination with a SVM, with respective accuracy of 77.2% 
and 71%. The authors stress on the fact that no algorithm clearly 
outperforms the others, but that the selection of features has a real 
influence on the classification accuracy. Another notable study 
focused on cortical thickness and surface area measurement to 
differentiate first-episode psychosis from healthy subjects 
[42]. This study witnessed that regions contributing to the classifi-
cation accuracy included the default mode network (DMN), the 
central executive network, the salience network, and the visual 
network. They observed a classification accuracy of 85.0% for the 
surface area and 81.8% for the cortical thickness. Pinaya et al. [79] 
used a deep belief network, which is a deep neural network that 
extrapolated and interpreted features, on sMRI data from 83 HC 
and 143 patients with SZ. The deep belief network highlighted an 
accuracy of 73.6% vs. 68.1% for a classical SVM. It also detected 
large differences between classes among specific regions, particu-
larly frontal, temporal, parietal, and insular cortices, the corpus 
callosum, the putamen, and the cerebellum. Finally, as already 
mentioned in Subheading 2.1, normative models constructed 
with MRI data could be a useful tool to handle the inter-subject 
variability in machine learning models [71]. 

3.2 Inter-Illness 

Classification and 

Clustering 

One major challenge of machine learning studies using MRI is to 
be able to correctly distinguish or classify patients suffering from 
different disorders. Several studies focused on the classification 
between BD and SZ. In their review, Claude et al. [54] found 
that three studies used sMRI in combination with machine learning 
algorithms to discriminate between BD and SZ with an accuracy 
ranging between 58% and 66%. Precisely, Schnack et al. [44] 
showed good classification performance on an independent dataset, 
with an average classification accuracy of 66%. Mothi et al. [45]



used K-mean clustering after a non-linear PCA to separate patients 
with BD, SZ, or schizoaffective disorder. They found out that the 
separation in three clusters was optimal, comprising a cluster 
including a major proportion of patients with BD, a second with 
mostly patients with SZ, and a third with a balanced proportion of 
the three types of illnesses. To build their clusters, they used clinical 
and cognitive data and validated the robustness of their results with 
sMRI data. The cluster including more patients with SZ was the 
one to have a significantly reduced cortical thickness in the frontal 
lobe. In addition, the BD and the SZ clusters presented significant 
cortical thickness reductions in occipital and temporal regions. 
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Several studies attempted to predict the diagnosis of BD in a 
population of unipolar, bipolar depression, and healthy controls 
with a median accuracy of 79% and an accuracy ranging from 50% 
to 90.69% [54]. Burger et al. [37] focused on the classification of 
unipolar vs. bipolar depression using different regions of interest. 
They did not find any significant results using the whole brain but 
found an accuracy of 63.89% for the classification of 
BD vs. unipolar depression using a GPC based on a happy face 
processing paradigm and the amygdala activity. Their best accuracy 
was of 72.2% for the classification of bipolar vs. unipolar depres-
sion, using a fear processing paradigm and GPC on the anterior 
cingulate gyrus. Overall, the best performance was obtained by 
Grotegerd et al. [18] In a pilot study, they obtained an accuracy 
of 90% using fMRI with a happy vs. neutral contrast image and an 
SVM on 10 BD, 10 HC, and 10 MDD. Using sMRI and DWI with 
a multiple kernel learning and a sample of 74 MDD and 74 BD, Vai 
et al. [46] obtained an accuracy of 74.32%, with a positive predic-
tive value of 73.33% (probability that subjects with a positive BD 
prediction suffer from BD). The accuracy for MDD was 72.97%, 
indicating the ability to correctly identify people with MDD, with a 
predictive value of 73.97%. Their models are particularly interesting 
as they included relevant covariates in their models, such as age, 
gender, number of previous episodes, and drug load, which can 
confound and bias the accuracy estimates. Taking into account all 
these factors helps to increase the performance of the algorithm, as 
they impact the brain structural measures. It is necessary since these 
effects were witnessed by the ENIGMA-BD Working Group that 
used a large cohort of 2447 BD and 4056 HC and found [80] that 
several commonly prescribed drugs for BD treatment, including 
lithium, anti-epileptic, and antipsychotic treatments, showed sig-
nificant associations with cortical thickness and surface area, even 
after accounting for patients receiving multiple drugs. 

3.3 Treatment 

Response and Illness 

Prediction 

Another perspective is the use of MRI and machine learning algo-
rithms to predict treatment response. This was done by the team of 
Liu et al. [47] who tested the sensitivity to antidepressants in 
patients with MDD. Precisely, the study included 17 subjects that
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at
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 d
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U
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M
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h
el
li
 e
t 
al
. 
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 d
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P
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o
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d
is
o
rd
er
s

4
1
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u
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 l
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 p
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u
b
b
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R
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n
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M
R
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E
m
o
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o
n
al
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 t
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k 
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R
I 

C
la
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o
n
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D
D
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u
b
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u
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H
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5
 M

D
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A
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u
re
 s
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V
M
 f
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s-
fM

R
I:
 6
6
%
 

ac
cu
ra
cy
 

R
es
t 
o
f 
th
e 
cl
as
si
fi
ca
ti
o
n
s 

at
 c
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 f
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 o
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re
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 f
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w
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. 

U
C
 v
s.
 H

C
 w
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 c
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at
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r 
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ra
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re
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R
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P
C
, 

R
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re
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n
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] 

sM
R
I 
fe
at
u
re
s

C
la
ss
ifi
ca
ti
o
n
 o
f 
M
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 f
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at
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p
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n
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 p
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at
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at
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 l
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 f
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 p
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 b
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p
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 b
ra
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. 
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at
ie
n
ts
 v
s.
 H

C
 

1
6
3
 d
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 c
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ra
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5
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%
)
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ra
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 o
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 c
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b
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ra
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 o
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at
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at
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 f
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 f
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 c
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p
at
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w
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 c
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 c
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 c
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C
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 o
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 d
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at
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R
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R
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R
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at
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R
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R
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at
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R
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 f
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%
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 f
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at
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were treatment resistant, 17 that were treatment sensitive, and 
17 controls. The accuracy of the MVPA models that correctly 
distinguished resistant and sensitive patients from HC ranged 
from 85.7% to 91.2% depending on the features used. The authors 
highlighted differences in structural alterations between responders 
and non-responders suggesting that structural differences may be 
related to different responses to antidepressants. Furthermore, they 
found that the structural abnormalities were larger between respon-
ders and HC than between non-responders and HC. These results 
are somewhat counterintuitive as one would expect resistant 
patients to show more structural differences from HC than respon-
ders. However, this lack of specificity is probably related to a high 
degree of clinical heterogeneity and the small sample size that does 
not allow sufficient precision to distinguish more specific 
abnormalities.
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Hajek et al. [48] used machine learning applied to white matter 
sMRI to distinguish 45 unaffected participants at high genetic risk 
of BD from 45 low-risk healthy controls with an accuracy of 68.9%. 
Similarly, Lin et al. [81] successfully classified HR individuals for 
BD with vs. without (sub)syndromic risk with an accuracy of 
83.21% based on the gray matter volume. Finally, a pilot study 
was conducted using a novel machine learning system based on a 
“multi-cascade fuzzy genetic tree” with sMRI capable of accurately 
classifying subjects with BD in a first manic episode into groups that 
responded or did not respond to lithium treatment [49]. 

4 Limitations and Perspectives 

As illustrated in this chapter, numerous studies have been con-
ducted to classify psychiatric disorders and refine the definition of 
psychiatric subgroups using machine learning. However, methods 
and results are heterogeneous. In fact, many authors point to a 
major limitation of most studies, that is, the limited number of 
samples [53–55]. Claude et al. [54] also pointed out a negative 
correlation between the accuracy and the number of subjects, 
leading to think that the results obtained from small samples are 
artificially high. Another effect of this limited number of samples 
resides on the fact that models need to be trained on a population 
that is representative of the population on which we will use them. 
Indeed, models trained on a young population will be biased when 
used on an older one, and similar bias could be raised when using a 
model trained with a population from a specific country on subjects 
from another country. 

As it is difficult to recruit enough patients to obtain a sufficient 
statistical power, this limitation may persist in the long term, unless



collective efforts for data sharing are undertaken. This issue dee-
pens when looking at more specific subsets of patients. The field 
therefore needs more and larger datasets to work on. These datasets 
start to be collected, with, e.g., the UK BioBank dataset (~40,000 
subjects). Even though they are not focused on psychiatric disor-
ders, they are interesting because they are multimodal datasets, 
with genetic, clinical, and MRI data, and some participants will 
develop psychiatric syndromes throughout the follow-up. Recent 
efforts have been specifically made for psychiatric disorders, e.g., by 
the ENIGMA Consortium, a multisite and multimodal project 
including several working groups focused on different diseases, 
such as bipolar disorder, schizophrenia, autism, ADHD, etc. 
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Larger datasets are often multisite ones, and they bring their 
own challenges. Since the MRI devices that are used for different 
studies have different magnetic field strengths, different vendors, 
coils, etc., there are large site effects that need to be considered. 
These site effects are particularly important for DWI and fMRI, but 
they even appear for sMRI [82], the most robust method of imag-
ing. A second source of site effects lies in the preprocessing of the 
data, which may vary between different sites and protocols. The 
preprocessing steps are of major importance and need to be homo-
genized since different softwares can lead to different results 
[83]. The remaining “site effects” can be partially corrected, thanks 
to different methods. Statistics-based methods include adjusted 
residualizations or ComBat [84, 85], a method originally proposed 
to remove batch effects in genomics [86] and then adapted for 
DWI and then for sMRI [87]. Other methods are more specific to 
MRI, such as RAVEL [88], which aims at capturing the sites’ 
variability using the signal from the CSF, with mixed results for 
now. Since the extent of the efficiency of these corrections is still 
under discussion [89], we must consider the site effect in our 
models and use validation methods such as leave-one-site-out vali-
dation to evaluate the reproducibility of our approaches. 

The site effect highlights a deeper and more fundamental limi-
tation of our studies, the signal-to-noise ratio. That issue, which is 
faced by all imaging studies, is particularly present in neuroimaging 
for psychiatric diseases as the changes that we are looking for are 
subtle and probably not the main causes of variation in our datasets 
(e.g., one important cause of variance is the age, which produces 
consequent variations in the gray and white matter density [72]). 
We therefore need to be vigilant and make specific efforts when 
interpreting the results of machine learning algorithms as they can 
learn some information that are irrelevant for psychiatric disorders. 
Nevertheless, it is possible to improve this signal-to-noise ratio. 
One way to do so is to improve the signal; the second is to diminish 
the noise. Larger datasets improve the statistical power of the 
algorithms but may induce noise (such as the multisite noise). In 
addition to the fact that methodological modifications can change



and improve the performance of machine learning, technological 
improvements seem to bring better performance as shown by the 
team of Iwabuchi et al. [90], who showed that 7 T MRI compared 
to 3 T MRI gave higher classification accuracy when distinguishing 
patients with schizophrenia vs. controls (77% versus 66%). More-
over, the use of multimodal datasets has shown promising results in 
increasing the signal-to-noise ratio in current studies [91]. While 
trying to determine to what extent machine learning using MRI 
can still improve its results, Schulz et al. [91] highlighted two 
interesting perspectives: first, that there is still room for improve-
ment of the classification accuracy by getting larger datasets and 
second, that multimodal MRI and more specifically fMRI could 
improve the classification. 
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Other ways to collect data could also be thought about, with, 
for example, the use of tools such as smartphones. Data can be 
provided through active monitoring (self-reporting), passive mon-
itoring of various activities, mobility, or statistics on phone calls 
[92]. Promising results show that voice data from daily phone calls 
could be a valid marker of mood states and hold promise for 
monitoring BD [93]. Taken together, the development of our 
knowledge of machine learning and the growing data resources 
could provide new tools for the management of psychiatric disor-
ders soon. However, their development can only be done by con-
sidering the challenges they raise, such as personal data protection, 
but also by considering all the ethical issues that these new tools will 
raise. 

Finally, machine learning in psychiatry is a promising field of 
research, with still a lot to do to characterize the different biomar-
kers and psychiatric disorders properly and accurately. The use of 
MRI and other clinical and biological features could in a near future 
bring new tools for diagnosis, risk assessment, and treatment selec-
tion that could be used by the clinician. However, due to the actual 
social stigma around psychiatric disorders and the apparent arbi-
trary character of classification algorithms, their use would need an 
important ethical discussion beforehand, notably when people 
would like to use them to identify at-risk healthy subjects or when 
using them to determine the treatment of already symptomatic 
patients. 
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