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Abstract 

Diagnostic imaging is widely used to assess, characterize, and monitor brain tumors. However, there remain 
several challenges in each of these categories due to the heterogeneous nature of these tumors. This may 
include variations in tumor biology that relate to variable degrees of cellular proliferation, invasion, and 
necrosis that in turn have different imaging manifestations. These variations have created challenges for 
tumor assessment, including segmentation, surveillance, and molecular characterizations. Although several 
rule-based approaches have been implemented that relates to tumor size and appearance, these methods 
inherently distill the rich amount of tumor imaging data into a limited number of variables. Approaches in 
artificial intelligence, machine learning, and deep learning have been increasingly leveraged to computer 
vision tasks, including tumor imaging, given their effectiveness for solving image-based challenges. This 
objective of this chapter is to summarize some of these advances in the field of tumor imaging. 
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1 Introduction 

With the recent emergence of artificial intelligence in neuroimag-
ing, there is great interest in harnessing the power of new compu-
tational approaches that are inherently quantitative to 
non-invasively measure and classify features of brain tumors on 
routine and advanced magnetic resonance imaging (MRIs). Artifi-
cial intelligence (AI), including both machine learning (ML) and 
deep learning (DL), has the potential to automatically detect pat-
terns in images that remain elusive to the eye of a neuroimager and 
to surpass human-level performance in the prediction of glioma 
genetics, treatment response, and long-term outcome. Theoreti-
cally, these features of AI may enable clinicians to provide greater 
value to the patient by allowing for expedited and more tailored 
treatments. This chapter will provide a brief review of primary brain
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tumor epidemiology with emphasis on gliomas, evaluate present 
challenges in brain tumor imaging, and describe potential applica-
tions for AI.
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2 Brain Tumor Epidemiology 

Primary central nervous system (CNS) tumors are a rare form of 
cancer, with an incidence rate in adults estimated to be 23.8 per 
100,000 persons [1] (see Box 1) [2]. However, while these tumors 
are rare, they constitute a significant fraction of cancer morbidity 
and mortality. Within the United States, approximately 10 per 
100,000 are diagnosed with a primary brain tumor each year, and 
6 to 7 per 100,000 are diagnosed with a primary malignant brain 
tumor [3]. Brain cancer incidence is the highest in Europe 
(age-standardized incidence rate [ASR]: 5.5 per 100,000 persons) 
and North America (ASR: 5.3 per 100,000 persons), along with 
Australia and Western Asia [3, 4]. With regard to tumor types, 
astrocytomas and gliomas are the second most common malignant 
brain tumor in adults following metastasis, and gliomas represent 
approximately 30% of brain tumors and 80% of all primary malig-
nant brain tumors [4]. Gliomas vary in histology from potentially 
surgically curable grade 1 tumors (e.g., pilocytic astrocytoma) to 
aggressive grade 4 tumors (e.g., glioblastoma, GBM) with a high 
risk of recurrence and/or progression [5]. Accurately classifying 
and characterizing tumors is vital to diagnosing tumors and pro-
ducing precise prognostication. 

Cancer mortality is dependent on subtype and staging, and 
survival time after diagnosis varies greatly by grade [6, 7]. Gliomas 
are classified and graded based on histological and molecular mar-
kers [6, 7]. GBM is a subtype of glioma which arises from normal 
glial cells and consists of a group of genetically and phenotypically 
heterogeneous tumors [7, 8]. GBM is the most common primary 
CNS tumor in adults, with an incidence of 3.2 per 100,000 adults 
each year in Europe and America [9]. The incidence increases 
significantly with age, with a mean age of diagnosis at 64 for 
primary GBM and a peak incidence of 15.2 cases per 100,000 
between the ages of 75 and 84 [9]. GBM occurrence has been 
associated with several genetic diseases, including tuberous sclero-
sis, neurofibromatosis type I, and Li-Fraumeni syndrome; however, 
less than 20% of patients with GBM have a strong family history of 
cancer, and the only well-established environmental risk factor is 
exposure to ionizing radiation [10]. GBM has the poorest overall 
survival among gliomas, with 0.05–4.7% patient survival after 
5 years of diagnosis in the United States from 1995 to 2010 (95% 
CI 4.4–5.0) [4, 11]. Overall, mortality and prognosis vary tremen-
dously depending on grade and subtype, and methods to more 
accurately predict these factors would help improve treatment and 
outcomes.
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Box 1 Main Primary Central Nervous System Tumors 

Malignant 

Astrocytomas 20–25% 

Oligodendrogliomas 1–2% 

Ependymal tumors <2% 

Other 8% 

Non-malignant 

Meningiomas 37% 

Pituitary 16% 

Nerve sheath 8% 

Other 7% 

GBM remains one of the most lethal malignant solid tumors. 
The 1-year overall survival of newly diagnosed GBM is 17–30% 
with a 5-year survival rate of less than 5% [6]. Surgical resection 
followed by chemotherapy and radiotherapy remains the corner-
stone treatment choice for GBM. However, the response to che-
motherapy is variable, and nearly all patients suffer from recurrent 
disease [4]. Additionally, these tumors most frequently arise within 
the frontal lobe, leading to both cognitive and motor disabilities 
that result in loss of independence in many patients. Increasingly, 
molecular markers are being used for glioma classification and 
characterization. Mutations such as IDH1 can be a strong predictor 
of favorable prognosis and can assist in distinguishing among gli-
oma subtypes [12]. Characterizing certain genetic features such as 
IDH1 status can aid in more accurate diagnoses and 
prognostication. 

3 Present Challenges with Brain Tumor Imaging 

3.1 Segmentation While there have been significant advances in neuro-oncology 
imaging, there remain several challenges in providing accurate 
measurements of brain tumors. For example, a present limitation 
is that commonly used techniques to monitor tumor size use 
unidimensional and bidimensional manual measurements. While 
this may work for solid tumors that have a more spherical shape, 
the postsurgical cavity and tumors themselves of neuro-oncology 
patients tend to be highly irregular in shape, which increases the 
difficulty in obtaining accurate measurements. This stems from the 
fact that GBMs themselves and their recurrence commonly



demonstrate eccentric and nodular growth. For patients, such 
inconsistencies and potential inaccuracies may result in classifying 
effective treatments as ineffective or vice versa (Fig. 1). Ultimately, 
this challenge heightens the importance for the need for reliable 
and reproducible techniques for tumor size measurements. 
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Fig. 1 Head tilt affecting designation. Patient with glioblastoma after resection. Simulation of tilting the 
patient’s head up results in progression of disease (a) while in routine positioning demonstrates stable disease 
(b), and tilting downward results in partial response (c) 

3.2 Surveillance In addition to tumor segmentation, radiographic assessment has 
served as an essential tool to monitor patients with brain tumors 
and has played an important role in clinical trials. Historically, 
increases and decreases in tumor size using gadolinium contrast-
enhanced sequences have served as imaging markers for progres-
sion and treatment response, respectively [13, 14]. However, there 
are limitations of relying solely on contrast enhancement for asses-
sing disease status. Specifically, treatment-related increases in 
enhancement were observed to mimic progression with increasing 
frequency following the introduction of standard of care therapy of 
radiation and temozolomide (TMZ) [15]. This tumor pseudopro-
gression (psPD) is observed in 20–60% of patients who have under-
gone radiotherapy with TMZ and defined as increases in edema and 
contrast enhancement on MRI with or without clinical deteriora-
tion that subsequently stabilizes or resolves (Fig. 2)  [15–17]. Addi-
tionally, the incidence has been reported to be as high as 90% in 
patients that have increased sensitivity to TMZ, identified with 
methylation status of the methyltransferase (MGMT) promoter in 
glioma cells [18].
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Fig. 2 Pseudoprogression. Example of a 45-year-old female with GBM. Axial post-contrast images immedi-
ately after resection show minimal enhancing disease (a). Follow-up MRI at 1 month demonstrates new thick 
enhancement (b) that subsequently reduced on images 12 months out (c) 

Presently, the exact mechanism is still not fully understood, and 
the only accepted standard to distinguish true progression of dis-
ease (PD) from treatment-related psPD is invasive tissue sampling 
or short interval imaging or clinical follow-up, which may delay and 
compromise management changes in an aggressive tumor 
[16, 17]. In 2010, the Response Assessment in Neuro-Oncology 
(RANO) working group set criteria to address some of these chal-
lenges, including psPD [19]. However, evaluation of psPD remains 
limited with conventional imaging techniques. Challenges in mon-
itoring GBM patients due to psPD are also observed in other newer 
treatments, including immunotherapies [20, 21]. The immune-
related response criteria working group (iRANO) has made guide-
lines to address challenges of radiographic worsening in order to 
avoid classifying effective treatments as ineffective in instances of 
psPD; however, the group acknowledges that future research and 
solutions incorporating advanced imaging are necessary to improve 
assessment in these patients [21, 22]. 

3.3 Molecular 

Classification 

Glioma inter-tumoral genetic heterogeneity has been shown to 
impact both prognosis and response to therapy. For example, iso-
citrate dehydrogenase (IDH)-mutant GBMs demonstrate signifi-
cantly improved survivorship compared to IDH-wild GBMs 
(31 months vs. 15 months) [12, 23]. Recognition of the impor-
tance of genetic information has led the World Health Organiza-
tion (WHO) to place considerable emphasis on the integration of 
molecular markers for its classification schemes in its 2021 update, 
including IDH status [24]. Regarding treatment response, it is 
becoming increasingly evident that GBMs’ differing genetic attri-
butes also result in mixed responses [25]. One of the early

3.3.1 Impact of Glioma 

Inter-tumoral 

Heterogeneity



mutations discovered was O6-methylguanine-DNA methyltrans-
ferase (MGMT) promoter silencing, which reduces tumor cells’ 
ability to repair DNA damage from alkylating agents such as temo-
zolomide (TMZ). Hegi et al. [26] subsequently observed that 
MGMT promoter methylation silencing was observed in 45% of 
GBM patients, who demonstrated a survival benefit when treated 
with a combination of TMZ and radiotherapy versus radiotherapy 
alone (21.7 months versus 15.3 months). It is critical that future 
GBM monitoring integrates imaging and genetic data in order to 
provide accurate prognostic information and guide personalized 
therapies.
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3.3.2 Challenges of 

Personalized Therapy 

Discoveries in genetic profiling have spurred the development of 
new targeted therapies [27] with over 140 clinical trials presently 
evaluating personalized or targeted therapies for GBMs alone. 
These therapies are tailored to exploit genetically driven therapeutic 
targets. However, an apparent roadblock to these individualized 
approaches is the growing evidence of GBM intra-tumoral hetero-
geneity. Patel et al. demonstrated that GBMs consist of a mixture of 
cells with variable gene expression profiles using single-cell RNA 
sequencing [28]. Likewise, Sottoriva et al. observed genome-wide 
variability using surgical multisampling approach from 11 GBM 
patients [29]. Thus, each brain tumor may reflect multiple unique 
tumor habitats with corresponding differences in response and 
resistance to therapy, challenging the identification, development, 
and implementation of individualized care. 

3.3.3 MRI Biomarkers of 

Tumor Biology and Genetic 

Heterogeneity 

Both spatial and temporal variations in genetic expression result in 
alterations in tumor biology, including changes in apoptosis, cellu-
lar proliferation, cellular invasion, and angiogenesis [30]. In turn, 
these biologic changes manifest in the heterogeneous imaging 
features of brain tumors, resulting in varying degrees of enhance-
ment and edema. For example, imaging changes on contrast-
enhanced MRI result from the breakdown of the blood-brain 
barrier and can demonstrate areas of necrosis as a marker for 
apoptosis. Additionally, MRI sequences based on physiology such 
as apparent diffusion coefficient (ADC) and perfusion imaging have 
been shown to relate to tumoral cellularity and angiogenesis, 
respectively. Furthermore, promising efforts have shown that 
tumors with lower cerebral blood volume (CBV) on perfusion are 
more likely to be IDH mutants and have longer overall survival 
(OS) [31, 32]. Other reports have used enhancement patterns and 
ADC to predict IDH status with some success [33, 34]. Currently, 
efforts to provide molecular classification for brain tumors based on 
these MRI features have had mixed results. For example, classifica-
tion of IDH and MGMT mutant status has had some success; 
however, methods for 1p19q and EGFR have demonstrated less 
reproducibility [35–37]. Different mutations may have similar MRI



features, and a “single” tumor can have multiple different muta-
tions internally. Several approaches have emerged to provide stan-
dardized visual interpretation of gliomas for tissue classification. 
For example, the Visually AcceSAble Rembrandt Images (VASARI) 
feature set is a rule-based lexicon to improve the reproducibility of 
interpretation [38]. However, these methods rely on human visual 
interpretation, which is inherently subjective and prone to inter-
rater variability. Ultimately, steps are needed to provide reliable and 
reproducible methods to accurately classify molecular subtypes a 
priori. 
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4 Potential Applications for Machine Learning 

4.1 Segmentation Radiographic assessment serves an important role for clinical 
follow-up and research trials in oncology. Currently, the RANO 
criteria rely on 2D measurements of the enhancing disease as well as 
subjective assessment of the FLAIR non-enhancing tumor, which is 
then used to guide treatment strategies. However, the postsurgical 
cavity tends to be highly irregular in shape, which may increase the 
difficulty in obtaining accurate and reproducible measurements. 
Additionally, linear measurements obtained for cystic and necrotic 
tumors are often overestimated [39]. Intuitively, 3D segmentation 
provides a more accurate method for assessing tumor size com-
pared to linear 2D approaches and techniques [40–42]. For exam-
ple, Dempsey et al. [43] observed that 3D segmentation allows for 
better survival prediction compared with traditional diameter-
based analysis. 

Deep learning, an emerging branch of artificial intelligence, has 
been shown to rapidly outperform other machine learning 
approaches’ imaging benchmarks for various computer vision 
tasks [44, 45], including imaging 3D segmentation tasks. For 
example, Zhang et al. [46] observed that a CNN approach per-
formed significantly better than other techniques, including ran-
dom forest, support vector machine (SVM, a traditional linear 
machine learning technique), coupled level sets, and majority vot-
ing for brain segmentation. 

Since 2012, the Multimodal Brain Tumor Image Segmentation 
(BraTS) challenge has demonstrated the efficacy of deep learning 
approaches for tumor segmentation [47]. This unique dataset pro-
vides developers access to GBM images, which now includes over 
2000 patients from 37 institutions. As result, multiple groups have 
developed fully automated brain tumor segmentation tools which 
rely on various AI techniques to identify lesion margins and provide 
a more accurate estimate for disease burden (Fig. 3)  [48–51]. In 
2020, Isensee et al. [52] took first place with Sørensen-Dice coeffi-
cient scores of 88.95, 85.06, and 82.03 for whole tumor, tumor 
core, and enhancing tumor, respectively. Most recently in 2021,



BraTS has partnered with the Radiological Society of North Amer-
ica (RSNA) and the American Society of Neuroradiology 
(ASNR) [53]. 
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Fig. 3 Example of automated glioma segmentation using deep learning showing FLAIR edema segmentation 
(left) as well as segmentation of enhancing tissue (right). (Courtesy Peter Chang, MD) 

4.2 Surveillance As described previously, psPD cases are not reliably distinguished 
from true progression using RANO criteria with a recent meta-
analysis suggesting that upward of 36% are underdiagnosed 
[54]. In fact, the only accepted methods to distinguish true PD 
from treatment-related psPD are invasive tissue sampling and short 
interval clinical follow-up with imaging, which may delay and com-
promise disease management in an aggressive tumor [16, 17]. 

Traditional machine learning models have been previously uti-
lized for psPD characterization from radiologic imaging. Hu et al.’s 
[55] SVM approach examining multi-parametric MRI data yielded 
an optimized classifier for psPD with a sensitivity of 89.9% and 
specificity of 93.7%. Though deep learning methods have been 
leveraged less frequently, they are showing promise for



characterizing psPD versus true PD [56–58]. Jang et al. [56] 
assessed a deep learning, a long short-term memory network com-
bined with a CNN (CNN-LSTM), to determine psPD versus 
tumor PD in GBM. Their dataset consisted of clinical and MRI 
data from 2 institutions, with 59 patients in the training cohort and 
19 patients in the testing cohort. Their CNN-LSTM structure, 
utilizing both clinical and MRI data, outperformed the two com-
parison models of CNN-LSTM with MRI data alone and a random 
forest structure with clinical data alone, yielding an AUC (area 
under the curve) of 0.83, an AUPRC (area under the precision-
recall curve) of 0.87, and an F-1 score of 0.74 [56]. More recently, 
Lee et al. [58] also utilized a CNN-STM to distinguish PD from 
psPD with an accuracy range of 0.62–0.75. These examples indi-
cate that utilization of a deep learning approach can outperform a 
more traditional machine learning approach in analyzing images. 
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4.3 Molecular 

Classification 

Radiogenomics focuses on bridging the associations between med-
ical imaging and gene expression data in order to aid in the under-
standing of underlying disease mechanisms and improve 
diagnostics [59]. Certain molecular and genetic alterations in tissue 
can be observed computationally in terms of radiological appear-
ance, including shape and texture of tissue. Radiogenomics, which 
leverages the interplay between radiological and genetic features in 
oncology, is important to improve patient treatment decisions, and 
artificial intelligence has become a key player that has led to signifi-
cant advancements in these areas. AI-based radiogenomics has the 
potential to better characterize diagnosis, prognosis, and survival 
prediction by detecting key features in images that identify molec-
ular characteristics of disease. 

In gliomas, one of the earliest groups that used neural networks 
to predict tumoral genetic subtypes from imaging features was 
Levner et al. [60]. In this study, features were extracted from 
space-frequency texture analysis on the S-transform of brain MRIs 
to predict MGMT promoter methylation status in newly diagnosed 
GBM patients. Levner’s group achieved an accuracy of 87.7% across 
59 patients, among which 31 patients had biopsy-confirmed 
MGMT promoter methylated tumors. Residual CNN methods 
have also been used to predict MGMT promoter methylation status 
[61], as well as IDH mutation status. For example, Chang et al. 
developed a CNN to simultaneously classify IDH1, 1p19q codele-
tion, and MGMT promoter methylation status with high accuracy 
from imaging data derived from 259 patients in the Cancer Imag-
ing Archives dataset [35]. Chang et al. also developed a principal 
component analysis approach to disentangle the final feature layer 
and determine the most influential features for each classification 
(Fig. 4). These features largely overlap with what has been 
described in the literature by subjective visual assessment. Ryu 
et al. [62] evaluated glioma heterogeneity via textural analysis and



distinguished low- and high-grade gliomas with 80% accuracy. 
Additionally, Drabycz et al. [63] were able to classify MGMT 
promoter methylation status in glioblastoma patients with 71% 
accuracy using a textural analysis approach. 
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Fig. 4 MRI separating gliomas by MGMT methylation status. Features include thick enhancement with central 
necrosis (a) with infiltrative edema patterns (b). In contrast, features predictive of MGMT promoter methylated 
status include nodular and heterogeneous enhancement (c) with masslike FLAIR edema (d). (Copyright 
American Journal of Neuroradiology, adapted, with permission, from reference [35]) 

5 Summary 

In summary, present challenges in brain tumor imaging in part stem 
from the heterogeneity of the disease, which results in challenges 
related to disease characterization. However, the application of 
novel AI, ML, and DL approaches for brain tumor imaging aims 
to improve many of these areas due to its ability to accurately and 
reliably detect imaging patterns beyond human perception. 
Numerous public competitions (e.g., BraTS) have also spurred 
the field and have recently begun collaborations with multiple



imaging societies, including the RSNA and ASNR. Ultimately, 
there is optimism that these tools will continue to yield new oppor-
tunities to enhance discovery and care in the future. 
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