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Abstract 

Neurodevelopmental disorders (NDDs) constitute a major health issue with >10% of the general world-
wide population affected by at least one of these conditions—such as autism spectrum disorders (ASD) and 
attention deficit hyperactivity disorders (ADHD). Each NDD is particularly complex to dissect for several 
reasons, including a high prevalence of comorbidities and a substantial heterogeneity of the clinical 
presentation. At the genetic level, several thousands of genes have been identified (polygenicity), while a 
part of them was already involved in other psychiatric conditions (pleiotropy). Given these multiple sources 
of variance, gathering sufficient data for the proper application and evaluation of machine learning 
(ML) techniques is essential but challenging. In this chapter, we offer an overview of the ML methods 
most widely used to tackle NDDs’ complexity—from stratification techniques to diagnosis prediction. We 
point out challenges specific to NDDs, such as early diagnosis, that can benefit from the recent advances in 
the ML field. These techniques also have the potential to delineate homogeneous subgroups of patients that 
would enable a refined understanding of underlying physiopathology. We finally survey a selection of recent 
papers that we consider as particularly representative of the opportunities offered by contemporary ML 
techniques applied to large open datasets or that illustrate the challenges faced by current approaches to be 
addressed in the near future. 
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1 A Brief Introduction to Neurodevelopmental Disorders 

Neurodevelopmental disorders (NDDs) cover a large range of 
pathologies. This term can be used to refer to known genetic 
syndromes such as fragile X syndrome or, in a much broader 
sense, include conditions with multifactorial etiology such as 
autism spectrum disorders (ASD), attention deficit hyperactivity 
disorders (ADHD), or developmental dyslexia. Even more broader 
are the definitions from the DSM-5 or the ICD-10 which also 
encompasses intellectual disabilities (ID), communication disor-
ders, specific learning disorders, and motor disorders [1]. NDDs 
embrace defects that disturb the developmental function of the 
brain, which could lead to neuropsychiatric complications, learning
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difficulties, language or non-verbal communication problems, or 
motor function disabilities. However, although there is a tight 
intrication between NDDs and psychiatric disorders—for whom 
manifestations come later in life—phenomenological categories 
used in the adult population do not apply consistently in NDDs. 
The latter are conditions for which the cause or the onset is located 
during gestation or birth and should be distinguished from late-
onset disorders. We refer to [2–4] for a historical view of the 
standardized tools allowing for reliable and valid categorical dis-
tinctions, available to the community since the 2000s.

978 Clara Moreau et al.

NDDs constitute a critical health problem in our society. More 
than 10% of the general worldwide population is affected by neu-
rodevelopmental disorders [5]. The consequences of NDDs impact 
a person’s lifetime, so patient management represents a major cost 
for society. Important healthcare advances have improved the life 
course of several NDDs (e.g., very low birth weight preterm 
infants, congenital hydrocephalus) and extended the expected life-
span of others (e.g., cystic fibrosis). The assessment and study of 
individuals with NDDs become thus an increasingly crucial issue. 
Researchers and clinicians have strongly emphasized the impor-
tance of early identification and intervention to improve the level 
of functioning. However, because of the high complexity intrinsic 
to these pathologies, we face a lot of misdiagnoses or even missed 
diagnoses which prevent early and effective therapeutic interven-
tions. As an illustration, 1/5 of children diagnosed with ADHD or 
ASD in the population are currently misdiagnosed, which leads to a 
failure to get the adequate treatment or the administration of an 
unnecessary one. 

NDDs are particularly complex to approach and to diagnose for 
several reasons. First, comorbidities are common in NDDs. 
Comorbid clinical features have been shown to be the rule rather 
than the exception in NDDs, adding to the complexity of proper 
diagnostic boundaries’ delineation. Over a third of individuals with 
ASD meet criteria for ADHD, obsessive-compulsive disorder 
(OCD), disruptive behavior disorders, anxiety and mood disorders, 
intellectual disability, or epilepsy, inducing various diagnostic com-
binations [2, 6, 7]. This overlap across conditions probably origi-
nates from a shared neurological etiology. As a consequence, 
studies that exclude other psychiatric disorders have limited trans-
lational application because of the pathophysiological overlap 
between many comorbid disorders (see Fig. 1 for an illustration of 
this issue). 

In relation to this first issue, neurodevelopmental disorders 
overlap a lot in terms of etiology because of important epidemio-
logical comorbidity and community of symptoms [8]. NDDs show 
indeed considerable overlap both neuropsychologically, physiolog-
ically, and genetically. For instance, the presence of certain behav-
ioral characteristics, such as attention problems, does not



systematically indicate a specific diagnostic entity (e.g., ADHD), 
but instead, attention problems occur across a large variety of 
disorders (such as in ASD or in anxiety disorders). When biological 
bases are considered, the level of heterogeneity remains elevated. A 
wide range of neurological substrates have been associated with 
individual disorders. For example, ADHD has been associated 
with differences in gray matter within the anterior cingulate cortex, 
caudate nucleus, pallidum, striatum, cerebellum, prefrontal cortex, 
premotor cortex, and most parts of the parietal lobe [9]. 
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Fig. 1 Left: As introduced in Subheading 1, the complexity of NDDs comes from the combination of multiple 
sources of heterogeneity acting at different levels and that overlap across conditions as illustrated here with 
ASD, ADHD, and intellectual disability (ID). Right: As described in Subheading 2, ML approaches are 
instrumental to characterize and overcome the heterogeneity at each level with dedicated techniques 

Similarly, at the genetic level, both common and rare, and 
structural as well as sequence, variations have been identified as 
contributing to NDDs. There are multiple examples in which the 
identical variant has been found to contribute to a wide range of 
formerly distinct diagnoses, including autism, schizophrenia, epi-
lepsy, intellectual disability, and language disorders. These include 
variations in chromosomal structure at 16p11.2, rare de novo point 
mutations at the gene SCN2A, and common single nucleotide 
polymorphism (SNP) mapping near loci encoding the genes 
ITIH3, AS3MT, CACNA1C, and CACNB2. In the case of autism, 
high genetic heritability (70–80%) with more than 1000 genes 
contributing to ASD has been yielded [10]. These selected exam-
ples point that heterogeneity in these pathologies is clearly multidi-
mensional [3]. As a result, conferral of a diagnosis based on DSM-5



or ICD-10 criterion ascribes an underlying cause to the various 
behavioral difficulties without a method available to verify that the 
disorder arises from underlying biological dysfunction. 
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The specificity of NDDs relative to psychiatric disorders (cov-
ered in Chapter 32) is that the challenges induced by the intrication 
of a spectrum of conditions are potentialized by the developmental 
dimension. Indeed, the developmental transformation is a major 
contributor to the multidimensional heterogeneity across indivi-
duals affected by NDDs. Brain developmental trajectory exhibits 
marked variations across individuals [11, 12], but also across brain 
regions [13, 14]. The development course concerns cognitive, 
neuronal, and epigenetic maturation processes that follow distinct, 
yet inter-dependent, nonlinear trajectories [15, 16]. During devel-
opment, reorganization and competition for function are highly 
active. Compensatory mechanisms can thus interfere with potential 
alterations of the nervous system in individuals with NDDS. The 
timing of these alterations is of high relevance as different neural 
systems are selectively vulnerable to injury at different phases of 
prenatal and postnatal development [17]. This plasticity partially 
explains the heterogeneity in behavioral and cognitive dysfunction 
associated with early alteration, ranging from subtle to diffuse and 
profound. In addition, the functional impairments can be observed 
immediately in some individuals, while in others, the full range of 
deficits may not manifest until later in life [18]. 

As a consequence, early diagnosis is key since early medical 
intervention would benefit from the remarkable plasticity of the 
immature brain, allowing the patient to adapt and/or develop 
compensatory mechanisms. On the basic research side, investigat-
ing earlier allows to reduce the influence of compensatory mechan-
isms and secondary perturbations. Studies focused on young 
children are more likely to reach the causes, whereas in adult 
populations, consequential or adaptation abnormalities likely con-
taminate the observations. 

There are thus crucial needs in NDDs for a better detection of 
early, subtle signs of neurodevelopmental pathology and more 
accurate prediction of the evolution of the impairments. Gaining 
insight on the pathophysiological processes and the identification 
of more homogeneous subtypes is also required for the identifica-
tion of new targets for drug development. 

To address these needs, collective efforts have been made to 
constitute large public datasets giving access to sufficient amounts 
of multidimensional data covering the dimensions mentioned 
above (see, e.g., [19]). Recently, we have witnessed the constitution 
of large databases trying to address these issues and which we will 
refer to in the following chapters. We can mention, for instance, 
ABCD [20], ABIDE [21], EU-AIMS [22], and ADHD200 [23] 
(see Chapter 24, for general considerations regarding the rise of 
openly accessible large datasets). It induced a crucial need for
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statistical approaches tailored for the data-rich setting and thus 
called for closer collaboration with the field of machine learning. 
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Unsurprisingly, the NDDs having the largest prevalence, and, 
thus, the greater societal impact and the easier recruitment, are 
largely overrepresented in these databases. As a consequence, they 
are also overrepresented in the literature of ML techniques applied 
to NDDs. In the remainder of this chapter, we focus on ASD and 
ADHD. With regard to the characteristics mentioned above, we 
argue that ASD and ADHD are highly representative of the NDDs 
in general. As detailed in Boxes 1 and 2, they are the two most 
common neurodevelopmental disorders observed in childhood, 
and they present considerable variability, both within and across 
conditions. These two syndromes share most of their comorbid-
ities, while 40–83% of children with ASD also have ADHD [24], 
and 28–87% of children with ASD show symptoms of ADHD 
[25]. See [26] for a comparison of the outcomes from recent 
neuroimaging studies in these two disorders. As a consequence of 
this heterogeneous clinical presentation, we clearly face a lack of 
objective criteria for diagnosis for these two disorders as well as for 
the other NDDs. 

Box 1 Autism Spectrum Disorder (ASD) 
ASD is a complex neurodevelopmental condition with life-
long impacts. Current prevalence is estimated to be at least 
1.5% in developed countries. The male-to-female ratio is esti-
mated to 4:1 in this pathology. This sex ratio varies, however, 
according to intellectual disability (ID): reported median sex 
ratios of 6:1 among normal-functioning subjects and 1.7:1 
among cases with moderate to severe ID [27]. Individuals 
with ASD suffer from a specific combination of deficits in 
social communication and repetitive behaviors, severely 
restricted interests, and sensory behaviors from early in life. 
Despite the vast resources devoted to the study of ASD, its 
pathogenesis remains largely unknown. Recent genetic stud-
ies have identified a number of rare de novo mutations and 
provided insight into polygenic risk, epigenetics, and gene-
by-environment interaction related to autism or autistic traits 
[28]. In addition, epidemiologic investigations focusing on 
nongenetic factors have identified advanced parental age and 
preterm birth as risk factors for ASD and have suggested that 
prenatal exposure to air pollution and short inter-pregnancy 
interval are also potential risk factors. See, e.g., [29] for more 
detailed information.
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Box 2 Attention Deficit Hyperactivity Disorder (ADHD) 
ADHD is one of the most common neurodevelopmental 
disorders, characterized by inappropriate and developmen-
tally harmful levels of inattention, hyperactivity, and impulsiv-
ity. It affects boys more often than girls. Its prevalence in the 
general population is between 3% and 4%. ADHD is diag-
nosed according to strictly defined criteria, but there is still no 
reliable biomarker of the pathology. The causes of ADHD are 
complex and multifactorial, with genetics, early environment, 
and gene-environment interplay being involved. Although 
ADHD is highly heritable, and multiple types of genetic 
variants are associated with the disease, none of them can be 
used as diagnostic. Diagnostic thresholds are given by both 
the ICD-10 and the DSM-5, but the clinical features of 
ADHD behave as continuously distributed dimensions and 
vary considerably between individuals. Clinical features are 
heterogeneous. ADHD profiles include not only its definite 
symptoms (hyperactivity-impulsiveness, inattention) and fea-
tures of other neurodevelopmental disorders but also addi-
tional cognitive deficits such as impaired working memory 
and planning. Early comorbidity with developmental, 
learning, and psychiatric problems, such as ASD, is very fre-
quent. ADHD is lifelong, but its course and outcome are 
highly variable. Core symptoms such as the hyperactivity 
observed at preschool age may turn into inattention and 
executive dysfunction in older children, for instance. See, 
e.g., [30] for further information. 

2 What Are the Main Challenges in These Conditions That Can Be Addressed Using 
Machine Learning? 

Given these multiple sources of variance, gathering sufficient 
amounts of data for the proper application and evaluation of 
machine learning (ML) techniques is essential, but also very chal-
lenging. As underlined earlier and illustrated on Fig. 1, NDDs, and 
more specifically the two we focus on, present a number of specific 
challenges that can be formulated in terms of heterogeneity, trajec-
tory of development, and comorbidities. 

In this section, we give an overview of the methods most widely 
used in the NDDs’ literature and point to specific challenges that 
can benefit from the recent advances from the ML field. We refer 
readers interested in an exhaustive view of the available approaches 
and their performances in the context of NDDs to the following



recent review papers [31–36]. We organize this overview by follow-
ing the historical evolution of the methods used in the field. The 
first applications of ML techniques were focused on classification 
tasks. Indeed, classification techniques can be designed for the 
prediction of later evolution and are thus in principle well suited 
to address the challenge of early diagnosis. We then observe a 
progressive shift toward regression, latent space decomposition, 
and stratification purposes. These approaches have the potential 
to uncover more homogeneous subpopulations of patients that 
would enable the refined understanding of underlying physiopa-
thology. More recently, specific approaches have been proposed for 
characterizing the atypical brain maturation trajectory in NDDs. 
Finally, we discuss the potential of deep learning techniques for 
learning representations that might represent a major step toward 
prediction at the individual level, which is crucial for translation 
into clinical applications. 
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2.1 The Classical 

Analysis Approach 

Failed to Reach 

Consensus 

Historically, the classical analysis approach consisted in designing a 
study starting from the definition of an “atypical” population of 
interest, based on particular clinical scores selected among the 
behavioral assessments used for diagnosis. This population of inter-
est is compared to a group of control subjects, following a feature 
defined a priori such as “the volume of a specific cortical region 
estimated from anatomical MRI.” As extensively described in, e.g., 
[37–39], this corresponds to statistically testing the hypothesis: 
Does the atypical population differ, on average, from controls in 
the selected feature? Statistically speaking, this amounts to a case-
control study using univariate hypothesis testing for one or a few 
features. The large literature of early studies following this approach 
allowed to refine the characterization of the different sources of 
heterogeneity presented above and shed light on the lack of 
biological validity of categorical representations of NDDs that 
manifest in the evolution of the nosology, for instance, moving 
from “autism” to “autism spectrum disorders” [3]. However, as 
we progressed in our understanding of the interactions between 
genetics, biological brain, and behavior, the limits of the group 
statistics and univariate approaches became obvious. 

2.1.1 Limitations of 

Classical Univariate 

Analysis Techniques 

The univariate approach is prevalent in the literature for historical 
reasons. It relies on the implicit assumption that different brain 
regions and/or different features are independent, while more and 
more evidence supports the opposite view: effects are spread across 
several brain regions, possibly located far from each other. Knowing 
the various sources of variance in NDDs’ data described earlier, it is 
unlikely that a single feature may capture a large portion of that 
variation and thus be interpreted in terms of underlying biological 
processes. It is thus not surprising that the effect sizes reported in 
meta-analyses remain small. In addition to potentially reduced



statistical power, the problem of inflated false discovery rate in 
univariate analysis framework has been raised and extensively dis-
cussed [40]. Multivariate approaches are much more relevant in this 
context. Indeed, combining in a multivariate approach a group of 
features having small effect size when considered independently 
might lead to a large effect [38]. 
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2.1.2 Limitations of 

Group Statistics 

As extensively discussed in [41], group statistics all focus on first-
order statistics (group means), thereby seeking a pattern of atypi-
cality that is consistent across the population (i.e., the “average 
patient”). Indeed, mean group differences may reflect a systematic 
shift in the distribution of the clinical group and thus provide useful 
information on altered processes in that population. However, 
those differences do not delineate variability within groups 
[38]. In addition, the evolution of the DSM by regrouping condi-
tions that were considered in previous versions as distinct (e.g., 
Asperger and pervasive developmental disorders not otherwise spe-
cified) induced an increase in the heterogeneity of the populations 
included in studies on ASD [37]. Group comparisons based on 
diagnosis thus present the major caveat of ignoring psychiatric 
comorbidities, which are common in NDDs. It thus becomes 
obvious that group statistics applied to populations defined based 
on diagnostic categories are inadequate. Indeed, categorical diag-
noses from the DSM are increasingly found to be incongruent with 
emerging neuroscientific evidence that points toward shared neu-
robiological dysfunction underlying NDDs [42]. See, e.g., [39] for 
extensive discussions on the limitations of the diagnostic-first 
approach in comparison to the alternative strategy that begins at 
the level of molecular factors enabling the study of mechanisms 
related to biological risk, irrespective of diagnoses or clinical 
manifestations. 

The combination of univariate statistics and mean group differ-
ence analysis applied to heterogeneous populations with small sam-
ple sizes resulted in highly inconsistent findings. Indeed, most of 
the published findings are not consistent and were not replicated. 
The recent challenge [43] further illustrates the intrinsic limitation 
of the group statistics framework, but also that state-of-the-art ML 
techniques do not systematically outperform classical approaches in 
such a binary classification task. In this context, deep learning 
techniques were prone to overfitting with poor generalization to 
unseen dataset, while simpler approaches had a stable prediction 
performance when applied to new data. It is important to stress that 
several limitations from this early literature do fully apply to more 
advanced ML techniques and/or multivariate data analysis strate-
gies. While the problem of inflated false discovery rate in univariate 
analysis framework has been extensively discussed [40], the pro-
blems related to the improper evaluation and validation of ML



techniques (e.g., overfitting and biases induced by inadapted cross-
validation strategy or absence of a truly independent test set) 
emerge in the recent literature [31, 44–46]. While discussing the 
limitations of cross-validation for estimating the potential overfit-
ting of statistical models is beyond the topic of this chapter, we 
stress the crucial importance of raising awareness of these aspects. 
We refer interested readers to essential guidelines and recommen-
dations that have been provided in [43, 47–51]. Indeed, uncover-
ing potential biases in the models’ validation strategy is a tedious 
but essential step. Abraham et al. [52] is a nice illustration of the 
major gains in interpretation resulting from an extensive analysis of 
the most influential factors. 
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2.2 Promises of ML 

in NDDs 

The rise of big data and the sustained advances in ML enable in 
principle the integration of various and heterogeneous character-
istics such as behavioral profiles, imaging phenotypes, and geno-
mics. The extraction and manual construction of features from each 
data type, also termed as feature engineering, did undergo continu-
ous progress in tight relation with innovations in the acquisition 
processes. As an illustration, the imaging phenotype today covers a 
wide range of features extracted mainly from MRI data. For 
instance, a variety of measures can be extracted from diffusion-
weighted imaging [53], from basic estimation in each voxel such 
as the fractional anisotropy to higher-level connectivity measures in 
each anatomically defined fiber tract, or even connections between 
distant anatomical regions (structural connectivity). On the genet-
ics side, polygenic risk scores (PRS) are additive models developed 
to estimate the aggregate effects of thousands of common variants 
with very small individual effects. They can be computed for any 
individual to estimate the risk/probability for a particular trait 
conferred by common variants [54]. Feature engineering is a cru-
cial step in the analysis since the biological relevance of the features 
directly impacts the interpretation, and the strategy used to manage 
potential interaction across different features might determine the 
performance of the analysis procedure more than the ML algorithm 
itself. In parallel, the increase in the size of the available data enables 
the training of more complex algorithms, making it possible to 
investigate central questions related to the dynamics of normal 
and abnormal development by means of advanced ML techniques. 

2.3 Classification 

and Prediction: 

Supervised Learning 

for NDDs 

Classification techniques consist in learning a model allowing to 
separate different groups of subjects based on a set of training data 
that have been labeled and are thus subtypes of supervised machine 
learning techniques. In this context, classification techniques inte-
grate biological and/or behavioral measures in order to extract a 
predictive pattern corresponding to the diagnosis. Classification 
techniques used in the literature of NDDs are the same as those 
used in the field of psychiatry and span the whole range of methods



detailed in Chapters 1, 2, 3, 4, 5, and 6, from simple linear models 
to most recent deep networks. References [31, 32, 34, 51, 55] 
provide a detailed overview of the recent applications of classifica-
tion techniques in the context of ASD and ADHD. The general 
trends indicate that linear discriminant and logistic regression clas-
sifiers were prominent until around 2014, most studies focusing on 
a single modality (usually structural or functional MRI). Support 
vector machines (SVM) then became the most commonly used 
approach due to their performance in the small-sample high-
dimension regime but also their ability to perform nonlinear classi-
fication. Approaches based on ensembles of classifiers were more 
recently developed to combine data from several modalities or 
acquired in different settings (e.g., different scanners). Even more 
recently, deep learning techniques’ neural networks were applied to 
populations of a few hundred subjects. We will discuss the potential 
of these advanced approaches later, in a dedicated section. In terms 
of input data types, structural and functional MRI modalities are 
overrepresented in comparison to diffusion MRI, EEG, and behav-
ioral data. Classification techniques based on genetics are getting 
more and more attention (e.g., using polygenic risk scores). Due to 
the complex and specific data preprocessing required for each 
modality (see, e.g., [43]), combining features extracted from several 
modalities into a multimodal classification technique represents 
important additional challenges. Only a few studies did explore 
the potential of combining several modalities so far (e.g., 4 studies 
among 57 reviewed in [31]), but the initiatives for sharing prepro-
cessed data such as those in [23, 56] will facilitate this type of 
analyses in the future. Multimodal classification techniques did 
not demonstrate major performance gain so far, but further 
improvements can be expected by better exploiting the comple-
mentarity of the information across different modalities [32]. In 
terms of classification performances, the high accuracy (>80%) 
reported in early studies tended to decrease, while sample size 
increased [31, 32], suggesting that the impressive results obtained 
on small cohorts were affected by overfitting, sampling biases, and 
artificially reduced heterogeneity within and across the populations 
involved. Note that the decreasing effect sizes of group comparison 
studies might also be related to the evolution in the definition of 
autism toward a more inclusive and heterogeneous 
population [57]. 
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In parallel with this decrease with time in the performance, the 
research field on psychopathology did initiate a shift, moving away 
from diagnostic categories based on symptoms to the concept of 
dimensions related to more objective measures and having better 
cognitive and biological validity. In particular, the US National 
Institute of Mental Health initiated in 2009 the Research Domain 
Criteria (RDoC) project to develop a classification system for men-
tal disorders based upon fundamental dimensions of neurobiology
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and observable behavior that cut across current heterogeneous 
disorder categories [58, 59]. Of note, this research classification 
system diverges from one intended for routine clinical use in multi-
ple respects [60]. Following this progressive conceptual shift, the 
major methodological challenge to be addressed moved away from 
classification and diagnostic prediction to latent space decomposi-
tion and stratification. 
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2.4 Latent Space 

Decomposition and 

Clustering: 

Unsupervised Learning 

for NDDs 

Following the progressive confirmation of the inadequacy of mutu-
ally exclusive diagnostic categories, behavioral assessments for 
quantifying ASD traits in any given individual were introduced, 
such as the autism spectrum quotient questionnaire [61] and the 
Social Responsiveness Scale (SRS) [62]. A number of studies used 
these scores to demonstrate that ASD traits are also present in the 
typically developing population as well as in other NDDs such as 
ADHD [63]. These studies supported the view of a continuum 
across NDDs and emphasized the need for novel approaches to 
identify general psychopathology dimensions that cut through 
diagnostic boundaries. Such data-driven dimensions would ulti-
mately enable the identification of new targets for treatment devel-
opment and to stratify the NDDs in subgroups more appropriate 
for treatment selection [58, 59, 64]. Uncovering the hidden intrin-
sic structure in the data is a well-known ML problem that has been 
formulated as unsupervised learning in opposition to supervised 
learning tasks such as classification where the algorithm learns to 
predict a label based on a training set for which the true label is 
known (see Chapters 1 and 2 or, e.g., [65]). Unsupervised ML 
techniques consist in fitting a statistical model to the data by 
implementing specific assumptions regarding the relationships 
between the input features and on the supposed hidden structure. 
A general assumption to all unsupervised techniques is that there 
exists a non-negligeable degree of correlation across some of the 
features in the actual data, which justifies the search for a more 
compact optimal representation. Depending on the assumptions 
regarding the hidden structure to discover, unsupervised techni-
ques can be divided into two classes: latent space decomposition 
and clustering. Latent space decomposition techniques aim at pro-
jecting the data onto a new feature space of lower dimension in 
which a large portion of the variance can be explained by a few 
factors. The underlying assumption is that the projected features 
vary continuously along the axes of this compact subspace. In 
contrast, clustering techniques seek to partition the data into dis-
tinct groups (often termed as population stratification) so that the 
observations within each group are similar to each other, while 
observations in different groups differ from each other. The under-
lying assumption is thus that a categorical representation is more 
appropriate than in the case of the latent space decomposition 
approach. In contrast with the classification task, the algorithm is

https://doi.org/10.1007/978-1-0716-3195-9_1
https://doi.org/10.1007/978-1-0716-3195-9_2


designed in this case to identify homogeneous subpopulations 
within and across diagnostic categories. Several recent approaches 
propose a unified framework combining the advantages of both the 
dimensional and categorical models [3, 66, 67]. 
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All unsupervised approaches face two main challenges in the 
context of NDDs. First, since we are dealing with a limited amount 
of data, the number of dimensions or clusters that can be identified 
needs to remain limited in order to avoid the curse of dimensional-
ity, i.e., when an infinite number of solutions can fit data equally 
well [64, 65, 68]. As a consequence, in the majority of studies, the 
set of input features (and thus the dimension of the input space) is 
selected based on data availability or prior knowledge, which raises 
the problem of establishing an optimal set of variables of particular 
relevance for NDDs [69]. Automated feature selection procedures 
can be used to reduce the dimensions to be explored (see [69] for a 
recap of the approaches explored so far in ASD), but the funda-
mental problem of limited amount of data relative to the very large 
dimension to explore remains [64]. The second major challenge is 
the validation, since with unsupervised approaches no ground truth 
data is available by definition, unlike in the case of supervised 
ML. The relevance of the resulting dimensions or clusters should 
be assessed in terms of interpretability relative to external measures 
that would ideally have some clinical relevance. Replication on a 
fully independent dataset allows to assess the generalizability and 
reduces the risk of overfitting. This is however very hard to achieve 
since the number of datasets available with identical measures is 
limited. As a consequence, it is crucial to keep in mind that unsu-
pervised learning is only meaningful in relation to some context 
[70]. As extensively discussed in [64], “due to the vast dimension-
ality of the human population (based on environment, behavior, 
biology/physiology, etc.) there are multiple ways that the popula-
tion might be subcategorized that are valid and ‘real’; however, any 
given subgrouping might not be important for the question we 
care about.” 

Contrary to the classification task where the literature is very 
rich, latent space decomposition and stratification studies in NDDs 
are emerging approaches, and only few findings have been pub-
lished so far. Two recent publications review unsupervised 
approaches applied to neuroimaging in the context of ASD: [31] 
covered 19 studies published since 2018, and [69] identified 
12 studies among which 2 were already included in [31]. For an 
extensive review covering the literature back to 2001, see [71]. The 
methods used range from the most common such as principal 
component analysis for latent space decomposition and K-means 
for clustering to more advanced techniques such as nonnegative 
matrix factorization, spectral clustering, Gaussian mixture models, 
and Bayesian latent factor analysis such as Indian buffet processes. 
Most advanced approaches such as Bayesian latent factor analysis



techniques enable to infer the number of latent factors and number 
of putative subpopulations from the data and can be interpreted in 
terms of both categorical and dimensional aspects of the heteroge-
neity in NDDs [69, 72]. On the genomics side, multivariate 
approaches such as canonical correlation analysis and partial least 
square regression are the tools of choice for investigating the rela-
tionship between genomic variants, neuroimaging features, psychi-
atric conditions, and behavioral traits [39]. The development of 
specific methods allowing to better model the multivariate genetic 
covariance structure in genome-wide association studies is a very 
active field. For instance, [73] introduced a new approach called 
genomic structural equation modeling, which allows to investigate 
shared genetic effects across phenotypes, while concurrently testing 
for causes of divergence. Importantly, this evolution in the methods 
reflects the progressive integration of latent space decomposition 
and clustering techniques into unified approaches. A promising 
avenue of research that benefited from access to larger datasets in 
the past years consists in combining neuroimaging and genomics. 
Indeed, the effects of latent factors derived from genomics on 
neuroimaging endophenotypes demonstrate higher reproducibility 
and larger effect size than in the previous literature [39, 74]. 

Neurodevelopmental Disorders 989

In terms of evaluation and performances, the studies are highly 
dependent on the data and the assumptions that are made, either 
implicitly or explicitly. An illustration of this dependency on the 
application is the variation in the number of subtypes reported, 
ranging from two to six across the neuroimaging studies on ASD 
included in the two reviews [31, 69]. In [71], the authors cover a 
much broader literature (159 articles) by relaxing inclusion criteria 
compared to the two others. This exhaustive review identifies seven 
validation strategies, defined as follows: “cross-method replica-
tion,” “subtype separation,” “independent replication,” “temporal 
stability,” “external validation,” “parallel validation,” and “predic-
tive validation.” They provide the distribution of the number of 
identified subtypes across the reviewed studies, with a range of 
values varying between 1 and 16, but 82% of all studies report 
between two and four subtypes. Of note, this chapter underlies as 
major challenges the access to large and multidimensional datasets 
and the design of an unbiased validation framework. We refer 
interested readers to [71], in particular for the didactic description 
of the various validation strategies that apply to the literature of 
ASD and more generally to psychiatry or other clinical groups. 

2.5 Normative 

Modeling for NDDs 

Normative modeling gained great interest in the context of psychi-
atry recently, and the first applications to NDDs confirm the partic-
ular relevance of this approach in this context. Marquand et al. [75] 
introduced normative modeling as an alternative to clustering for 
parsing heterogeneity across the full range of population variation, 
i.e., spanning both clinical and healthy cohorts. In the approach



proposed by [75], the normative models were estimated using 
Gaussian process regression [76]. The flexibility of this Bayesian 
method enables to define a mapping between any quantitative 
biological measures and clinically relevant variables and offers desir-
able properties such as robustness to overfitting and principled ways 
for tuning hyper-parameters. Gaussian process regression is flexible 
but does not scale with an increase in sample size. More impor-
tantly, this technique can lead to inaccurate uncertainty estimates 
when the data are non-Gaussian [77]. Less demanding alternative 
approaches have been proposed. In [78], the authors used a 
non-parametric local weighted regression to fit a smooth curve 
through data points. Based on the assumption that the estimated 
regression is likely to be smooth, [79] proposed to estimate non-
linear effects using a smoothing spline model. This approach is a 
special case of Gaussian process regression. It is thus less adaptive, 
but presents a lower computational cost than Gaussian process 
regression. Fraza et al. [80] presented a novel framework based 
on spline interpolation combined with likelihood warping and 
Bayesian estimation that allows to scale normative modeling to 
big data cohorts. Another approach based on generalized additive 
models was proposed in [81, 82]. The very last version of norma-
tive models was presented recently by [83] with the generalized 
additive models for location, scale, and shape (GAMLSS), a flexible 
modeling framework that can model heteroskedasticity, nonlinear 
effects of variables, and hierarchical structure of the data. As 
demonstrated in [84] with features extracted from more than 
120,000 MRI, these models can be estimated on very large data-
sets. They are however not suitable for small datasets since the 
higher flexibility of such a model would be detrimental and might 
lead to overfitting. 
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Normative models are highly relevant for analyzing neuroim-
aging data since they can be fit at each brain location to estimate 
regional specificity. In the context of NDDs, two advantages are 
particularly critical. First, normative modeling is efficient to disen-
tangle the effects related to brain maturation dynamics and neuro-
developmental diseases in a data-driven way. Indeed, the Bayesian 
framework enables estimating distinct variance components. The 
effect of age within the reference cohort is estimated by nonlinear 
interpolation, which is appropriate in this period of highly active 
neurodevelopment [14, 85]. 

Second, normative modeling provides uncertainty measures to 
quantify the variation across the estimated mean within the refer-
ence cohort and the deviation of each patient from the group mean. 
This enables the detection and mapping of subject-specific patterns 
of abnormality in each individual. The statistical inference at the 
level of the individual participant is the key to explicitly characterize 
the heterogeneity underlying clinical conditions. It represents a 
concrete alternative to the limitations of the case-control analysis



A

seeking a pattern of atypicality that is consistent across the popula-
tion as discussed in Subheading 2.1. In the normative modeling 
framework, a deviation map is computed for each individual based 
on extreme values statistics, which does not require that atypical-
ities overlap across participants. These individual deviation maps 
can then be analyzed (e.g., using unsupervised ML approaches 
described in Subheading 2.4) to identify distinct patterns of abnor-
mality, i.e., to characterize putative subpopulations. 
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See [41, 83, 86, 87] for further description of the normative 
modeling framework and recommendations to guide future appli-
cations. The release of two python packages contributed to the 
widespread use of this approach: https://github.com/ppsp-team/ 
PyNM and https://github.com/amarquand/PCNtoolkit.  
didactic tutorial with a step-by-step comparison of the different 
normative modeling approaches on synthetic data illustrating 
their advantages and limitations is available online here: https:// 
github.com/ppsp-team/PyNM/tree/master/tutorials. 

2.6 Potential and 

Challenges of Deep 

Learning 

Deep learning is a class of ML algorithms characterized by their 
specific internal architecture as multi-layered neural networks. 
These multiple layers enable the striking capacity to progressively 
extract higher-level features without extensive prior injection. Their 
advantages compared to previous approaches are of crucial impor-
tance in a large range of applications and explain the considerable 
attention gained by DL in the wider scientific community. See, e.g., 
[88] for a detailed description of the DL methods used in the 
literature to investigate the neuroimaging correlates of psychiatric 
and neurological disorders. Conceptually, DL techniques are par-
ticularly relevant for the investigation of NDDs for the following 
reasons:

• Integrated learning of hierarchy of features. As mentioned in 
Subheading 2.2, classical ML algorithms leverage sets of 
structured features extracted from the input data. This feature 
engineering step relies on a priori regarding the data and has a 
strong influence on the performances. DL algorithms process 
directly the raw data without requiring prior feature extraction. 
During the learning, the algorithm can determine the optimal 
hierarchy of most relevant features for representing the data, 
resulting in a more objective process.

• Learning relevant spatial relationships from neuroimaging data. 
In the context of neuroimaging, a striking advantage of DL is its 
capacity to learn relevant spatial relationships among the image 
domain, such as an atrophy distributed across a network of 
several brain regions supporting a specific function [89]. In 
classical ML techniques, the feature engineering step and the 
learning phase are dissociated, such that relevant spatial

https://github.com/ppsp-team/PyNM
https://github.com/ppsp-team/PyNM
https://github.com/amarquand/PCNtoolkit
https://github.com/ppsp-team/PyNM/tree/master/tutorials
https://github.com/ppsp-team/PyNM/tree/master/tutorials
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relationships may be lost. On the contrary, this spatial relation-
ship might be preserved by DL techniques and integrated into 
the optimal hierarchy of features.

• Learning nonlinear relationships and biologically relevant com-
pact representations. As already discussed in Subheading 2.5, 
nonlinear relationships across data or dimensions relevant to 
NDDs are expected. Conceptually, the combination of the mul-
tiple layers available in DL architectures enables to encode this 
nonlinearity into a cascade of nonlinear transformations while 
reducing the input space into a lower-dimensional “latent 
space,” providing a compact representation of the data. The 
recent works from [89–91] demonstrated that DL can exploit 
the presence of nonlinearity in neuroimaging data to learn gen-
eralizable representations highly relevant for characterizing the 
human brain. They combined supervised and unsupervised tasks 
in a DL framework which consisted in learning the representa-
tion from classification tasks (predicting age and sex) and then 
applying decomposition and clustering techniques to the latent 
space. These studies strongly support that DL approaches can 
provide more accurate mappings of the effects of age and sex on 
brain MRI than simpler models. The resulting representations 
obtained in these works are instrumental for refining the link 
between cognition and underlying brain systems. Another 
promising avenue of research denoted as scientific machine 
learning (https://sciml.ai) consists in injecting traditional scien-
tific mechanistic models into modern deep learning architec-
tures in order to combine the benefits of efficient data-driven 
automatic learning with better interpretability and integration of 
biophysical constraints. See [92] for a review discussing the 
potential of these approaches in computational neuroscience 
and [93] for an example application to neuroimaging data. DL 
techniques can thus learn representations of data that have the 
potential to help explain the biological underpinnings of mental 
disorders, providing that enough data is available. 

3 A Non-exhaustive Survey of Existing Papers on Machine Learning for NDDs and 
Their Limitations 

We refer to the recent reviews [31, 32, 34, 51, 55, 69, 71], for a 
complete overview of the literature of the field. Here, we survey a 
selection of very recent works that we consider particularly relevant 
with respect to the opportunities offered by recent ML techniques 
applied to large open datasets, or that illustrate the challenges faced 
by current approaches, to be addressed in the near future.

https://sciml.ai/
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3.1 Using ML 

Techniques on 

Neuroimaging Data to 

Predict the Diagnosis 

An international challenge (146 challengers) has been organized to 
predict ASD diagnosis based on several neuroimaging modalities 
[43]. This challenge was conducted on the largest sample available 
to date (>2000 individuals from the ABIDE dataset and a second, 
private dataset not open to challengers). An additional dataset from 
the EU-AIMS project [22] was used to evaluate the reproducibility 
of the prediction on an independent dataset (out-of-sample predic-
tion). The ten best submissions used either logistic regression as a 
first-layer predictor, linear vector classification, or a combination of 
different methods. Best algorithms managed to predict ASD diag-
nosis with an in-sample AUC of 0.80. Resting-state fMRI data was 
a better diagnostic predictor than anatomical MRI, and simple 
logistic regression performed better than complex graph convolu-
tional deep learning models (likely due to overfitting). Finally, the 
performances of the best algorithms decreased to an out-of-sample 
AUC of 0.72 (on the external sample). Authors projected that 
10,000 individuals might be necessary to reach the optimal 
prediction. 

Another study of interest was led by the consortium “Infant 
Brain Imaging Study” (IBIS) [94]. The authors investigated 
whether infants at high familial risk for autism present early postna-
tal atypical brain volume. A deep learning algorithm used surface 
area at 6 and 12 months to successfully predict an early diagnosis of 
autism in infants at high risk of autism at 24 months (in-sample 
predictive value of 81%, no out-of-sample prediction accuracy 
provided). These results should be tempered by several major pit-
falls. First, the diagnosis of ASD is very challenging at that early age. 
Second, the sample size was very small (15 high-risk infants diag-
nosed with autism at 24 months) and thus does not comply with 
the recommended practices for predictive modeling [46]. Third, 
the specificity of the results with respect to other NDDs was not 
assessed. A confirmation of the reproducibility of these results in a 
larger, external cohort would thus be much welcome. 

Overall, these results showed that applying prediction algo-
rithms on large enough imaging data could be instrumental for 
the early detection of ASD and therefore early intervention. In line 
with the conclusions of previous reviews [31, 69], these studies also 
demonstrated the relevance of using imaging data as an intermedi-
ate phenotype between the biological cause (e.g., deletion of the 
gene content at the 16p11.2 chromosomal segment) and the asso-
ciated phenotype (e.g., ASD, ADHD, intellectual disability). 

3.2 Latent Space 

Decomposition and 

Subtyping Approaches 

Applied to NDDs 

Complementary works are aiming to face clinical and biological 
heterogeneity in NDDs using a subtyping approach based on imag-
ing data. Using hierarchical clustering methods on neuroanatomi-
cal data, Hong and colleagues [95] identified three distinct 
morphometric subtypes in ASD: ASD-I characterized by cortical 
thickening, increased surface area, and tissue blurring; ASD-II with



cortical thinning and decreased geodesic distance; and ASD-III 
with increased geodesic distance. These groups were associated 
with gradual symptom severities and might help tackle the well-
known clinical heterogeneity issue introduced in Subheading 1. 
The genetic contribution to the observed clinical heterogeneity 
was investigated across eight psychiatric conditions including 
ASD and ADHD [96] with common variants. Exploratory factor 
analysis (EFA) on GWAS cross-disorders’ summary results led to 
the identification of three genetically inter-related groups of dis-
orders, explaining together 51% of the genetic variation across 
NDDs and psychiatric conditions. The first factor linked anorexia 
nervosa, OCD, and Tourette syndrome. The second one was asso-
ciated with major depression, bipolar disorder, and schizophrenia. 
The last one encompassed early-onset NDDs (ASD, ADHD, Tour-
ette syndrome) and major depression. Similar to EFA results, hier-
archical genetic clustering identified the same three subgroups 
among the eight disorders. These methods therefore have a great 
potential to uncover new biologically relevant diagnostic 
categories. 
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Such overlaps across clinical diagnoses have also been charac-
terized at the imaging level. Patel et al. [19] determined a common 
pattern of group differences in cortical thickness across six 
disorders—including ASD, OCD, ADHD, schizophrenia, bipolar, 
and major depression disorders—and their link with gene expres-
sion profiles. Analyses of correlation and clustering revealed a 
shared profile of differences across disorders with 48% of variance 
explained, associated with pyramidal-cell gene expression. Analyses 
of gene co-expression highlighted two pre- and postnatal clusters 
associated with this common brain profile of group differences, 
enriched with genes associated with these disorders. Kebets and 
colleagues [97] applied partial least square regression (PLSR) to 
resting-state fMRI and cognitive metrics in participants with either 
ASD, ADHD, schizophrenia, or bipolar disorders. They identified 
three latent components (general psychopathology, cognitive dys-
function, and impulsivity) with unique fMRI signatures. Connec-
tivity patterns of the somatosensory-motor network were main 
drivers across the three components. Similar findings on the 
somatosensory-motor network have been observed by [98] and 
extended to rare genetic mutations that confer high risk for neu-
ropsychiatric conditions. Kernbach et al. [42] designed a hierarchi-
cal Bayesian modeling framework to derive hidden disease 
dimensions from RS-fMRI data across a population of ADHD, 
ASD, and controls. Using these methods, the number of compo-
nents is inferred from the data. They obtained 45 hidden compo-
nents that were then reduced to 3 main factors for better 
interpretation. For each of these three identified factors, the 
authors characterized the associated fMRI coupling patterns and 
symptom measures from the clinical questionnaires. These brain-



derived factors predicted the classification of subjects as ADHD, 
ASD, or control with an accuracy of 67%, computed using a variant 
of cross-validation called pre-validation described in [99]. This 
variant is expected to enable a fairer evaluation of the group labels 
than cross-validation, but still leaves room for errors compared to 
out-of-sample predictions [46]. 
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Latent space decomposition techniques have been also used to 
identify general principles of the hierarchical brain organization— 
denoted as functional gradients—that locate sensory-motor net-
works at one end and the transmodal default-mode network at the 
other end [100, 101]. Hong and colleagues [102] hypothesized 
that NDDs’ conditions may preferentially affect the sensory-motor 
dimension. They used surface-based analytical models to compare 
the first functional gradient (explaining 24% of the connectome 
variance) in ASD vs. controls and showed that both extremes of 
the rostrocaudal gradient were decreased in ASD. Interestingly, 
vertex-wise analyses revealed that such diminution in ASD was 
driven by transmodal medial PFC and posterior cingulate 
regions [102]. 

Combining large-scale multidimensional data is perceived as 
the golden standard to correctly apply ML algorithms. However, 
only a few precision medicine studies managed so far to do so. In 
[103], the authors extracted electronic health records, familial 
whole-exome sequences, and neurodevelopmental gene expression 
patterns in a large sample of ASD patients. Their goal was to 
identify biologically homogeneous ASD subtypes. For this pur-
pose, the authors used spatiotemporal expression data from typi-
cally developing human brains to identify clusters of exons that are 
co-expressed during early human brain development. Based on 
prior knowledge on sexually different prenatal gene expression in 
ASD, they focused the analysis on a set of clusters that are differen-
tially expressed between males and females. They then selected 
inherited, likely gene-disrupting variants among all the 
ASD-segregating ones by leveraging a large dataset of families 
who have one child with ASD and one unaffected sibling. They 
mapped variants back to exon clusters to identify 33 clusters of 
neurodevelopmentally co-regulated, ASD-segregating deleterious 
variants. The functional enrichment analysis of the identified exon 
clusters (detailed in [103]) revealed a new molecular convergence 
on lipid regulation, with variants expected to collectively alter LDL, 
cholesterol, and triglyceride levels. They confirmed that children 
with ASD have blood lipid profiles that are significantly outside the 
physiological range. Finally, they characterized the diagnostic spec-
trum of the dyslipidemia-associated ASD subtype and confirmed its 
specificity by comparing with individuals with ASD and no dyslipi-
demia. This work demonstrated the potential of combining massive 
amounts of multimodal data for uncovering new ASD subtypes.
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3.3 Normative 

Modeling 

In [104], the authors applied normative modeling to a large sample 
of ASD and controls males covering a wide age range (5–40 years). 
They investigated the potential of age-related effects on cortical 
thickness to serve as an individualized metric of atypicality in indi-
viduals with ASD. They reported that only a small subgroup of 
patients showed age-atypical cortical thickness. By comparing with 
conventional case-control analyses, they observed that most case-
control differences were driven by a small subgroup of patients with 
high atypicality for their age. Highly consistent results were 
obtained in another application of normative modeling to a differ-
ent ASD cohort [105], despite important variations across these 
studies. The population of the second work was composed of both 
males and females, and sex was included as a factor in the normative 
model. In addition, the normative models were estimated using 
different approaches (non-parametric regression in [104], Gaussian 
process regression in [105]). The overall consistent results despite 
the methodological differences support the relevance of the nor-
mative modeling approach for NDDs. In a follow-up study, [106] 
applied the spectral clustering technique to the atypicality maps 
computed at the individual level as deviation in the cortical thick-
ness with respect to the normative model estimated in [105].They 
identified five subtypes of individuals with ASD and assessed their 
separability using a multi-class linear SVM. Each subpopulation was 
then characterized in terms of demographic and clinical measures as 
well as association with polygenic scores for seven traits (autism, 
ADHD, epilepsy, full IQ, neuroticism, schizophrenia, and cross-
disorder risk for psychiatric disorders). Importantly, they observed 
striking differences in the spatial patterns of cortical thickness atyp-
icality maps between subtypes: three clusters showed reduced cor-
tical thickness relative to the normative pattern, whereas two 
clusters showed an increased cortical thickness. These distinct and 
opposing atypicalities across different subtypes could explain the 
inconsistency in the previous case-control analyses. A last study did 
apply normative modeling to an adult population of ADHD 
patients [107]. The authors estimated a normative model predict-
ing regional gray and white matter volumes across the brain from 
age and sex. They observed deviations shared across patients in gray 
matter in the cerebellum, temporal regions, and the hippocampus. 
They also provided a measure of the inter-individual variation 
between ADHD patients with extreme deviations in specific 
regions in more than 2% of the participants. Overall, these results 
highlighted the relevance of the normative modeling approach to 
understanding the heterogeneity in NDDs. 

3.4 Genetic Features 

to Predict Cognitive 

Deficit in NDDs 

As extensively discussed in [39], attempts to dissect mechanisms of 
NDD have mainly used a top-down approach, starting with a 
diagnosis and moving down to brain intermediate phenotypes 
and to genes. By contrast, the recruitment of groups based on the



presence of a genetic risk factor for NDDs allows for the investiga-
tion of pathways related to a particular biological risk for psychiatric 
symptoms (bottom-up approach). Clinical routine with genomic 
microarrays revealed that copy number variants are present in 
10–15% of children with neurodevelopmental conditions 
[108]. Genetic-first approaches can however only be applied to a 
few recurrent pathogenic mutations frequent enough to establish a 
case-control study design. Thus, the effect of the vast majority of 
rare deleterious risk variants remains undocumented. Because a 
highly diverse landscape of rare variants confers a higher risk to a 
spectrum of NDDs, studies focusing on individual mutations will 
not be able to properly disentangle the relationship between muta-
tions, molecular mechanisms, and diagnoses. Huguet and collea-
gues [109] speculated that large effect size pathogenic deletions 
may be attributable to the sum of individual effects of genes 
encompassed in each copy number variation. They introduced a 
new framework to estimate the effect of any pathogenic deletion on 
intelligence quotient (IQ). Using several types of functional anno-
tations of rare genetic deletions associated with NDDs, the pro-
posed framework predicted their impact on IQ with 76% accuracy 
[109]. They showed that haploinsufficiency scores—probability of 
being loss of function intolerant (pLI)—best explain the cognitive 
deficits. Follow-up works specifically on ASD confirmed that this 
score was the best predictor of IQ deficit and autism risk (odds 
ratio) [110, 111]. Deletion of 1 point of pLI was associated with a 
decrease of 2.6 points of IQ in autism. 
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3.5 Deep Learning 

Applied to NDDs 

A deep learning-based framework has been recently introduced to 
predict the regulatory contribution of non-coding mutations to 
autism [112]. Authors constructed a deep convolutional network 
to model the functional impact of each individual mutation (single 
nucleotide polymorphism). They first identified that ASD probands 
(n = 1700 families) were carriers of a higher rate of transcriptional 
and post-transcriptional regulation disrupting de novo mutations 
compared with their siblings. They also revealed a convergent 
pattern of coding and non-coding mutations. 

In [113], the authors analyzed resting-state fMRI (RS-fMRI) 
data from 260 subjects with ADHD and 343 healthy controls from 
the ADHD-200 database. They proposed to represent RS-fMRI 
data from each individual as a graph that integrates both temporal 
and spatial correlation of regional time-series signals. An original 
graph convolutional neural network architecture was introduced to 
characterize the brain functional connectome. The model also 
included seven non-imaging variables (age, gender, handedness, 
IQ measurement, and three Wechsler Intelligence Scale evaluation 
IQ variables) and was trained to distinguish ADHD patients from 
HC. Several experiments showed a performance gain compared to 
previous methods including SVM, logistic regression, and conven-
tional graph convolutional networks. The proposed method



outperformed other competing approaches, including SVM and 
logistic regression, with an AUC of 75 (72.0% accuracy, 71.6% 
specificity, and 72.2% sensitivity) on a tenfold cross-validation. A 
leave-study-site-out experiment demonstrated the robustness of 
the proposed model for unseen data from different study sites, 
and experiments with simplified versions of the model showed the 
relevance of each proposed improvement. Most discriminative 
regions were mainly located in the frontal lobe, occipital lobe, 
subcortical lobe, temporal lobe, and cerebellum—with hypo-
connections mainly between the frontal, parietal, and temporal 
lobes and widespread hyper-connections. 
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These studies support that new methodological improvements 
can be expected from the very active field of deep learning applica-
tions to neuroimaging and genetics data. As pointed in [88], the 
anticipated increase in sample size in NDDs studies will allow fit 
more complex models, which might reveal larger differences in 
performances compared to conventional methods. The literature 
of DL applications to NDDs is however still in its initial stages, and 
major challenges such as tendency to overfitting [43] have to be 
carefully addressed in future studies. 

3.6 Discussion The review of the selected recent studies presented above demon-
strates that the application of ML in NDDs is a very active field of 
research, with encouraging perspectives. This field indeed benefits 
directly from initiatives to openly share data [114], which did 
increase the sample size involved across studies, and favored the 
engagement of ML scientists. The paradigm shift from diagnostic-
first to genetic-first and from one diagnostic at a time to cross-
diagnoses approaches is afoot, with a clear rise of large-scale studies 
based on normative modeling and deep learning approaches. Meth-
odological works continue to introduce new innovative ML 
approaches specifically designed to address the central tasks in 
NDDs. Importantly, the adoption of best practices for the valida-
tion and replication of the results across independent datasets as 
stated in [46] is clearly encouraged by the recent reviews [31, 32, 
34, 51, 55, 69, 71]. However, the validation is limited by insuffi-
cient access to large enough datasets combining multiscale data 
(genetics, transcriptomic, proteomic, metabolomic, neuroimaging 
features, phenomics). There is no open dataset so far offering that 
level of granularity. Indeed, the imaging field is just reaching the 
sample size allowing for running modern ML techniques for some 
but not all modalities. For instance, large-scale studies involving 
diffusion-weighted imaging are clearly lacking in NDDs, probably 
due to insufficient access to appropriate data. The genomic field is 
not ready yet, and several domains remain relatively new (e.g., first 
genome sequenced in 2000, next-generation sequencing techni-
ques in 2010) and expensive (e.g., RNA-Seq data) 
[115, 116]. Such data will provide—in the near future—massive 
potential for accurate classification and appropriate validation.
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4 Open Challenges and Conclusion 

Methodological improvements described in Subheading 2 and 
studies reviewed in Subheading 3 are encouraging for concrete 
impact on clinical practice in the future. However, such clinical 
translation is raising major challenges that should be addressed. 

4.1 Potential Bias in 

Data and Processing 

Pipelines 

Despite the large amount of new approaches released by recent 
literature, some potential biases in analysis pipelines should be 
mentioned. For instance, the analysis of functional networks com-
puted from RS-fMRI relies on a complex succession of processing 
steps. Several of these processing steps actually correspond to 
implementing assumptions regarding the data. However, the valid-
ity of these assumptions and their influence on the subsequent 
results are not sufficiently discussed in the literature. See, for 
instance, [117] for a quantitative evaluation of the impact of the 
brain parcellation procedure on functional connectivity analyses. 
Another major barrier to reproducibility is the lack of compatibility 
among programming languages, software versions, and operating 
systems as illustrated in [118]. This report highlights the challenges 
and potential solutions to be implemented at both the individual 
researcher and community levels in order to enable the appropriate 
reuse of published methods. 

On the data side, the limitations related to the absence of 
recording of potentially influencing factors are not sufficiently 
investigated and acknowledged. As pointed, e.g., in [119]: “The 
extent of brain differences in disease may depend critically on a 
patient’s age, duration of illness, course of treatment, as well as 
adherence to the treatment, polypharmacy and other unmeasured 
factors. Differences in ancestral background, as determined based 
on genotype, are strongly related to systematic differences in brain 
shape. Any realistic understanding of the brain imaging measures 
must take all these into account, as well as acknowledge the exis-
tence of causal factors perhaps not yet known or even imagined.” As 
a concrete illustration, [120, 121] recently reported significant 
alterations in brain morphometry induced by prematurity, a factor 
that was not considered by any of the studies we reviewed here. 
Such uncontrolled factors might introduce considerable bias in the 
learning process. The ML research field has identified this pitfall, 
and several solutions to prevent unexpected implications in clinical 
applications are actively debated [122–124]. 

4.2 Interpretability 

and Biological 

Substrates 

Even in the absence of bias, the interpretation of the outcome of 
any ML algorithm in the context of clinical application represents a 
critical challenge. More than the level of raw performance, the level 
of expertise required from medical doctors in (1) the recording and 
(2) the analysis of the data compared to “expertise-free” raw data is



a question that requires more attention. We refer to [125] for a 
thoughtful discussion on the need for clarification of the role of 
ML-based tools in relation to clinicians’ decisions and actions in 
clinical practice. The authors call for a more systematic demonstra-
tion that models learning from non-clinician-initiated data outper-
form models based on clinician-initiated data. They purposely 
argue that models driven by features derived from the actions of 
clinicians and not related to the underlying physiology might intro-
duce some deleterious circularity. Indeed, the outcome of such a 
model might potentially confuse more than support a clinician in 
his decisions. 
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Then—regarding the interpretation in terms of 
pathophysiology—the challenge is to relate the decisions of any 
ML techniques to putative underlying biological processes. Meth-
odological innovations will enhance the explainability of ML mod-
els, but explainability and transparency do not imply interpretability 
[126, 127]. Another major challenge is to assess the biological 
relevance of the features extracted from the data during the learning 
procedure. Purely data-driven approaches are limited by the diffi-
culty to relate the parameters of the model to biological knowledge. 
A promising perspective consists in inserting biological priors 
directly in predictive models. See [92] for an introductory review 
to this type of approach in the context of computational neurosci-
ence and (https://sciml.ai) for further information on the 
emerging field of scientific machine learning. However, extensive 
basic research at conceptual, methodological, and experimental 
levels are required to fill the gap between measures accessible 
in vivo in patients and the biophysiology acting at cellular and 
molecular levels. See, for instance, [128] for an illustration of the 
complexity of this challenge, where the authors propose a frame-
work integrating different levels of interactions, from genes to cells, 
circuits, and clinical expression, to better understand and treat 
cortical malformations. As discussed in [129] for ASD, research 
designs aiming at a better conceptual integration between different 
levels of brain organization are required to characterize the cascade 
of pathogenic processes in NDDs. 

4.3 Conclusion In NDDs, as in healthcare in general, ML has a role to play in 
addressing the longstanding deficiencies such as serious diagnostic 
errors, mistakes in treatment, and waste of resources [130]. Indeed, 
ML will undoubtedly help redefine NDDs’ categories and other 
mental illnesses more objectively, identify them at an early stage, 
and contribute to more adapted treatments. The rise of ML is the 
occasion to improve the standardization of practice and to enforce 
the generalization of open science with preregistration and data 
sharing or federated learning. In addition, the field has to demon-
strate high and reproducible performances in the real-world clinical 
environment. Finally, major conceptual, ethical, and socio-technical 
challenges have to be addressed.

https://sciml.ai/
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